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SPACE SWEEP SOLVES INTERSECTION OF TWO CONVEX 

POLYHEDRA ELEGANTLY 

Stefan Hertel , Kurt Mehlhorn , Universitat des Saarlandes , SaarbrUcken 

Martti Mantyla , Helsinki University of Technology , Helsinki 

Jurg Nievergelt , Ei dgen6ssische Technische Hochschule, ZUrich 

Plane- svle ep algorithms form a f airly general approach to two

dimensional probl ems o f compu t ational geometry . No corresponding 

three- d imensional s pace- sweep algorithms for geometric problems 

in 3-s pace are known , hOHever . We derive concepts for such 

s pace - sweep algorithms t hat yield an elegant solution to the 

problem of solving any set operation (union , intersection , .. . ) 

of t wo convex po l yhedra . Moreover , o u r solution matches the best 

known time bound of O(n log n ) where n ist the combined number 

of corners of the two polyhedra . 

Index terms : Computational geometry, s weep algorithms , i nter

s ection problems , convex polyhedra . 



I. I NTRODUCT ION 

In r e cent y e ars plane-s weep a l gorithms have become prominent 

i n 2- dimensiona l computationa l geome t ry , beginning wi th the 

influe ntial pape r of Sha ~os and Hoey [ SH 7 6 ]. Bieri and Nef 

[BN 82] trace tile i dea b ack to Hadwiger [Il a 55 ] who considered 

the so - called "Konvexring ", the class of all finite unions of 

convex and compact subs ets of md
. He gave an induc~iv e existence 

proof for Euler's characteristic of t he "Konvexring" - a mea 

sure is assigne d to an eleme n t S of thi s ri ng by advancing a 

(d-l) - dimensional hyperplane H orthogonal to t he x-axis from 

left to r igh t , and by considering th e measure of S f") H in 
d- l 

m which o nly changes at finitely ma ny x-va lues . Much l ater 

[H a 68] Hadwige r e xt end ed this approach and defined th e prin 

ci pl e (which h e called "Schnittrekursion " ) i n a syste mati c 

way . 

The n a~e o f the se algori t hms comes from their character ist ic 

property that a figure i n t he plane is processed by a dva n c in g 

a "brush " (often a straig ht l i ne) from left t o r ight acro ss 

the figure. ProceSSing is strictly local: No backing up ever 

occurs , and the lookahead r eaches to the next "transit ion 

point" o nly . 

Plane - sweep algorithms promise to be ef fic ient for many appli

cations of prilctica l inte r e st in comput e r - a i d e d design (e. g. 

for VLSI), computer graphics (for instance , scan conver sion) , 

and geographic d a ta processing (cons i s tency checking of ma p 

da ta ) . Due t o this motivating factor, the scope of problems that 

c a n b e ha nd l ed by plane - s weep algorithms has been extended in 

various pape rs, such as [BO 79] and [NP 82]. 

Let us first r ev i e w th e conce pts needed to unde rstand plane

s weep a l gori thms and in troduce the motivation and terminology 

used i n t he r est of this pape r (see also Nieverge lt and P re 

parata [NP 82]). 

Consider a conf iguration of g e ometriC fig ur es given by a 

co ll ec tion o f straight line segments , as s hown in fig ure 1-1. 
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Figure I-I. 
and "spiral". 
tersections. 

o 0 0 f 4 fO "Ion 11 !t'rIOang le", "rec tangle", A configuration conslstmg 0 19ures: Ie, 
The fiO'ure has a t otal o f n ::: 16 line segments and s = 6 unl< nown in-

o 

Intere sting topological a nd g eometr i c questions r egard i ng the 

figure include containment (the rectangle contains th e l ine bu t 

is not conta ined by the spiral) I int ersection ( t he triang le 

intersects th e r e ctangle and th e 

(the shaded region of t he plane 

and me as urement (area or 

spiral) , r egion identifi c a t ion 

is c o vered by the triangle 

length of perimeter of t he only ) , 

s haded region ) . Solutions by plane -sweep algorithms working 

i n time O«n+ s) loqn) are known where n i s the number of l ine 

s e gments, and 5 the number of (initia lly unknown) intersec

tions. Thus n measures the size of the in put data, and s the 

complexity of the data (and often the size of the output) . 

Some of th e pr o blems above can be solved by obvious exhau stive 

s e arch algorithms that work in time o (n
2

) by checking every 

pair of line segments for an intersec tion. Since s = O(n
2

) , 

plane- sweep algorithms have a worst case time behavior of 

0(n
2 

log n) which at first sight seems to make them unattrac 

tive . However , such "dense " configurati o n s characte riz e d by 

5 = 0(n
2

) rarely occur in practic~~ realistic configurations 
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tend to have s = O(n). For these applications plane-sweeps 

are very useful as they - surprisingly - solve many seemingly 

complex problems at the asymptotic cost O(n loq n) of sorting. 

Plane - sweep algorithms superimpose an x-y coordinate system 

on the geometriC configuration to be processed. This arbitrary 

choice of a sweep direction for problems that are independent 

of coordinate systems is anesthetic blemish, but for some 

applications, such as raster scan conversion or drum plotters, 

it mirrors in a natural way the constraints imposed by the 

mode of operation of devices. 

The x-y coordinate system is represented by two data struc

tures common to all plane-sweep algorithms: The x - structure 

X and the y-structure Y. I n addition, there are one or more 

problem- dependent data structures. X is a queue representing 

the tasks still to be accomplished . At any time, it contains 

the known transition pOints to the right of the brush, sorted 

according to x - coordinate. As the next transition point is 

processed it gets deleted from X, and newly discovered transi 

tions "get inserted. The y - structure which is usually implemen

ted by a balanced tree represents the state of the current 

cross section of the configuration , a t the position of the 

brush. The information contained in Y remains unchanged for 

a slice between two transition pOints; it must be updated as 

the brush passes a transition pOint. Figure 1-2 illustrates 

these concepts . 
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y-table 

c 
:',U _---

B _ .... :---: ........ 
r 

Transitions 
already processed 
and discarded 

H 

x-queue 

Figure 1-2. The data structures common to all plane-sweep algorithm s. A 

through H ar e the transition points known before the sweep starts; U, V, W arc 
discovered during the sweep. A, B, C, U have been processed and discarded; D, E, 
V, F, G, H arc known at this time and wait to be processed. W is not yet in th e 
queue, as it will be discove red only at transition D. 

Plane-sweep algorithms work according to the following schema; 

proc SWEEP; 

x ~ all transition pOints known initially, sorted by 
x-coordinate; 

y ~ Ill; 

Initialize problem-dependent data structures; 

while X to III do 

od 

P +-- MIN (X); 

TRANSITION(P) 
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The core of the algorithm, procedure TRANSITION, basically 

consis t s of the following: 

1. With Y of P(x,y), locate the entry in the y-structure Y 

with y-coordinate identical or nearest to y , then update Y. 

2. Check adjacent line segments for intersec tion. 

3. Insert newly found transition pOints into X. 

4. Problem-dependent operations. 

This skeleton already allows a rough analysis of the asymp

totic time performance . With n line segments given, at most 

2n transition pOints are known initiailly. 5 transitions 

(intersections) are discovered during the sweep. For each of 

the 2n + s transitions we perform the operation P +- MIN(X) 

and the four steps described above: 

(1) P +- MIN (X) 

This can be done in time 0( 10g (2n + s)) = O(log n) 

(since s = 0(n
2

)) if X is implemented by a tree struc

ture, or even in time O(1} if al l transition pOints 

are known initially. 

(2) Locate y and update Y 

As Y contains at most n entries sorted according to 

y-coordinate , and as update operations are local in 

th e vicinity of y, these operations can be done in 

time 0 (log n). 

( 3 ) Check adjacent line segments for intersections 

Time 0(1) is needed. 

(4 ) Insert intersections found into X 

Time O(log(n + s)) = O(log n) is needed. 

(5) Problem-dependent operations 

For m3ny problems of interest these can be done in 

time 0(1) or O(log n). 
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This sums up to O«n + s) log n) as mentioned earlier. In 

special circumstances a time performance of O(n log n + s) 

can be achieved (e.g. (MS 83). As we are interested in the 

generality of plane-sweep algorithms, we do not discuss 

these cases. 

As a summary of this brief review of plane-sweep algorithms: 

they are well understood, very general in their applicability 

to different problems, and efficient for the large class of 

applications where data "spread evenly across the working 

plane", characterized by s = O(n). 

In contrast to the two-dimensional ~ase, it is not yet clear 

whether efficient multi-dimensional space - sweep algorithms 

exist for problems of practical interest. As examples of 

initial investigations into this question, let us mention 

the use of plane-sweep techniques for hidden-surface elimi

nation (Schmitt [Sch 81), and of space-sweep algorithms for 

computing the subdivision of the space given by a finite 

number of hyperplanes by Bieri and Nef [BN 82). The former 

could well be called a "two-and-a-half-dimensional " problem 

(superposi tion of several two-din\ensional problems), a nd thus 

it is not clear whether its results generalize to k ~ 3 d i 

mens ions. The latter is a truly k-dirnensional problem, and 

provides a n interesting example worth extending. 

In this paper, we present in an intuitive but systematic way 

a space-sweep algorithm that completes the intersection of 

two convex polyhedra in time O(n log n). This upper bound 

has previously been a chieved by Muller and Preparata [MP 78). 

We find it interesting to show how a sweep algorithm achieves 

the same r esult by an entirely different technique. 
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2. SIMPLIFICA·rrON OF THE PROBLEM 

In this paper we study the problem 

rep (Intersection of two Convex Polyhedra): "Given two convex 

polyhed ra in the form of a boundary representation, calculate 

their intersection. 'I 

This problem has previously b een studied by Muller and Prepa

rata [ M? 78] who established an upper bound of O (n log n) for 

po lyhedra having a total of n vertices. Later, attention has 

shifted to t esting the intersection of two preprocessed poly

hedra; Dobkin and Kirkpatrick [DK 82] are able to do this in 

time O((log n)2) after 0(n
2

) preprocessing. More recently, 

the same authors [DK 83] have presented a linear time algo 

rithm that allows to detect whether two convex polyhedra in

tersect. We return to the harder problem of calculating the 

intersection, rather than merely testing for intersection , 

and achieve the same time bound as Muller and Preparata by an 

entirely different and Simpler technique. 

Our algorithm works by first determining some pOints in the 

intersection of the surfaces of the two polyhedra Po and P" 

using space-sweep. Starting from there it constructs all 

edges of Po n P, and thus the resulting convex polyhedron by 

graph exploration methods. Minor modifications in the graph 

exploration phase allow to construct Po U P, or Po ' P, in

stead of Po n Pl. 

Throughout this paper we assume that no two corners of one 

of the polyhedra have identical x-coordinates. This can al

ways be achieved by a slight rotation of the coordinate 

system, requiring linear time in addition to the initial 

sorting of the corners. We also assume that all faces of 

the polyhedra Po and P1 are triangulated from their respective 

pO.int of minimal x-coordinate by improper edges . The "boun

dary representation" mentioned above i s basically the doubly 

connected edge list introduced by Muller and Preparata [MP 78), 
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enriched by the improper edges and by pOinters between fa ces 

and the i mproper edges contained therein . 

In the fo llowing t he word f a c e (bou nding trj ~ lngle) always 

refers to a bounding face of one of the polyhedra without 

(with) consideration of improper edges. Thus a face may con

sist of several co- planar bounding triangles. 

Problem rep i s reduced to a simpler problem . The edge set E 

of 

o f 

of 

of 

the re sulting convex polyhedroll p n P 1 consists o f a set 
0 

line segments o n the surf ace of both polyhedra, and a se t 

line s egments that are edges or part of edges o f only one 

the polyhedra. Figure 2-1 gives an examp l e. 

I 

J..-------
/ ~~ 

/ 

/ 

/ 

Figure 2-1 Two bricks penetra t ing e a ch othe r. Hea v y l ines 

are edges in E
1

, dotted lines edges in E2 " 

E1 is naturally composed of connected components; the examp le 

E1 

E 
2 

in figure 2- 1 has only one component . I t will be shown (l emma 1) 

that Po n Pl can be systema tica lly c ons t r ucted in time O( n ) if 

at leas t one pO i n t (on an edge ) of each c omponent of E , i s 

known. With thi s in mind, we def ine the following prob lem that 

lends itself more directly to the sp~ ce -swe e p approach: 
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Problem rep': "Given two convex polyhedra Po and P, with a 

"total of n corners , compute a set of intersection pOints of 

proper edges of P. with bounding triangles of P
1 

. , i = 0 or 
1 -1 

i = 1 . This set must contain at least one point of each con-

nected component of E 1 cPo n P 1 ... 

Lemma 1: a solution to problem ICP' allows to compute 

a) Po n 

in time 

P 1 ' 

o (n) • 

b)P
o

UP
1

, c)P
o 

.... P
1 

Proof: We argue about part a) only. Parts b) and c) solely 

differ in the definition of E
2

, and thus in a modified deter

mination of the edges in E
2

. 

The basic idea is to consider the solution set to lep' as part 

of the se t of vertices of a graph, and, starting from these 

vertices, to explore the graph by a systematic method . To have 

a sensible stopping criterion we want to know E1 completely 

before we start exploring E
2

. 

Let S be the solution set to lep'. As shown in section 4, we 

can get x € S as intersection of e, the proper edge separating 

the bounding triangles F' and F' I of P. , with the bounding 
1 

triangle F of P
1 

. . We process all points xES as follows: 
-1 

We construct all edges of E l incident to x. On the proper 

edges of P
1 

(Po) extending from x into the interior of P
o

(P
1

) 

(observe that there may be more than one of these if x is 

vertex of Po or P
1
), the candidates tor E

2
, we mark X, and 

store these edges in a set. If such an edge is marked already, 

it penetrates one of the two polyhedra; in this case we add 

the segment between the two markings to the set E
2

. Compare 

figure 2- 2. 

We have to distinguish three cases concerning the respective 

position of x, namely 

(case 1) x is no polyhedron vertex, and lies in the interior 

of bounding triangle F of P1 . , 
-1 
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/I _II 
L~' -
- I y 

x \ __ -

--

Figure 2-2 Marking of candidates for E2' 

e is edge of p , and intersects 
1 

e penetrates P'-i from x on to 

P 1 . in x, 
-1 

the right; this 

part of e becomes a candidate for E
2

, and x is 

marked on e, If e is later explored starting 

from y (y may belong to a different component 

of E
1
), the mark x is detected; we then add xy 

to the set E2' 

(case 2) x is the intersection of two edges but no polyhedron 

vertex , and 

(case 3) x is vertex of Pi or/and of P1-i ' 

Case 1 - as illustrated in figure 2-3 - is the standard case, 

In case 2 let x be the intersection of edge e with edge f se

parating bounding triangles F and F'" of P1-i ' Ordinarily 

(and analoguously to case 1), we can compute the structure 

around x in time 0(1) by intersecting F and F' I I with pi and 

FI '. A problem arises, however, if F or pI I I is co-planar with 

F' or F", Say, F is co-planar with F', F' is part of face G
i

, 

F is part of face G
1

_
i

, To avoi~ getting irrelevant and unde

sired intersections in the interior of G
i 

n G'_i' we treat the 

faces as a whole and compute G
i 

n G
1

_
i 

in time 

o (deg. (G.) + deg 1 . (G
1 

.», using the known method due to 
~ ). -~-1 
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f 

Figure 2-3 Edge e intersects bounding triangle F in x, 

Edges F n F' and F n F" belong to E" The 

part of e extending into the interior of the 

other polyhedron is candidate for E
2

; x is 

marked on e. 

Shamos [Sh 75J, deg. (G) denotes the number of vertices of 
~ 

convex polygon G in Pi" We mark the two faces as "done", and 

then process t he vertices of the intersection polygon , 

Case 3 can be divided into three subcases. Let x be a vertex 

of Po Then x can lie in the interior of a bounding triangle 

F of P" or on an edge f of P" or it can even be a vertex 

of P, as 

bounding 

well. In the first case we intersect F with all 

triangles of P inc iden t to x, and thus get all 
o 

edges i n E, (and candidates for E
2

) incident to x in time 

O(dego(x», Here degi( x) denotes the degree of x in poly

hedron Pi' improper edges included, In addition, we might 

have to treat co-planar faces a s described i n case 2 above. 

In general, we will get two edges in E" and some candidates 

for E2' as shown in figure 2-4. 
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F 

Figure 2-4 Vertex x of Pi lies in bounding triangle F 

of P, .. 
-~ 

The second subcase is analoguous; time O(dego(x» suffices, 

apart from the time for treating co-planar faces. 

If x is vertex of both polyhedra, however, the situation is 

considerably more subtle . The naive approach might result in 

quadratic running time. Therefore we transform the problem 

in a suitable manner to a two-dimensional problem. Basically, 

we find a plane D intersecting all edges of Po incident to x 

in time O(dego(x». Po n D is a convex polygon, P, n D a con

vex polygonal region. We intersect these two plane figures in 

time O(dego(x) + deg, (x», using Shamos' method. The s t r uc

ture around x can be inferred fro ~ the resulting polygon in 

a straightforward manner. Again, co-planar faces might have 

to be handled in addition. 

In all three subcases we afterwards mark x in the polyhedron 

it belongs to. 

This way we have constructed all edges in E, (and candidates 

for E2 ) incident to a pOint xES in total time O(n). Total 

time O(n) is also sufficient for the treatment of co-planar 

faces since the computation described in case 2 is performed 

at most once for each face. 
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Starting from these edges we fi rst want to explore E1 comple

tely . This is done by working with two sets W, (W
Z
), that 

initially contain all the known members of E1 (candidates for 

E
Z

) ' A,S long as W, contains any element an edge e = (x,y) is 

removed from W, and processed. Processing all. edge means 

checking whether its endpoints were processed already; all. 

endpoint that was not is processed according to the pertinent 

case as described above, thereby possibly adding new edges to 

W" E" w
2

' E2" The time for the whole procedure sums up to 

O(n) by arguments above if one c an decide fast (i.e., in con

stant time) whether an edge endpoint was processed already. 

This is indeed possible if we mark pOints that are not cor

ners of Po or P, all. the edges they lie on in a sensible way, 

such that no edge eventually bears more than two markings. 

The only question as to where one should mark arises in 

case Z above (x = e, n e, .) if e , lies (partly) in a face 
.... -l. l. 

of P, ,. We mark x on e
1 

' if this edge does not lie in a 
-l. -l. 

face of p,: otherwise (two co-planar faces), e, and e, , 
1. 1. -1. 

will be proper edges (the algorithm in section 4 will deli-

ver no intersection with an improper edge in this case), and 

we can safely mark x on both of them (details left to the 

reader) . 

By now we have explored all of E1 in 

dates for E
Z 

can be added to set E
Z

' 

terior endpoints of these candidates 

remaining edges that belong to E2 in 

time O(n), and candi

Starting from the in

it is easy to find the 

time 0 (n) . o 

More details of the proof above, especially of the corner

in-corner subcase, can be found in [He 84). 
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3. BASIC CONCEPTS 

By analogy to p l ane-sweep algorithms, a space-sweep algorithm 

operates by advancing a plane through space. The x-structure 

is a queue X containing (for our problem) all n corners o f the 

two polyhedra. The yz-structure that replaces the y-structure 

represents the state o f the cross section. The latter has ( for 

each one of the two polyhedra) the f orm of a convex polygon . 

The set of edges (of one polyhedron ) intersec ted by the sweep 

plane forms a cycle whose neighbor edges bound the same boun

ding triangle of the polyhedron. This leads us to 

Defini tion 1: Let P., i = 0,1, be one of t he polyhedra . Let 
1 

e
j

, 0 S j < n
i

, be the cyclically o r dered sequence o f edge s 

intersected by the sweeping plane. A prong is the portion of 

a bounding triangle bounded by t wo consecutive edges e
j 

and 

e(j+1) mod n
i

' and, to the left, b y the sweeping plane. The 

cyclically ordered set o f prongs forms the c rown C
i

" 

Obs e rve that, because of t he triangulation chosen, the par t 

o f a face o f Pi to the right of the sweeping plane is eith er 

completely or not at all part of the crown C . . 
1 

Obv iously all prongs are either triangles or quadrila terals , 

and we can classify crown edges as follows: 

De fi nition 2: Let P. and 
1 

o f the polygon formed b y 

e . be a s in Definition 1 . The edge s 
J 

connecting the intersection pOi n t s 

in a circular fas h ion are called base edge s , their x-c oor d i 

nate is the base; the edges e. of the original polyhedron 
J 

are called Eo r Wdxd edges, and all other edges of the crow n 

are called prong edges (they connect tips of p r ongs). 

These definitions are pictured in figure 3-1. 

Thus we can represent a cross section in a way analoguo u~ t o 

the one-dimensional cross section o f plane-sweep algo r iti ~ ~ s : 
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Figure 3-1 Edge classification of a crown. 

b,f,p denote the three edge t ypes . 

Point q is the polyhedron corner just processed. 

Forward edges starting left o f q are shown dashed 

to the left of the s weeping plane. 

here the linearly ordered y-structure is r e? laced by a circu

larly ordered yz-crown. Due to this circular ordering, the 

crown can be searched in logarithmic time by binary searc h 

for angular arguments, to dete r mine the relative position of 

a new transition point w.r.t. the crown edges. 

To s tore crown c. in a balanced tree we select an axis line L., 
1 1 

e.g. the line connecting the vertices of Pi having the minimum 

and maximum x-coordinate, respectively. This axis alvlays inter

se~t: tIle s weeping pl ane , and we can represent p E ffi 3 w.r.t. L . 
1 
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by the cylindrical coordinates ( XI alfa, radius). Here x is 

pIS x-coordinate, and (alfa, radius) are piS polar coordinates 

in the yz-plane through p, with pole on L . and alfa's measured 
l. 

against, say, the positive y-axis. 

ted by the cylindrical coordinates 

A forward edge is represen-

w.r.t. L . of its endpoints, 
l. 

i.e., by (xo ' alfao ' r o ' x" alfa" r,). Note that for every 

p on such a forward edge with x-coordinate x, Xo $ x S x" we 

can calculate (alfa, r) in constant time. The radial . represen

tation is depicted in figure 3-2; in figure 3-3 formulae are 

given that help for the calculation of (alfa, r) - for sim

plification , the axis is assumed to be the x-axis. 

I 

I 

/ 

f 

" " 

f 

"' " 
..... 

) 

- . -----

Figure 3-2 Radial representation of a crown, viewed parallel 

to the axis. Qi'S are angles of left, ails 

angles of right endpoints of forward edges. 

Note that although a lfas and radii change with X, the r elative 

ordering of crown edges r emains invariant between transitions. 
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':I. 

x y 

x, (,-- 'J" ~o 
A-I ~-z, 

x = x. 

'J = 'j. 

Z =. 2. 

Figure 3-3 

~, 

+ k(x,-x.) to." 
"Z 

'" = 
'j 

+ kt~,-'jo ) 
"-

k ( .. , - z.) 
r - oS,:", 0( + 

(a.) (b) 

Coordinate transformation for a forward edge 

f = (po 'p, ) if the axis is the x-axis. 

(a) Projection into the xy-plane. 

(b) Projections into the yz - plane at x Xo and 

atx=x,. 

This allows us to store the crown as a balanced binary tree, 

organized with respect to alfas. 

Before we can process (see next section) a new polyhedron vertex 

p = (x,y,z) (with cylindrica l coordinates (x, alfa, r», we have 

to know where it is located in the respective crown. Therefore 

we use angular binary search to find a crown edge the right end

point of which is p. If the intersection of any forward edge of 

the crown wi th the yz-plane through p has cylindrical coordina

tes (x, alfa* , r*), we have to search until we find an edge 

such that al fa' = alfa. 
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4. THE ALGORITHM 

Our algorithm will construct two crowns, one for each poly

hedron, and will find their intersections (as specified in 

problem rep' I i .e ., at least one per connected component of 

E,). Thereby, if edge e lies completely in a face of the 

other polyhedron, "intersection" is defined to be an end

point of e. Advancing in the x-queue (that initially con

tains all n corners) from vertex to vertex of the two poly

hedra, we perform one transition per vertex . We will first 

present procedure TRANSITION, the core of our algorithm, and 

then show that the algorithm is correct and stays within the 

desired time limit of O(n log n ) . 

Processing vertex p of polyhedron Pi we assume that at l eas t 

one point was found already of every component of E, comple 

tely left of p (and possibly including p); we only look for 

intersections to the right of p . One execution of TRANSITION 

will deliver zero, one , or several intersection pOints of 

"the two polyhdra on an edge or in a face of Pi starting at 

p. To achieve this, we first intersect all proper edges of 

Pi starting at p with the opposite crown C'_i. If none of 

the two edges bounding a face F of P . starting at p inter-
1 

sects the opposite crown, a part of P'-i could nevertheless 

penetrate face F, as shown in figure 4-'. 

Figure 4-' No bounding edge of face F of Pi intersects C'_i; 

however, forward edges of C'_i penetrate F. 
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To detect some of these intersections, we intersect, in this 

case , 

Lemma 

an arbitrary proper forward edge of crown C, . with F. 
-1 

2 below asserts that thi s is sufficient to find at 

leas t one point of each component of E, . 

Specif ically , a transition is performed as follows (S is an 

initially empty set of intersections): 

(') proc TRANSITION (p , i) : 

( 2) 

(3) 

( 4 ) 

( 5 ) 

(6 ) 

( 7 ) 

(8) 

( 9 ) 

( 10) 

( " ) 

update crown C . of po lyhedron P . ; 
1 1 

if exact ly one edge e of P. starts a t p 
-- 1 

fi 

the n intersect e with the crown C'_i of P, . and 
-1 

add all intersections to s e t S 

else for all faces F of P. starting at p 
1 

(possibly consisting of several prongs) 

do intersect the starting proper edges of F 

with the crown C ,and add all inter
'-i 

od 

sections to S; 

if no intersection is found 

fi 

then choose a proper forward edge of crown 

C, . and intersect it with F; add 
-1 

intersection, if any , (in the pertain-

ing bounding triangle) to S 

('2) corp. 

Lemma 2: Performing TRANSITION once for each of the vertices 

of the two polyhedra sorted into a common queue correctly 

solves problem ICP'. 

Proof: It is clear that a set of inters e ctions is computed. 

Thus we only need to show that at least one point of each 

component of E, will be r epor ted . 

Le t K be a component of E" and let v be a vertex o f K with 

minimal x-coordinat _e. Clearly v is the intersection of an 
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edge e of polyhedron P. with a face F of polyh e dron 
~ 

I f v is not reported then e must start before F (in 

P, .. 
-~ 

the 

swe ep orde r). Consider the state of the space-sweep imme 

diately after the start ver tex p of F is encountered. At 

this pOint e is a forward edge of the crown C
i 

of Pi. 

Conceptually t race K in fa ce F and crown C
i

' starting a t v . 

Two cases may arise: 

£a~e_1~ We are not able t o trace K completely, i.e., we 

first hit either a bounding edge e' of F (s ub case a», 

or a prong edge e" of C . (subcase b ». Because o f 
~ 

the minirnality of V i S x-coordinate we do not leave 

C
i 

by way of a base edge. 

a) e' intersects a prong G of C
i

. Then e' n G either 

was detected at processing p, or it will be d e 

tected when the starting point of e t is processed , 

since G is still a prong of C
i 

at that time . Com

pare fig ure 4-2. 

b) Because of the triangulation chose n for faces, e 1 
I 

i s a proper edge. Also, F still is part of crown 

C, . whe n the starting pOint of ell is process e d. 
- ~ 

Therefore e" n F is detected at that time. 

fa~e_2-,- We are able to trace K completely in F and C
i

. 

Since e starts before F and s ince it does not inte r 

sec t a bound ing edge of F, e does not lie in fa ce F 

but intersects t he interior of F. The intersection 

with F of the two prongs of C
i 

neighboring e i s c om

ple t e ly contained in F, and the forward edges (other 

than e) of these prongs again intersect the inte rior 

of F. The argume nt propagates around the crown C
i

. 

Thus K is a closed curve in F running through all 

prongs of C
i

' and i ntersecting all forward edges of 

C
i

. Hence a point of F is found in line (8) of TRAN

SITION. Figure 4-' helps for understanding this case ; 

we may, in line (8) of TRANSITION, select forward 

edge f of C
i 

and intersect it with F. D 
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p ~::::.:::------l 

e' 

G 

Figure 4-2 Case 1 a) of the proof of lemma 2. Shown are 

a part of the crown C
1

_
i

, and prong G of 

crown Cio W = e l n G is detected when the 

starting pOint of e' is processed. 

Let us now examine the time required for the different actions 

of TRANSITION. 

Lemma 3: The updating of crown Co (C
1

, res p.) can be done 

in total time O(n log n). 

Proof: 

vertex 

Consider updating crown C
i 

(i = 0,1) at a transition 

v = (x,y ,z). Let c be the maximum of the number of 

forward edges of C
i 

before the transition, and the number of 

such edges after the transition, and let d = d
1 

+ d
2

, with 

d
1 

(d
2

) being the number of edges of Pi ending (starting) at 

v. We have to localize the edges ending at v in th e balanced 

tree r e present:i ng c. for updating c. subsequently . 'rhis can 
1 1 

be d one by angular binary search as described in the previous 
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sectiun. Because of the cyclic ordering of the crown this 

yields a subtree Tv' as pictured in figure 4-3. 

- - -

~ C· 

.~\ L 

~.

c.d. 3 e.li. .... ~ tL. 
~......11' • .:_t v 

Figure 4-3 The two outermost search paths (bounding Tv) 

for edges with endpoint v. 

Now we split C. along the two outermost search paths, drop 

.T
v

' and merge ~he tree T~ew formed from the d
2 

edges s tart

ing in v (that are given in cyclic order) with the remainder 

of C
i

. This can be done in time O(log c + d
2

) , namely time 

O(log c) for the search with the subsequent splitting of the 

tree C
i

' time 0(d
2

) for the construction of the tree T~ew, 

and time O(log c) for the merging of T~ew with the remainder 

of C
i

" The operations necessary are those of a "concate nable 

queue II ([AHU 74], p. 155ff.) - observe that the remainder of 

C
i 

is a forest of trees with known relative orde ring, and 

with height differences between two neighbors summing up to 

O(log c). Since c < n, and since the sum of d's over all po-

lyhedron vertices is O(n), the lemma follows . c 

Lemma 4: Let g be a straight line , and let C be a crown with 

c forward edges. C n g can be computed in time O(log c) . 

Proo f: Similarly to the idea o f Dobki n and Kirkpatrick (DK 82, 
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OK 83] we let the bala nced tree d e fine a hierarchical repre

sentation of the crown. It will help us for f inding an inter

section if we do not use the crown directly but an extens ion 

of it to a convex polyhe dron. Specifically, l et v
1

' . . . , Vc 

be the vertices of the base polygon , and let w
1

' . . . , Wc be 

the right endpoints of the c forward edges. Neighboring v's 

or neighboring WIS may coincide . Le t V := (v
1

, . . . , v
e
), 

W : = (w
1

' . . . • w
c
)' and let t be the right e nd point of t he 

axis of C, i.e., the rightmost vertex of the respective po ly

he dron . Cons ide r the convex hull of the points V U W U (t). 

The bounding faces of the convex hull are the base polygon 

whi ch we will no t consider in the sequel (intersections with 

g there are not interesting). the prongs of crown C and the 

terminal triangles (tt's) extending from two neighboring but 

no t identical w's each to t . Thus each tt has exactly one 

partner prong (pp); the reverse relation does not hold neces

sarily. Figure 4- 4 presents such a solid object and illustra

tes the new terms . 

Figure 4- 4 Convex hull of a crown with 8 forward edges 

joining in 5 different right endpoints , to

gether with t , the rightmost polyhedron ve rtex . 

Partner of tt w
7
w,t is prong v,w,wsva; 

prong v 7vawS has no partner . 
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We will r e present such a special polyhedron hierarchically 

by a balanced tree. To be specific, let us choose a (2,3)

tree (compare [AHU 74]). Observe that the crown resp. the 

special polyhedron is ~i nd of a two-and-a-half-dimensional 

solid for which the two-dimensional hierarchical representa

tion of [DK 82] is basically sufficient. Let C(i), i = 1, .. 

.. , k = O(log c), be the forward edges of the crown store d 

in depth i of the tree. C(k) is C, and p(i), the convex hull 

of C(i) and pOint t, is an inner approximation of the spe cial 

polyhedron. C(i) is shrunk to C(i-1 ) by transforming two (or 

three) prongs of C(i) each into one - this, in turn, i s done 

by removing the forward edgers) separating them. Compare fi

gure 4-5. 

Figure 4-5 a Two sUbsequent approximations of the crown of 

a polyhedron, seen from the direction of the 

positive axis. C(i) (cons isting of prongs 

with at least one forward edge shown dashe d) 

is made coarser and thus changed into C(i-1) 

(solid edges) . 
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) 

_0 

0-

.\' , eO 
(co-planar prongs) 

" 
" , ____ 0 

0 
0 0 

or 
) .\\ eO 

\ 0 
0...., ,,' 

or '0 '-
0_ ,.. 
\ -0 ,.. 

0 .... \ 

.\ 
\ 

\ e O 

\ 

0 
0 

0 0---0-

or I 

e \ 
eO 

Refinement 

transition 

of the representation 
( i-I) (i) 

from C t o C . 

° 
,0 

0 _ _ 0' 

of a crown; 

Forms of the IIpartitioninglf of a prong into 

two by adding an additional forward e dge 

(dashed; between two neighboring f orward 

edges , e and e O, of C(i-l». If two addi

tional edges are inserted even more forms 

of refining a prong are pos s ible. 
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Figure 4-6 (a) Part of crown C (k) with the corresponding 

part of C(k-') (solid lines). 

(b) Hierarchical representation of (a) in the 

(2,3)-tree; shown is only the hierarchy in

formation in the internal nodes. From the 

upper node marked bye, one can find the 

corresponding prong w,w6v7v6 of C(k-2) 

that is not explicitly drawn in (a). 

., 
_/ 
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Il ~ ter:lal nodes of the balanced tree contain a hierarchy in

formation, apart from the usual order info rmation (fo r pre

serving t he order during r ebalancing). The former is chosen 

t o insure that , in each depth i t i = 1, ... , k , two neigh

boring nodes each correspond to a prong of the crown c(i). 

To ach ieve this, it is sufficient to let leaves of the tree 

represent forward edges of the crown C = c(k), and every in

ternal node the (cyc lically) minimal edge of the subtree the 

root of which it is. Via neighbor pointers on every l evel one 

can find the prong corresponding to a node in constant time. 

Figure 4- 6 illustrates the correspondence between a connected 

section of the crown c(k ) a nd the pertinent tree r epr esenta

tion. 

The r e finement of the representation, i.e., the transition 

from p(i) to p(i+l) , may be understood as a convex extension 

of p(i). We will present related terms and investigations be

fore we explain the algorithm for determining eng . 

Let P = (V,E ) be an arbitrary convex polyhedron. Let Z = 

= (v
1

, . . . , v
s

' vs+l = v) be a closed simple path of edge s 

on P, i.e., vi € V, (vi,V
i
+,) E E for i = 1, ... , Sl and 

v . f v. for if j, i,j E [1 :s1 . Z d ivides the surface of p 
~ J 

into two segments. Let S be a segment. A convex extension of S 

is an expansion of P in the region of 5 (by adding new nodes 

and edges , and by possibly r emov ing nodes in the interior of 

5, i. e. , in 5 but not on the path of edges bounding 5) that 

preserves convexity. The roof o ver S is t~e maximal convex 

extension of S. Roofs may be c losed or open (i.e., infinite); 

for instance, the faces of a tetrahedron have open r oofs, 

those of a d odekahedron have closed roofs. 

Relevant for our algorithm is the following fact (proved in 

[He 841, p. 85): 

Fact : Let 5 ~ (5" . . . , Sk) be a parti t ion of the surface of 

conve x po l yhed r on P into segments. A line 9 t.nat does not 
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intersect P can inters ect the roofs of at most two of these 

segments. 

Now we are going to compute eng, guided by Dobkin and Kirk

patrick's algorithm for determining the intersection of a 

straight line with a convex polygon. In the following, segments 

will always be tt-pp-pairs, and prongs without partner; com

pare figure 4-4. 

We start with p(1), a (possib l y degenerated) convex poly

hedron with few segments, and determine the part of p( 1) where 

an intersection could occur if it exists. There we local ly 

proceed to p(2) and determine a - smaller - section for a 

possible intersection . We locally expand the polyhedron up 

to p(k) to find an intersection if any. If g intersects p(k) 

in a prong of C(k) this point is reported; intersections with 

tt's are neglected. 

Depending on whether we already have found an intersection 

9 n C or no t, we have to distinguish two case s. 

A prope r inte rsection (i.e., not only touching point) found 

in depth i is processed by refining the respective segment to 

the next depth. One of the (at most six) new bounding faces 

must again have an intersection with 9i we proceed analog uous

ly at depth i + 1. 

If no intersection was found so far, the following invariant 

is maintained before t he start of the i-th iteration (i.e., 

c omputat ion at depth i) I i = 2, ... , k: 

(INV. 1): 
(i -1 ) 

51' 52 are two segments of p . with the foll ow-

ing property: If g intersects p(J) with j ~ i, then 

g intersects one or both of the roofs over 5
1
,5

2
, 

51 = 52 is allowed. 

For the second iteration t he invariant is established as 

fo llo'''s: 



- 29 -

l!ltc l ~sect 9 with al l bou llding faces of p(l). I f no sue], 

intersection is found intersect 9 with the roofs of all 
(1) 

segments of P . Observe t nat such an intersection is com-

putab l e in constant ti rr:e. Get at most two segmen ts S l' 52 

the roofs of which are intersected by g. Stop if no such 

segment exists. 

The transition from the i-th to the (i+l)st iteration, i ~ 2, 

is performed as follows: 

Refine segments S 1 I 52 to depth i + 1 • Get at most six new 

segments. If no intersect i on of 9 with one of the maximally 

12 new bounding faces is found, intersect g with the roofs 

of the new segments. Get at most two new segments 5" 52 the 

roofs of which are intersected by g. Observe that, if seg

ment S is refined into two or three new segments, the roofs 

of the new segments are contained in the roof of S, and, that 

roofs of segments not considered never grow either. Stop if 

g does not intersect any roof. 

Let us briefly mention two special cases that require some 

modification of our procedure in the i-th iteration. If g 

touches p(i) in exactly one point on a forward or "terminal" 

edge, we refine the two incident segments; if a part of g 

lies in a prong of C(i) we refine, per iteration, the outer

most two segments concerned, in order to avoid reporting an 

intersection of 9 with an improper edge. 

Details of such special cases are left to the reader. It 

suffices to realize that only constant work is necessary 

per iteration. Since, due to the convexity of p(i), not more 

than two search paths are folloHed through in the tree, the 

time bound follows. a 

Corollary: Let C be a crot,om with c forward edges, and let e 

be an edge the left endpOint of which does not lie left of 

the base of C. C n e can be computed in time 0(10g c) • 
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By combining lemmata 2 - 4 we obtain 

Lemma 5: The space-sweep. algorithm using procedure TRANSITION 

described above solves problem Iep' defined in section 2 in 

time O(n log n). 

Proof: The total cost for line (2) of TRANSITION is O(n log n) 

according to lemma 3, as is, according to lemma 4 including 

its corollary, the total cost for lines (4) and (6). Line (8) 

needs O(degi(F)) per execution, that is, total time O(n) 

since it is executed at most once per face F. For all other 

lines linear time suffices in total. o 

Together with lemma 1 we finally get our main result 

Theorem : The intersection of two convex polyhedra with a 

total of n corners can be computed by space-sweep in time 

O(n log n). 
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5. CONCLvSIO" S 

We h a ve s e C ll t hat the space-swe ep approach y ields an effi

cient algorithm for intersection of convex polyhedra that 

ma t ches the performance of the best known algorithm to this 

pro b l em. Moreover, the method is mOre universal than the 

pre vious solution by Muller and Preparata [MP 78J; we further 

believe it to be easier to understand. 

Th us t here are effective space-sweep algorithms for selected 

problems. Howe ver, space-sweep does not seem to offer as 

general an approach to solving geometric problems in 3 di

men s ions as plane-sweep does for 2 dimensions. It is an 

open question whether space-sweep can be effectively applied 

to more general problems, such as those involving non-convex 

solids. 
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