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Abstract— A space-time (ST) trellis encoded scheme with M-
ary continuous phase frequency shift keying with a modulation
index of 1

M
(M-CPFSK) is presented. A ST-M-CPFSK system

model that incorporates the Rimoldi decomposition of CPFSK is
developed. The Rimoldi decomposition separates the non-memory
component of CPFSK from the memory component. The latter
can be represented as a continuous phase encoder (CPE) and
implemented with a ring convolutional encoder. The ST codes
used here are linear ring convolutional codes. This allows the ST
encoder and the CPE to be combined into one encoder, which
can be represented by a single trellis and is easily implemented
using delay elements, modulo-M adders and scalar multipliers.

I. INTRODUCTION

A problem to be considered in designing wireless commu-

nication systems is how to reduce the effects of multipath

fading. One method is to use diversity techniques that pro-

vide replicas of the signal in various forms to the receiver.

Space-time coding (STC) [1], [2] uses spatial and temporal

diversity. It exploits the diversity available across multiple

transmit antennas, to attain good performance, and bandwidth

efficiency, on band-limited channels. The multiple paths from

the transmit antennas to the receive antenna(s) yield diversity

gain, and symbol correlation across the transmit antennas

provides coding gain.

Most STC research is based on systems using linear mod-

ulations. It was shown in [3] and [4] that continuous phase

modulation (CPM) is a good alternative to linear modulation.

ST code design with CPM has been investigated in [5] and [6],

design rules and general code constructions for specific forms

of CPM are derived that guarantee full spatial diversity.

An interleaved, externally encoded, ST-CPM system with an

iterative soft-output receiver was developed in [7]. A reduced

complexity receiver for layered space-time schemes with min-

imum shift keying (MSK)-like modulations is presented in [8].

Continuous phase frequency shift keying (CPFSK) is a

subset of full-response [9] CPM schemes that exhibit the

favorable properties of CPM with practical complexity. We

have restricted the schemes in this paper to M-ary CPFSK with

modulation index h = 1
M

(M-CPFSK). It was shown in [10]

that this modulation index is optimal in terms of energy and

bandwidth efficiency. MSK is a special case of M-CPFSK,

with M equal to two.
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The Rimoldi [11] model of M-CPFSK separates its mem-

ory and non-memory components. A similar decomposi-

tion is described in [12]. The memory component of the

model is implemented using a convolutional encoder over

the ring of integers modulo-M (ZM ) and is called the

continuous phase encoder (CPE) [11]. In this paper a ST-

M-CPFSK system that incorporates the Rimoldi model is

developed. The ST codes are convolutional encoders over the

same ring as the CPE, which allows the ST encoder and the

CPE to be combined into a single trellis encoder.

An introduction to CPM and CPFSK is given in Section II.

Section III details the ST-M-CPFSK system with CPFSK

decomposed using the Rimoldi model. A feedback-free im-

plementation is then described, it has similar structure to the

models developed in [13] and [14]. Examples of ST-M-CPFSK

schemes are given in Section IV and simulation results are

presented in Section V.

II. CONTINUOUS PHASE MODULATION

CPM is a non-linear, constant envelope, modulation scheme.

It is suited to transmission over power and bandwidth limited

channels, such as mobile satellite channels and land mobile

radio [15]. The constant envelope allows the use of low

cost, power efficient, non-linear amplifiers. To maintain phase

continuity, the modulation has memory. This makes it possible

to represent CPM with a trellis.

The general form of a CPM signal [15] is given by

s(t,α) =

√

2E

T
cos (2πfot + φ(t,α) + φo) t ≥ 0 , (1)

where E is the symbol energy, T is the symbol period, fo

is the carrier frequency and φo is the initial phase offset. The

data symbols are αi ∈ {±1,±3 . . .±(M−1)} for M even. The

information carrying phase during the n-th symbol interval is

φ(t,α) = 2πh

n
∑

i=0

αiq(t − iT ), nT ≤ t ≤ (n + 1)T, (2)

where the modulation index, h = k
p

, is chosen to be a ratio of

two relatively prime integers, which creates a trellis structure.

The phase response, q(t), is the integral of the instantaneous

frequency pulse, g(t), and is 0 for t ≤ 0 and 1
2 for t greater

than the frequency pulse duration (LT ). For CPFSK, L = 1
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Fig. 1. Block diagram of ST-M-CPFSK

and g(t) is rectangular such that,

q(t) =







0 t ≤ 0
t

2T
0 < t ≤ T

1
2 t > T

. (3)

A. Ring Convolutional Codes

In [16] convolutional codes over rings [17] are shown to

be natural codes for M -ary phase modulation. Let R = ZM

denote a finite commutative ring with multiplicative identity

1. Let R(D) be the ring of rational functions over R, where

a rational function is the ratio of two polynomials, with the

trailing coefficient of the denominator a unit of R. The trailing

coefficient is the smallest power of D whose coefficient is not

equal to zero.

Every rate l
k

convolutional code over R can be generated by

an l × k encoding matrix, G(D) ∈ R(D)l×k. Convolutional

codes over rings are natural codes for CPFSK [13], and for

more generalized CPM [18].

B. Rimoldi Decomposition

In [11] Rimoldi developed a model of CPM that separates

the memory component (CPE) of CPM from the non-memory

component. The model allows the inherent coding of CPM,

which is due to the memory required to keep the phase

continuous, and the modulation to be considered indepen-

dently. The CPE is modelled as a linear convolutional encoder.

The memoryless component, which follows the CPE is time-

invariant, and is termed the memoryless modulator (MM).

Rimoldi offsets the information carrying phase, φ(t,α) in

(2), by
πh(M−1)t

T
to obtain the tilted phase. When the tilted

phase is reduced modulo-2π it can be represented by a time-

invariant phase trellis, and is called the physical tilted phase
(ψ̃(t,Xn)). The vector Xn is the input to the MM at time

nT . It specifies which of pML physical phase trajectories the

modulator should output in the current symbol interval. The

CPE generates the input, X , to the MM from the modified

input data stream, U . The i-th modified data symbol is

calculated from the i-th original bipolar symbol as

Ui =

(

αi + (M − 1)

2

)

∈ {0, 1 . . . (M−1)}. (4)

For M-CPFSK, the output of the CPE during the n-th

symbol interval is given by

Xn = [X(1)
n X(2)

n ] = [Un Vn], (5)

Vn = (Vn−1 + Un−1)modM . (6)

The CPFSK CPE is then described by the generator matrix,

C(D) =

[

1
D

1 − D

]

. (7)

The output of the CPFSK MM during the n-th symbol interval

is then given by

s(t,Xn) =

√

2E

T
cos(2πf1t + ψ̃(t,Xn)), (8)

ψ̃(t,Xn) =

(

2πh

(

X(2)
n + X(1)

n

t − nT

T

))

mod 2π,

nT ≤ t ≤ (n + 1)T, (9)

where the offset carrier frequency, f1, is defined as

f1 = f0 −
h(M − 1)

2T
. (10)

III. MODEL OF SPACE-TIME CODED M-CPFSK SYSTEM

The proposed ST-M-CPFSK system is shown in Fig. 1. It

has Lt transmit antennas and Lr receive antennas. The input

data symbols are grouped in frames of Nc symbols. Each

frame of input symbols is denoted by e. The input into the ST

encoder during the n-th symbol period is an M -ary symbol

denoted en.

The CPE is a linear convolutional encoder over ZM . There-

fore, it is appropriate to use a ST encoder over the same ring.

The ST encoder, G(D), is a rate 1
Lt

convolutional encoder.

This provides a natural means to obtain Lt output streams.

The output of the ST encoder is given by,

U = eG(D). (11)

The output during the n-th symbol period is the Lt dimen-

sional vector,

Un =
[

U (1),n U (2),n . . . U (Lt),n

]

. (12)

Each element of Un is an M-ary symbol. The output of the

ST encoder is split into Lt streams,

U = [U (1) U (2) . . . U (Lt)] , (13)

where the i-th stream is given by

U (i) =[U(i),0 U(i),1 . . . U(i),Nc−1]
T , i=1, 2, . . . , Lt. (14)
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Fig. 2. Block diagram of ST-M-CPFSK transmitter with CPE precoder

The output from the i-th CPE during the n-th symbol period

is then

X(i),n = U (i),nC(D), (15)

a vector of two M-ary elements. The signal (s(i),n(t,X(i),n))
that is transmitted from antenna i in the n-th symbol interval

is found using (8) and (9).

Each receive antenna receives a faded superposition of the

Lt simultaneously transmitted signals corrupted by additive

white Gaussian noise (AWGN). The fading is assumed to be

flat Rayleigh fading. The random path gain between transmit

antenna i and receive antenna j, mi,j(t), is an independent

complex Gaussian random variable with zero mean and a

variance of 1
2 per dimension. The fading is slow, such that

the Lt × Lr fading coefficients are constant during a frame,

but vary from frame to frame. The AWGN noise component,

nj(t), is an independent zero-mean complex Gaussian random

process, with power spectral density N0. The received signal

on antenna j is then

y(j)(t,X)=

Lt
∑

i=1

mi,js(i)(t,X(i))+nj(t), 0≤ t≤NcT. (16)

The received information is decoded using the Viterbi algo-

rithm [19] and the trellis of the overall encoder. The maximum

likelihood metric for the ST-M-CPFSK system assuming per-

fect channel state information is given [6] by

M(y(t,X)/X̂)

= −

Lr
∑

j=1

∫ NcT

0

∣

∣

∣

∣

∣

y(j)(t,X) −

Lt
∑

i=1

mi,js(i)(t, X̂(i))

∣

∣

∣

∣

∣

2

dt, (17)

where s(i)(t, X̂(i)) is the hypothesized transmitted signal from

transmit antenna i. The metric can be rewritten as a sum over

Nc symbol intervals as

M(y(t,X)/X̂) = −

Nc−1
∑

n=0

Lr
∑

j=1

∫ (n+1)T

nT

∣

∣

∣

∣

∣

y(j),n(t,Xn) −

Lt
∑

i=1

mi,js(i),n(t, X̂(i),n)

∣

∣

∣

∣

∣

2

dt. (18)

A. Code Search Model

A catastrophic encoder can produce an infinite number

of output errors given a finite number of input errors [20].

Therefore, systems with overall catastrophic encoders are to

be avoided. When CPFSK is combined with a catastrophic

external encoder it does not necessarily result in an overall

catastrophic encoder [21]. Similarly, a non-catastrophic en-

coder combined with CPFSK may produce an overall catas-

trophic system. This behavior is due to the external encoder

interacting with feedback from the CPE. The CPE feedback

can be removed using a precoder [20], reducing the search for

ST encoders to those that are non-catastrophic.

The precoder generator matrix [13] for M-CPFSK is given

by

T (D) =
[

1 − D
]

. (19)

This precoder is a scrambler [22], [13]. T (D) is cascaded

with the CPE, to create a feedback-free CPE (FF-CPE) with

generator,

W (D) = T (D)C(D)

=
[

1 − D D
]

.
(20)

Non-feedback ST encoders have been considered in this pa-

per. The concatenation of the ST encoder and the feedback-free

CPE results in a feedback-free space-time continuous phase

encoder (FF-ST-CPE). This will later allow a non-catastrophic

external error control encoder to be concatenated with the

system to produce an overall non-catastrophic encoder. Fig. 2

shows the block diagram of the modified transmitter.

B. Combined Encoder

Each encoder in Fig. 2 is a linear convolutional encoder over

ZM . Therefore, the entire encoding system can be combined

into a single linear convolutional encoder over ZM .

The Lt feedback free CPEs, W (D), are combined into a

rate 1
2 encoder with an Lt × 2Lt generator matrix given by,

ZLt
(D)=

















1−D D 0 0 · · · 0

0 0 1−D D
. . .

...
. . .

. . .
. . .

. . .

0
0 0 0 1−D D

















. (21)
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The input into ZLt
(D) during the n-th symbol period is the

Lt dimensional vector,

Ŭn =
[

Ŭ (1),n Ŭ (2),n . . . Ŭ (Lt),n

]

,

Ŭ (i),n ∈ {0, 1, . . . , (M − 1)}, i = 1, 2, . . . , Lt . (22)

The output is the 2Lt dimensional vector,

Xn=
[

X
(1)
(1),n X

(2)
(1),n X

(1)
(2),n X

(2)
(2),n . . . X

(1)
(Lt),n

X
(2)
(Lt),n

]

. (23)

The ST encoder G(D) can be cascaded with ZLt
(D) to

form a FF-ST-CPE over ZM with generator matrix,

J(D) = G(D)ZLt
(D). (24)

The input into J(D) during the n-th symbol period is the

symbol en and the output is the 2Lt dimensional vector Xn

of (23). The throughput of the overall ST-M-CPFSK system

is one M -ary symbol of information per interval.

IV. ST-M-CPFSK SYSTEM EXAMPLES

Delay diversity [1] is a simple ST code that has been used

with MSK in [4]. It can be employed with any number of

transmit and receive antennas. The delay diversity ST encoder

for a system with Lt transmit antennas has the generator

matrix,

G2Lt−1,2Lt−2,..,1(D) =
[

D(Lt−1) D(Lt−2) · · · D 1
]

. (25)

Delay diversity ST codes always achieve full spatial diversity

in ST-CPM systems [5].

The overall encoder of a delay diversity ST-M-CPFSK

system with two transmit antennas is easily seen to have the

generator matrix,

J(D) = G2,1(D)Z2(D)

=
[

D 1
]

[

1 − D D 0 0
0 0 1 − D D

]

=
[

D − D2 D2 1 − D D
]

.

(26)

An implementation of this is shown in Fig. 3. The encoder is

on the ring of integers modulo-M (ZM ).

Fig. 3. Overall encoder of delay diversity ST-M-CPFSK with Lt = 2

The overall trellis for the 2 transmit antenna, delay diversity

ST system with MSK (2-CPFSK) is shown in Fig. 4. S1 and

S2 are the states of the delay elements in the encoder. The

branches are labelled with the corresponding input and output

symbols for that transition, en

(

X
(1)
(1),nX

(2)
(1),n X

(1)
(2),nX

(2)
(2),n

)

.

There is a similar trellis in [4] used for data detection.

Fig. 4. Trellis diagram of delay diversity ST-2-CPFSK with Lt = 2

The 2 transmit antenna, delay diversity ST-4-CPFSK system

is implemented using the encoder shown in Fig. 3, with

modulo-4 adders. The trellis for the system has 16 states.

Similarly, the 8-CPFSK system is implemented on Z8. For

delay diversity ST-M-CPFSK systems, the constraint length of

the overall encoder is equal to Lt and the number of states in

the overall combined trellis is MLT . Therefore, delay diversity

ST-8-CPFSK with two transmit antennas has a 64 state trellis.

The ST encoder G5,7(D) is rate 1
2 , with generator matrix,

G5,7(D) =
[

D2 + 1 D2 + D + 1
]

. (27)

In this paper, rate 1
Lt

ST encoders are used, therefore G5,7(D)
is used in a two transmit antenna system. The resulting ST-

M-CPFSK generator is given by

J(D) = G5,7(D)Z2(D)

=[−D3+D2−D+1 D3+D −D3+1 D3+D2+D].
(28)

The ST encoder, G5,6,7(D), is rate 1
3 and has the generator

G5,6,7(D) =
[

D2 + 1 D2 + D D2 + D + 1
]

. (29)

It is used in a three transmit antenna system. The combined

ST-M-CPFSK generator is given by

J(D) = G5,6,7(D)Z3(D)

= [−D3+D2−D+1 D3+D −D3+D

D3+D2 −D3+1 D3+D2+D].

(30)

For G5,7(D) and G5,6,7(D), any value of M can be used for

the modulation. The overall encoders are linear over ZM and

both have a constraint length of three. Thus, they have M3

trellis states. These encoders also achieve full diversity [5] in

ST-CPM systems.

V. SIMULATION RESULTS AND DISCUSSION

Fig. 5 shows simulation results of MSK schemes with delay

diversity ST codes G2,1, G4,2,1 and G8,4,2,1 that have 2, 3

and 4 transmit antennas respectively, and 1 receive antenna. An

increased diversity gain corresponding to an increased number
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Fig. 5. Performance results of delay diversity ST codes with MSK, Lr =1

of transmit antennas is observed. The number of states in the

decoding trellis is 4, 8 and 16 for the 2, 3 and 4 transmit

antenna codes respectively. M is equal to 2 for each system,

hence each system’s code rate is 1 bit per symbol.

For linear modulations the design criteria [23] for optimal

ST codes depends on the value of ρLr, where ρ is the rank of

the codeword difference matrix and ρ ≤ Lt. If ρLr ≤ 3, the

rank and the minimum determinant [1] of the matrix are the

important parameters for code design. If ρLr > 3, the trace of

the matrix or equivalently the normalized minimum squared

Euclidean distance (d2
min) should be used as the design criteria.

The performance of a ST-CPM system has a direct analogy

to the performance of ST coded linear modulation [6]. The

results derived for linear modulations can be applied to CPM,

by considering the signal matrix,

S=









∫ NcT

0
|△1(t)|

2dt · · ·
∫ NcT

0
△∗

1(t)△Lt
(t)dt

...
...

...
∫ NcT

0
△1(t)△

∗

Lt
(t)dt · · ·

∫ NcT

0
|△Lt

(t)|2dt









, (31)

where △i(t) = s(t,X) − s(t, X̂) is the continuous time dif-

ference between the transmitted and the decoded signal from

the i-th transmit antenna, instead of the codeword difference

matrix. The rank, determinant and trace or d2
min criteria thus

hold for ST-M-CPFSK systems, when used with (31).

The encoders G5,7 and G2,1 have full spatial diversity and

Lt = 2, hence ρ is equal to 2. Therefore, when Lr ≥ 2,

d2
min dominates the relative performance of these encoders.

Similarly, G5,6,7 and G4,2,1 have full diversity and ρ = Lt =
3. Again, for Lr ≥ 2, d2

min is the dominant factor for the

codes’ performance. For the 4 transmit antenna delay diversity

code G8,4,2,1 ρ is equal to 4, hence for any number of receive

antennas d2
min is the dominant factor for its performance.

The normalized minimum squared Euclidean distance be-

tween space-time encoded M-CPFSK sequences can be calcu-

lated using the combined trellis. The output of the combined

TABLE I

VALUES OF d
2

min
FOR ST-M-CPFSK SYSTEMS

STC M-CPFSK Lt Trellis States Code Rate d
2

min

G2,1 MSK 2 4 1 2.00

G5,7 MSK 2 8 1 5.00

G4,2,1 MSK 3 8 1 2.00

G5,6,7 MSK 3 8 1 4.67

G8,4,2,1 MSK 4 16 1 2.00

G2,1 4-CPFSK 2 16 2 1.45

G5,7 4-CPFSK 2 64 2 3.27

G4,2,1 4-CPFSK 3 64 2 1.45

G5,6,7 4-CPFSK 3 64 2 3.15

G8,4,2,1 4-CPFSK 4 256 2 1.45

G2,1 8-CPFSK 2 64 3 0.60

G5,7 8-CPFSK 2 512 3 1.35

G4,2,1 8-CPFSK 3 512 3 0.60

G5,6,7 8-CPFSK 3 512 3 1.30

Fig. 6. Performance results of Lt = 2, Lr = 1 ST-M-CPFSK systems

trellis is the input to the memoryless modulators, of which

d2
min is a function of for CPFSK [24], [25]. The value of d2

min

for various ST-M-CPFSK systems are given in Table I. For a

given value of M , the delay diversity ST codes have the same

d2
min for 2, 3 and 4 transmit antennas. For a given modulation

and number of transmit antennas, G5,7 and G5,6,7 have larger

d2
min compared to the delay diversity codes. In general, when

the overall system rate is increased through M , d2
min decreases.

Fig. 6 shows simulations of various 2 transmit and 1 receive

antenna ST coded systems. The MSK, 4-CPFSK and 8-CPFSK

systems have code rates of 1, 2 and 3 bits per symbol,

respectively. As the code rate and the modulation alphabet

increases, the performance degrades. The diversity gain, which

can be determined by the slope of the curves is the same for

each system, as was expected. The G5,7 ST codes perform

worse than the delay diversity ST codes for MSK and 4-

CPFSK. The delay diversity 8-CPFSK scheme has similar

performance to that of the corresponding G5,7 system. For

each modulation, the delay diversity code has a value of d2
min

that is less than half the value for the G5,7 code. This shows
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Fig. 7. Performance results of Lt = 2, Lr = 2 ST-M-CPFSK systems

that d2
min is not the dominant parameter determining system

performance for this configuration.

When the number of receive antennas is increased to 2,

d2
min between the encoded sequences becomes the most im-

portant parameter for the comparative performance of these

schemes. This is illustrated in Fig. 7, which shows ST coded

systems with 2 transmit and 2 receive antennas. The G5,7

systems, which have better minimum squared Euclidean dis-

tance, outperform the corresponding delay diversity systems.

The difference in performance is more pronounced with four

receive antennas.

VI. CONCLUSIONS

In this paper we presented a ST-M-CPFSK model that

allows the ST encoder and the CPE to be combined into a

single trellis encoder. The overall encoder is a linear convolu-

tional encoder over the ring of integers modulo-M . The model

is easily extended to incorporate external error correction

encoding.

The combined trellis is used by the receiver in the Viterbi

algorithm. The trellis can also be used to find the minimum

squared Euclidean distance of the ST coded scheme. For

CPFSK d2
min is a function of the input to the memoryless

modulator.

Using the design criterion in [5], [6] codes with full spatial

diversity can be found. For all schemes except those that have

2 or 3 transmit antennas and 1 receive antenna, the best codes

are then found by comparing d2
min. For schemes with 4 or

more receive antennas it is not necessary to find codes with

full spatial diversity.
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