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SPACE-TIME APPROXIMATION WITH SPARSE GRIDS

MICHAEL GRIEBEL†, DANIEL OELTZ†, PANAYOT VASSILEVSKI‡

Abstract. In this article we introduce approximation spaces for parabolic problems which are
based on the tensor product construction of a multiscale basis in space and a multiscale basis in time.
Proper truncation then leads to so-called space-time sparse grid spaces. For a uniform discretization
of the spatial space of dimension d with O(Nd) degrees of freedom, these spaces involve for d > 1
also only O(Nd) degrees of freedom for the discretization of the whole space-time problem. But
they provide the same approximation rate as classical space-time Finite Element spaces which need
O(Nd+1) degrees of freedoms. This makes these approximation spaces well suited for conventional
parabolic and for time-dependent optimization problems.

We analyze the approximation properties and the dimension of these sparse grid space-time spaces
for general stable multiscale bases. We then restrict ourselves to an interpolatory multiscale basis,
i.e. a hierarchical basis. Here, to be able to handle also complicated spatial domains Ω, we construct
the hierarchical basis from a given spatial Finite Element basis as follows: First we determine coarse
grid points recursively over the levels by the coarsening step of the algebraic multigrid method. Then,
we derive interpolatory prolongation operators between the respective coarse and fine grid points by
a least squares approach. This way we obtain an algebraic hierarchical basis for the spatial domain
which we then use in our space-time sparse grid approach.

We give numerical results on the convergence rate of the interpolation error of these spaces
for various space-time problems with two spatial dimensions. Also implementational issues, data
structures and questions of adaptivity are addressed to some extent.

Key words. parabolic differential equations, multilevel basis, sparse grids, space-time dis-
cretization

AMS subject classifications. 35K20, 65M99, 65Y20

1. Introduction. The modeling of various phenomena in physics, chemistry, bi-
ology and financial engineering leads to time dependent partial differential equations.
Mostly there is no analytical solution for these equations available and hence they have
to be solved approximately by an appropriate discretization scheme. If we employ,
depending on the smoothness of the solution, a discretization scheme on a uniform
grid in time and a uniform grid in d-dimensional space with an error of the order p
in time and order q in space we need O(N d) degrees of freedom for each time step
and O(Nd+q/p) degrees of freedom for the whole approximate solution in space-time
to obtain an overall order of q. In particular, for a method which is second order
in space and in time this would result in O(Nd+1) degrees of freedom. An approach
which is only first order in time, e.g. the Euler methods, but second order in space
needs O(Nd+2) degrees of freedom. The associated additional storage requirements
then prohibit to work for parabolic PDEs directly in space-time if d = 3 or larger,
but enforces a time-slice approach, where only a few spatial grids at successive time
points need to be stored.

In some applications it is necessary to solve a system of parabolic equations,
where some of the equations are forward and the other are backward in time. Such
systems typically arise in parabolic optimal control problems where the equations for
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the adjoint variables are backward in time but also involve the state variables for
which forward equations have to be solved, see e.g. [34]. Here, all values of the state
variable in space and time must be stored to be used for the solution of the adjoint.
This, however, is not computationally feasible for the case d ≥ 3 due to the complexity
of O(Nd+1) or O(Nd+2), even if N is moderately small.

One approach to overcome this storage problem is the so-called reduced order
method [35, 38]. Here, one tries to compute the most important spatial additional
storage of the instationary solution from snapshots of the solution at different times.
This results in (hopefully) only few spatial basis functions which approximate the
given solution with sufficient accuracy over time. To this end, the instationary prob-
lem has however to be approximately solved at the beginning to obtain the snapshots
at certain time instances at all. Also, for any update of the reduced order model dur-
ing an optimization it is necessary to compute an approximate solution to the actual
full instationary problem again. Due to the above mentioned complexity orders this
is still very expensive. Furthermore, the choice of the time points at which snapshots
are taken strongly influence the reduced order model. Up to now, the question how
to choose the amount and the locations of the time points for the snapshots is not
finally answered and these topics are still a subject of current research.

Another approach is the so-called checkpointing [33]. Here, the solution of the
state equation is stored at only some properly chosen time points, called checkpoints.
Now, if the value of the state equation at a certain time is needed, the forward state
equation is solved with start time of the nearest checkpoint and the state variable
at this point as initial value. Clearly, checkpointing leads to a further increase of
computational time on the already expensive solution of the instationary problem.

In the present article we introduce new space-time sparse grid spaces which allow
for complexity reduction of the space-time problem from O(N d+q/p) to O(Nd). If a
slightly more involved regularity assumption is fulfilled, namely if the mixed second
derivative in space and time is bounded, the approximation rate for the space-time
sparse grid space remains basically the same as for classical Finite Element spaces in
space and time. Thus, the additional complexity stemming from the time part of a
parabolic PDE is eliminated and we obtain the same complexity order as for a station-
ary problem. Consequently, the memory and storage requirements are substantially
reduced. These space-time sparse grid spaces are constructed from a d-dimensional
multilevel basis in space and a one-dimensional multilevel basis in time via a tensor
product approach. In this sense they are similar to classical sparse grid spaces, see
for example [13], which are constructed via a tensor product approach from a one-
dimensional multilevel basis for each coordinate direction. We, however only use a
d-dimensional isotropic multilevel basis in spatial space. For this purpose, any avail-
able stable multilevel basis in space can be employed. For the ease of presentation, we
restrict ourselves to an interpolatory multilevel basis, namely a hierarchical basis. To
construct the necessary spatial multilevel basis from a given general Finite Element
basis we proceed as follows: First we determine coarse grid points recursively over
the levels by the coarsening step of an algebraic multigrid method. Then, to assign
hierarchical basis functions to these points we use interpolatory prolongation opera-
tors between the respective coarse and fine grids which are derived by a least squares
approach. We need higher accuracy of the prolongation operators than in the classical
AMG methods in order to guarantee the desired approximation property of the hier-
archical basis. In particular, by the least–squares approach we employed the linear
functions are well represented on coarse levels. Note that the classical AMG methods
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have only “weak approximation property” guaranteed, namely only the constant func-
tion is well represented on coarse levels. Alternatives to the least squares approach
could be the smoothed aggregation AMG [49] or the multiple vector preserving AMG
interpolation proposed in [50]. These are not considered in the present paper but
worth pursuing in the future. The AMG approach in general, allows us to employ any
given Finite Element package on the finest level of the spatial discretization. Thus,
we are able to deal also with complicated spatial domains Ω where classical sparse
grid spaces run into difficulties.

In the context of instationary control problems, these spaces can be used for
an interpolant of the state variable which was solved with a classical discretization
scheme. Then this cheap space-time sparse grid interpolant is employed in the adjoint
equation. Alternatively, these spaces can be directly used for the discretization of
both, the state problem and the adjoint problem. Altogether, our approach overcomes
the storage complexity in time-dependent two- and three-dimensional optimization
problems and allows to deal with quite complicated spatial geometries.

The remainder of this article is organized as follows:
In section 2 we describe the general construction of the proposed space-time sparse

grid spaces from a multilevel basis in space and a multilevel basis in time. To this
end, we simply use a tensor product and properly truncate the resulting multivariate
series expansion. We then present results on the approximation rates for these spaces.
Here, provided that a slightly stronger regularity assumption is fulfilled, it turns out
that the approximation order of classical full grid spaces in space-time is preserved
while the overall complexity is significantly reduced.

In section 3 we discuss how a spatial hierarchical basis can be derived from a
given nodal basis and a given sequence of prolongation operators. Here we use the
classical coarsening scheme from algebraic multigrid methods to obtain coarser grids
and a least squares approach to compute the necessary interpolation operators.

In section 4 we address some implementational issues arising for the proposed
space-time sparse grid approach. We first describe the necessary operations which
must be performed on the data to compute the space-time sparse grid interpolant for
a given function. These insights are then used as guideline for the development of ef-
ficient data structures for space-time sparse grids. Furthermore, we discuss additional
requirements to take adaptivity in space and time into account.

In section 5 we consider numerical experiments with the proposed space-time
sparse grid space. Here, we focus on the interpolation error. The results show that
the approximation rates with respect to the L2-norm deteriorate only slightly in com-
parison to that of classical Finite Element spaces in space and time. For the H1-norm
even the same rates are achieved. In addition, the results for an adaptive space-time
sparse grid applied to a non-smooth function indicate that also singular functions can
be dealt with in an efficient manner.

Finally, in section 6 we draw some conclusions.

2. Space-Time Sparse Grids. In this section we describe the general construc-
tion of space-time sparse grid spaces following the presentation in [30]. We discuss
their approximation properties as well as their cost complexity. It will turn out that
these spaces provide the same approximation rate as classical Finite Element spaces
in space-time under just slightly stronger regularity assumptions. The number of
the involved degrees of freedom, however, is significantly reduced, i.e. by a factor of
O(N q/p) where p denotes the order of the associated time discretization and q the
order of the space discretization, respectively.

3



For a d-dimensional spatial domain Ω ⊂ R
d and T > 0 we define ΩT := Ω×(0, T ).

In the following, let Hm(Ω), m ∈ N, denote the usual Sobolev space on Ω with weak
derivatives of order m. Now, for m ∈ N, we define

H2m,m(ΩT ) :=
(

H2m(Ω) ⊗ L2((0, T ))
)

∩
(

L2(Ω) ⊗Hm((0, T ))
)

(2.1)

with associated norm

‖u‖2
H2m,m(ΩT ) :=

∑

2·p+‖q‖1≤2m

‖∂p
t ∂

q
xu‖

2
L2(ΩT ). (2.2)

Here and in the following we use boldface letters to denote multi-indices, i.e. q ∈
N

d. Function spaces with bounded mixed derivatives play an important role in the
theoretical analysis of sparse grids, see [13, 46, 47]. For our space-time setting we
define

H2m,m
mix (ΩT ) := H2m(Ω) ⊗Hm((0, T )) (2.3)

with associated norm

‖u‖2
H2m,m

mix
(ΩT )

:=
∑

p≤m,

‖q‖1≤2m

‖∂p
t ∂

q
xu‖

2
L2(ΩT ), (2.4)

and

Hm,m
mix (ΩT ) := Hm(Ω) ⊗Hm((0, T )), (2.5)

with associated norm

‖u‖2
Hm,m

mix
(ΩT ) :=

∑

p≤m,

‖q‖1≤m

‖∂p
t ∂

q
xu‖

2
L2(ΩT ). (2.6)

Note that the space H2m,m
mix (ΩT ) is of similar structure as the space H2m,m which is

usually employed in regularity estimates of parabolic problems, c.f. [39]. Under only
slightly stronger regularity assumptions for the initial condition and right hand side
than in classical regularity theory, the solution of the Cauchy problem can actually
be shown to be in H2m,m

mix (ΩT ), see [30] for details.
In the following we want to construct approximation spaces for the approximation

of functions u ∈ H2m,m
mix (ΩT ) and u ∈ Hm,m

mix (ΩT ), respectively. They will possess a
substantially reduced number of overall degrees of freedom compared to a conventional
Finite Element space on ΩT without a change in the approximation order. Let us
assume that there are finite dimensional spaces V Ω

j and V T
j , j ∈ N, such that

L2(Ω) =
⊕

j≥0

V Ω
j ,

L2((0, T )) =
⊕

j≥0

V T
j ,

and V Ω
j ⊂ V Ω

j+1, V
T
j ⊂ V T

j+1. Furthermore we define increment spaces WΩ
j and WT

j ,
such that

V Ω
j = V Ω

j−1 ⊕WΩ
j , j ≥ 1,

V T
j = V T

j−1 ⊕WT
j , j ≥ 1,
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and WΩ
0 := V Ω

0 , WT
0 := V T

0 . Since L2(ΩT ) = L2(Ω) ⊗ L2((0, T )), c.f. [36], we obtain

L2(ΩT ) =
⊕

j∈N2

Vj, Vj = V Ω
j1 ⊗ V T

j2 .

We define the hierarchical increment spaces Wj, j ∈ N
2, as

Wj = W(j1,j2) := WΩ
j1 ⊗WT

j2 . (2.7)

To simplify notation we will omit the domain of integration in the norms, e.g. we write
‖ · ‖L2 instead of ‖ · ‖L2(Ω). If not stated otherwise we assume that the hierarchical
increments W T

j and WΩ
j are L2-stable, i.e.1

‖
∑

j

wj‖
2
L2(Ω) ≃

∑

j

‖wj‖
2
L2(Ω) for all

∑

j

wj ∈ L2(Ω), wj ∈WΩ
j ,

‖
∑

j

wj‖
2
L2((0,T )) ≃

∑

j

‖wj‖
2
L2((0,T )) for all

∑

j

wj ∈ L2((0, T )), wj ∈WT
j .

With this notation, we define the full grid spaces

V∞
l :=

⊕

2j1≤2l,

j2≤2l

W(j1,j2) (2.8)

and

Ṽ∞
l :=

⊕

‖j‖∞≤l

W(j1,j2) (2.9)

as well as the sparse grid spaces

V 0
l :=

⊕

2j1+j2≤2l

W(j1,j2) (2.10)

and

Ṽ 0
l :=

⊕

‖j‖1≤l

Wj. (2.11)

Note that the space-time sparse grid spaces V 0
l and Ṽ 0

l are similar to classical sparse
grid spaces, see [11, 13, 29]. Now, however, the supports of the basis functions are
anisotropic with respect to space versus time but they are isotropic in space. This re-
sults from our construction (2.7) which involves a tensor product between a (isotropic)
multilevel basis in space and a one-dimensional multilevel basis in time which is in
contrast to the conventional sparse grid approach where the basis in space is formed
by a tensor product of a one-dimensional multiscale basis for each coordinate direc-
tion. Furthermore, the space V 0

l is twice as much refined in time direction than in
space direction. This can also be seen in Figure 2.1 (right) where sparse grids of level
l = 4 on the domain ΩT = (0, 1)2 are shown. To this end, the one-dimensional piece-
wise linear hierarchical basis [23, 51, 52] was used for both, space and time, within
the tensor product construction. The sparse grid points are the center points of the
supports of the associated basis functions used for the respective spaces. Here we

1Here, A ≃ B ⇔ c1B ≤ A ≤ c2B with positive constants c1, c2.
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Figure 2.1. Grid points for the space Ṽ 0
4

(left) and V 0
4

(right) for the one dimensional domain
Ω = (0, 1) and the time interval (0, 1).

see that V 0
l involves more grid points in time than in space direction which results

in an higher overall number of degrees of freedom than for Ṽ 0
l . As we will see later

in Lemma 2.3 the sparse grid V 0
l is more suited to problems with lower regularity in

time than in space, whereas Ṽ 0
l is more efficient for problems with the same regularity

in space and time.
To derive estimates of the approximation rates of the different spaces, we need

the following Lemma.
Lemma 2.1. For t ≥ 0 fixed we assume that for every vΩ ∈ H2t(Ω), vΩ =

∑

j w
Ω
j ,

wΩ
j ∈ WΩ

j ,

‖vΩ‖2
H2t ≃

∑

j

22(2t)j‖wΩ
j ‖

2
L2 (2.12)

and for every vT ∈ Ht((0, T )), vT =
∑

j w
T
j , wT

j ∈WT
j

‖vT ‖2
Ht ≃

∑

j

22tj‖wT
j ‖

2
L2 . (2.13)

Then, for u ∈ H2t,t
mix(ΩT ), u =

∑

jwj, we have

‖u‖2
H2t,t

mix
(ΩT )

≃
∑

j

22t‖(2j1,j2)‖1‖wj‖
2
L2(ΩT ). (2.14)

If we replace (2.12) by

‖vΩ‖2
Ht ≃

∑

j

22tj‖wΩ
j ‖

2
L2 (2.15)

we get, together with (2.13), for u ∈ H t,t
mix(ΩT ), u =

∑

jwj,

‖u‖2
Ht,t

mix
(ΩT )

≃
∑

j

22t‖(j1,j2)‖1‖wj‖
2
L2(ΩT ). (2.16)

The detailed proof of these norm equivalences can be found in [30]. Here, we restrict
ourselves to (2.14) to show that the estimates follow directly from a proposition about
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additive subspace splittings taken from [31]. To this end we use the notation {V ; a}
to denote a Hilbert space V which is equipped with the scalar-product a(·, ·). We now
consider two Hilbert spaces H1 and H2, and a collection of closed subspaces V1i ⊂ H1

and V2i ⊂ H2, i ∈ N, such that topologically

H1 =
∑

i

V1i and H2 =
∑

i

V2i.

For a sequence bli(·, ·) of bilinear forms on Vli, l = 1, 2, we call {Hl; al} =
∑

i{Vli; bli}
an additive subspace splitting which is stable if

al(u, u) ≃ ‖|u‖|2 ≡ inf
ui∈Vli,

u=
P

i ui

∑

i

bli(ui, ui) (2.17)

holds true. From [31] we have:
Proposition 2.2. If the splittings {Hl; al} =

∑

i{Vli; bli}, l = 1, 2, are stable,
then the tensor-product splitting

{H1 ⊗H2; a1 ⊗ a2} =
∑

i1

∑

i2

{V1i1 ⊗ V2i2 ; b1i1 ⊗ b2i2}

is stable.
Now we can start the proof of the above Lemma 2.1.
Proof. Here, we only consider (2.14), the other norm equivalences can be derived

analogously. For u ∈ H2t,t
mix(ΩT ), we obtain with Proposition 2.2 the stability of

{H2t(Ω) ⊗Ht((0, T )); ‖ · ‖H2t ⊗ ‖ · ‖Ht} =
∑

j

{Wj; 2
2t‖(2j1,j2)‖1‖ · ‖L2 ⊗ ‖ · ‖L2}

Now, we are in the position to state the approximation properties of the spaces
V∞

l , V 0
l , Ṽ

∞
l and Ṽ 0

l .
Lemma 2.3. Let us assume that (2.12) and (2.13) hold true for s, t, t > s. For

u ∈ H2t,t(ΩT ) we get

inf
v∈V ∞

l

‖u− v‖2
H2s,s(ΩT ) ≤ c · 24(s−t)l‖u‖2

H2t,t(ΩT ). (2.18)

Moreover, if u ∈ H2t,t
mix(ΩT )

inf
v∈V 0

l

‖u− v‖2
H2s,s(ΩT ) ≤ c · 24(s−t)l‖u‖2

H2t,t

mix
(ΩT )

(2.19)

holds true. Analogously, if u ∈ H t,t(ΩT ) and (2.15) and (2.13) hold true for s, t,
t > s, we have

inf
v∈Ṽ ∞

l

‖u− v‖2
Hs,s(ΩT ) ≤ c · 22(s−t)l‖u‖2

Ht,t(ΩT ) (2.20)

and in the case u ∈ H t,t
mix(ΩT ) we have

inf
v∈Ṽ 0

l

‖u− v‖2
Hs,s(ΩT ) ≤ c · 22(s−t)l‖u‖2

Ht,t

mix
(ΩT )

. (2.21)
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Proof. We consider only the case (2.19). The other estimates follow in an anal-
ogous way. For u ∈ H2t,t

mix(ΩT ), u =
∑

jwj, wj ∈ Wj, using the norm equivalences
(2.12) and (2.13) we obtain

inf
v∈V 0

l

‖u− v‖2
H2s,s(ΩT ) ≤ ‖u−

∑

2j1+j2≤2l

wj‖
2
H2s,s(ΩT )

≤ c ·
∑

2j1+j2>2l

22s‖(2j1,j2)‖∞‖wj‖
2
L2(ΩT )

= c ·
∑

2j1+j2>2l

22s‖(2j1,j2)‖∞−2t‖(2j1,j2)‖122t‖(2j1,j2)‖1‖wj‖
2
L2(ΩT )

≤ c · max
2j1+j2>2l

22s‖(2j1,j2)‖∞−2t‖(2j1,j2)‖1‖u‖2
H2t,t

mix
(ΩT )

≤ c · 24(s−t)l‖u‖2
H2t,t

mix
(ΩT )

.

The above Lemma shows that the sparse grid spaces constructed with any multi-
level basis which fulfills the norm equivalency (2.14) provide the same approximation
rates for functions from H2t,t

mix(ΩT ) as the full grid spaces. For a simple domain Ω
which is (e.g. after a suitable differentiable mapping) a d-cube, there exist a vari-
ety of such bases like orthogonal wavelets, spline-wavelets, prewavelets, biorthogo-
nal wavelets, lifting wavelets and similar constructions which are constructed from a
mother function by translation and dilation, see [14, 16, 21, 22, 45] and the references
cited therein. Also a multilevel generating system, i.e. the collection of finite element
bases for V Ω

j , j ≥ 0, results in an estimate similar to (2.12) or (2.15).2 The same
holds for a domain Ω which is composed from simple non-overlapping subdomains.
Here, a wavelet-type basis or a multilevel basis is employed within each subdomain.3

However, for a more complicated, general spatial domain Ω, the construction of a
multilevel basis which fulfills norm equivalencies like (2.12) or (2.15) can be quite
difficult and demanding or even impossible. For wavelet-like approaches on polygonal
domains see [17, 20, 44, 43]. In view of the approximation properties, however, it is
not really necessary that such norm equivalences are fulfilled. As the next Lemma
shows, we will only need upper bounds for the hierarchic increments wj ∈ Wj of a
function u =

∑

jwj to obtain nearly the same rates of approximation.

Lemma 2.4. Let us assume that for t > s ≥ 0 fixed there is a constant c > 0 such
that

‖wj‖Hs,s(ΩT ) ≤ c2s‖j‖∞−t‖j‖1‖u‖Ht,t

mix
(ΩT ) ∀j ∈ N (2.23)

2Here, the non-uniqueness of the representation vΩ =
P

j v
Ω
j , v

Ω
j ∈ V Ω

j is compensated by taking

the prewavelets of all possible multilevel representations into account, i.e. instead of (2.15) we would
have

‖vΩ‖2
Ht ≃ inf

vΩ=
P

j vΩ
j

,

vΩ
j

∈V Ω
j

X

j

22tj‖wΩ
j ‖2

L2 . (2.22)

3In these cases sparse grids can also be applied for the spatial discretization. This results in
further substantial savings in cost provided that an additional smoothness prerequisite in space like
the boundedness of the second mixed derivatives is fulfilled. For details see the survey article [13]
and the references cited therein.
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for every u ∈ Ht,t
mix(ΩT ), u =

∑

jwj. Then we have

inf
v∈Ṽ 0

l

‖u− v‖2
Hs,s(ΩT ) ≤

{

c · 22(s−t)l · l2‖u‖2
Ht,t

mix
(ΩT )

for s = 0, t > 0,

c · 22(s−t)l‖u‖2
Ht,t

mix
(ΩT )

for s > 0, t > 0.
(2.24)

This Lemma is a simple generalization of Theorem 4 in [36].
The above Lemma shows that it is possible to replace the norm equivalences (2.12)

or (2.15) by simple upper bounds for the hierarchic increments of the type (2.23) while
maintaining nearly the same approximation rates. As we will see in section 3 such
upper bounds can easily be derived by tensor product arguments.

We are now interested in the dimension of the spaces V ∞
l , V 0

l , Ṽ
∞
l and Ṽ 0

l .
Lemma 2.5. With dim(WΩ

j ) = O(2d·j) and dim(W T
j ) = O(2j) we obtain

dim(V∞
l ) = O(2(d+2)·l), (2.25)

dim(V 0
l ) =







O(22dl) for d = 1,
O(2dll) for d = 2.
O(2d·l) for d > 2,

(2.26)

dim(Ṽ∞
l ) = O(2(d+1)·l), (2.27)

dim(Ṽ 0
l ) =

{

O(2ll) for d = 1,
O(2d·l) for d > 1.

(2.28)

Proof. Since the estimates (2.25) and (2.27) for the full grid spaces are well known
and the derivation of (2.26) can be found in [30] we will only discuss (2.28). We have

Ṽ 0
l =

⊕

‖j‖1≤l

Wj =
⊕

j1≤l

⊕

j2≤l−j1

Wj

=
⊕

j1≤l

WT
j1 ⊗ (

⊕

j2≤l−j1

WΩ
j2)

=
⊕

j1≤l

WT
j1 ⊗ V Ω

l−j1 .

Therefore, we get

dim(Ṽ 0
l ) =

l
∑

j1=0

dim(WT
j1) · dim(V Ω

l−j1 )

≤ c

l
∑

j1=0

2j1 · 2d·(l−j1)

= c · 2d·l
l

∑

j1=0

2(1−d)j1 ,

and (2.28) follows immediately.
This Lemma shows that the sparse grid spaces V 0

l and Ṽ 0
l have a lower dimension

than the full grid spaces V∞
l and Ṽ∞

l . The overall complexity is reduced by one and
two orders of magnitudes, respectively, where for the cases d = 1 and d ≤ 2 the
additional logarithmic factors l and ld−1 appear. The numerical results in section
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5 furthermore indicate that Ṽ 0
l has just about four times the number of degrees of

freedom of that of the spatial multilevel basis alone, i.e.

dim(Ṽ 0
l ) ≈ 4 · dim(V Ω

l ).

Taking the approximation results from Lemma 2.3 into account, we see that under
some mild additional regularity assumptions we can approximate space-time functions
by means of sparse grid spaces with basically the same complexity as functions stem-
ming from stationary problems. The additional order of complexity due to time is
not more present and therefore the associated problems discussed in the introduction
are circumvented. Thus our sparse grid space-time spaces provide a powerful tool for
a variety of instationary PDEs and parabolic optimal control problems.

3. A Spatial Multilevel Basis. In this section we discuss the construction of
a multilevel splitting and a simple hierarchical basis for the spatial discretization. In
view of Lemma 2.4 it is sufficient to use a multilevel basis which just fulfills upper
bounds of the type (2.23) within the sparse grid concept to obtain approximation
properties similar to that of full grid spaces. To this end, we first focus on the
hierarchical basis [51] constructed from a nested sequence of spatial Finite Element
spaces in subsection 3.1. It turns out that, under suitable conditions on the sequence
of the spatial Finite Element spaces, the use of the isotropic linear hierarchical basis
in the spatial domain and the linear hierarchical basis in time results in sparse grid
spaces which fulfill upper bounds of the type (2.23) for the L2- and the energy-norm.
Therefore, Lemma 2.4 can be applied and thus estimates for the approximation rates
of the resulting space-time sparse grids based on the spatial hierarchical basis are
obtained.

But even for the most simple multiscale basis, i.e. the hierarchical basis, there
is still the problem of the resolution of the boundary on all scales. The coarsest
triangulation determines the domain from which the finer scale triangulations are
derived by refinement. To overcome this problem we construct in subsection 3.2 a
special spatial hierarchical basis from a Finite Element space given on the finest scale.
Here, we determine so-called coarse grids by purely algebraic coarsening, i.e. following
the approach of algebraic multigrid [27, 41, 48] we use the AMG-coarsening scheme
to create sets of coarse grid unknowns. Then, to assign hierarchical basis functions
to these points, we use prolongation operators between the respective coarse and fine
grids which are derived from a least squares approach.

3.1. Multilevel subspace splitting, interpolation and hierarchical basis.

Let us assume that we have a sequence of nested triangulations/grids Tj on the domain
Ω, j ∈ N, Tj ⊂ Tj+1, i.e. the set of the nodes Nj of Tj is a subset of the set of nodes
Nj+1 of Tj+1,

Nj ⊂ Nj+1.

As usual, we denote the diameter of T ∈ Tj with h(T ) and define

ρ(T ) := sup{diam(B) | B ⊂ T, B is a ball}.

Throughout this section we assume that Tj is a sequence of regular triangulations, i.e.
that there is a constant σ such that

h(T )

ρ(T )
≤ σ, for all j and T ∈ Tj

10



and that there is a constant c > 0 such that

hj := max
T∈Tj

h(T ) ≤ c2−j .

We denote by V Ω
j the associated Finite Element space of piecewise linear or d-linear

functions, and define a mapping Pj : C0(Ω) → V Ω
j . Then each ul ∈ V Ω

l has the
representation

ul = P0ul +

l−1
∑

j=0

(Pj+1ul − Pjul), (3.1)

with the increment spaces

WΩ
j+1 := range(Pj+1 − Pj) (3.2)

and WΩ
0 := V Ω

0 . For example, if we choose Pju as the interpolant of u ∈ C0(Ω) in
V Ω

j , i.e.

Pju(x) = u(x) for all x ∈ Nj , (3.3)

we obtain a splitting into increment spaces which are spanned by the hierarchical basis
as described in [51]. For the choice Pju as the L2-projection of u onto Vj we would
obtain an L2-orthogonal wavelet basis. Other choices of projection operators are
discrete L2-projections, approximate L2-projections, quasi-interpolation or Clément-
projections which all lead to a stable multilevel basis.

In the following we focus on the choice of Pj as the interpolation operator (3.3)
onto Vj . Since we are dealing with a regular triangulation, the classical interpolation
theory of Finite Elements spaces, c.f. [3, 15], shows that

‖u− Pju‖L2(Ω) ≤ c · 2−2j‖u‖H2(Ω) (3.4)

for all u ∈ H2(Ω) with constant c > 0 independent of j. Therefore, using the
hierarchical decomposition (3.1) we obtain for the parts wj of the splitting u =
P0u+

∑

j∈N
(Pj+1ul − Pjul) =

∑

j∈N
wj , u ∈ H2(Ω), the estimate

‖wj‖L2(Ω) ≤ c · 2−2j‖u‖H2(Ω) (3.5)

with constant c > 0 independent of j. An analogous estimate follows directly for all
u ∈ H2((0, T )) with the linear interpolation operator and thus the linear hierarchical
basis in time. Then, arguments on the tensor product of operators [32] lead for the
hierarchical increment spaces Wj = WΩ

j1 ⊗W
T
j2 with the splitting u =

∑

j∈N2 wj to the
estimate

‖wj‖L2(ΩT ) ≤ c · 2−2·|j|1‖u‖H2,2
mix

(Ω) ∀j ∈ N
2, (3.6)

with c independent of j and independent of u ∈ H2,2
mix(ΩT ). Here, W T

j2 are the one-
dimensional linear increment spaces in time which result analogously to (3.2) from
the differences of piecewise linear interpolation operators in time.

Now we can apply Lemma 2.4 and obtain the following result on the approxima-
tion rate of the space-time sparse grid space using a linear hierarchical basis in time
and the isotropic d-dimensional hierarchical basis in space.
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Lemma 3.1. Let the sequence of Finite Element spaces V Ω
j fulfill (3.4) with a

constant c independent of j for all u ∈ H2(Ω). Then, with the hierarchical basis
increment spaces (3.2) and the linear hierarchical basis in time in the construction of
the space-time sparse grid space Ṽ 0

l , there holds

inf
v∈Ṽ 0

l

‖u− v‖L2(ΩT ) ≤ c · 2−2l · l · ‖u‖H2,2
mix

(ΩT ) (3.7)

for all u ∈ H2,2
mix(ΩT ).

We define the energy norm ‖ · ‖E for u ∈ H1,1(ΩT ) as usual by

‖u‖2
E =

∫ T

0

∫

Ω

(∂tu)
2 +

d
∑

i=1

(∂xi
u)2 dx dt.

Furthermore, analogous to the definition of H2,2
mix(ΩT ), we now define

H2,2,∞
mix (ΩT ) := H2,∞(Ω) ⊗H2,∞((0, T )),

where H2,∞(Ω) and H2,∞((0, T )) denote the classical Sobolev spaces of functions
u ∈ L∞(Ω) and u ∈ L∞((0, T )) with weak derivatives up to the order 2 which are
contained in L∞(Ω), respectively. We then can state the following Lemma:

Lemma 3.2. Let the family Vk of Finite Element spaces be affine equivalent. For
Ṽ 0

l constructed from the hierarchical increment spaces (3.2) and the one-dimensional
hierarchical basis in time there holds

inf
v∈Ṽ 0

l

‖u− v‖E ≤ c2−l‖u‖H2,2,∞
mix

(ΩT ) (3.8)

for all u ∈ H2,2,∞
mix (ΩT ) with a constant c > 0 independent of l.

For the proof of this Lemma, one has to verify condition (2.23). Then the appli-
cation of Lemma 2.4 leads to the estimate (3.8). The verification of (2.23) is quite
technical, we therefore postpone it to the appendix.

The above discussion shows that it is sufficient to have a sequence of grids and
linear or d-linear Finite Element spaces which induce the hierarchical increment spaces
in the space-time sparse grid construction to maintain the approximation order of a full
grid space in the energy norm. For the L2-norm only an additional logarithmic factor
comes into play. Now, the question is how such a sequence of grids and prolongation
operators can be obtained. Quite a few Finite Elements packages meanwhile use
geometric multigrid methods for the solution of the linear systems which result from
the discretization of a partial differential equation. These codes then provide in one
way or the other also access to interpolation operators Pj which we can exploit.

However, for complicated geometries and unstructured grids it is difficult or even
impossible to construct a sequence of nested subspaces and a hierarchy of grids which
are needed for geometric multigrid methods. Here, a main problem is the resolution of
the domain on coarser levels which is one of the reasons algebraic multigrid methods
(AMG) [4, 5, 6, 7, 41] were developed. Here, given a matrix A stemming from a
Finite Element discretization, AMG computes (among other things) a sequence of
coarse grids, i.e. a set of unknowns, and a sequence of prolongation operators. Now,
taking a closer look at the construction (3.2) of the hierarchical increment spaces
WΩ

j , we find that geometric information about the grids Tj is not necessary but only
the prolongation operators Pj are needed. Therefore, AMG offers a solution to the
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problem of the resolution of the geometry. We discuss in the next subsection how we
use AMG ingredients to construct a sequence of prolongations which we will use in
our space-time sparse grid construction.

3.2. Construction of Algebraic Prolongation Operators. In this subsec-
tion we will focus on the construction of a sequence of prolongation operators Pj

needed for the construction (3.2) of the hierarchic increment spaces Wj . Here, prolon-
gation operators as well as sets Cj of coarse grid points are algebraically constructed
using only the entries of the system matrix Al on the finest level of discretization.4

For most AMG methods, the setup phase, i.e. the phase where the prolongation
operators and the coarse grid operators are computed, can be divided into two parts.
In a first step, the coarse grid, i.e. a subset Cj ⊂ Nj of the set of all unknowns Nj on
level j, is chosen. Then, given the set of coarse grid points which form the new set of
unknowns of the next coarser level, the prolongation Pj = (pj

kl) is computed. Here,
one usually requires that each unknown associated to a fine grid point which is also
contained in the coarser grid is interpolated by the value of the respective coarse grid
unknown, i.e. after reordering the fine and coarse grid unknowns, the prolongation
operator Pj has the block-matrix representation

Pj =

(

Ij
P̃j

)

, (3.9)

nj := |Nj| = |Cj−1|, Ij ∈ R
nj−1×nj−1 is the identity and P̃j ∈ R

(nj−nj−1)×nj−1 .
For the coarsening process, i.e. the computation of Cj , we use the coarsening

algorithm due to Ruge and Stüben as described in [41]. To derive P̃j we used in a first
attempt some classical interpolation formulas, the so-called standard interpolation and
the so-called direct interpolation, see [48]. These formulas involve the entries aj

kl of the
matrix Aj within the interpolation formulas. Numerical experiments however showed
that, especially on unstructured grids, the resulting prolongations did not provide
satisfying approximation rates when used in the sparse grid context. The reason is
that the prolongation formulas in AMG are developed to interpolate algebraic smooth
errors as exact as possible, i.e. errors which cannot efficiently be reduced by a given
stationary linear iteration scheme. This requirement however does not have to lead
to good approximation results when used in space-time sparse grids.

Therefore we use a least squares approach to compute interpolation formulas
which are able to reproduce (global) linear or d-linear functions as exact as possible.
We denote by ūj ∈ R

nj the vector of coefficients of the basis representation of uj ∈
V Ω

j . We choose a basis {ζi} of the space of globally linear or, alternatively, d-linear
functions, i.e. {1, xi, i = 1, .., d} or {1, xi1 , xi1xi2 , ..., xi1 ···xid

, ij = 1, ..., d, i1 < i2, i1 <
i2 < i3, ..., i1 < i2 < ... < id}, and a norm ‖ · ‖⋆ on R

nj and define the functional
J : R

(nj−nj−1)×nj−1 7→ R as

J(P̃j) :=
∑

ζi

‖ζ̄j
i − (P̃j ζ̄

j−1
i )‖2

⋆. (3.10)

4AMG needs to be given a fine grid stiffness matrix Al to set up the interpolation operators and
coarser grid matrices Aj via the Galerkin identity. But in our context we have no unique naturally
given stiffness matrix Al at our disposal. Since we are merely interested in the construction of a
multilevel basis for the space part of a space-time sparse grid discretization by means of AMG, we
used the stiffness matrix which stems from the discretization of the Laplacian in the given Finite
Element space in the numerical experiments presented in section 5. For this choice AMG methods
provide nearly the same hierarchy as geometric multigrid methods on structured uniform grids.
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Now we compute the block P̃j in (3.9) as the solution of the constrained minimization
problem

min
P̃j∈R

(nj−nj−1)×nj−1 J(P̃j). (3.11)

In general, this would lead to densely populated operators P̃j = (p̃j
kl). Therefore, we

impose a second constraint on the above minimization problem, namely

aj
kl = 0 ⇒ p̃j

k,l = 0. (3.12)

Loosely speaking this constraint enforces that only neighboring grid points are used in
the prolongation process to fine grid points. Note that due to the constraint (3.12) on
the sparsity pattern of the prolongation operator, the overall constraint minimization
(3.11) can be split into local small least squares problems which can be efficiently
solved by simple LU -factorization.

For the choice of ‖ · ‖⋆ in (3.10) there are several possibilities. The norm induced
by the coarse grid operators Aj which are set up from the AMG approach anyway,
i.e.

‖x‖Aj := (xTAjx)1/2

would lead to cost functionals similar to the ones used for the construction of pro-
longation operators in the context of algebraic multigrid methods based on element
interpolation (AMGe) [8]. In the following, we will use the Euclidean norm instead.
It is easy to compute and provided good results in our numerical experiments. Nev-
ertheless, future research is needed to study the influence of the choice of the norm
‖ · ‖⋆ on the space-time sparse grid approach in more detail.

4. Data Structures and Adaptivity. In this section we will discuss the un-
derlying data structure to store the space-time sparse grid coefficients. The aim is to
obtain a storage format for the coefficients which allows for an efficient implementa-
tion of a sparse grid interpolant for given nodal values and vice versa, see [2, 42] for
more details.

For classical sparse grids, there are several approaches [2, 12, 37, 42] on this topic
which use hash maps or binary trees to manage the coefficients of the sparse grid basis.
Note however that we are not dealing with classical sparse grids which are constructed
by a tensor product from a purely one-dimensional multilevel basis. There, each basis
function has a fixed number of hierarchical sons such that tree data structures can be
efficiently applied. In our application the space part of the multilevel basis is allowed
to stem from general unstructured grids instead. Therefore, the simple concept of
recursively used binary trees is not efficiently applicable any longer. Instead we use
a slightly different approach, i.e. binary trees of hash maps, which is described in
the following. The associated data structures allow for an efficient implementation of
the operations that have to be performed on a space-time sparse grid, like e.g. the
computation of the function values of the interpolant [42]. They are also well suited
for adaptive refinement procedures on space-time sparse grids.

4.1. Algorithmic Approach and Data Structures. Let B(V T
l ) = {ψT

j,i} be

the piecewise linear hierarchical basis in time for V T
l , i.e. ψT

j,i ∈ WT
j , where the index

j indicates the level, ||ψT
j,i||∞ = 1 and

supp(ψT
j,i) ∩ supp(ψT

j,k) = ∅ for all i 6= k. (4.1)
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Furthermore, let B(V Ω
l ) = {ψΩ

j,i} be the spatial algebraic hierarchical basis con-
structed from a Finite Element space as described in section 3.2. Then, we obtain a
basis of the space-time sparse grid space Ṽ 0

l by

B(Ṽ 0
l ) := {ψj,i := ψΩ

j1,i1 · ψ
T
j2,i2 | j1 + j2 ≤ l}. (4.2)

For the ease of presentation, we will use the set of multilevel indices IṼ 0
l

contained in

the sparse grid Ṽ 0
l ,

IṼ 0
l

:= {(j, i) | j1 + j2 ≤ l, 0 ≤ i1 ≤ dim(WΩ
j1), 0 ≤ i2 ≤ dim(WT

j2)}.

Furthermore, to each multilevel index (j, i) we associate a grid point (xj1,i1 , tj2,i2)
such that

ψ(j,i)(xj1,i1 , tj2,i2) = 1.

We define the usual hierarchical relation > between two hierarchical indices (j1, i1)
and (j̄1, ī1) of the multilevel basis in space as

(j1, i1) > (j̄1, ī1) :⇔ suppψΩ
j̄1 ,̄i1

⊂ suppψΩ
j1,i1 (4.3)

and we use the analogous definition for the hierarchical indices of the spatial multilevel
basis. Now, given the nodal values u(xj1,i1 , tj2,i2) of a continuous function u at the
sparse grid points (xj1,i1 , tj2,i2) we want to compute the coefficients uj,i of the sparse
grid interpolant usp

l ,

usp
l =

∑

(j,i)∈I
Ṽ 0

l

uj,iψj,i(x, t),

i.e.

usp
l (xj̃1 ,̃i1

, tj̃2 ,̃i2
) =

∑

(j,i)∈I
Ṽ 0

l

uj,iψj,i(xj̃1 ,̃i1
, tj̃2 ,̃i2

),

for all sparse grid points (xj̃1 ,̃i1
, tj̃2 ,̃i2

). Using (4.1) we obtain

u(xj̃1 ,̃i1
, tj̃2 ,̃i2

) =
∑

(j,i)∈I
Ṽ 0

l

uj,iψj,i(xj̃1 ,̃i1
, tj̃2 ,̃i2

)

=
∑

(j2,i2)≥(j̃2 ,̃i2)

(j,i)∈I
Ṽ 0

l

ψT
j2,i2(tj̃2 ,̃i2

)









∑

j1,i1
(j,i)∈I

Ṽ 0
l

uj,iψ
Ω
j1,i1(xj̃1 ,̃i1

)









.

Therefore, to obtain the hierarchical coefficients we proceed in two steps. First, ac-
cording to the second sum, we compute spatial multilevel coefficients ûj,i such that
for each time step tj̃2 ,̃i2

u(xj̃1 ,̃i1
, tj̃2 ,̃i2

) =
∑

j1,i1
((j̃1,j2),(̃i1 ,i2))∈I

Ṽ 0
l

ûj,iψ
Ω
j1,i1(xj̃1 ,̃i1

), ∀xj̃1 ,̃i1
, (̃j, ĩ) ∈ IṼ 0

l
. (4.4)
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Then we apply a basis transformation from the nodal basis to the multilevel basis in
time to transform ûj,i to the sparse grid coefficients uj,i. Here, according to the first
sum which involves all hierarchical ancestors, this can be done by a simple top-down
tree traversal if the coefficients ûj,i are stored in a binary tree.

Thus, this algorithm suggests the use of a binary tree for the multilevel basis
in time, where each node contains an array for the coefficients which belong to the
respective time step. However, we also want to be able to adaptively refine our space-
time sparse grids, e.g. by starting with a regular sparse grid Ṽ 0

l and locally inserting
new grid points and associated basis functions according to certain error estimators
or indicators. Therefore we use hash maps in each node instead of simple arrays.
For a detailed discussion on the use of hash maps in the context of sparse grids and
hierarchical bases see [42, 28]. For a general introduction we refer to [40]. Here, a hash
table M is used to store the data and each data entry has to be uniquely identified
by a key, for which we simply use the spatial hierarchical index (j1, i1). Now, we need
a hash function h to compute the position h((j, i)) where the associated coefficient is
stored in the hash table M . In each node of the binary tree which represents the time
level j2 we use a hash table with dim(V Ω

l−j2
) entries and we define the hash map h by

h((j, i)) = (dim(V Ω
j−1) + i) mod dim(V Ω

l−j2 ),

where V Ω
0 := ∅. Obviously, for a regular sparse grid Ṽ 0

l , there are exactly dim(V Ω
l−j2

)
data entries in each node which belong to the time level j2 and the above hash function
h provides a mapping without collision. However, for adaptively refined sparse grids,
different coefficients can result in the same hash values. Therefore, we use so called
direct chaining hashing [26] where all coefficients with the same hash value are stored
in a separate list. Then, to obtain the coefficient value for a given spatial index,
we have to search the list which belongs to the hash value of the key. Numerical
experiments showed that these lists are usually very small, so that the computational
cost of this search is bounded by a small constant.

4.2. Adaptivity. Sparse grids can easily be refined adaptively, c.f. [2, 9, 37].
This is necessary if the function to be approximated does not fulfill the smoothness
requirements which are a prerequisite for regular sparse grids. This way singularities
or strong variations in the function can be taken care of. It can be shown that
the favorable approximation rates and complexities of regular sparse grids can be
obtained also for non-smooth functions provided that the right adaptivity scheme
with a proper error estimator is used. Here one can derive classical error estimators
involving residual- or duality-based error indicators in a way similar to classical Finite
Elements, see [10, 13]. An alternative is the use of the size of the coefficients in a
wavelet-like representation as indicators for local refinement along the lines of [18, 19,
21]. It can be shown that, for any stable multiscale basis, such an approach provides
true error estimators, i.e. error indicators which are reliable and efficient. Note that
there is an easy way to switch from our hierarchical basis representation to such a
wavelet-type representation by means of the lifting scheme [37, 45].

In the following we simply use the weighted size of the coefficients in the hierarchi-
cal basis representation as an error indicator for local refinement. This approach was
successfully used in several different application areas, e.g. in visualization [24], in nu-
merical integration [25] and for the solution of partial differential equation [2, 9, 13, 37].
It results in a reliable but in general not perfectly efficient error estimator.5 Never-

5Note that the upper bound (which implies reliability) in the norm equivalency for the hierarchical
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theless, numerical results show that the proposed adaptivity criterion provides quite
good results.

We proceed as follows: For a basis function ψj,i = ψT
j1,ii

· ψΩ
j2,i2 we define the set

H(ψj,i) of hierarchical sons, i.e.

H(ψj,i) := {ψj̄,̄i | (j̄1, j̄2) = (j1 + 1, j2) or (j̄1, j̄2) = (j1, j2 + 1), (4.5)

ψT
j1,ii

> ψT
j̄1 ,̄i1

and ψΩ
j2,i2 > ψΩ

j̄2 ,̄i2
} (4.6)

using the >-relation from (4.3). Now, given the sparse grid approximation usp =
∑

(j,i)∈Λ uj,i · ψj,i where Λ denotes the set of involved indices, we add H(ψj,i) to the

actual sparse grid space6 and thus the indices (̃j, ĩ) of the hierarchical sons to the
actual set Λ whenever

|uj,i| > 2
1
2 (d·j1+j2) · ε, (4.7)

for a given threshold ε. Here, the factor 1
2 in the exponent resembles a measurement of

the error in the L2-norm, for other norms, appropriate values have to be substituted.
The term d · j1 + j2 corresponds to an approximation scheme with the same order in
space and time. Such a refinement strategy leads asymptotically to an equilibration
of the error indicators in the sense of [1].

5. Numerical Results. In this section we present some numerical results con-
cerning the convergence rates of the space-time sparse grid interpolant in Ṽ 0

l for the
regular case and the adaptive refinement case. To this end, we use a bilinear Finite
Element space V Ω

l , where h := 2−l > 0 indicates the mesh width of the underlying
grid, on the spatial domain Ω ⊂ R

2 to construct the spatial multilevel basis as de-
scribed in section 3. Here we use the stiffness matrix of the Laplacian in the AMG
coarsening algorithm.

For u ∈ C0(ΩT ) given, we set h := 2−l and denote by uh the full grid interpolant
of u and by usp

l the sparse grid interpolant. We define the interpolation errors eh :=
u− uh and esp

l := u− usp
l . Then obviously

‖esp
l ‖ ≤ ‖eh‖ + ‖uh − usp

l ‖, (5.1)

for any given norm ‖ · ‖. In the following, we will use the norms

‖u‖L2×L∞ := ess supt∈(0,T ) ‖u(·, t)‖L2(Ω),

‖u‖L2×L2 :=

(∫

0<t<T

‖u(·, t)‖2
L2(Ω) dt

)1/2

,

‖u‖H1×L∞ := ess supt∈(0,T ) |u(·, t)|H1(Ω),

‖u‖H1×L2 :=

(∫

0<t<T

|u(·, t)|2H1(Ω);dt

)1/2

.

For these norms, classical interpolation theory shows that the error eh decreases with
at least the same order as the error of the sparse grid interpolant esp

l for decreasing

basis is (after proper weighting) independent of the number of levels whereas the lower bound (which
relates to efficiency) slightly depends on the number of levels involved.

6Of course, this is only done for the indices which are ’leaves’ of the structure of Λ, i.e. for the
indices (j, i) ∈ Λ with H(ψj,i) 6∈ Λ.
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Table 5.1

Degrees of freedom of the space-time sparse grid Ṽ 0
l

and the interpolation error ẽh := usp

l
−uh

in different norms for the continuous function u(x, t) = t2 · (x2
1 + x2

2).

level spatial DOF Ṽ 0
l

DOF ‖ẽh‖L2×L∞ ‖ẽh‖L2×L2 ‖ẽh‖H1×L∞ ‖ẽh‖H1×L2

5 1089 3424 2.21e-4 1.64e-4 2.87e-3 2.32e-3
6 4225 13120 6.90e-05 5.10e-05 1.44e-3 1.16e-3
7 16641 51072 2.06e-05 1.53e-05 7.21e-4 5.82e-4
8 66049 200960 6.01e-06 4.44e-06 3.61e-4 2.91e-4
9 263169 796160 1.71e-06 1.27e-06 1.80e-4 1.46e-4

mesh width. We are interested if the orders predicted by our theory in section 2 for the
geometrically constructed hierarchical basis can also be achieved for the algebraically
constructed increment spaces described in section 3.2. With (5.1) we see that it is
sufficient to use ẽh := ‖uh − usp

l ‖ which is easier to compute. Therefore, we will
present results in terms of ẽh only.

In all the following experiments we consider T = 1.0.
Example 1 . In our first example we examine the interpolation error for the space-

time sparse grid space Ṽ 0
l for the function

u(x, t) = t2 · (x2
1 + x2

2)

on the unit square Ω = [0, 1]2. This function is just a product of a quadratic polyno-
mial in time and in space. Here it serves as the most simple model problem to discuss
the basic properties of our space-time sparse grid approach. We use a uniform rectan-
gular grid with mesh width h = 2−l for the underlying Finite Element discretization
from which the spatial multilevel basis is derived along the lines of subsection 3.2. In
this case, the AMG coarsening algorithm of Ruge and Stüben leads to a sequence of
coarse grids which is nearly identical to conventional geometric coarsening. Therefore,
the constructed spatial multilevel basis is basically the usual isotropic hierarchical ba-
sis [51]. Note that the function is zero at the time point t = 0 and therefore all degrees
of freedom at this time point can be eliminated.

Table 5.1 shows the error as well as the dimension of the space-time sparse grid
space. First of all note that the number of degrees of freedom of the space-time sparse
grid space Ṽ 0

l increases with the same order, i.e. O(h−2), as the degrees of freedom
of the spatial grid as expected from (2.28) of Lemma 2.5. Moreover the additional
constant amount for the space-time sparse grid in comparison to the spatial grid is
just a factor of three where we eliminated the degrees of freedom (dof) for t = 0 (it
would be four including those dofs). Figure 5.1 shows the resulting space-time sparse
grid of level l = 5. Here, one can clearly see the finest grids with h = 1/32 at the time
points t = 0.5 and t = 1.0 which dominate the overall number of degrees of freedom.

Furthermore, from Lemma 3.1 in section 3 we expect a behavior of O(2−2ll)
(O(h2 log h)) for the error in the L2 × L2-norm on level l (h = 2−l). In fact, looking
at the results in Table 5.1 we see that the quotient of the errors ẽh of two successive
levels of discretization measured in ‖ · ‖L2×L2 and ‖ · ‖L∞×L2 slowly approaches 0.25
from above for decreasing mesh width. This value would be the rate achieved with
a full grid discretization. In more detail, from level l = 5 to level l = 6 the error is
reduced by a factor of about 0.31 and decreases for growing l. We finally obtain a
factor of about 0.28 for the reduction from l = 8 to l = 9. This difference to the value
0.25 accounts for the additional logh-term in the convergence rate which becomes
more and more unimportant with growing number of levels in comparison to the
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Figure 5.1. Space-time sparse grid associated to Ṽ 0
l

with two spatial dimensions for level l = 5
(h = 1/32).

exponential term. For the quotient of the error estimate of two consecutive levels we
obtain 0.25 ·(l+1)/l which is also an upper bound for the reduction factor. Moreover,
using this formula, we get a theoretical estimate of about 0.28 for the reduction of the
error from level l = 8 to l = 9 which is exactly the rate we observe in our experiment.

From Lemma 3.2 we would expect the same error reduction rate for the sparse
grid interpolant as for the full grid interpolant if the H1-norm is involved. Indeed,
looking at the results in the H1 × L2- and H1 × L∞-norms we observe a factor of
0.5 independent of the number of levels which is just the same as that of a full grid
interpolant.

Example 2 . We now present results for the more complicated function

u(x, t) = sin(4πtx1) + sin(4πtx2)

on the unit square, Ω = (0, 1)2. Here, u(x, t) is zero for t = 0 but develops more and
more oscillations for t→ 1.0. A plot of the function at different time points is shown
in Figure 5.2

Although predicted by the theoretical results given in Lemma 3.1 and 3.2, it is
not directly obvious that the sparse grid approach still works well in practice for this
case due to the oscillations in the function u(x, t). Nevertheless, looking at the results
in Table 5.2, we see that the behavior of the error measured in the ‖ · ‖L2×L2 and
‖ · ‖L2×L∞ norms for increasing level number is the same as in the previous example.
Here, the initial reduction rate from level l = 5 to l = 6 for the ‖ · ‖L2×L2 norm
amounts to about 0.35 which is a little bit larger than in the previous example. On
level l = 9 we obtain a reduction rate of about 0.30.

For the two norms involving the H1-seminorm we expect from Lemma 3.2 an
error reduction rate of about 0.5. In fact, the results of Table 5.2 clearly show that
we achieve this predicted approximation rate.

Example 3 . In this example we show results for the proposed space-time sparse
grid method for a slightly more complex geometry in space. We again consider the
function

u(x, t) = t2 · (x2
1 + x2

2) (5.2)

but choose now the unit circle

Ω = {x|‖x‖ ≤ 1.0}
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Figure 5.2. Plots of the function u(x, t) = sin(4πtx1) + sin(4πtx2) of example 2 at time points
t = 0.125, 0.25, 0.5, 1.0.

Table 5.2

Degrees of freedom of the space-time sparse grid Ṽ 0
l

and the interpolation error ẽh := usp

l
−uh

in different norms for the continuous function u(x, t) = sin(4 · π · t · x1) + sin(4 · π · t · x2).

level spatial DOF Ṽ 0
l

DOF ‖ẽh‖L2×L∞ ‖ẽh‖L2×L2 ‖ẽh‖H1×L∞ ‖ẽh‖H1×L2

5 1089 3424 2.67e-2 1.34e-2 4.05e-1 2.25e-1
6 4225 13120 9.83e-3 4.66e-3 2.09e-1 1.16e-1
7 16641 51072 3.31e-3 1.51e-3 1.04e-1 5.87e-2
8 66049 200960 1.03e-3 4.67e-4 5.24e-2 2.95e-2
9 263169 796160 3.10e-4 1.39e-4 2.63e-3 1.48e-2

as spatial domain. Note that for such a domain a sequence of geometric discretizations
on different scales with piecewise linear finite elements no longer results in nested
Finite Element spaces. This is due to the circular boundary which only is linearly
approximated on each level. Here, the algebraic coarsening by AMG sets in. Together
with the prolongation operator constructed by (3.11) and the constraint (3.12), we
obtain an algebraic hierarchical basis with good approximation properties also near
the boundary. An example of a grid which is used for the finite element discretization
of the Laplacian to obtain the initial system matrix for the AMG approach is given in
Figure 5.3 (left), an associated space-time sparse grid is depicted in Figure 5.3 (right).

The results for three different space-time sparse grids are shown in Table 5.3. For
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Figure 5.3. A spatial grid for the unit circle (left) and the space-time sparse grid (right).

Table 5.3

Degrees of freedom of the spatial grid, the space-time sparse grid and the interpolation error
ẽh := usp − uh in different norms for u(x, t) = t2 · (x2

1 + x2
2) on the domain Ω = {x|‖x‖ ≤ 1.0}.

spatial DOF overall DOF ‖ẽh‖L2×L∞ ‖ẽh‖L2×L2 |ẽh|H1×L∞ |ẽh|H1×L2

5185 10203 5.91e-4 4.67e-4 1.14e-2 9.22e-4
20609 40747 1.61e-4 1.23e-4 5.61e-3 4.53e-4
82177 162907 6.19e-05 4.81e-05 2.85e-3 2.32e-4

the H1 ×L2- and the H1 ×L∞-norms we obtain nearly the same approximation rate
of about 0.5 as in the previous examples. For the L2 × L2- and the L2 × L∞-norms
the error is reduced by the factors 0.27 and 0.38, respectively. Here, the grids used for
the construction of the spatial Finite Element spaces vary in their quality depending
on their mesh width, i.e. the maximal and minimal interior angles of the rectangles
vary between the different grids. This might influence the approximation property of
the space-time sparse grid and, consequently, the error reduction rate to some extent.

Example 4 . In this example we present numerical results for the function

u(x, t) =
√

(t · x1) · x2

which has a singularity on the edge x1 = 0 for all times t > 0 and a singularity
at t = 0. Note that this function is no longer in H2,2

mix(ΩT ) as the functions of
the previous examples and we therefore expect a decrease of the approximation rates.
Note furthermore that we would also obtain worse approximation results for a full grid
approximation in space and time, since u is no longer in H2,2(ΩT ) either. Therefore,
using the error ẽh instead of esp

l does no longer provide reliable bounds for the space
time sparse grid approximation rates. Instead we use a very fine full grid (l = 11)
as reference solution, interpolate the adaptive sparse grid solution to this grid and
measure the error between the full grid and the sparse grid solution there.

To cope with the singularities in u(x, t) we adaptively refine our sparse grids in
space and time as described in section 4.2. We use the error indicator (4.7) with
the thresholds ε = 0.001 and ε = 0.005. Figure 5.4 shows the error history in the
L2×L2-norm of the adaptive cycle when we apply the adaptive refinement starting on
level l = 4 with the two different thresholds. For comparison the convergence result
for regular sparse grids is given as well. We clearly see that the uniform refinement
provides only a poor cost-benefit ratio. Here, starting with an error of about 0.02 for
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p

(t · x1) · x2, regular
sparse grids for different levels and adaptive refinement starting from level l = 4 with thresholds
ε = 0.001 and ε = 0.005 versus overall degrees of freedom (N).

level l = 4 (i.e. 592 dof) the space-time sparse grid results in an error of 0.0024 on
level l = 8 (i.e. 46976 dof). This leads to an error reduction rate with respect to the
number of degrees of freedom N of 0.48, i.e. the error behaves as O(N−0.48) which
can be seen from the slope of the respective curve in Figure 5.4. Remember that for
a smooth solution7 we would obtain a behavior of nearly O(N−1). Now, looking at
the results for the adaptive cycles we see that we obtain a much higher accuracy with
substantially less degrees of freedom. In the case of ε = 0.001 we obtain a final error
of 0.0015 with only 8578 dof and the use of ε = 0.005 results in a final error of 0.0038
with 3286 dof. Now, if we look at the cost-benefit ratio, i.e. if we compare the error
and the dof of the initial grid on level l = 4 and the grids obtained at the end of the
adaptive cycles, we see that we get a rate of about 1.0 for both thresholds which is
exactly the rate we would expect for a regular sparse grid and a smooth function.
In Figure 5.5, we show the adaptive grid which results from the refinement process
for ε = 0.001. Here we see that the non-smoothness in space and time direction is
detected by the error indicator and gets resolved by the insertion of additional points
in time-space. This indicates that the proposed error indicator works well.

6. Conclusion. We presented a space-time sparse grid method for the approxi-
mation of functions which depend on space and time. It involves the tensor product
of a multilevel basis in space and a multilevel basis in time. A proper truncation of
the resulting series expansion then gives a space-time sparse grid. This approach re-
duces the number of degrees of freedom significantly in comparison to a conventional
space-time Finite Element method.

Furthermore we proposed a method to algebraically compute the spatial multilevel
basis from a given Finite Element space. It involves algebraic multigrid and special
prolongation operators which are determined by a local minimization procedure. This
allows to handle also complex spatial geometries which pose a problem for classical
sparse grid spaces. In the present paper we utilized a simple least–squares approach

7In the previous examples the degrees of freedom grew roughly with a factor of 4 from level to
level and we gave the quotient of the error on two successive levels as reduction rate. Now we directly
give the exponent of the error as a function of degrees of freedom which is more appropriate in the
adaptive case.
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Figure 5.5. Adaptively refined space-time grid (ε = 0.001) after 3 refinement steps for the

function u(x, t) =
p

(t · x1) · x2.

to guarantee approximation property of the coarse spaces. Other AMG interpolation
procedures (i.e., [49] and [50]) are also feasible and worth pursuing in the future.

We showed that these space-time sparse grid spaces possess nearly the same ap-
proximation rates as classical Finite Element spaces if just slightly stronger regularity
assumptions are fulfilled. Furthermore it turned out that their number of degrees of
freedoms is of the same order as that of the spatial Finite Element space alone, i.e. the
dimension of the space-time sparse grid spaces is by one order of magnitude smaller
than the dimension of conventional space-time Finite Element spaces. In addition
numerical experiments showed that the approximation rates predicted by the theory
can really be achieved in practice, even for complicated spatial geometries which do
not allow for a sequence of nested finite element spaces. We also demonstrated for
a problem with singularities in space and time that space-time adaptivity can easily
be implemented and used. This results in adaptively refined space-time sparse grids
which resolve singularities, and thus allow to regain the superior convergence rates
and complexities of space-time sparse grids also in the case of non-smooth functions.

In this article we restricted ourselves to the hierarchical basis in space and in time
as a special case of a multiscale basis. Note however that our approach is by no means
confined to this type of basis. It works in the same (or even better) way for any stable
multiscale basis, like wavelets or frames. However, to get rid of the relatively tight
restriction on the spatial domain imposed by wavelet-like schemes due to translation
and dilation we opted for an algebraic multigrid construction with associated algebraic
hierarchical basis instead.

The proposed space-time sparse grid spaces can be efficiently used for the dis-
cretization of parabolic problems and related time-dependent control and optimiza-
tion problems. To this end it is necessary to discretize and to apply the respective
differential operator, e.g. in weak formulation, in space and time. The associated
computational work should be proportional to the number of degrees of freedom.
This is easily possible whenever the coefficient functions of the operator which belong
to the spatial derivatives are constant in time. Then an algorithm which is based on
the so-called unidirectional principle [9, 13] can be applied. Also the efficient solution
of the arising linear system in optimal complexity is necessary by e.g. a multilevel
method which must be able to tackle the space-time discretized sparse grid problem
directly. This however is future work.
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7. Appendix. In this section, we give the proof of Lemma 3.2. Since the appli-
cation of Lemma 2.4 shows the estimate, we just have to verify that inequality (2.23)
holds true.

In the following, we denote a nodal basis of the spatial Finite Element space
V Ω

j by ϕΩ
j,i, 1 ≤ i ≤ dim(V Ω

j ). Analogously, the hierarchical increment space WΩ
j is

spanned by a subset of the nodal basis of V Ω
j . For the ease of presentation we denote

the basis elements of WΩ
j by ψΩ

j,i, 1 ≤ i ≤ dim(WΩ
j ). Furthermore, (after reordering

of the nodal set Nj) we assume that the index i of the function ψΩ
j,i is associated to

the nodal point where the basis function is equal to one, i.e. for every nj ∈ Nj we
have

ψΩ
j,i(nk) =

{

1 if k = i,
0 otherwise

.

Using the definition (3.2) of WΩ
j and the interpolation property of the prolonga-

tion operators Pj , we obtain the coefficients wΩ
j,i of the basis representation wΩ

j =
∑dim(Wj)

i=1 wΩ
j,iψ

Ω
j,i of an element wΩ

j , wΩ
j ∈ WΩ

j , by the formula

wΩ
j,i = (Pju− Pj−1u)(ni), (7.1)

where ni ∈ Nj is the nodal point with ψΩ
j,i(ni) = 1.0. Classical interpolation properties

of Finite Element spaces, c.f. [15], show that

‖Pju− Pj−1u‖L∞(Ω) ≤ ‖Pju− u‖L∞(Ω) + ‖u− Pj−1u‖L∞(Ω) ≤ c · 2−2j‖u‖H2,∞ ,

and relation (7.1) leads to

|wΩ
j,i| ≤ ‖Pju− Pj−1u‖L∞(Ω) ≤ c · 2−2j‖u‖H2,∞(Ω), (7.2)

with c > 0 independent of u, j and i. We denote by ψT
j,i an element of the one-

dimensional hierarchical basis on (0, T ) and derive the analogous estimate

|wT
j,i| ≤ c · 2−2j‖u‖H2,∞((0,T )) (7.3)

for u ∈ H2,∞((0, T )), with u =
∑

j

∑

iw
T
j,iψ

T
j,i and c > 0 independent of u, j or i.

A basis of the increment space Wj, j ∈ N
2, is given by {ψj,i} where ψj,i :=

ψΩ
j1,i1

· ψT
j2,i2

and we obtain the basis representation

wj =
∑

i

wj,iψj,i (7.4)

for a function wj ∈ Wj. Using (7.1) and (7.3) and a tensor product argument, c.f.

[32], we obtain for u ∈ H2,2,∞
mix (ΩT ), u =

∑

j,i wj,iψj,i, the estimate

|wj,i| ≤ c · 2−2‖j‖1 |u|H2,2,∞
mix

(Ω)

with c > 0 independent of u, j and i.
Now we want to derive an estimate for the term ‖ψj,i‖E . The tensor product

structure of ψj,i leads to

‖ψj,i‖E = ‖ψΩ
j1,i1‖L2(Ω) · ‖ψ

T
j2,i2‖E,(0,T ) + ‖ψΩ

j1,i1‖E,Ω. · ‖ψ
T
j2,i2‖L2((0,T )) (7.5)
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Since we assume that the Finite Element spaces V Ω
j are affine equivalent and we are

dealing with a regular triangulation, classical Finite Element theory, c.f. [15], leads
to

‖ψΩ
j1,i1‖E,Ω ≤ c2−(d−2)·(j1/2), (7.6)

‖ψΩ
j1,i1‖L2(Ω) ≤ c2−dj1/2. (7.7)

For the one-dimensional hierarchical basis a straightforward calculation (see [13]) gives

‖ψT
j2,i2‖E,(0,T ) ≤ c2j2/2, (7.8)

‖ψT
j2,i2‖L2((0,T )) ≤ c2−j2/2. (7.9)

This, together with (7.5), leads to

‖ψj,i‖E ≤ c
(

2−(d−2)·(j1/2) · 2−j2/2 + 2−dj1/2 · 2j2/2
)

(7.10)

≤ c2−dj1/22−j2/2
(

2j1 + 2j2
)

(7.11)

≤ c2−dj1/22−j2/22‖j‖∞ . (7.12)

Now, for u ∈ H2,2,∞
mix (ΩT ), u =

∑

j wj, we obtain

‖wj‖
2
E,ΩT

≤
∑

i

w2
j,i‖ψj,i‖

2
E,ΩT

≤
∑

i

2−4‖j‖1 · ‖u‖2
H2,2,∞

mix
(ΩT )

· ‖ψj,i‖
2
E,ΩT

≤ c2−4‖j‖1+2‖j‖∞ · 2−dj1−j2
∑

i

‖u‖2
H2,2,∞

mix
(ΩT )

.

≤ c2−4‖j‖1+2‖j‖∞‖u‖2
H2,2,∞

mix
(ΩT )

.

Therefore, we can apply Lemma 2.4 which then shows Lemma 3.2.
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