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Abstract In this paper we present an a-posteriori error estimator for the mixed
formulation of a linear parabolic problem, used for designing an efficient adaptive
algorithm. Our space-time discretization consists of lowest order Raviart-Thomas
finite element over graded meshes and discontinuous Galerkin method with vari-
able time step. Finally, several examples show that the proposed method is efficient
and reliable.

1 Introduction

A-posteriori error estimates are an essential component in the design of reliable
and efficient adaptive algorithms for the numerical solutions of PDEs. Mixed for-
mulations can be suitable for certain problems, as they allow to directly approach
certain solution derivatives.

In this paper we introduce an a-posteriori error estimation for the mixed for-
mulation of a linear parabolic problem. We particularly obtain,

‖u − U‖L∞(0,T ;L2(�))

‖p − P‖L2(0,T ;H−1(div,�))

}

≤ E(u0, f, T, �; U, P, h, k),

where u is the scalar variable and p its gradient. In the following, we will use
boldface type for vector-valued functions and capital letters for representing the
numerical approximations obtained with the lowest order Raviart-Thomas finite
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element discretization and variable time step discontinuous Galerkin method. The
estimator E is computed in terms of problem data u0, f, �, T , computed solutions
U and P, mesh size h and time step k. Therefore, the a-posteriori estimators are
computable quantities depending on the discrete solution and the data, which pro-
vide bounds of the error, and thus they are a tool for modifying meshes and time
steps (adaptivity).

First we establish the a-posteriori error estimation using duality, a popular tech-
nique from linear PDEs, firstly used in the context of a-posteriori error estimation
by K. Eriksson et al. [12]. Next, we summarize the keys of duality for the classical
formulation of the linear parabolic problem. We consider the equation,

ut − �u = f.

Being U a numerical approximation of the solution, we define the residual R,

R := −Ut + �U + f.

We denote e := u − U the error function, then we can write,

et − �e = R,

and, formally multiplying by ϕ and integrating by parts over (0, T ) we get,

(e(T ), ϕ(T )) = (e(0), ϕ(0)) +
T
∫

0

(e, ϕT + �ϕ) +
T
∫

0

(R, ϕ). (1)

Therefore, an error estimate follows by selecting in (1) ϕ as the solution of the
backward dual problem,

ϕt + �ϕ = 0 in (0, T ), ϕ(T ) = ̺,

and using the stability properties of ϕ in terms of ̺, for evaluating ϕ(0) and R.
The use of duality is a really useful technique for establishing error controls for

linear PDEs (see [12,13,15]). However it has serious constraints when there is a
strong non-linear term in the equation, because in general it is hard to obtain strong
stability properties for the corresponding dual problem. Anyway this technique can
be used in special circumstances [9,21] or if the non-linearity is moderate [14].

In this paper we deal with the linear problem, but the new feature here is the
development of estimations for the mixed formulation. That is, we control the
error for the scalar variable and also for its gradient. As in [21], we obtain from
the residual equations the error representation formulas for u − U and p − P. The
evaluation of the residual in the corresponding norms and the stability properties
of the associated dual problem allow us to conclude the estimations. The scalar
error bound is an extension to the mixed formulation of the results developed in
[12]. For the error estimation of p − P, we use the Helmholtz decomposition in
L2(�; R), as in [1] and [8] for the stationary case.

The estimator obtained is used to design a time-space adaptive algorithm. Sev-
eral examples show that the proposed method is efficient and reliable. The numeri-
cal experiments have been designed with the finite element toolbox ALBERTA [23],
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extended with new designed tools for the lowest order Raviart-Thomas finite ele-
ment and the a-posteriori error estimator developed in this paper.

This paper is organized as follows. In §2, we describe the mixed formulation for
the linear parabolic problem. We introduce the dual problems we will use for the
error estimation in §3. In §4, we obtain the error representation formulas. In §5, we
introduce the fully discrete problem, which combines finite elements in space, Rav-
iart-Thomas element of the lowest order, with the discontinuous Galerkin method
with variable time step. In §6 we present the a-posteriori errors estimator sum-
marized in Theorem 1 and Theorem 2, as well as the details of the proofs. The
Adaptive Algorithm is described in §7. Finally, we conclude with some numerical
experiments in §8.

2 Continuous problem

Let � ⊂ R
2 be a bounded convex polyhedral domain, let T > 0 be the end time,

and set QT := � × (0, T ) and ŴT := ∂� × (0, T ). Given sufficiently regular
initial condition u0 and source term f (x, t), let (u, p) be the solution of problem

ut + div p = f in QT , (2)

p + ∇u = 0 in QT , (3)

∇u · n = 0 on ŴT , (4)

u(., 0) = u0 in �, (5)

where n is the unit exterior normal vector to ∂�.
In the following, (·, ·) denotes the corresponding inner product in L2(�) or

L2(�; R
2) and 〈·, ·〉 denotes the duality pairing between the corresponding spaces.

We consider H1(�), the standard Sobolev space of L2(�) functions with weak
derivatives in L2(�). We also introduce the appropriate spaces for our problem,

H(div , �) :=
{

q ∈ L2
(

�; R
2
)

: div q ∈ L2(�)
}

,

H0(div , �) := {q ∈ H(div , �) : q · n = 0 on ∂�} .

We denote by H−1(div , �) the dual space of H0(div , �). Now, we introduce the
following operators,

curl v =
[

−∂x2v
∂x1v

]

and rot q = ∂x2 q1 − ∂x1q2.

For writing the corresponding variational mixed-formulation of the linear par-
abolic problem, we use the bilinear operator B(·, ·; ·, ·) and the linear application
L(·, ·) defined as,

B(u, p; v, q) := (u(·, 0), v(·, 0))

+
T
∫

0

[

(ut , v) + (div p, v) + (div q, u) − (p, q)
]

dt,

L(v, q) := (u0, v(·, 0)) +
T
∫

0

( f, v) dt
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Multiplying equations (2) and (5) by v, equation (3) by q, adding them, using
Green’s formula and integrating over (0, T ), we obtain the following variational
problem,

Continuous problem. Find u and p such that

u ∈ M := H1(0, T ; L2(�)), p ∈ X = L2(0, T ; H0(div , �)), (6)

B(u, p; v, q) = L(v, q) ∀(v, q) ∈ M × X . (7)

Existence and uniqueness for this problem are known [20].

If (U, P) is an approximation of (u, p), that is, (U, P) belongs to the discrete
spaces M ⊂ M, X ⊂ X and verifies the equation,

B(U, P; V, Q) = L(V, Q) ∀(V, Q) ∈ M × X, (8)

then, the residual of the parabolic equation, R(·, ·) is defined in the following way,

R(v, q) = L(v, q) − B(U, P ; v, q) = (u0 − U (·, 0), v(·, 0))

+
T
∫

0

( f − Ut − div P , v) dt

+
T
∫

0

(P , q) − (U, div q) dt. (9)

Notice that each line corresponds to the residual of each equation of the original
problem (2)–(5).

Remark 1 In the previous formula, when the discrete solution U is not smooth, the
time derivative is understood in the weak sense,

T
∫

0

(Ut , v) dt ≡ (U (·, T ), v(·, T )) − (U (·, 0), v(·, 0)) −
T
∫

0

(U, vt ) dt. (10)

Remark 2 A non-homogeneous Neumann boundary condition in (4) would imply
the use of either a non-conforming Galerkin scheme (see [6]) or a Lagrange mul-
tiplier approach (see [3]) .

3 Dual problems

In this section we motivate the duality and we use it to obtain the error represen-
tation formulas. We denote the errors by eu := u − U and eP := p − P. From
equations (7) and (8) we have,

B(eu, eP; v, q) = R(v, q). (11)
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In the latter equation (eu, eP) can be understood as a test function of a problem
with solution (v, q). This discussion motivates the following dual problem,

Find (v, q) ∈ M × X such that,

B(w, s; v, q) = L∗(w, s) ∀(w, s) ∈ M0 × X , (12)

where the space M0 is defined as,

M0 := {w ∈ M : w(·, 0) = 0} .

The appropriate choice of the linear operator L∗(·, ·) allows us to obtain the error
estimate. Throughout this paper, we will use two auxiliary problems, in order to
obtain the estimations, with two different linear operators,

Lu(w, s) = (ψ, w(·, T )) representation of ‖eu‖L2(0,T ;L2(�)),

Lp(w, s) =
T
∫

0

(∇φ, s) dt representation of ‖eP‖L2(0,T ;H−1(div,�)).

In the next section we select the appropriate functions ψ and ∇φ. For sufficient
regularity assumptions, problem (12) with right terms Lu(·, ·) and Lp(·, ·), respec-
tively, can be written as,

– Problem Du

−vt + div q = 0 in QT ,

q + ∇v = 0 in QT ,

∇v · n = 0 on ŴT ,

v(., T ) = ψ in �.

– Problem Dp

−vt + div q = 0 in QT ,

q + ∇v = ∇φ in QT ,

∇v · n = 0 on ŴT ,

v(., T ) = 0 in �.

The stability properties of the previous problems are the key for establishing
the error estimation. This question has been already studied in [12].

Lemma 1 (Du Stability.) Let v be the solution of Du , then for all t ∈ [0, T ),

‖v(t)‖L2(�) ≤ ‖ψ‖L2(�), (13)

T
∫

t

(T − s)‖�v(s)‖2
L2(�)

ds ≤
1

4
‖ψ‖2

L2(�)
, (14)

T
∫

t

(T − s)‖vt (s)‖2
L2(�)

ds ≤
1

4
‖ψ‖2

L2(�)
. (15)
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Lemma 2 (Dp Stability.) Let v be the solution of Dp, with ∇φ · n = 0 and

sufficiently smooth data, then for all t ∈ [0, T ),

‖v(t)‖L2(�) ≤ ‖∇φ‖L2(0,T ;L2(�)), (16)

‖∇v‖L2(0,T ;L2(�)) ≤ ‖∇φ‖L2(0,T ;L2(�)), (17)

‖vt‖L2(0,T ;L2(�)) ≤ ‖�φ‖L2(0,T ;L2(�)), (18)

‖�v‖L2(0,T ;L2(�)) ≤ ‖�φ‖L2(0,T ;L2(�)). (19)

4 Error representation formulas

The purpose of this section is to obtain formulas for the errors (eu, eP).
To obtain the error formula for the scalar variable, let (v, q) be the solution of

problem Du , so that,

B(eu, eP; v, q) = (ψ, eu(·, T )),

then from (11) we obtain,

‖eu(·, T )‖L2(�) = sup
ψ∈L2(�)

(eu(·, T ), ψ)

‖ψ‖L2(�)

= sup
ψ∈L2(�)

|R(v, q)|
‖ψ‖L2(�)

. (20)

To obtain the error formula for eP, it should be noticed that any function
κ ∈ L2(�; R

2) (particularly in H0(div , �)) can be decomposed into,

κ = curl µ + ∇φ, (21)

where µ ∈ H1
0 (�) and φ ∈ H1(�)/R (see, for instance, [19]). Then, taking this

into account, if (v, q) is a solution of Dp, we have,

B(eu, eP; v, q) =
T
∫

0

(eP, ∇φ)dt.

Using decomposition (21) we have,

‖eP‖L2(0,T ;H−1(div,�)) = sup
κ∈L2(0,T ;H0(div ,�))

〈eP, κ〉
‖κ‖L2(0,T ;H(div,�))

≤ sup
κ∈L2(0,T ;H0(div ,�))

∫ T

0 (eP, curl µ)dt

‖κ‖L2(0,T ;H(div,�))

+ sup
κ∈L2(0,T ;H0(div ,�))

∫ T

0 (eP,∇φ)dt

‖κ‖L2(0,T ;H(div,�))

.

Finally, from (11) we obtain the following error formula,

‖eP‖L2(0,T ;H−1(div,�)) ≤ sup
κ∈L2(0,T ;H0(div ,�))

∫ T

0 (eP, curl µ)dt

‖κ‖L2(0,T ;H(div,�))

+ sup
κ∈L2(0,T ;H0(div ,�))

|R(v, q)|
‖κ‖L2(0,T ;H(div,�))

. (22)
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5 Discretization

We now introduce some useful notations and the fully discrete problem, which
combines finite elements in space with the Galerkin discontinuous method in time.

We denote by kn the time step at the n-th step and set tn =
∑n

i=1 ki . Let N

be the total number of time steps, that is, tN = T . We associate to each time step
(tn−1, tn] the following three elements (Tn, Mn, Xn), where

– Tn = {Sn} is a regular partition of � in triangles (see [11]) . Given a triangle
S ∈ Tn, hS stands for its diameter and hn is the piecewise constant function
over Tn which is hS in S ∈ Tn . We also denote by Bn the collection of interior
interelement boundaries e of Tn; he stands for the size of e. Mesh Tn is obtained
from Tn−1 by refining/coarsening.

– Mn ⊂ L2(�) is the usual space of piecewise constant finite element over Tn .
– Xn ⊂ H0(div , �) is the lowest order Raviart-Thomas finite element (see [22])

with normal trace zero on the boundary.

Let Pn
� : L2(�) → Mn be the usual L2(�)-projection operator over Mn . The

discrete initial condition U 0 ∈ M0 is defined as,

U 0 := P
0
� u0. (23)

Let Jt be the tangential jump of P ∈ X along e,

Jt := [[P]]e · t,

where t is the unit tangent vector to the edge e.

In the following, every function with superscript n stands for its value at time
tn , i.e. gn := g( . , tn).

Discrete problem. Given U n−1 ∈ Mn−1, then kn−1 and Tn−1 are modified as
described in section § 7 to get kn and Tn and thereafter U n ∈ Mn, Pn ∈ Xn

computed according to,

1

kn

(

U n −P
n
� U n−1, V

)

+
(

div Pn, V
)

=
1

kn

tn
∫

tn−1

( f, V )dt ∀V ∈ Mn, (24)

(

Pn, Q
)

−
(

div Q, U n
)

= 0 ∀Q ∈ Xn . (25)

Remark 3 We can modify the previous scheme in order to avoid the coupled vari-
ables. The equivalent problem solved on each time step is,

(

Pn, Q
)

+kn

(

div Pn, div Q
)

=
tn
∫

tn−1

( f, div Q) dt+
(

P
n
� U n−1, div Q

)

∀Q ∈ Xn,

(

U n, V
)

=
tn
∫

tn−1

( f, V )dt − kn

(

div Pn, V
)

+
(

P
n
� U n−1, V

)

∀V ∈ Mn .
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Notice the similarity of this scheme with an Augmented Lagrangian formulation
(see [17]). Then the discrete problem (24)–(25) is well posedness because the matrix
associated to its equivalent decoupled formulation is symmetric and positive defi-
nite for each time step.

Remark 4 The decoupling of (24)–(25) is possible thanks to the fact that the oper-
ator div is suprayective between the discrete spaces Mn and Xn ,

div Xn ⊆ Mn (26)

for the present choice of the Raviart Thomas space of order zero. In fact, this de-
ocupling is also possible for higher order elements if the pair of spaces (Mn, Xn)
verify condition (26). In particular, all Raviart Thomas spaces verify this condition.

6 A-posteriori estimator

In this section we present a-posteriori error estimates of

‖eu‖L∞(0,T ;L2(�)), ‖eP‖L2(0,T ;H−1(div,�)),

for the schemes developed bellow, summarized in Theorem 1 and Theorem 2.

Theorem 1 Let (u, p) be the solution of (6–7) and (U, P) the solution of (24–25),

if � is convex, for N ≥ 1,

∥

∥

∥
eN

u

∥

∥

∥

L2(�)
≤
∥

∥e0
u

∥

∥

L2(�)
+

5
∑

i=1

Ci max
1≤n≤N

Ei , (27)

with,

E1 :=
∥

∥U n − P
n
� U n−1

∥

∥

L2(�)
, (28)

E2 := max
{

∥

∥U n−1 − P
n
� U n−1)

∥

∥

L2(�)
, (29)

k−1
n

∥

∥hn(U
n−1 − P

n
� U n−1)

∥

∥

L2(�)

}

, (30)

E3 := ‖hnP‖L2(�), (31)

E4 := max
t∈(tn−1,tn]

‖hn( f − div P)‖L2(�), (32)

E5 :=
tn
∫

tn−1

‖ f − div P‖L2(�)dt. (33)

Remark 5 The constants of the previous estimation depend on the minimum mesh
angle, on the interpolation constants and on the following logarithm factor,

max
1≤n≤N

[

log

(

tn

kn

)]1/2

.
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Theorem 2 Let (u, p) be the solution of (6–7) and (U, P) the solution of (24–25),

if � is convex, for N ≥ 1, we have,

‖eP‖L2(0,T ;H−1(div,�)) ≤
∥

∥e0
u

∥

∥

L2(�)
+

11
∑

i=6

CiEi . (34)

where,

E6 :=





N
∑

n=1

kn

∑

e∈Bn

he‖Jt‖2
L2(e)





1/2

, (35)

E7 :=

(

N
∑

n=1

kn

∥

∥U n − P
n
� U n−1

∥

∥

2

L2(�)

)1/2

, (36)

E8 := max







(

N
∑

n=1

kn

∥

∥U n−1 − P
n
� U n−1

∥

∥

2

L2(�)

)1/2

, (37)

(

N
∑

n=1

k−1
n

∥

∥hn(U
n−1 − P

n
� U n−1)

∥

∥

2

L2(�)

)1/2






, (38)

E9 :=





N
∑

n=1

tn
∫

tn−1

‖hn( f − div P)‖2
L2(�)

dt





1/2

, (39)

E10 :=







N
∑

n=1





tn
∫

tn−1

k
1/2
n ‖ f − div P‖L2(�)dt





2






1/2

, (40)

E11 :=

(

N
∑

n=1

kn‖hnP‖2
L2(�)

)1/2

. (41)

The proofs of Theorem 1 and Theorem 2 are obtained from the error represen-
tation formulas (20) and (22), respectively, by the evaluation of the residual in the
corresponding norms and by the stability properties of the associated dual problem.
Before proving these results, we introduce the interpolation operators we will use,
and find a simpler expression for the residual.

6.1 Interpolation operators

Let Pn
� (resp. Pn

t ) denote the L2-projection over the piecewise constant functions
over the mesh Tn (resp. constant functions on t in the interval (tn−1, tn]). We avoid
the superscript n when it is redundant. It is well known, that if v is smooth we have,



376 J. M. Cascón et al.

∥

∥v − P
n
� v
∥

∥

L2(�)
≤ c‖hn∇v‖L2(�), (42)

max
ξ∈(tn−1,tn ]

|v(ξ) − P
n
t v| ≤

tn
∫

tn−1

|vt |dξ . (43)

For vectorial functions, we define �
n
t in the same way as for scalar functions,

i.e. the L2-projection over constant functions in the interval (tn−1, tn]. For the pro-
jection over H0(div , �) we use the Raviart-Thomas interpolation operator �

n
�,

(see [7]),

�
n
� : H(div , �) ∩ Ls

(

�; R
2
)

−→ Xn, for s > 2,

which verifies,

〈(q − ��q) · n, 1〉e = 0, ∀e ∈ Bn, (44)

where n is the normal vector to the edge e, moreover, if q ∈ H1(�; R
2),

‖q − ��q‖L2(S) ≤ chS‖∇q‖L2(S). (45)

We also use the Clément interpolation operator, then let S1
0(Tn) be the space of

piecewise linear functions over Tn that cancels out on the boundary. Let Cnµ denote
the Clément interpolation of function µ over S1

0(Tn). Then we have the following
error estimations ([10]),

‖µ − Cnµ‖L2(T ) ≤ chS‖∇µ‖L2(�T ), (46)

‖µ − Cnµ‖L2(e) ≤ ch
1/2
e ‖∇µ‖L2(�e)

, (47)

where�T = {T ∗ ∈ Tn : T and T ∗have a common vertex} and�e = {T ∗ ∈ Tn : T ∗

and e have a common vertex}. It is easy to prove that rot Cnµ ∈ Xn .

6.2 Residual

We first express the residual (9) in a more appropriate way. From (10) taking into
account that U is piecewise constant, integrating and adding by parts, we have,

T =tN
∫

0

(Ut , v)dt ≡
(

U N , vN
)

−
(

U 0, v0
)

−
T
∫

0

(U, vt )dt

=
(

U N , vN
)

−
(

U 0, v0
)

−
N
∑

n=1

(

U n, vn − vn−1
)

=
N
∑

n=1

(

U n − U n−1, vn−1
)

.
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Substituting the former expression into (9), the residual R(v, q) becomes,

R(v, q) =
(

e0
u, v0

)

−
N
∑

n=1

(

U n − U n−1, vn−1
)

+
N
∑

n=1

tn
∫

tn−1

( f − div P , v)dt

+
N
∑

n=1

tn
∫

tn−1

[

(P , q) − (div q, U )
]

dt.

Finally, adding to this expression equations (24)–(25) we obtain,

R(v, q) =
(

e0
u, v0

)

+
N
∑

n=1

(

U n − P
n
� U n−1, V − vn−1

)

+
N
∑

n=1

(

U n−1 − P
n
� U n−1, vn−1

)

+
N
∑

n=1

tn
∫

tn−1

( f − div P, v − V ) dt

+
N
∑

n=1

tn
∫

tn−1

[

(P, q − Q) − (div (q − Q), U )
]

dt

= I + II + III + IV + V. (48)

Now, we have the tools to prove Theorem 1 and Theorem 2.

6.3 Proof of Theorem 1

We will estimate each term of (48), and to conclude we will use these estimations
in the error representation formula (20). In this proof we discuss in a different way
the last temporal interval, in order to be able to apply Lemma 1.

Let (v, q) be the solution of the dual problem Du and select the following
discrete functions, V := Pn

t Pn
� v ∈ Mn and Q := Pn

t 
n
�q ∈ Xn . Using the

Cauchy-Schwartz inequality in the first term of (48), we have,

|I| ≤
∥

∥e0
u

∥

∥

L2(�)

∥

∥v0
∥

∥

L2(�)
. (49)

For the second term, notice that from the properties of the L2-projection Pn
� ,

(U n −Pn
� U n−1, vn−1 −Pn

� vn−1) = 0, therefore using Cauchy-Schwartz inequal-
ity and (43), we obtain,
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|II| =











N
∑

n=1

(

U n − P
n
� U n−1, V − P

n
� vn−1

)











≤
N−1
∑

n=1

∥

∥U n − P
n
� U n−1

∥

∥

L2(�)

tn
∫

tn−1

‖vt‖L2(�)dt

+2

∥

∥

∥
U N − P

N
� U N−1

∥

∥

∥

L2(�)
max

t∈(tN−1,tN ]
‖v‖L2(�)

≤ max
1≤n≤N

(

∥

∥U n − P
n
� U n−1

∥

∥

L2(�)

)





tN−1
∫

0

‖vt‖L2(�)dt + 2 max
t∈(tN−1,tN ]

‖v‖L2(�)



 . (50)

The third term of (48), as (Pn
� U n−1 − U n−1, V ) = 0, we can write,

|III| ≤











N−1
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − vn−1

)











+











N−1
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − V

)











+






(

P
N
� U N−1 − U N−1, vN−1

)




,

The first and the third terms of this sum can be estimated in the same way as in the
previous case. For the second term, since functions in Mn are constant, using (42)
we obtain,











N−1
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − V

)











≤















N−1
∑

n=1

k−1
n






P

n
� U n−1 − U n−1,

tn
∫

tn−1

[

v − P
n
� v
]

dt





















≤ c

N−1
∑

n=1

k−1
n

∥

∥hn

(

P
n
� U n−1 − U n−1

)∥

∥

L2(�)

tn
∫

tn−1

‖∇v‖L2(�)dt.

Then, the third term of (48) is bounded by,

|III|≤ max
1≤n≤N

(

∥

∥U n−1−P
n
� U n−1

∥

∥

L2(�)

)





tN−1
∫

0

‖vt‖L2(�)dt+2 max
t∈(tN−1,tN ]

‖v‖L2(�)





+ c max
1≤n≤N−1

(

k−1
n

∥

∥hn(U
n−1−P

n
� U n−1)

∥

∥

L2(�)

)





tN−1
∫

0

‖q‖L2(�)dt



. (51)



Space-time adaptive algorithm for the mixed parabolic problem 379

A similar computation based on properties (42) and (43), allows us to estimate the
fourth term of the residual (48), in the following way,

|IV| ≤













N
∑

n=1

tn
∫

tn−1

(

f − div P , v − P
n
� v
)

dt













+













N
∑

n=1

tn
∫

tn−1

(

f − div P , P
n
� v − V

)

dt













≤





N−1
∑

n=1

tn
∫

tn−1

‖hn( f − div P )‖L2(�)‖∇v‖L2(�)dt





+





tN
∫

tN−1

‖ f − div P ‖L2(�)‖v‖L2(�)dt





+





N
∑

n=1

max
t∈(tn−1,tn]

∥

∥P
n
� v − V

∥

∥

L2(�)

tn
∫

tn−1

‖ f − div P ‖L2(�)dt





≤ max
1≤n≤N−1

(

max
t∈(tn−1,tn]

‖hn( f − div P )‖L2(�)

)

tN−1
∫

0

‖q‖L2(�)dt

+ max
1≤n≤N−1





tn
∫

tn−1

‖ f − div P ‖L2(�)dt







2 max
t∈(tN−1,tN ]

‖v‖L2(�) +
tN−1
∫

0

‖vt‖L2(�)dt



 . (52)

Finally, for the fifth term of (48), using (44) we have,

|V| ≤













N
∑

n=1

tn
∫

tn−1

[(

P , q − 
n
�q
)

−
(

div
(

q − 
n
�q
)

, U
)]

dt













+













N
∑

n=1

tn
∫

tn−1

[(

P , 
n
�q − Q

)

−
(

div
(


n
�q − Q

)

, U
)]

dt













≤ max
1≤n≤N

‖hnP‖L2(�)







N
∑

n=1

∥

∥

∥

∥

∥

∥

tn
∫

tn−1

∇q dt

∥

∥

∥

∥

∥

∥

L2(�)






. (53)

Notice that due to the interpolation operator properties, all terms except the first
one are null.
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To conclude, we proceed as in [12]. Let (v, q) be the solution of problem Du ,
then,

tn
∫

tn−1

div q dt =
tn
∫

tn−1

vt dt = vn − vn−1. (54)

Using the convexity of �, we deduce that v ∈ H2(�) and

‖∇q‖L2(�) = |v|H2(�) ≤ ‖�v‖L2(�) = ‖div q‖L2(�). (55)

Now, from the inf-sup condition we obtain,

‖q‖L2(�) ≤ C‖div q‖L2(�). (56)

On the other side, using the Cauchy-Schwartz inequality, we have,

tN−1
∫

0

‖z‖L2(�)dt ≤





tN−1
∫

0

(tN − t)−1dt





1/2



tN−1
∫

0

(tN − t)‖z‖2
L2(�)

dt





1/2

≤
(

log
tN

kN

)1/2




tN−1
∫

0

(tN − t)‖z‖2
L2(�)

dt





1/2

, (57)

with z = vt or z = div q.

Finally, Theorem 1 is an easy consequence of (20) combined with (50)–(51)–
(52)–(53), together with (54)–(55)–(56)–(57) and stability properties (13)–(14)–
(15) for problem Du .

6.4 Proof of Theorem 2

We proceed in the same way as in the previous theorem, we estimate each term of
the error representation formula (22).

Notice that from (7) and (25) we have (eP, curl Cnµ) = 0. Then in the first
term of (22) using this Galerkin orthogonality and integrating by parts, we obtain,

tN
∫

0

(eP, curl µ)dt =
tN
∫

0

(eP, curl (µ − Cµ))dt

=
tN
∫

0





∑

S∈Tn

( rot P, µ − Cµ)S +
1

2

∑

e∈∂T

〈Jt , µ − Cµ〉e







dt.

(58)
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From property (47), taking into account that rot P ≡ 0 and that P and Jt are
constant on t in each time step, we have,













T
∫

0

(eP, curl µ)dt













≤ C

tN
∫

0





∑

e∈Bn

he‖Jt‖0,e





1/2

‖∇µ‖L2(�) dt

≤ C





N
∑

n=1

kn

∑

e∈Bn

he‖Jt‖0,e





1/2

‖curl µ‖L2(0,T ;L2(�)).

(59)

We now estimate all terms of R(v, q), see equation (48). As in the former the-
orem, we consider (v, q) the solution of problem Dp and the discrete functions,
V := πtπ�v ∈ M and Q := �t��q ∈ X. The first term of (48) is bounded in the
same way. For the second term of (48), using Cauchy-Schwartz, we obtain,

|II| =











N
∑

n=1

(

U n − P
n
� U n−1, V − P

n
� vn−1

)











≤
N
∑

n=1





∥

∥U n − P
n
� U n−1

∥

∥

L2(�)

tn
∫

tn−1

‖vt‖L2(�)dt





≤

(

N
∑

n=1

kn

∥

∥U n − P
n
� U n−1

∥

∥

2

L2(�)

)1/2




tN
∫

0

‖vt‖2
L2(�)

dt





1/2

. (60)

Similarly, for the third term of (48),

|III| ≤











N
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − vn−1

)











+











N
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − V

)











.

The first term of this expression is bounded by,











N
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − vn−1

)











≤

(

N
∑

n=1

kn

∥

∥P
n
� U n−1−U n−1

∥

∥

2

L2(�)

)1/2




tN
∫

0

‖vt‖2
L2(�)

dt





1/2

. (61)
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and the second, using property (42), is bounded by,










N
∑

n=1

(

P
n
� U n−1 − U n−1, P

n
t v − V

)











≤

(

N
∑

n=1

k−1
n

∥

∥hn(P
n
� U n−1 − U n−1)

∥

∥

2

L2(�)

)1/2




tN
∫

0

‖∇v‖2
L2(�)

dt





1/2

.

(62)

The fourth term of (48) can be separated into two parts,

|IV| ≤













N
∑

n=1

tn
∫

tn−1

(

f − div P , v − P
n
� v
)













+













N
∑

n=1

tn
∫

tn−1

(

f − div P , P
n
� v − V

)













.

Notice that using property (42), the first adding term of the last expression can be
bounded as follows,













N
∑

n=1

tn
∫

tn−1

( f − div P , v − P
n
� v) dt













≤





N
∑

n=1

tn
∫

tn−1

‖hn( f − div P )‖2
L2(�)

dt





1/2

‖∇v‖L2(0,T ;L2(�)). (63)

and using (43), the second adding term can be bounded as follow,












N
∑

n=1

tn
∫

tn−1

(

f − div P , P
n
� v − V

)

dt













≤
N
∑

n=1



 max
t∈(tn−1,tn]

∥

∥v − P
n
t v
∥

∥

L2(�)

tn
∫

tn−1

‖ f − div P ‖L2(�)dt





≤







N
∑

n=1





tn
∫

tn−1

k
1/2
n ‖ f −div P ‖L2(�)dt





2






1/2

‖vt‖L2(0,T ;L2(�)). (64)

Finally, we proceed with the last term of (48) as in (53),

|IV| ≤













N
∑

n=1

tn
∫

tn−1

(P, q − ��q)dt













≤





N
∑

n=1

tn
∫

tn−1

‖hnP‖2
L2(�)





1/2



TN
∫

0

‖∇q‖2
L2(�)





1/2

. (65)
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Notice that for this last inequality we have used that q ∈ H1(�; R
2). In fact, if

(v, q) is the solution of problem Dp, with φ verifying (21), we have q = ∇(v−φ).
Moreover, φ is the solution of,

�φ = div κ in �,

∇φ · n = 0 on Ŵ.

Then, as κ ∈ H0(div , �) and � is convex, from the regularity theory (see [19]) it
follows that q ∈ H1(�; R

2).
Then from (22), using (59)–(60)–(61)–(62)–(63)–(64)–(65) and the stability

properties (16)–(17)–(18)–(19) of problem Dp, we conclude,

‖eP‖L2(0,T ;H−1(div,�)) = sup
κ∈L2(0,T ;H0(div ,�))

〈eP, κ〉
‖κ‖L2(0,T ;H(div,�))

(66)

≤
∥

∥e0
u

∥

∥

L2(�)
+

11
∑

i=6

CiEi , (67)

where the constants Ci depend on the minimum mesh angle and the interpolation
constants.

7 Adaptive algorithm

In this section we propose two adaptive strategies based on the former estimates.
The goal is to determine the time steps and the meshes in order to obtain a uniform
error distribution. As usual, in parabolic problems we distinguish four kinds of
terms in the a-posteriori estimate (see [21]): initial error, space discretization error,
coarsening error and time discretization error,

En ≤ E0 + Eh,n + Ec,n + Ek,n .

We also select the parameters Ŵ0, Ŵh and Ŵk , verifying,

Ŵ0 + Ŵh + Ŵk ≤ 1,

in a way that given a total error tolerance tol, the adaptive algorithm tries to select
time steps and meshes verifying for all n,

En ∼ tol, E0 ∼ Ŵ0 tol, Eh,n + Ec,n ∼ Ŵh tol, Ek,n ∼ Ŵk tol.

The adjustment of the time step size has been done iteratively: the algorithm be-
gins with an initial time step k0; given θ1 ∈ (0, 1) and θ2 ∈ (0, θ1), if
Ek,n > θ1Ŵk tol, then the time step diminishes by a factor δ1 ∈ (0, 1); on the
contrary, if Ek < θ2Ŵk tol, the time step increases by a factor δ2 > 1.

For the space refinement we use an error equidistribution strategy (see [12]).
Given θ ∼ 1 and θc < 1 and using the following error indicators,

Eh,n =





∑

S∈Tn

E
2
h,n(S)





1/2

, Ec,n =





∑

S∈Tn

E
2
c,n(S)





1/2

,



384 J. M. Cascón et al.

in each time step we refine the elements verifying,

Eh,n(S) > θ
Ŵh tol

N
1/2
n

,

and we mark to coarse the elements verifying,

Eh,n(S) + Ec,n(S) ≤ θc

Ŵh tol

N
1/2
n

,

where Nn denotes the degrees of freedom of the n-th mesh.
We use the implicit adaptive strategy of type A described in [4], that means,

for each time step we start from the previous step mesh and repeat the process,

SOLVE → ESTIMATE → REFINE/COARSEN,

until the estimated error is below the tolerance.
In the following table we summarized the Adaptive Algorithm, [23],

Space and Time Adaptive Algorithm

Given parameters tol, δ1 ∈ (0, 1), δ2 > 1, θ1 ∈ (0, 1), and

θ2 ∈ (0, θ1), the discrete solution Un on the triangulation

Tn, the time tn and the time step size kn.

Tn+1 := Tn.

kn+1 := kn.

tn+1 := tn + kn+1.

Solve the Discrete Problem for (Un+1, Pn+1) on the mesh

Tn+1.

Compute the error estimators.

While Ek,n+1 > θ1Ŵk tol.

kn+1 := δ1kn.

tn+1 := tn + kn+1.

Solve the Discrete Problem for (Un+1, Pn+1) on Tn+1.

Compute the error estimators.

End while.

Do

Mark elements for refinement or coarsening using Eh,n

and Ec,n.

If elements are marked then

Adapt mesh Tn+1.

Solve the Discrete Problem for (Un+1Pn+1) on Tn+1.

Compute the error estimators.

End if.

While Ek,n+1 > θ1Ŵk tol

kn+1 := δ1kn.

tn+1 := tn + kn+1.

Solve the Discrete Problem for (Un+1, Pn+1) on Tn+1.

Compute the error estimators.

End while

While Eh,n+1 + Ec,n+1 > tol

If Ek,n+1 ≤ θ2Ŵk tol

kn+1 := δ2kn.

End if.
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8 Numerical examples

For the numerical examples we have selected the usual values for the parameters
described before (see [23]),

Ŵ0 = 0.1, Ŵh = 0.4, Ŵk = 0.4,

θ1 = 1.0, θ2 = 0.3, δ1 =
√

2, δ2 = 1/
√

2,

θ = 0.9 θc = 0.1.

We consider,

u(x, y, t) = sin

(

π t

2

)

exp

{

−20‖
(

x−
1

2
, y−

1

2

)

−
3

4

(

cos

(

π t

2

)

, sin

(

π t

2

))

‖2

}

(68)

solution of the parabolic problem (6)–(7), with � = [0, 3]2 and t ∈ [0, 4].
We solve the previous problem using every one of the estimators. To evaluate

the quality of the error estimators we will compute two indicators,

– Effectiveness index, which gives the main ratio between the discretization error
and the error estimated, i.e. we define,

Cu := eu/Eu, Cp := eP/Ep,

where the bar denotes the average value with respect to time. For a good estima-
tor this quantity must be a constant independent of the mesh and the time step
used. Although our theory does not include a proof of efficiency, the numeri-
cal examples show a good behaviour and provide numerical evidences of the
efficiency of the estimators.

– Correlation coefficient index between the discretization error and the estimate,
i.e.

ρu :=
cov(Eu, eu)

σEu σeu

, ρp :=
cov(Ep, eP)

σEpσeP

,

where cov(·, ·) denotes the covariance and σ∗ denotes the standard deviation.
For a good error estimator, the correlation coefficient index must be close to
the ideal value 1.

8.1 Estimate eu .

From Theorem 1 we define,

E
u
h,n(S)2 := C2

3‖hSP‖2
L2(S)

+ C2
4 max

t∈[tn−1,tn)
‖hS( f − div P)‖2

L2(S)
,

E
u
c,n(S)2 := max

{

‖U n−1−P
n
� U n−1‖2

L2(S)
, k−1

n ‖hn

(

U n−1−P
n
� U n−1

)

‖2
L2(S)

}

.
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So we obtain the following expressions for the error indicators,

E
u
h,n :=





∑

S∈Tn

Eh,n(S)2





1/2

, E
u
c,n :=





∑

S∈Tn

Ec,n(S)2





1/2

,

E
u
k,n := C1E1 + C5E5.

We solve the test problem using the previous indicators for several tolerances:
tol = 1.0, 0.5 and 0.25. In Table 1 we summarize the indicators of the estima-
tor eu . Notice that the effectiveness index is almost constant, independent of the
prescribed tolerance, and the correlation coefficient is close to one in all cases. In
Figure 1 we plot the estimate and the error progress in time, where we can appre-
ciate the good correlation between both variables: error and estimator. The error
discretization is computed in the L2-norm in space for each time step. In Figure 2
we plot the progress of the degrees of freedom in time for the meshes used.

We also show several meshes and solutions at time t = 0.90, 2.10 and 3.50 in
Figure 3. Notice that the Adaptive Algorithm localizes the region (depending on
time) where the solution is not null and decides to place more grid points in this
zone.

8.2 Estimate eP.

We can not directly use the results of Theorem 2 for the adaptive strategy because
the time stock. As in [21], we define new indicators Ei verifying,

Ei ≤ Ei , Ei := max
1≤n≤N

Ei,n, i = 6, . . . , 11.

Table 1 Estimate eu . Estimate-Error correlation for several tolerances

tol Cu ρu

1.0 0.040 0.94
0.5 0.042 0.95
0.25 0.045 0.90
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Fig. 1 Estimate eu . Estimate and error progress in time. The scale is different to each variable
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Fig. 2 Estimate eu . Degrees of freedom for the meshes used versus time

To be precise, we define,

E6,n :=





∑

S∈Tn

E2
6,n(S)





1/2

:=





∑

S∈Tn

∑

e∈Bn

T he‖Jt‖2
L2(e)





1/2

,

E7,n :=
(

T
∥

∥U n − P
n
� U n−1

∥

∥

2

L2(�)

)1/2
,

E8,n :=





∑

S∈Tn

E2
8,n(S)





1/2

:= max















∑

S∈Tn

T ‖U n−1 − P
n
� U n−1‖2

L2(S)





1/2





∑

S∈Tn

T k−2
n ‖hn(U

n−1 − P
n
� U n−1)‖2

L2(S)





1/2










,

E9,n :=





∑

S∈Tn

E2
9,n(S)





1/2

:=





∑

S∈Tn

T max
t∈[tn−1,tn)

‖ f − div P‖2
L2(S)





1/2

,

E10,n :=
(

T k2
n max

t∈[tn−1,tn)
‖ f − div P‖2

L2(�)

)1/2

,

E11,n :=





∑

S∈Tn

E2
11,n(S)





1/2

:=





∑

S∈Tn

T ‖hSP‖2
L2(S)





1/2

.

Then, the error indicators used in the adaptive strategy are given by,

E
p
h,n :=





∑

S∈Tn

C2
6 E2

6,n(S) + C2
9 E2

9,n(S) + C2
11 E2

11,n(S)





1/2

,
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Fig. 3 Estimate eu . Meshes and solutions at times t = 0.90, 2.10 and 3.50
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Fig. 5 Estimate eP. Degrees of freedom for the meshes used versus time

E
p
c,n :=





∑

S∈Tn

C2
8 E2

8,n(S)





1/2

,

E
p
k,n := C7 E7,n + C10 E10,n .

We repeat the same experiment with these error indicators, and we now study
the adaptivity for the variable p. In Table 2 we can also see the behavior of the
effectiveness index and the correlation coefficient. The discretization error is com-
puted in the L2-norm in space for each time step. Observe that this norm is stronger
than the norm used in Theorem 2. Maybe, this is the reason why the effectiveness
index seems to grow as the tolerance decreases.

Table 2 Estimate eP. Estimate-Error correlation for several tolerances

tol Cp ρp

1.0 0.18 0.96
0.5 0.14 0.92
0.25 0.24 0.92
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Fig. 6 Estimate eP. Meshes and norms of P at times t = 0.90, 2.10 and 3.50
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The estimate and the error progress in time are plotted in Figure 4. Figure 5
shows the progress in time of the degrees of freedom for the meshes used when
the adaptivity is done with the estimator eP.

Finally, the meshes and the norms of P are plotted at time t = 0.90, 2.10 and
3.50 in Figure 6.

9 Conclusions

The use of duality allows us to establish two a-posteriori error estimators for the
mixed formulation of linear parabolic problems. These estimations are the essential
component in the design of a reliable and efficient algorithm, as we can notice in the
numerical examples. In future researchs we will try to extend this study to non-lin-
ear problems combining the duality ([12,13,9,21]) with the advantages provided
by the mixed methods for dealing with this kind of problems ([2,5,16,18]).
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