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Abstract 

This Note is the written version of invited remarks made at the 
"Workshop on Applications of Distributed System Theory to the Control 
of Large Space Structures," held at NASA1s Jet Propulsion Laboratory 
in Pasadena, California, July 14-16, 1982, and appeared originally in 
the Proceedings of that Workshop. It attempts to shed some light on 
the two issues raised in the title, namely, How many vibration modes 
does a real structure have? and Which of these modes are important? 
Being a workshop orgariized and attended largely by persons who perceive 
the world as an assortment of continua, the surprise-free answers to 
these two questions are, respectively, "An infinite number" and "The 
first several modes." However heretical it may have seemed to such an 
audience, the author argues that the "Absurd Subspace" (all but the 
first billion modes) is not a strength of continuum modeling, but, in 
fact, a weakness. Partial differential equations are not real struc
tures, only mathematical models. This Note also explains (a) that the 
POE model and the finite element model are, in fact, the same model, 
the latter being a numerical method for dealing with the former, (b) 
that modes may be selected on dynamical grounds other than frequency 
alone, and (c) that long slender rods are useful as primitive cases 
but dangerous to extrapolate from. 
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SPACE STRUCTURE VIBRATION· MODES: HOW 
MANY EXIST? WHICH ONES ARE IMPORTANT? 

Peter C. Hughes 
University of Toronto 

Toronto, Ontario, Canada M3H 5T6 

AUTHOR'S PREFACE 

To set the context of this paper, one or two prefatory remarks may be 
helpful. 

Last summer, at the Third "Blacksburg" Conference on this subject, I was 
surprised to hear several speakers refer to the "fact" that "real" structures 
have "an in fini te number of modes." These remarks were usually accompanied by 
the strong implication that any (mathematical) model of a structure that did not 
possess this essential characteristic was quite suspect, and that such models 
would therefore be difficult for sophisticated persons to tolerate. In fairness 
to the structural analysis community, I should hasten to add that this Infinite 
Modes Assertion was made chiefly by speakers who, whatever else their achieve
ments, were not distinguished as structural analysts. If pressed to guess, I 
would suppose their backgrounds to be in controls and applied mathematics. 

In any case, repeated references to the Infinite Modes Assertion at 
Blacksburg IIT prompted my recollection of a similar occasion just six years ear
lier where, at what some call the Zeroth Blacksburg Conference (organized by ProL 
Peter Likins at UCLA) , the kickoff panel session was titled "primitive Methods. 1I 

Not wishing to offend the members of that panel, Prof. Likins explained that in 
choosing this session title he was not implying that the panel members were them
selves primitive. Instead, he said, he was using the word "primitive" in a nar
row technical sense, to refer to methods based on "first principles." In essence, 
this meant the use of partial differential equations. 

In spite of Prof. Likins)disclaimer, however, there remained the notion 
that if one's capability to analyse the dynamics of flexible space structures did 
not extend beyond PDE's, one was rather handicapped. That notion seemed sensible 
in 1975, and it seems even more sensible today. Unfortunately, this notion tends 
in practice to be inconsistent with the Infinite Modes Assertion (for reasons to 
be reviewed in this paper) . 

To return to Blacksburg rrr, I had the temerity during an end-of-conference 
panel session to question not only the importance of the Infinite Modes Assertion, 
but the Assertion itself. I would like to thank Dr. G. Rodriguez of JPL, who was 
present on that occasion, for the opportunity to expand on this theme at this 
workshop. 

HO\~ r·1ANY VIBRATION t10DES DOES A REAL STRUCTURE HAVE? 

A 'vibration mode' refers to a motion that is physically possible in the 
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absence of any external influence, and in which the elastic displacements u(r,t) 
at position rand time t all move in unison: all displacements pass through-zero 
simultaneousTy, and they all attain their maxima simultaneously. The concept of 
a 'vibration mode' is, in fact, a mathematical concept and can be stated most 
precisely and succinctly in mathematical form: if a distribution of elas'tic dis
placements of the form 

(1) 

is autonomously possible, ! (~) is cal led the 'mode shape' and n(t) shows the time 
dependence shared by the elastic displacements at all points in the structure. 
It is plain from (1) that the idea of 'mode shape' is a special case of the more 
general mathematical idea of 'separation of variables' . 

Realization vs. Idealization 

Much of the following argument rests on the important distinction between 
a 'real' (i.e., physical) structure and someone's mathematical model of that real 
structure. This distinction is, of course, essential on a philosophical level: 
whether dealing with hi9h-energy particle physics, black holes, or flexible space 
structures, one is wise to discriminate between a symbolic representation of rea
lity and reality itself. However, one hardly needs to evoke the Scientific 
Method to justify the distinction between the real structure and its mathematical 
representation. First, there is an almost unlimited quantity of experimental 
data on the dynamics of real structures; virtually none of this data agrees ex
actly with 'theory'. Second, if one returns to the fundamental assumptions that 
underlie 'theory', it is apparent that a large number of idealizations are made. 
These assumptions and idealizations are normally reasonable and defensible, but 
collectively they do constitute a well-documented case for distinguishing bet
ween the structure itself and its mathematical model. 

Take, for example, what is arguably the simplest structure of all--the 
long, slender, uniform, cantilevered rod. This 'structure' is shown in Fig. la. 
(lts cousin, the 'two-rod satellite', accompanies it in Fig. lb.) As is well 
known, the POE and associated end conditions for the lateral displacements of the 
rod are 

Elu"" + pu = f(x, t) 

u(O,t) = u'(O,t) = u"(l,t) = u'"(l,t) = ° 
(A table of symbols is appended.) 

(a) Long, Slender, Uniform (b) Simpt. Ft."ibl. Satellite 

Cantilevered Rod 

Fig. 1: The 'Simplest' Cases 
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Vet the followinq idealizations must be made to arrive at the Euler
Bernoulli equation (above) for this 'structure': (a) material continuum, (b) 
perfectly elastic material , (c) stress proportional to strain, (d) infinitesi
mally small deflections, (e) perfectly cantilevered root, (f) ne9ligible rota
tional inertia, (~) negligible shear deflections. This list is undoubtedly in
complete but amply lon~ enough already to demonstrate that properties of the PDE 
(2) will not likely be exactly the same as the corresponding properties of actua Z 
long slender uniform cantilevered rods. Experimental evidence tends to support 
this expectation; the model (2) is reasonable for many purposes if used intelli
gently, but (2) is not in any sense an exact representation of reality. 

The Infinite Modes Assertion 

There is no doubt that the PDE (2) has modes of the form (1), and that it 
has an infinite number of such modes. The question at issue is wh ether rea Z rods 
also possess these properties. To state that a real structure has an infinite 
number of modes is, on reflection, to state an absurdity. How can a structure 
have more modes than it has molecules, or, for that matter, than there are mole
cules in the known uni verse? What does a frequency of w = 10 10 0 Hz mean? Does 
it mean, among other things, that particles in the structure move faster than the 
speed of light? 

At this point the reader may retort, "Wait a minute. Let's not be extreme. 
When someone asserts that a structure has an infinite number of modes, all he 
really means is that the structure has a very large (but finite) number of modes~" 
Not so, in the author's experience. The Infinite Modes Assertion is of ten made 
at technical meetings to an audience that includes individuals who are familiar 
with structural models that contain thousands of degrees of freedom (and there
fore thousands of modes). To make the Assertion to such an audience clearly 
means that thousands of modes is not enough (in the Assertor's opinion); nothing 
less than infinity will do. 

Vet it is clear that the Assertion is wrong, on the grounds of physical 
impossibility. 

"All right," the reader may persist, "the Assertion is indeed made (in its 
strong form) and it is indeed wrong, but it is, af ter all, only a harmless mis
understanding". Again not so, in the author's opinion. Million-dollar R & D 
contract proposals on the dynamics and control of large space structures are cur
rently ' under technical adjudication . If the adjudicators fall prey to a corol
lary of the Assertion--namely, that any methodology that does not use PDE's is 
faulty--they wi 11 . tend to favor proposals that promi se an i nfi nite number of 
modes. In most cases, this viewpoint would be unwise and unjust. 

How Many Modes Are There? 

If a physical structure does not have an infinite number of modes, how 
many vibration modes doe s it have? The most precise (but not very helpful) ans
wer is: "none". As an approximation, the mathematical concept of a 'mode' is 
still very useful, however. This is especially true for the lower modes. On the 
other hand, as one goes higher and higher in mode number (past the 100th mode, 
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say, or the lOOOth) the mathematical iqea of a 'mode ' tends to become increas
ingly inappropriate until, somewhere well this side of infinity, it is wholly in
appropriate. 

To emphasize this idea, we introduce the following definition in conneç
tion with mode shapes as a set of basis functions: 

Definition: The absurd subspace associated with a PDE idealization 
of a structure is the subspace spanned by all but the 
first billion modes. 

All PDE structural models have an absurd subspace. This absurd subspace is a 
flaw in these models but not an important one (unless glorified by the Assertion~ 

It is a curious paradox that the greatest advantage of modal analysis-
the analyst can expand the general motion of a complex structure approximately in 
terms of a few important submotions--is lost if an infinite number of modes is 
insisted upon. 

THE FINITE ELEMENT METHOD 

When one analyses structures in general, one is not bothered by the neces
sity of generating numerical information. For example, it may suffice to say 
that the small deflection u(r,t) is related to the excitation f(r,t) via an ap
propriate operator ~ that Ts~ 

(3) 

where cr is the mass density. K is a symmetric, 3 x 3, partial differential stiff
ness operator. Assuming that ~igid displacements are prevented (as in Fig. 2), 
K is positive definite. The mode shapes for Eq. (3) satisfy 
'V 

~(~) = w~crÎa(~) (4) 

and the orthonormality conditions are 

JE Îa (~).P.S (~) dm = oaS (5 ) 

wh ere dm = cr(r)dV. For a system that de serves to be called a Istructure l
, there 

will be an infinite number of eigenfunctions (mode shapes). However, as we have 
seen above, the real structure that Eq. (3) represents does not share this 'in
finite-modes ' characteristic. 

The modal coefficients of momentum 
and angular momentum (about 0) are defined 
as follows: 

(6) 

It can be shown (Ref. 1) that the modal 
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Fig. 2: General Eldstic Structure 
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identities in the first column of Table 1 are satisfied by these coefficients. 
These modal identities and results like Eqs. (3), (4) and (5) for the generic 
structure of Fig. 2 are powerful in that they apply to all structures that sat
isfy the general assumptions that underlie Eq. (3). 

The 'Mathematical Solution' Swindle 

Operations like the integration fE( )dm in Eq. (5), or the El in Table 1 
can be performed with the stroke of a pen. Engineers dealing with specific space 
structures require numerical data, not just elegant theoretical results. 

The classical method for dealing with POEts like Eq. (3) is to expand the 
solution in terms of a series of functions that are defined, named, examined, 
cataloged, and expounded upon. Usually these functions are not especially easy 
to calculate. Even worse is to define the solution of Eq. (3) in terms of a dif
ficult integrale This "solution" (as the mathematicians call it) is in practical 
terms of ten just another mathematically equivalent way of stating the problem. 
The Knotkwit function, whose origins are traced in Appendix A, furnishes an ex
ample of the different meanings that may be attached to the word 'solution' by a 
mathematician and an engineer. 

Even the functions sin, cos, sinh, cosh that make up the well-known solu
tion for the vibration modes of the simple rod in Fig. la require some numerical 
sophistication to calculate efficiently. For most structures of practical in
terest, 'closed-form' solutions are not available and, even if they were, they 
would not likely be much help in numerical calculations. 

The Ritz Method Revisited 

Frustrated by their difficulties in formulating POEts for complex struc
tures, and their further difficulties in extracting numerical information from 
these POEts once they have them, structural analysts began to chop up complicated 
structures (on paper) into small elements. Each of these elements could be ana
lysed and numerical data of the required accuracy extracted relatively easily. 
Initially this approach rested for its justification on physical understanding, 
but· applied mathematicians (e.g., Ref. 2) have since shown that, if properly 
used, this finite element method model (FEM model) is, in fact, an ingenious im
plementation of the much older method of Ritz. A FH4 model therefore enjoys the 
same theoretical foundations as the Ritz methode In particular, the conditions 
for convergence are known. This convergence is to the so-called 'exact' solu
tion, i.e., to t~e elusive solution of the POE model that has the same modeling 
assumptions as tpe FEM. 

This property of convergence is a highly desirable one and can of ten be 
used to advantage--in connection with the identities of Table 1, for example. 
But in our celebration of this convergence to the 'exact' solution we should not 
overlook the fact that the 'exact' solution is 'exact' only fdr the POE model. 
It is not 'exact' at all for the actual structure because the POE model is not 
exact for the actual structure. 

This raises the following question: How can an 'error' of (say) 1% matter, 
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when the 'error' is with respect to an equation that is itself only valid to 
within (say) 10%? Vet it is this sort of error, no matter how small (and it can 
be made as small as desired by using sufficient finite elements), that seems to 
be the chief concern of the Infinite Mode Assertors. They do not trust the FH1 
model because it fails to predict the 'absurd subspace' (see earl ier definition). 
In the author's opinion, however, this 'failure' is trivial and should, if any
thing, be counted as a point in the FEM model 's favor because the absurd subspace 
doesn't exist physically anyway. 

Unification 

To this point in the discussion the FEM model and the POE model have been 
treated as though they were competin9 alternatives. They are in an important 
sense the same model. The FEM model should be viewed as a numerical treatment 
of a corresponding POE model. The finite element method must surely be one of 
the most spectacular success stories in the history of en9ineering analysis. 
FEM models circumvent the formulational and computational difficulties of their 
POE counterpart models, while at the same time providing a numerical approxi~ 

mation to the latter that can be made arbitrarily accurate. If enough modeling 
elements are used, the error due to a finite number of coordinates can always be 
restricted to an 'absurd subspace'. The strength of the FEM model is that one 
can do numerical calculations for complicated structures; the weakness of the 
FEM model is that it can never be better than the associated POE model to which 
it converges. 

USES ANO ABUSES OF LONG SLENOER ROOS 

A long, slender uniform cantilevered rod appears in Fig. land its POE 
model is given by Eq. (2). The attraction of this 'structure' is its simplicity 
and this makes it ideal as a learning tool. It provides a simple example for 
students being introduced to structural dynamics. For much the same reasons it 
is of ten cited to help in explaining new ideas to col leagues. Moreover, many 
satellites have rod-like appendages; in such cases the closed-form characteris
tics of cantilevered rods (summarized in Appendix B) have direct practical 
utility. 

Nevertheless, beçause of its seductive simplicity, the slender rod struc
ture tends to be focused upon rather more of ten than its limited range of appli
cation would warrant. In fact, the Infinite ~10des Assertion is of ten a symptom 
of slender-rod overemphasis. If all the structures in the world were long slen
der rods, there certainly would be no need for the finite element method, at 
least not for structures. Slender rod enthusiasts of ten seem to imply that FEM 
modeTs are really only ~ndignified 'engineering approximations'. If such an 
enthusiast also wishes to ignore the crucial distinction between a physical 
structure and its POE model, he has the right mind-set for accepting the Infinite 
Modes Assertion. 
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Modal Convergence 

As a prelude to addressin9 the question 'Which modes are important? I we 
shall ourselves also use the lon9 slender rod as a convenient starting point. 
Then, in the next section, a more realistic (and complicated) structure will be 
discussed. The notation and results in Appendix B will be taken for granted here. 

The modal identities of Table 1 can be used as indicators of the error in
troduced into a structural model by modal truncation (i.e., error with respect 
to the lexact l POE representation, which is, as we have said repeatedly, not to 
be trusted too far itself). The modal parameters Pa and ha are shown for the 
first few modes in Fig. 3. It is evident that they decrease nonotonically with 
mode number and that ha decreases with a faster than Pa' These observations can 
be made also from Fi~. 4, where the model error indices 

(7) 

(8) 

have been i ntroduced , corresponding respectively to the Pa and the ha. With na 
modes, E1(O) = E2(O) = 1. For all the theoretically infinite number of modes, 
E1(oo) = E2(oo) = O. 

QS 

1.0 
Pa 

.;pi 
0.6 

QS 

Q4 

Q6 

Q2 

Q4 

10 20 

0.2 MODE NUMBER, a 

0 
0 30 40 

MODE NUMBER, a 

Fig. 3: Momentum Coefficients for 
Slender Rod 

100%E~~~ -r~~- - ~--==--"--~'@ 

. _-~=~--===--=:_-~; ~ -=-:~~ 
---=-._-----=---------- -_ . _._~ .-.. -_._-_. __ .. 

-flt----oo:=---- -~ 

1% 
U) 
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§ 
0.1% :I 

a:: 
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1&.1 

0.01% 

50 
0.0001 % 4--+---+---.----+-"""'---r---I 

o 10 20 30 40 50 

MODE NUMBER, a 

Fi9. 4: Measures of Model Error 
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Also shown in Fig. 4 is the third measure of error, 

N 
E:
3

(N) = 1 - 1680 I 1. - 8 
11 a= l a 

(9) 

(see last entry in Table 1). This error indicator takes both momentum coeffi
cients and frequencies into account and is thus a more plausible measure of mo
del error than El or E: 2' The index E:3 recognizes that, other things being equal 
('other things' in this case being Pa and ha )' the low-frequency modes are more 
important than the high-frequency modes . If one wished to have a maximum of 1% 
model error, for example, as measured b.Y E: 3, only the lst mode should be retain
ed and the rest deleted. 

LARGE DEPLOYABLE SPACE REFLECTOR 

Long, slender, uniform, cantilevered rods can be carried only so faro 
They are useful in teaching certain basic lessons, but some of these lessons are 
not true for more general structures. Therefore we now consider a typical space 
structure of current interest--a large deployable space reflector. Shown in Fig. 
5 is the wrap-rib antenna reflector developed by the Lockheed Missiles and Space 
Corporation (Ref. 3). A FEM model has been developed for this reflector by the 
Jet Propulsion Laboratory (Ref . 4) and a typical mode shape, taken from Ref. 4, 
is shown in Fi9. 6. 

Fi~. 5: Lockheed Wrap-Rib Reflector Used on ATS 6 
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Fi9. 6: Typical Wrap-Rib Mode 
Shape (from Ref. 4) 

This model has several complexities that a simple rod does not have. The 
first is that a POE model is very difficult and does not seem to have even been 
attempted . This leads to the use of a FEM model. The second complexity is thre~ 
dimensionality. For example, the model momentum coefficients ~ and the modal 
angular momentum coefficients hare no longer scalars, but are 3 x 1. 

-ü 

A Criterion for Mode Selection 

A more subtle distinction between the wrap-rib reflector and the slender 
rod is that simple modaZ truncation becomes generalized to a process of mode s e
Zeetion. A glance back at Fig. 3 shows that for a slender rod the Pa and ha 
decrease monotonically with a . In other words, whether we order the importance 
of the modes according to increasing frequency, or according to decreasing Pa ' or 
according to decreasing ha ' the order of the modes is unchanged. This lesson, 
learned well for slender rods, must be unlearned for more complex structures. 
The question of which modes to keep is not simply a question of Ikeeping the 
first NI and dropping the rest. There are several ideas available (Refs. 5,6)for 
mode selection, and the ones that rely solely on the structural dynamics are 
those that depend on w , 0 , and h . 

a ~ -ü 
We can, for example, take the first three modal identities in Table 1. 

These three matrix identities correspond to 18 (independent) scalar identities. 
To create a si ngle scalar indicator of how well these 18 identities are being 
satisfied, it is observed that they may be written as 

00 

L ~1 = M 
a =l-ü -<X) 

(1Q) 

where the definitions 

~1 = 
--<10 

(11 ) 
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. have been introduced. Then the following scalar quantity is a measure of how 
well these identities are satisfied af ter the first N modes: 

(12) 

where pro] stands for the spectral norm of [0]. Note that 1 is here the 6x 6 
unit matrix, while in Eq. (11) 1 refers to the 3 x 3 unit matrix. (In other 
words, 1 always stands for a unTt matrix of compatible size.) 

The reasoning behind Eq. (12) is as follows: the L~ sum is normalized 
based on Eq. (10) in such a manner that symmetry is retained. The resulting 
matrix is compared to the ideal sum, 1. The cumulative sum in Eq. (12) is non
decreasing since ~ is positive semi-definite. The matrix difference in Eq. (12) 
must be positive definite for finite N. Thus its eigenvalues will be six real 
numbers between 0 and 1. The greatest of these six numbers is defined to be the 
error, EM(N). 

---.-------------------------

I%+-----.-----.------r-----.~ 

o 10 20 30 40 

NUMBER OF MODES, N 

Fig. 7: Reduction of Model Error 
by First 42 Modes Using 
only Inertial Quantities 
in Error Measure, i.e., 
Using Eq. (12) 

The error EM(N) is plotted in Fig. 7 for data typical of a wrap-rib re
flector with 48 ribs and 44.4 m in diameter. Even af ter 42 modes, EM(42) = 0.66. 
This slow convergence prompts the following comments. 
(a) In the model used, some of the higher-wave-number modes have already been 

deleted. However, it is not expected that they would contribute materi
ally to EM. (This is, in fact, why they were deleted.) 

(b) Just because the EM(N) vs. N curve is Iflat l does not mean that intermedi
ate modes are not makin9 a positive contribution. This behavior just 
means that they are not contributing to reducing the maximum eigenvalue of 
the matrix in Eq. (12). 

(c) A more detailed examination of the six eigenvalues of the matrix in Eq. 
(12) discloses that it is the LlEaEl = mi identity that is slow to con-
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verge. This is in accordance with the slow convergence of Pa for the 
slender rod in Fig. 3. The so-called 'breathing' modes for the wrap-rib 
reflector are few and far between; yet it is these modes that must pro
duce convergence in the (3,3) element of ElEa~ = mi. 

A Setter Criterion for Mode Selection 

Obviously the error criterion (12) is excessively harsh. It is counter
intuitive that a 42-mode model can have a 66% error. A goodly part of the pro
blem is that the criterion (12) does not take the frequencies Wa account. One 
of the messages i~ this paper is that frequency is not the only paramete~ of im
portance in modal selectipn. However, it would be extreme in the opposite direc
tion to exclude the w~ entirely, as Eq. (12) does. We therefore considerinstead 
the last three modal ldentities in Table 1. These identities may be combined in
to the single 6x 6 identity. 

00 

L ~ 
a=l-ü. 

(13 ) 

where the definitions 

-2 = W M 
~ a-ü. (14) 

(15) 

have been used. 
The modal identity (13) suggests the following model error indicator: 

N 
-l.: L -~ c (N) = p [1 _ ~ 2( ~) ~ ] 

M - -<lO -ü. ---<lO 

- a=1 
(16a) 

This indicator is patterned af ter Eq. (12), and is plotted in Fig. 8. According 
to this indicator, if an error of only 2.5% were the most that could be tolerated 
in the model, the first 28 modes would have to be kept. 

There is, however, a hi dden premi se in thi s 1 as t procedure, name ly,' the 
ppemise that the modes must be selected in theip natural opdep (i.e., by in
creasing frequency). There is no basis for this premise or this procedure. 
Figure 3 shows that, for a slender rod, Pa and ha decrease monotonically with a, 
as would p&/w&, h~/w&, etc. Thus, for a slender rod, all methods of ordering 
modes produce the same order--the 'natural' order. For more complex structures 
this is no longer true. The error indicator in Eq. (16a) can therefore be im
proved (i.e., fewer modes required for the same model accuracy) by taking the 
modes in the cumulative sum in a different order. Thus we replace Eq. (16a) by 
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Fig. 8: 
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10 20 30 40 
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Reduction of Model Error by 
First 42 Modes Using Eq. (16) 

E;:; (N) 

1.0 

Pa 

0.8 

0.6 

0.4 

0.2 
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0 

Fig. 9: 
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and Pa is defined by 

10 20 30 40 50 

MODE NUMBER, a 

Dynamical Signific~nce of 
First 42 Modes as Measured 
by P a 

(16b) 

(17) 

(18) 

(Note, however, that the spectral radius operator does not commute in addition; 
that is 

as might be assumed at first sight.) 
As can be inferred from Fig. 9, P certainly does not decrease monotoni

cally with a. This would suggest that tRe re-ordering of modes required by Eq. 
(16b) should be beneficial. The second plot in Fig. 8 shows that this is indeed 
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the case. In fact, only 9 modes are now needed to give as low as 2.5% error--a 
saving of 19 modes (and a reduction in system order by 38 state variables) over 
the previous un-re-ordered scheme. Evidently mode selection can be, for complex 
structures, far superior to simple modal truncation. 

CONCLUOING RH1ARKS 

In summary, the main points discussed in this paper are the following: 
(a) Neither a POE model nor any other mathematical model of a structure is 

exact. 
(b) For complicated structures, POE models are very difficult to formulate and 

very difficult to extract numerical information from. 
(c) Even when a POE model does exist, the 'solution' in terms of 'known func

tions' may still require considerable effort to extract numerical infor
mation. 

(d) Viewed as a Ritz method, a FEM model is not in competition with the cor
responding POE model; it is, instead, a very powerful numerical method for 
solving the POE model. 

(e) The idea of a 'mode' is, in essence, a mathematical one. It is highly un-
1 i kely that any rea 1 structure can vibrate exactZy so that a 11 its poi nts 
move in unison; in other words, it is highly unlikely that any structure 
has any modes. As an approximation, however, the idea of a mode is an ex
cellent one for many structures, especially for the 'lower modes'. The 
agreement between experiment and theory for the 'higher modes' tends to 
become weaker. 

(f) In this approximate sense, most structures have a very large number of 
modes. It is elementary to show, however, that no real structure has an 
infinite number of modes. The Infinite Modes Assertion is false. 

(g) The only utility of the Infinite Modes idea is within the purely mathema
tical domain. See, for example, the modal identities in Table 1. 

(h) The long, slender, uniform cantilevered rod has a simplicity that is at 
once helpful and dangerous. It is a reasonable structure on which to ex
plain a new idea, or to test a new idea, but the validation or generaliz
ation of the idea must be carried out on structures of more realistic 
comp 1 ex iti. 

(i) Many 'error indices' can be defined as guidelines for structural modal 
order reduction. Simple modal truncation, although suggested by ex
perience with slender rods, is naive. The proper process is mode selec
tion~ based on an appropriate error criterion. 

(j) The error criterion in Eq. (12) is unnecessarily pessimistic because it 
ignores frequency information. It is as naive as a 'frequencies-only' 
criterion, at the opposite extreme. 

(k) The error criterion in Eq. (16) is superior to Eq. (12), especially if the 
modes are selected according to the order specified by Eq. (17). This is 
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illustrated for a wrap-rib antenna reflector in Fig. 8. 
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Appendix 'A - The Origin of the -Knotkwit Function 

Some years ago, the eminent applied 
mathematician Professor Will Knotkwit 
encountered in his theoretical study of 
structures a certain PDE whose solution 
he could not express in closed form. 
Nor could he express the solution in 
terms of known functions. Eventually 
an important idea occurred to Prof. 
Knotkwit: he introduced a new function 
that was, by definition, the solution 
of his troublesome equation. He pro-
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ceeded to write several papers on the 
interesting mathematicalproperties of 
the Knotkwit function (as it became 
known shortly before his retirement). 
Professor Knotkwit even lived to see his 
function referred to, by one of his for
mer graduate students, as a 'known' 
function. 

It is not likely that the Knotkwit 
function will ever be cal led an 'ele
mentary' function. What is clear, how-



ever, is that any solution to a struct
ural dynamies problem that can be writ
ten in terms of Knotkwit functions, or 
even that can be expressed as an inte
gral whose integrand involves Knotkwit 
functions in a fairly simple manner, 

will be called a 'closed-form' solution. 

Thus, ultimately, Professor Knot
kwit achieved his 'closed-form' solu
tion in terms of 'known' functions. 

Appendix B - Long Slender Rod Modes 

The well-known solution to Eq. (2) is 

where 

and 

where 

00 

u(x,t) = I~ (x)n (t) 
Cl=1 Cl Cl 

2 n,.., + W n 
u. Cl Cl 

= Ii~ (x)f(x,t)dx 
o Cl 

-k 
</> = (pi) 2[(coshÀ ~ - cOSÀ ~) - K (sinhÀ t; - sinÀ t;)] 

Cl Cl Cl Cl Cl Cl 

À = 
CL 

204 
pw .{.. 

· Cl 

EI 

S - s 
Cl Cl 

K = 
Cl C + C 

Cl Cl 

with s = sinÀ ,c = cOSÀ ,S = sinhÀ ,C = coshÀ . 
CL . CL CL CL Cl Cl Cl CL 

(BI) 

(B2) 

(B3) 

(B4) 

The natural frequencies are calculated by numerical solution of the trans
cendental equation 

·c C + 1 = 0 (B5) 
Cl Cl 

The mode shapes of Eq. (B3) can readily be shown (directly from the differential 
equation) to satisfy the orthogonality conditions 

f:Oa(X)Os(X)dX ' 0 (a t s) (66) 

It is more onerous to show that Eq. (B3) satisfies the normality condition 

(B7) 

This latter fact is of ten omitted from textbook discussions. 
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In free vibration, the force and torque on the rad at 0 are (see Fig. la): 
00 00 

G(t) = L h n 
eL=1 eL eL 

(88) 

wh ere PeL and heL are the coefficients given (in ~eneral) by Eq. (6). For our pre
sent simple 'structure', 

p = Jcf> dm == p.e. I\ d~ = 2(P.e.)~K /À (B9) 
eL eL oeL eL eL 

h = JXcf> dm == p.e.2fl~cf> d~ = 2(p.e.3)~/À2 (10) 
eL eL 0 eL eL 

Therefore the modal identities of the first column in Table 1, which assume the 
special form shown in the second column for a slender rod, imply the identities 
shown in the third column in Table 1. Note that the sums involve an infinitude 
of transcendental numbers. 

Roman 
c 

EI 

f(x,t) 

h 
-a 

m 

N 

r 

t 

u 

x 

Appendix C - Table of Symbols 

Greek 

first moment of inertia, Jrdm eL 

flexural rigidity of a long 0eL8 
slender rod 
force p~r unit length, at posi
tion x, at time t 

K 

deflection at position r, due to eL 

unit force at position ~ ÀeL 

modal angular momentum coeffi
cient; see Eq. (6) 

(second) moment-of-inertia matrix p 

stiffness operator 

rod length 
mass 
number of modes retained 

cr 

w 
Ct 

modal index 
I if Ct = 8; otherwise 0 

modal coordinate associated with 
mode Ct 

see Eq. (B4) in Appendix 8 
see Eq. (B4) in Appendix B 
x/.e. for slender rad 
dummy position vector . 
mass per unit length for slender 
rad 
mass density function 
mode shape for mode Ct 

natural frequency for mode Ct 

modal momentum coefficient; see Special Symbols 
Eq. (6) 
position vector 

time 
small elastic displacement 
distance alonq slender rad 
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spectral radius 
unit matrix (of appropr. size) 

spatial derivative 

temporal derivative 
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TABLE I: SUMMARY OF MODAL IDENTITIES 

'MOST GENERAL' CASE 
(Linear Elastic Body) 

00 

I T -
a=l EaEa - m!. 

00 I h T _ x 
a=l-aEa - ~ 

00 

I h hT -a=l~~ - ~ 

r w~2 trace f ~(~,~)dm 
a=l E 

r w:2
p pT = f f F(r,~)dm dm~ 

a=l ~ LULU E E- - - ~ ~ 

~ -2 T f f x 
l. wa !!aEa ~ ~(~,_Qdmrdm~ 

a=l E E - -

~ -2 T of f - x x 
l. Wa !!a!!a = - ~ ~ (~, ~Ho dmrdm~ 

a=l E E - -

'LEAST GENERAL' CASE 
(Long, Slender, Uniform , 

Cantilever Beam) 

00 

I p~ = pi 
a=l ~ 

I h P = p,2 
a=l a a 2<-

00 

I h 2 = E.i 3 
a=l a - 3 

co 

I w -2 = p 4 
a=l a I2Eï

i 

r w-2p 2 °= p2 5 
a=la a ZOEl

l 

r W -2h P 13 p2 6 
a=l a a a 360EI

i 

r W -2h 2 llp2 7 
a=l a a 420EI

i 

TRANSCENDENT AL 
IMPÜCATIONS 

00 I ),-2
K

2 _ 1 
a=l a a - 4" 

00 

I À -3 I 
a=l a Ka = 'ä 

co 

I ),-4 = 1 
a=l a n 

00 

, 

I ),-4 = 1 
a=l a 12 

I À~6 K:2 = __ .1:.. 
a=l a 80 

00 

I ),-7 K = 13 
a=1 a a 1440 

co I ),-8 11 
a=l a 1680 
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