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REVISION 2 CHANGES

This document is a revised version of the previous one dated October

1971, and supersedes that document. The following is a summary of the major

technical changes included in this revision:

1. The filter-weighting matrix extrapolation equations

have been expanded to provide the (optional) capability

of including process noise in the filter.

2. The detailed flow diagrams have been modified so that

the routine may be re-called to continue an extrapola-

tion already started on a previous call without re-

rectification.

3. The rows and columns of the state covariance matrix

which pertain to the additionally estimated quantities

such as landmark locations or instrument biases have

been re-arranged to be between those rows and columns

pertaining to the two position and velocity variables.

This engenders some changes, mostly notational, in

the filter-weighting matrix extrapolation equations.
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FOREWORD

This document is one of a series of candidates for inclusion in a future re-

vision of MSC-04217, "Space Shuttle Guidance Navigation and Control Design Equa-

tions". The enclosed has been prepared under NAS9-10268, Task No. 15-A,

"GN & C Flight Equation Specification Support", and applies to function 1 of the

Orbital Navigation Module (ON2) and function 1 of the Co-orbiting Vehicle Naviga-

tion Module (ON3) as defined in MSC-03690 Rev. B, "Space Shuttle Orbiter Guid-

ance, Navigation and Control Software Functional Requirements - Vertical Flight

Operations", dated 15 December 1971.

Gerald M. Levine, Director
APOLLO Space Guidance Analysis Division
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NOMENCLATURE

ad(t) Perturbing acceleration at time t

b Number of additional quantities, such as landmark

locations or instrument biases, being estimated

cnom Constant for adjustment of nominal step-size

d Number of columns in the filter weighting sub-matrix W

EP Primary vehicle covariance matrix (6 x 6)

ET Target vehicle covariance matrix (6 x 6)

f(q) Special function of q defined in text

G(t) Gravity gradient matrix

i Unit vector of earth's north polar axis expressed inpole
reference coordinates

i Unit vector in the direction of the position vector r-r

13 Three-dimensional identity matrix

J2 Constant describing dominant term of earth's oblateness

q Special function of r and 6 defined in text

qi Three-dimensional column vector in the 3 x 3 process

noise matrix for either the primary vehicle (i = 3, 4, 5)

or the target vehicle (i = 9+b, 10+b, l1+b)
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Q Process noise matrix (3 x 3). Subscripts P or T

refer to the process noise matrix associated with

the primary or target vehicle state

r 0 Geocentric position vector at time t o

r(t) Geocentric position vector at time t

r(t) Magnitude of geocentric position vector

r con(t) Reference conic position vector at time t

rcon (t) Magnitude of reference conic position vector

at time t

rE Mean equatorial radius of the earth

rF Geocentric position vector at time tF

r. Intermediate values of r

scont Switch indicating whether previous extrapolation is

to be continued without re-rectification

spert Switch indicating the perturbing accelerations to

be included

sq Switch controlling whether process noise is to be

included in the W-matrix extrapolation

sveh Switch indicating whether the filter-weighting sub-

matrix being extrapolated is associated with the

primary or target vehicle

SW Switch controlling whether state or filter-weighting

matrix integration is being performed (used only

internally in routine)
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to Initial time point. Also, time of last rectification

tF Time to which it is desired to extrapolate (r 0 , v
0

)

and optionally W0

v 0 Geocentric velocity vector at time tO

vF Geocentric velocity vector at time tF

v con(t) Reference conic velocity vector at time t

W 0 Filter-weighting matrix at time to

WF Filter-weighting matrix at time tF

Wk, i Elements of the filter-weighting matrix

Three-dimensional column vectors into which the
Wk, i

filter-weighting matrix is partitioned

x Independent variable in Kepler routine

x' Previous value of x

y (t) Vector random variable of dimension b representing

errors in the additionally estimated quantities such

as landmark locations or instrument biases

6 (t) Position deviation vector of true position from

reference conic position at time t

6' Magnitude of position deviation vector (temporary

variable used for rectification test)

6max
Maximum value of 16 1 permitted (used as rectifi-

cation criterion)

viii



At Time-step in numerical integration of differential

equation

At Maximum permissible time-step sizemax

At Nominal integration time-step size

Ct Time convergence tolerance criterion

f (t) Random variable representing error in estimate of

position vector at time t

(t) Random variable representing error in estimate of

velocity vector at time t

A1 Earth's gravitational parameter

v (t) Velocity deviation vector of true velocity from refer-

ence conic velocity at time t

v' NMagnitude of velocity deviation vector (temporary

variable used for rectification test)

Vmax Maximum value of I v permitted (used as rectifi-

cation criterion)

T Time interval since last rectification

TI' Previous value of T

Geocentric latitude
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1. INTRODUCTION

The Precision State and Filter Weighting Matrix Extrapola-

tion Routine provides the capability to extrapolate any spacecraft

geocentric state vector either backwards or forwards in time through

a force field consisting of the earth's primary central-force gravita-

tional attraction and a superimposed perturbing acceleration. The

perturbing acceleration may be either the single dominant term (J 2 )

of the earth's oblateness or a more complete expression involving

all significant perturbation effects. The Routine also provides the

capability of extrapolating the filter-weighting matrix along the preci- '

sion trajectory. This matrix, also known as the "W-matrix", is a

square root form of the error covariance matrix and contains statisti-

cal information relative to the accuracies of the state vectors and

certain other optionally estimated quantities.

On any one call, the routine extrapolates only one state vec-

tor and only those six rows of the filter-weighting matrix relating to

this state vector. Two calls are required to extrapolate two separate

state vectors and a complete filter-weighting matrix pertaining to two

state vectors. The complete extrapolated filter-weighting matrix is

obtained by properly adjoining the two separately extrapolated sub-

matrices of six rows each.

The routine is merely a coded algorithm for the numerical

solution of modified forms of the basic differential equations which

are satisfied by the geocentric state vector of the spacecraft's center

of mass and by the filter-weighting matrix, namely:

2

-d r(t) + r(t) = ad(t)
2 3dt r .(t)

and

d W(t) = F(t) W(t) + w1 Q[ W(t)] 

where a d (t) is the vector sum of all the desired perturbing accelera-

tions, F(t) is a matrix containing the gravity gradient matrix and the

identity matrix in its off-diagonal sub-blocks, and Q is the process

noise matrix. A simplified form of the term in braces is included

only during phases when process noise is to be introduced into the

navigation filter to improve the long-term navigation accuracy.
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Because of its high accuracy and its capability of extrapola-

ing the filter-weighting matrix, this routine serves as the computa-

tional foundation for precise space navigation. It suffers from a

relatively slow computation speed in comparison with the Conic State

Extrapolation Routine.
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2. FUNCTIONAL FLOW DIAGRAM

The Precision State and Filter Weighting Matrix Extrapola-

tion Routine performs its functions by integrating modified forms of

the basic differential equations at a sequence of points separated by

intervals known as time-steps, which are not necessarily of the same

size. The routine automatically determines the size to be taken at

each step.

As shown in Fig. 1, the state vector and (optionally) the

filter-weighting sub-matrix are updated one step at a time along the pre-

cision trajectory until the specified overall transfer time interval is

exactly attained. (The size of the last time-step is adjusted as neces-

sary to make this possible. )
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ENTER

Figure 1. Functional Flow Diagram Precision State and Filter
Weighting Matrix Extrapolation Routine
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3. INPUT AND OUTPUT VARIABLES

The Precision State and Filter Weighting Matrix Extrapolation Routine has

the following input and output variables:

Input Variables

(r 0 , v 0) Geocentric state vector to be extrapolated. [ If Scont f 0,

(r 0 , v 0 ) is last rectified geocentric state vector]

to Time associated with (rO,vO) and W0 . [ If Scont $ 0,
t0 is last rectification time]

tF Time to which it is desired to extrapolate (r 0 , v 0 ) and

optionally W0

spert Switch indicating the perturbing accelerations to be in-

cluded. (Spert = 1 implies J2 oblateness term only;

Spert >1 implies a more complete perturbing accelera-
tion model (or models). )

d Number of columns in filter-weighting sub-matrix (d = 0,

6, 7, ... , where 0 indicates no W-matrix extrapolation)

b Number of additional quantities, such as landmark loca-

tions or instrument biases, being estimated

sveh Switch indicating whether the filter-weighting sub-matrix

being extrapolated is associated with the primary

(sveh = 0) or target (Sveh = 1) vehicle

W0 Filter-weighting sub-matrix to be extrapolated (optional)

(W0 has dimension 6 x d)

s Switch indicating whether process noise is to be included
q

(Sq = 1) or not (sq = 0) in the W-matrix extrapolation

Q Process noise matrix (3 x 3) associated with the state

being extrapolated
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Switch indicating whether previous extrapolation is to be

continued (s = 1) or not (s = 0) without re-corecnt cont
rectification

(6 ,v)
(6 . V )
(r con' vcon)

T

x'

T'

Position and velocity deviation vectors

Conic position and velocity vectors

Time interval since rectification

Last value of independent variable in

Kepler Routine

Last value of dependent variable in

Kepler Routine

Output Variables

At end of previous

extrapolation [ used

only if Scnt = 1]

Extrapolated geocentric state vector

Time associated with (r
F

, V
F

) and W
F
.

[ Will equal tF within tolerance of et ]

Extrapolated filter-weighting sub-matrix of

dimension 6 x d

Position and velocity deviation vectors

(con' con )

1*

(rO, v 0 )

to

x'

Conic position and velocity vectors

Time interval since rectification

Last rectified position and velocity vectors

Time of last rectification

Last value of independent variable in

Kepler Routine

For use as input if

Scont = 1 on a sub-
sequent extrapola-

tion

Last value of dependent variable in

Kepler Routine

3-2
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4. DESCRIPTION OF EQUATIONS

4.1 Precision State Extrapolation Equations

Since the perturbing acceleration is small compared with the

central force field, direct numerical integration of the basic differ-

ential equations of motion of the spacecraft state vector is inefficient.

Instead, a technique due to Encke is utilized in which only the devia-

tions of the state from a reference conic orbit are numerically integrated.

The positions and velocities along the reference conic are obtained

from the Kepler routine.

At time t
0

the position and velocity vectors, -o and v
0

, define

an osculating conic orbit. Because of the perturbing accelerations,

the true position and velocity vectors r(t) and v(t) will deviate as

time progresses from the conic position and velocity vectors r (t)

and v con(t) which have been conically extrapolated from ro and -0'

Let

6(t)= r(t) - rcon(t)

v(t) = v(t) - v con(t)

be the vector deviations. It can be shown that the position deviation

6 (t) satisfies the differential equation

6(t) + f(q)r(t) + 6 (t) =d (t)
2- 3

dt r (t)

with the initial conditions

6(to) = 0, v(t o) = 0where

where
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(6 - 2r) - 6 2
---- , f(q)=q 3 + 3q+ q

r2 1 + (1 + q)3/2

and ad (t) is the total perturbing acceleration. The above

second order differential equation in the deviation vector 6 ( t)

is numerically integrated by a method described in a later sub-

section.

The term

o f (q)r(t) + 6 (t)

must remain small, i. e. of the same order as d (t), if the method

is to be efficient. As the deviation vector 6 (t) grows in magnitude,

this term will eventually increase in size. When

l_ (t)l > O. Oll ron(t)l or IV(t)l > O. 01l Von(t)l

or when

6_(t) >6max or| v(t) j>Vmax'

a new osculating conic orbit is established based on the latest preci-

sion position and velocity vectors r(t) and v(t), the deviations 6 (t)

and v (t) are zeroed, and the numerical integration of 6 (t) and (t)

continues. The process of establishing a new conic orbit is called

rectification.

The total perturbing acceleration a d ( t) is in general the

vector sum of all the desired individual perturbing accelerations com-

prising the total force field, such as those due to the earth's oblate-

ness, the gravitational attractions of the sun and moon, and the earth's

atmospheric drag. Since many Shuttle applications will require only

the perturbing effect of the dominant term J2 of the earth's oblate-

ness, the use of only this term has been made a standard option in

the routine diagrammed in Section 5. However, provision has been

made for handling a completely general perturbing acceleration. The

form of this perturbing acceleration will depend primarily upon the

requirements of the Orbit Navigation function.
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The explicit expression for the earth's J 2 oblateness accel-

eration alone is:

ad 2 r1 - 5 sin 0 ) i + 2 sin 0 i-d 2 2[r L -r -pole

where

i is the unit position vector in reference coordinates,

ipole is the unit vector of the earth's north polar

axis expressed in reference coordinates,

sine = i i-r - pole,

and

r E is the mean equatorial radius of the earth.

4. 2 Filter-Weighting (W) Matrix Extrapolation Equations

The position and velocity vectors which are maintained by the

spacecraft's computer are only estimates of the actual values of these

vectors. As part of the navigation technique it is also necessary for

the computer to maintain statistical information about the position

and velocity vectors. Furthermore, in particular applications it is

necessary to include statistical data on various other quantities, such

as landmark locations during Orbit Navigation and certain instrument

biases during Co-orbiting Vehicle Navigation. The filter-weighting

W-matrix is used for all these purposes.

If e (t) and r7 (t ) are three dimensional vector random

variables with zero mean which represent the errors in the estimates

of a spacecraft's position and velocity at time t, then the six-dimen-

sional state error covariance matrix E ( t) at time t is defined by:

c t )E t T E(t) 7(t) (t)

E(t) =

( t ) E(t) T 7(t) (t)T

where the bar represents the expected value or ensemble average at

the fixed time t of each element of the matrix over which it appears.
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If Y (t) is a b-dimensional vector random variable with zero

mean which represents the errors in the estimates of the b additionally

estimated quantities such as landmark locations or instrument biases,

then a (6 +b) - dimensional state and other parameter covariance matrix

is defined by:

e (t) F (t)T

t7 (t) e (t)T

y(t) E(t)T

e (t) r (t)

n (t) _ (t

y(t) 7(t)T

E(t) Y(t)T

r1(t) v(t)

v(t) T(t)T

Further, if the statistical properties of the positions and ve-

locities of two separate spacecraft are to be maintained, a twelve-

dimensional state covariance matrix is defined by:

T
E p Ep

T
1_p Ep

T
--T P

T
71T ~P

T
-p Ip

T

T
eT 7-P

T T
27T _P

T
'EP ET

T
7 1 P e T

T
ETETiT e-T

T
r T ET

T

T

T
ET _IT

T
'_T rlT

where the subscripts

hicles, respectively.

P and T refer to the primary and target ve-

And finally, if the statistical properties of the b additionally

estimated quantities are also to be maintained along with the two state

vectors, a (12 + b) state and other parameter covariance matrix

is defined by:
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T T
_E p E p p np

T T
!ipp _pflp

T T

T T_IT-pP -T--P

T T
_T __P ~_T 1P

T

YT

T

T
L TIT

'2T _I

(P £T

T

T

T
_T ET

T

Pt7 T

T

T
Y t1T

T
'T Z7T

T
_~T t7T

Rather than use one of the above covariance matrices in the

navigation procedure, it is more convenient to use a matrix W (t)

having the same dimension d as the covariance matrix E (t) and

defined by:

E (t) = W(t) W(t)T

The matrix W (t) is called the filter-weighting matrix, and is in a

sense a square root of the covariance matrix.

Extrapolation of the W (t) matrix in time may be made

by direct numerical integration of the differential equation which it sat-

isfies. In the one-spacecraft case, this is:

o I3 1 (6 x b)

dt W(t) = G(t) O
dt

O(b x 6) (b x b)

0 (6 x b) T

_ [ W I (t)] 1

0 (b x b) 

(where b = 0, 1, 2, . . . is the number of additionally estimated quantities).

In the two-spacecraft case, the differential equation is:

-O~~~~~~~~~~~~~~~~~

d -W(t) =dt

-O ~I OI
o I3 10 O -

Gp(t) O (6 b 0 0

0 (b x 6) I 0 (b x b) (b x 6)

O O 0I 13
0(6 x b) G

o O I Gs(t) O* ~~~~~~~~~~I

W(t) +

4-5
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sq 1/2
q

-0 0~ f t0 0
O (6xb) O O

(b x 6) °(b xb) (b x 6)

O I
O I (6 xb) O

[ WT(t)] -1

where 13 is the 3 x 3 identity matrix, the O's are zero matrices of

the required dimensions, the G(t) are the 3 x 3 conic gravity gradient

matrices

G(t) = 5 3 r(t) r(t)T
r (t) - -

- r 2(t) 1 3

associated with the vehicle under consideration or with the primary (P)

or target (T) vehicle, and the Q are the likewise associated 3 x 3 pro-

cess noise matrices.

Extrapolation of the W matrix may also be made by the following

technique, which is somewhat simpler to implement in an on-board computer

since matrix mainpulations are reduced to more tractable vector manipula-

tions, and matrix inversion is avoided.

Let the d x d filter-weighting matrix W = [ wk i] be partially

partitioned into three-dimensional column vectors w k, iwhich bear the

subscripts of their first component:

WO0, 0, OO, 0 W, 5

W3,0W3, 1' W3, 5

w6, 06, 1'" w6, 1

w7, 0 w7, 1 w7, 5

w 0, 6"" 0, 5+b

w 3, 6' w 3, 5+b

w6, 6 ..... w6, 5+b

w7, 6 ..... W7, 5+b

w w w
I 0,6+b 0, 7+b ..... 0, d-l

I w3,6+b w3,7+b ..... W3, d-1I
-T-------------------

w6, 6+b W6, 7+b ...... w6, d-l

7,6+b W7,7+b'''.'' W7, d-1

W5+b, O * ' W5+b, 5 W 5+b, 6- ' W5+b, 5+b W5+b, 6+b W5+b, 7+b' ' ' W5+b, d-l

6+b, O' -W6+b, 5 -6+b, 6' ' '-6+b, 5+b I -6+b, 6+b W6+b, 7+b' -W 6+b, d-l

W9+b, 0O W9+b, 5 W 9+b, 6' * w 9+b, 5+6 W 9+b, 6+b -9+b, 8+b -' 9+b, d-1
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and let the 3 x 3 process noise matrices be partitioned into three-dimensional

column vectors:

QP [q3' q4 ' q5 ] ' QT= [ q 9b 10+b' 11+b' ql+b ]

Furthermore let the inverse of the filter-weighting matrix be approximated by

the diagonal matrix WD (t) whose diagonal elements are the reciprocals of

diagonal elements of the filter-weighting W-matrix:

[ wT(t)] [ WD(t)] -1
1/WIo01/W l, 1

0
Od-

· 1/Wd-1, d-1

Then the previous first order differential equations are equivalent to:

d t 2 - 0 , i

with

w .-3,i c

Wk, i = 

= G(t) w i + sq (1/2wi, i)i

d
dt -0, i

constant for k-6

(i = 3, 4, 5 only)

=Gp (t) wO, i + Sq(1/2wii)i

(i = 3, 4, 5 only)

7 W6+b,i GT(t) w 6+b, i + sq(1/ 2 wi. i)i
dt

with (i=9-b, 10+b, 1l+b

3, i - dt 0, i
d

9+b, i d t -6+b, i

w k, i = constant for 6 k <6+b

only) | i = 0, 1,... (d-1)

4-7
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When written out in full, the above equations are:

d 2 -O,i - t) 3 r(t) w 0,i(t)]r(t)- r (t)Wo i(t)
d t2Wi r t ) I I 

+ Sq(1/2wi i)qi (i = 3, 4,5 only)q w, 

with

-3, i

Wk, i

d
d t W-O

= constant for k - 6

and

d 2

2 Wo, idt

+ Sq(1/2 wi, i)qi (i = 3, 4, 5 only)

2 w 6+b = 5 [rT(t) -6+b,i()] r-T(t) T 6+b, i(t)
dt rT i (i = 9+b, +b only)

+ sq (1/2w.i, .)q (i = 9+b, 10+b, I1+b only)

with

w-3, i

-9+b, i

Wk, i

d
d t -O, i
d
dt -6+b, i

= constant for 6 k < 6+b

These second-order differential equations may be integrated using the

same numerical integration technique as is used for the spacecraft

position vector. The vectors w 3,i and w9+b i bear the same relation-

ship to the spacecraft velocity vector as the vectors w0 i and w6+b i

bear to the spacecraft position vector, and w 3 i and w 9+bi are a

by-product of the numerical integration of w 0 i and w 6 +b i just as

the velocity vector is a by-product of the numerical integration of the

position vector.
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4. 3 Numerical Integration Method

The extrapolation of inertial state vectors and filter weight-

ing matrices requires the numerical solution of two second-order

vector differential equations, which are special cases of the general

form

d 2

- y(t) = f(t, y(t), z(t))

dt 2

where
d

Z - y.
dt

Nystrom's standard fourth-order method is utilized to numerically

solve this equation. The algorithm for this method is:

-n+l - Yn + z At + 6(k + k2 + k3) (At)
2

Z+
1

= z +(k + 2k + 2k + k ) At
--n 6 -2 -3 4'-

k-1 = f(tn' Y-n' Z-n)

1 =-1 1 2l (At) + 1kk t +4 A I
At)

k+2 =f(t + At, yn +z At+ l (At) n+ At)

k4 =- (tn + At, _n +z At+-k3 (t) zn + k At)

-4 - n n --n

2

where

Y- = Y(tn)' zn = =Z~n y(t_) Z n = z(tn )

and

tn+ = t + At
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As can be seen, the method requires four evaluations of

.f (t, y, z) per integration step At as does the classical fourth-order

Runge-Kutta method when it is extended to second-order equations.

However, if f is independent of z, then Nystrom's method above only

requires three evaluations per step since k 3 = k2 . (Runge-Kutta's

method will still require four).

The integration time step At may be varied from step to

step. The nominal integration step size is

At = c r 3/2/
nom nom con

where cnom is a program constant. (The value c nom 0. 3 is

recommended and implies that about 21 steps will be taken per trajec-

tory revolution). The actual step-size is however limited to a maxi-

mum of At max ' which is also a program constant. (A value of about

4000 seconds is suggested. ) Also, in the last step, the actual step

size is taken to be the interval between the end of the previous step

and the desired integration endpoint, so that the extrapolated values

of the state or W-matrix are immediately available. Thus the integra-

tion step-size At is given by the formula

At = + minimum (I t F
- t , Atnom Atmax)

where t F is the desired integration end-point and t is the time at the

end of the previous step. The plus sign is used ii forward extrapola-

tion is being performed, while the negative sign is used in the back-

dating case.
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5. DETAILED FLOW DIAGRAMS

This section contains detailed flow diagrams of the Precision State and

Filter Weighting Matrix Extrapolation Routine.

Each input and output variable in the routine and subroutine call state-

ments can be followed by a symbol in brackets. This symbol identifies the

notation for the corresponding variable in the detailed description and flow dia-

grams of the called routine. When identical notation is used, the bracketed

symbol is omitted.

5. 1 A Note to Coders of the Detailed Flow Diagrams

The Precision State and Filter Weighting Matrix Extrapolation Routine

does not require the input of the entire filter weighting matrix. However, for

coding convenience and conservation of storage, it may be input if desired. If

only the 6 x d filter weighting submatrix is input, the vehicle switch Sveh is

used only when process noise is included (sq f 0). Its apparent use in Figure 2e

in order to set the index k is merely so that the notation wk i in the flow dia-

gram will be consistent with the same notation in the description of equations sec-

tion. However, if the entire filter weighting matrix is input, some type of ve-

hicle switch is necessary even when process noise is not included. The para-

meters sveh and b could be combined into a single parameter k which is 0

for the primary vehicle and 6 + b for the target vehicle. For clarity, however,

they have been kept separate.
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Figure 2e. Detailed Flow Diagram
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6. SUPPLEMENTARY INFORMATION

Encke's technique is a classical method in astrodynamics

and is described in all standard texts, for example Battin (1964).

The f(q) function used in Encke's technique (and in the lunar-solar

perturbing acceleration computations) has generally been evaluated

by a power series expansion; the closed form expression given here

was derived by Potter, and is described in Battin (1964).

The oblateness acceleration in terms of a general spherical

harmonic expansion may be calculated in a variety of ways; three

different recursive algorithms are given in Gulick (1970). For low

order expansions, especially those involving mostly zonal terms, an

explicit formulation is generally superior computation-time-wise, as

only the non-zero terms enter into the calculation. The general ex-

pression for the zonal terms is given by Battin (1964), while Zeldin

and Robertson (1970) give explicit analytic expressions for each of

the tesseral terms up through fifth order; hence all combinations of

terms may easily be included in the oblateness acceleration by con-

sulting the formulations in these references.

A full discussion of the use of covariance matrices in space

navigation is given in Battin (1964). Potter (1963 ) suggested the use of

the W-matrix and developed several of its properties. It should be noted

that strictly the gravity gradient matrix G ( t) should also include the

gradient of the perturbing acceleration; however, these terms are so

small that they may be neglected for our purposes. The use of only

the conic gravity gradient, however, does not imply the W-matrix is

being extrapolated conically. (Conic extrapolation of the W-matrix

can be performed by premultiplying the W-matrix by the conic state

transition matrix, which can be expressed in closed form). Rather

the W-matrix is here extrapolated along the precision (perturbed)

trajectory, as can be seen from the detailed flow diagram of Section

5.

The expression for the inclusion of process noise in the

differential equation satisfied by the filter-weighting matrix is taken

from Gustafson and Kriegsman (1970), page 7.
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The Nystrom numerical integration technique was first con-

ceived by Nystrom (1925), and is described in all standard texts on

the numerical integration of ordinary differential equations, such as

Henrici (1962). Parametric studies carried out by Robertson (1970)

on the general fourth-order Runge-Kutta and Nystrom integration

techniques indicate that the "classic" techniques are the best overall

techniques for a variety of earth orbiting trajectories in the sense of

minimizing the terminal position error for all the trajectories,

although for any one trajectory a special technique can generall be

found which decreases the position error after ten steps by one or

two orders of magnitude for only that trajectory. The classical

fourth-order Runge-Kutta and Nystrom techniques are approximately

equally accurate, but the latter possesses the computational advant-

age of requiring one less perturbing acceleration evaluation per step

when the perturbing acceleration is independent of the velocity. This

fact has been taken into account in the detailed flow diagram of Section

5, in that the extra evaluation is performed only when the perturbing

acceleration depends explicitly on the velocity. Some past Apollo ex-

perience has suggested that extra evaluation effect with drag is so

small as to be negligible; further analysis will confirm or deny this

for the Space Shuttle. In regard to step-size, the constants and the

functional form of the nominal and maximum time-step expressions

have been determined by Marscher (1965).
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