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A space-time channel coding technique is presented for overcoming turbulence-induced fading in an atmospheric optical hetero-
dyne communication system that uses multiple transmit and receive apertures. In particular, a design criterion for minimizing the
pairwise probability of codeword error in a space-time code (STC) is developed from a central limit theorem approximation. This
design criterion maximizes the mean-to-standard-deviation ratio of the received energy difference between codewords. It leads
to STCs that are a subset of the previously reported STCs for Rayleigh channels, namely those created from orthogonal designs.
This approach also extends to other fading channels with independent, zero-mean path gains. Consequently, for large numbers of
transmit and receive antennas, STCs created from orthogonal designs minimize the pairwise codeword error probability for this
larger class of fading channels.
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1. INTRODUCTION

In atmospheric optical communication, lognormal fading
arising from refractive-index turbulence can make the recov-
ery of a transmitted signal extremely difficult at the receiver.
As a result, the receiver must have a redundant replica of the
transmitted signal for reliable communication. Space-time
codes (STCs) provide both spatial and temporal redundancy,
or diversity, by using multiple apertures (antennas) over sev-
eral time-slots.

Tarokh et al., in [1], established space-time code design
criteria for Rayleigh and Ricean fading channels. These de-
sign criteria specify the pairwise properties of codewords
from the STC. In this paper, we derive a similar design cri-
terion for the lognormal fading channel based on a central
limit theorem approximation. Our criterion leads to STCs
created from orthogonal designs, a subset of the previously
reported STCs for Rayleigh channels. Tarokh et al., in [2],
showed that such codes have a decoding algorithm requir-
ing only linear processing at the receiver. We show that these
STCs also maximize the mean-to-standard-deviation ratio of

the received energy difference between codewords, a result
analogous to maximal ratio combining.

Our derivation extends to other fading channels with in-
dependent, zero-mean path gains. In other words, we show
that for large numbers of transmit and receive antennas,
STCs created from orthogonal designs minimize the pairwise
codeword error probability regardless of the individual path-
gain fading distributions.

This paper is structured as follows. Section 2 describes
our channel model and the objective of space-time coding.
Section 3 derives the STC design criterion for lognormal fad-
ing channels based on a central limit theorem approxima-
tion. Section 4 discusses the performance and presents an ex-
ample of these STCs.

2. PROBLEM FORMULATION

Consider a line-of-sight atmospheric optical heterodyne
communication system that uses multiple transmit and
receive apertures, as shown in Figure 1. The space-time
encoder maps a segment of bits from the information
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Figure 1: Block diagram of the transmitter, channel, and receiver.

source to a codeword of the STC. The codeword c, where c =
(c1(1), c1(2), . . . , c1(T), c2(1), . . . , c2(T), . . . , cN(1), . . . , cN(T))
is sent over T nonoverlapping adjacent discrete-time slots
using N transmit apertures. During time slot t, transmit
aperture n sends cn(t), a symbol from a quadrature-
amplitude-modulation (QAM) signal constellation.

A laser beam propagating over a clear-weather, line-of-
sight atmospheric path from transmitter exit optics to re-
ceiver entrance optics experiences amplitude and phase fluc-
tuations due to refractive-index turbulence [3]. A propa-
gation model, established in [4], based on the extended
Huygens-Fresnel principle [5] characterizes this fading as a
complex lognormal process with correlation times on the or-
der of 10−3 to 10−2 seconds. At high data rates, a single fade
can obliterate several message packets.

Because the duration of a fade is usually much longer
than the length of a message packet, we will assume that
the fades are constant during a codeword transmission. We
will model the path gain from transmit aperture n to re-
ceive aperture m as αnm = exp(χnm + jφnm). Here χnm,
φnm are independent Gaussian random variables with mo-
ments var(χnm) = σ2

χ , E(χnm) = −σ2
χ , var(φnm) = σ2

φ � 1,

and E(φnm) = 0. The log-amplitude variance, σ2
χ , typically

lies within the range 0.01 (mild fading) to 0.35 (severe fad-
ing). We also assume that the spacing between elements of
the receiver aperture array is large enough to ensure that
the path gains for different (n,m) values are approximately
independent.

We will assume optical heterodyne reception, for which
the detector output is known to consist of a frequency down-
shifted version of the incident optical field plus an additive
white Gaussian noise [6]. We will usewm(t) to denote this ad-
ditive Gaussian noise for receive aperture m during time slot
t; it is a complex-valued, zero-mean, white Gaussian random
process with variance N0/2 per real dimension.

Combining the fading and additive noise fluctuations,
the signal at receive aperture m ∈ {1, . . . ,M} during time
slot t ∈ {1, . . . , T} is

rm(t) =
N∑
n=1

αnmcn(t) + wm(t). (1)

Given a received sequence {rm(t) : 1 ≤ m ≤ M, 1 ≤ t ≤ T}
and knowledge of the path gains α = {αnm : 1 ≤ n ≤ N, 1 ≤
m ≤ M}, the minimum probability of error receiver chooses

the codeword c that minimizes

M∑
m=1

T∑
t=1

∣∣∣∣∣rm(t) −
N∑
n=1

αnmcn(t)

∣∣∣∣∣
2

. (2)

The exact probability of error is difficult to calculate for
an STC with more than two codewords. An upper bound on
this probability of error comes from the union bound

Pe ≤
∑
c,e

Pr(c −→ e), (3)

where Pr(c → e) is the probability of decoding codeword c
as codeword e in the absence of all other codewords. This
sum is usually dominated by the terms of the closest, or min-
imum distance, codeword pairs. The union bound estimate
of the codeword error probability is the sum of pairwise error
probabilities of the minimum distance codeword pairs

Pe ≈ Kmin Pr(c −→ e)min, (4)

where Kmin is the average number of minimum-distance
codeword neighbors and Pr(c → e)min is the pairwise prob-
ability of erroneously decoding a pair of minimum distance
codewords.

Given knowledge of the path gains and assuming equally-
likely codewords, the pairwise probability of incorrectly de-
coding transmitted codeword c as codeword e is

Pr(c −→ e | α) = Q

(√
d2(c, e)

2N0

)
, (5)

where

d2(c, e) =
M∑
m=1

T∑
t=1

∣∣∣∣∣
N∑
n=1

αnm
(
en(t) − cn(t)

)∣∣∣∣∣
2

(6)

is the distance between codewords at the receiver, and Q(x) is
the area under the tail of the standard normal density func-
tion. Averaging over α, the unconditional probability of in-
correctly decoding c as e is therefore,

Pr(c −→ e) =
∫

Pr(c −→ e | α)pα(α)dα, (7)

where pα(α) is the joint probability density function of the
lognormal path gains.
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Our ultimate objective is to construct a space-time code
that minimizes the exact probability of error, Pe. In this pa-
per, however, we will focus on minimizing Pr(c → e)min in
the union bound estimate of this probability.

3. DESIGN CRITERION

The integral in (7) is very difficult to evaluate analytically be-
cause of the lognormal density function. We will attempt to
simplify its evaluation using a central limit theorem (CLT)
approximation.

Rewriting (6) as

d2(c, e) =
M∑
m=1

N∑
n=1

N∑
k=1

αnmα
∗
kmAnk, (8)

where

Ank =
T∑
t=1

(
en(t) − cn(t)

)(
ek(t) − ck(t)

)∗ (9)

shows that d2(c, e) is the sum of MN2 complex lognormal
random variables.1 Because the coefficients {Ank : 1 ≤ n, k ≤
N} and the central moments are bounded, no single term
dominates the sum. Thus, we will use the central limit theo-
rem to approximate its distribution as a truncated Gaussian
with mean µ and variance σ2 on the interval d2(c, e) ≥ 0. Us-
ing this approximation, we can rewrite (7) as

Pr(c −→ e) ≈
∫∞

0
Q

(√
x

2N0

)
pX |X≥0(x | X ≥ 0)dx, (10)

where

pX(x) =
1√

2πσ2
e−(1/2σ2)(x−µ)2

,

pX |X≥0(x | X ≥ 0) =
pX(x)

Pr(X ≥ 0)

=

(
1/
√

2πσ2
)
e−(1/2σ2)(x−µ)2

1 −Q(µ/σ)
, for x ≥ 0.

(11)

Define A as the matrix with Ank as its nkth element.
This matrix characterizes the relationship between codeword
pairs of the space-time code. Our goal is to derive properties
of A that minimize the CLT approximation to Pr(c → e).
We will do so by expressing (10) as a function of two nor-
malized parameters that measure the fading strength and the
signal-to-noise ratio. We then find bounds on the normal-
ized fading strength based on the design matrix A. We con-
jecture that (10) is unimodal as a function of this fluctua-
tion strength. We then show that for large numbers of trans-
mit and receive apertures, minimizing the normalized fading
strength, or equivalently choosing A to be a scaled identity

1The scaled multiplication of lognormal random variables is also a log-
normal random variable.

matrix, minimizes the CLT approximation to the pairwise
probability of error.

3.1. Normalized parameters

Our first step in minimizing (10) is to rewrite Pr(c → e)
in terms of normalized parameters. The first normalized pa-
rameter measures the strength of the fading. Define the nor-
malized fading strength, η, to be the standard-deviation-to-
mean ratio of the energy difference between the codewords
at the receiver, that is, η = σ/µ. The second normalized pa-
rameter measures the total received signal-to-noise ratio and
is defined as ρ = µ/N0.

With the change of variables z = x/µ, (10) becomes

Pr
(
c −→ e; η2, ρ

) ≈ ∫∞

0
Q

(√
1
2
ρz

)
pZ|Z≥0(z)dz, (12)

where

pZ|Z≥0(z) =

(
1/
√

2πη2
)
e−(1/2η2)(z−1)2

1 −Q(1/η)
, for z ≥ 0, (13)

and Z is a Gaussian random variable with unit mean and
variance η2.

3.2. Mean and variance calculations

To approximate d2(c, e) as Gaussian, we must first determine
its mean µ and variance σ2. Notice that because σ2

φ � 1, we

have that E(αnm) ≈ E(α2
nm) ≈ 0. Also, because E(χnm) = −σ2

χ ,

we find that E(|αnm|2) = 1 and E(|αnm|4) = e4σ2
χ . The mean of

d2(c, e) is then

µ = E


 M∑

m=1

N∑
n=1

N∑
k=1

αnmα
∗
kmAnk


 = M tr(A), (14)

where tr(A) =
∑N

n=1 Ann. We define the energy difference be-
tween transmitted codewords as

Ed = tr(A) =
N∑
n=1

T∑
t=1

∣∣cn(t) − en(t)
∣∣2. (15)

We can then express the total signal-to-noise ratio, ρ, as the
sum of signal-to-noise ratios at each receive aperture, that is,
ρ = MEd/N0 = MSNR, where SNR = Ed/N0 is the signal-to-
noise ratio at each receive aperture.

The second moment of d2(c, e) is

E
(
d4(c, e)

)
=

M∑
m1=1

N∑
n1=1

N∑
k1=1

M∑
m2=1

N∑
n2=1

N∑
k2=1

An1k1An2k2

× E
(
αn1m1α

∗
k1m1

αn2m2α
∗
k2m2

)
.

(16)

To evaluate this summation, we can split it into two cases.
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For m1 
= m2, we have

E
(
αn1m1α

∗
k1m1

αn2m2α
∗
k2m2

)
= E
(
αn1m1α

∗
k1m1

)
E
(
αn2m2α

∗
k2m2

)

=




1 if n1 = k1 and n2 = k2,

0 otherwise.

(17)

When m1 = m2 = m, we find that

E
(
αn1m1α

∗
k1m1

αn2m2α
∗
k2m2

)
= E
(
αn1mα

∗
k1m

αn2mα
∗
k2m

)

=




e4σ2
χ if n1=k1 = n2 = k2,

1 if n1 = k1 
= n2 = k2,

1 if n2 = k1 
= n1 = k2,

0 otherwise.
(18)

From these results it follows that the second moment of
d2(c, e) is

E
(
d4(c, e)

)

=
M∑

m1=1


e4σ2

χ

N∑
n=1

A2
nn +

N∑
n=1

N∑
k=1
k 
=n

AnnAkk

+
N∑
n=1

N∑
k=1
k 
=n

AknAnk +
M∑

m2=1
m2 
=m1

N∑
n=1

N∑
k=1

AnnAkk




= M


(e4σ2

χ − 2
) N∑
n=1

A2
nn +

N∑
n=1

N∑
k=1

∣∣Ank

∣∣2 + M
(

tr(A)
)2


,

(19)

whence

σ2 = var
(
d2(c, e)

)
= M


(e4σ2

χ − 1
) N∑
n=1

A2
nn + 2

N∑
n=1

n−1∑
k=1

∣∣Ank

∣∣2

.

(20)

Notice that we have assumed that the path gains are log-
normally distributed, but we have only used the fact that
they are independent and identically distributed with zero
mean, unit variance, and finite fourth moment. Therefore,
our method and results extend to all fading distributions that
satisfy these weaker conditions.

3.3. Bounds on the normalized fading fluctuation

The µ and σ that we have found are tied to the design matrix
A by (14) and (20), respectively. We will now derive bounds
on their ratio η = σ/µ expressed in terms of A.

A lower bound, obtained via the Cauchy-Schwarz in-

equality, is

η2 =
M
((

e4σ2
χ − 1

)∑N
n=1 A

2
nn + 2

∑N
n=1
∑n−1

k=1

∣∣Ank

∣∣2)
M2
(∑N

n=1 Ann

)2

≥
(
e4σ2

χ − 1
)∑N

n=1 A
2
nn + 2

∑N
n=1
∑n−1

k=1

∣∣Ank

∣∣2
MN

∑N
n=1 A

2
nn

.

(21)

Equality holds in (21) when Ann = β, n = 1, . . . , N , for some
positive real number β. Furthermore, setting Ank = 0 for n 
=
k minimizes the numerator in (21). Thus we get the bound

η2 ≥ e4σ2
χ − 1
MN

, (22)

with equality when A = βI , where I is the N × N identity
matrix. Also, Ann =

∑T
t=1 |cn(t) − en(t)|2 = β, n = 1, . . . , N

implies that β = Ed/N . Orthogonal designs [2] provide a
method to construct STCs that satisfy the design criterion
A = (Ed/N)I and provide easy decoding at the receiver.
Therefore, STCs created from orthogonal designs maximize
the mean-to-standard-deviation ratio of the received energy
difference between codewords.

We start the upper bound derivation by noticing that A is
positive semi-definite [7] because it has an N ×T square-root
matrix B with ntth element cn(t) − en(t) such that A = BB†

[1]. Let λ1, . . . , λN denote the nonnegative eigenvalues of A.
For e4σ2

χ − 2 ≥ 0, an upper bound on η is found as follows:

η2 =

(
e4σ2

χ − 2
)∑N

n=1 A
2
nn +

∑N
n=1
∑N

k=1

∣∣Ank

∣∣2
M
(∑N

n=1 Ann

)2

≤
(
e4σ2

χ − 2
)∑N

n=1
∑N

k=1

∣∣Ank

∣∣2 +
∑N

n=1
∑N

k=1

∣∣Ank

∣∣2
M
(∑N

n=1 Ann

)2
,

(23)

with equality when A is a diagonal matrix. Using tr(A2) =∑N
n=1
∑N

k=1 |Ank |2 =
∑N

n=1 λ
2
n, this upper bound becomes

η2 ≤ e4σ2
χ − 1
M

N∑
n=1

(
λn∑N
k=1 λk

)2

≤ e4σ2
χ − 1
M

, (24)

with equality when A is a diagonal matrix of rank one. The
last inequality follows from

N∑
n=1

(
λn∑N
k=1 λk

)2

≤
N∑
n=1

λn∑N
k=1 λk

= 1, (25)

which is met with equality when exactly one of the eigenval-
ues is nonzero.

For e4σ2
χ − 2 < 0, an upper bound on η is found by sup-

pressing the first term in σ2:

η2 ≤
∑N

n=1
∑N

k=1

∣∣Ank

∣∣2
M
(∑N

n=1 Ann

)2
=

1
M

N∑
n=1

(
λn∑N
k=1 λk

)2

≤ 1
M

. (26)
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Equality in (26) requiresA to be rank one with all its diagonal
terms equal to zero, an impossibility if A is positive semi-
definite.

The bounds on η are then

e4σ2
χ − 1
MN

≤ η2 ≤ max
{

1, e4σ2
χ − 1

}
M

. (27)

The lower bound is achieved when A = (Ed/N)I . If e4σ2
χ −

1 ≥ 1, the upper bound is achieved when A has only one
nonzero diagonal element. The upper bound is unachieved
when e4σ2

χ − 1 < 1.

3.4. Minimizing the probability of codeword error

To our knowledge, the codeword probability of error in (12)
does not have a closed-form solution. In this section, we will
analyze its asymptotic behavior, and conjecture that it is uni-
modal as a function of η2, that is, it has only one extremum,
a maximum, for a fixed ρ.

First, we will fix a value for η and examine the behavior
of Pr(c → e; η2, ρ) as we vary ρ. We saw in Section 3.3 that
η is closely tied to the STC design matrix; therefore, fixing a
value of η is in essence fixing a design matrix.

For small values of ρ, the probability of codeword error
approaches one-half, that is,

lim
ρ→0

Pr
(
c −→ e; η2, ρ

)
=

1
2
. (28)

As ρ increases without bound, Pr(c → e; η2, ρ) decays as 1/ρ,
namely,

Pr
(
c −→ e; η2, large ρ

)
≈
∫∞

0
Q

(√
1
2
ρz

)
pZ|Z≥0(0)dz

=
e−1/2η2√

2πη2
(
1 −Q(1/η)

)
∫∞

0
Q

(√
1
2
ρz

)
dz

=


 e−1/2η2√

2πη2
(
1 −Q(1/η)

)

1

ρ
,

(29)

where
∫∞

0 Q(
√

(1/2)ρz)dz = 1/ρ using integration by parts.
We will now fix the total receiver signal-to-noise ratio,

ρ, and determine the probability of codeword error for dif-
ferent values of normalized fading fluctuation, η, or equiv-
alently, for different design matrices. As η approaches zero,
the Gaussian probability density function in (12) becomes
sharply peaked around the value z = 1. This sampling-like
behavior results in

lim
η→0

Pr
(
c −→ e; η2, ρ

)
= Q

(√
ρ

2

)
. (30)

Furthermore, for any fixed value of ρ,

lim
η→∞

Pr
(
c −→ e; η2, ρ

)
= 0, (31)
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Figure 2: The probability of codeword error, Pr(c → e; η2, ρ), as a
function of η2 for ρ = 8, 13, 15, 18 dB.

because the Gaussian density approaches zero for large values
of η.

The behavior of (12) for intermediate values of η is more
difficult to evaluate analytically. We will, therefore, make the
following conjecture as supported by numerical evaluations
of Pr(c → e; η2, ρ).

Conjecture 1. For 0 < η < ∞, Pr(c → e; η2, ρ) has only one
extremum, a maximum, for a given value of ρ. Plots of (12)
for different values of ρ are shown in Figure 2 to support this
conjecture.

Assuming that Pr(c → e; η2, ρ) is unimodal in η2, its min-
imum must occur on the boundary of the allowable range for
η in (27). In other words, if

Pr
(
c −→ e;

e4σ2
χ − 1
MN

,MSNR
)

< Pr

(
c −→ e;

max
{

1, e4σ2
χ − 1

}
M

,MSNR

)
,

(32)

then the optimal design criterion, in terms of minimizing the
pairwise probability of codeword error, is A = (Ed/N)I , be-
cause this design matrix meets the lower bound of η with
equality. When (32) does not hold, and e4σ2

χ − 1 ≥ 1, then the
optimal design criterion is to choose A to be all zero except
for a single nonzero diagonal element. This design matrix,
however, violates the CLT assumption that no single term
dominates the summation in (8). Figure 3 shows the bounds
on η and the probability of codeword error curve.

In the central limit theorem regime, the values of M
and N must be large in order for d2(c, e) to be approxi-
mately Gaussian. We have also observed through numerical
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Figure 3: The probability of codeword error, Pr(c → e; η2, ρ), as a
function of η2 for ρ = 18 dB, with M = N = 4 and σ2

χ = 0.1. The
smallest achievable error probability occurs when η2 = (e4σ2

χ − 1)/
MN , or equivalently, when A = (Ed/N)I .
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Figure 4: The smallest values of M and N such that (32) holds in
mild fading (σ2

χ = 0.01).

evaluation that the value of η that maximizes Pr(c → e; η2, ρ)
increases with increasing ρ. As a result, increasing N and M
cause the bounds on η given in (27) to become tighter, and
the mode of Pr(c → e; η2, ρ) to increase until (32) eventu-
ally holds. These threshold values of M and N are plotted
in Figures 4, 5, and 6 for different values of SNR and fading
environments. For a given SNR, these plots show the small-
est number of transmit and receive apertures required for
A = (Ed/N)I to be the optimal design matrix. From these
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Figure 6: The smallest values of M and N such that (32) holds in
severe fading (σ2
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plots, we conclude that in the central limit theorem regime
(large values of M and N), A = (Ed/N)I is the optimal design
matrix.

4. PERFORMANCE

In this section, we address the validity of the central limit the-
orem approximation and the performance of STCs on log-
normal channels.

4.1. Performance bounds for orthogonal design STCs

We will now derive the pairwise probability of decoding
codeword c as codeword e assuming that the space-time code
satisfies the design criterion A = (Ed/N)I , but without using
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the central limit theorem approximation. Under this design
criterion, d2(c, e) becomes

d2(c, e) =
M∑
m=1

N∑
n=1

Ed
N

∣∣αnm∣∣2 =
Ed
N

MN∑
k=1

e2χk , (33)

where χk, k = 1, . . . ,MN , are independent, identically dis-
tributed Gaussian random variables with var(χk) = σ2

χ and
E(χk) = −σ2

χ . Define χ = (χ1, . . . , χMN ). The probability of
decoding c as e is then

Pr(c −→ e) =
∫∞

−∞
Pr(c −→ e | χ)pχ(χ)dχ, (34)

where pχ(χ) is the multivariate Gaussian probability den-
sity function for χ. Using the bound Q(x) ≤ exp(−x2/2)/2
gives

Pr(c −→ e)

≤
∫∞

−∞

1
2

1(
2πσ2

χ
)MN/2

× exp

(
− 1
N

Ed
4N0

MN∑
k=1

e2χk− 1

2σ2
χ

MN∑
k=1

(
χk + σ2

χ

)2

)
dχ

=
1
2


∫∞

−∞

1√
2πσ2

χ

exp

(
− 1
N

Ed
4N0

e2x

)

× exp

(
− 1

2σ2
χ

(
x + σ2

χ

)2

)
dx




MN

=
1
2

[
Fr

(
1
N

Ed
4N0

, 0; σχ

)]MN

=
1
2

[
Fr

(
SNR
4N

, 0; σχ

)]MN

,

(35)

where Fr(a, 0; b) is the lognormal density frustration func-
tion given by

Fr(a,0;b)=
∫∞

−∞

1√
2πb2

exp
(− ae2x) exp

(
− 1

2b2

(
x + b2)2

)
dx.

(36)

Using the bound Q(x) ≥ exp(−x2)/4, gives a similar lower
bound

Pr(c −→ e) ≥ 1
4

[
Fr

(
SNR
2N

, 0; σχ

)]MN

. (37)

A closed form evaluation of the frustration function
does not exist; therefore, we use a saddle-point integration
method developed by Halme in [8] to numerically evalu-
ate it. For the design criterion A = (Ed/N)I , Figure 7 com-
pares the probability of codeword error in (34), the central
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Figure 7: Comparison of pairwise codeword probability of error
for A = (Ed/N)I STCs with and without the central limit theorem
approximation; MN = 16, σ2

χ = 0.1.

limit theorem approximation probability of codeword error
in (12), its asymptotic behavior in (29), and the frustration
function bounds in (35) and (37). This figure shows that for
small values of SNR, or typical values of error probability,
the CLT approximation seems valid for MN = 16 in mod-
erate fading. Asymptotically, however, the CLT probability of
codeword error decays slower than the actual error proba-
bility. From (29), we know that the CLT probability of code-
word error decays as 1/SNR, whereas the frustration function
bounds suggest the actual curve decays faster. This discrep-
ancy arises from the dissimilarities in the tails of the Gaus-
sian distribution and the actual distribution as emphasized
by large values of SNR.

To measure the validity of the central limit theorem ap-
proximation, we examined the difference in SNR between the
error probability expression in (34) and its approximation in
(12) at a given error probability. For example, in Figure 7 for
an error probability of Pr(c → e) = 10−6, the CLT approx-
imation requires 0.5 dB more SNR than the actual lognor-
mal curve. Figure 8 shows this spurious SNR for different
aperture products (MN) in different fading environments
(σ2

χ = 0.01, 0.1, 0.35). From Figure 8, we see that the CLT
approximation is accurate to fractions of a dB in mild fad-
ing environments (σ2

χ = 0.01) for all values of MN ≥ 2. A
larger number of apertures is required for more severe fading
(roughly, MN > 16 for σ2

χ = 0.1 and MN > 64 for σ2
χ = 0.35).

4.2. A lower bound on the probability
of codeword error

In Section 4.1, we derived lower and upper bounds on the
probability of incorrectly decoding codeword c as codeword
e under the design criterion A = (Ed/N)I without using the
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central limit theorem approximation for d2(c, e). In this sec-
tion, we derive a lower bound on this probability of error
without using the central limit theorem approximation that
is valid for an arbitrary design matrix A. Using the Cauchy-
Schwarz inequality on (6) gives

d2(c, e) ≤
M∑
m=1

T∑
t=1

N∑
n=1

∣∣αnm∣∣2 N∑
k=1

∣∣ek(t) − ck(t)
∣∣2

=
M∑
m=1

N∑
n=1

Ed
∣∣αnm∣∣2

= Ed
MN∑
k=1

e2χk ,

(38)

where we have renumbered the sum of the MN indepen-
dent lognormal random variables as in Section 4.1. Follow-
ing a similar derivation to that in Section 4.1, a lower bound
on the probability of error for any design matrix is

Pr(c −→ e) ≥ 1
4

[
Fr

(
SNR

2
, 0; σχ

)]MN

. (39)

For a large number of transmit apertures, N , this bound can
be quite loose, confer the orthogonal design bound in (37).

4.3. Infinite transmit diversity performance limit

If we fix the energy difference between codewords, Ed, and
have enough receive apertures, M, such that (32) holds, then
A = (Ed/N)I minimizes the pairwise error probability, and
this design matrix gives η2 = (exp(4σ2

χ ) − 1)/MN . As we in-
crease the number of transmit apertures, N , we see that η ap-
proaches zero, and hence (30) provides a performance limit

for infinite transmit diversity, that is,

lim
N→∞

Pr
(
c −→ e;

e4σ2
χ − 1
MN

,MSNR
)

= Q

(√
MSNR

2

)
. (40)

These limits appear as circles in Figure 2 for MSNR = 8,
13, 15, 18 dB.

One can view this limit as the error probability of a one
transmit, M receive aperture system with no fading. In other
words, the large number of transmit apertures mitigates the
fading, and the only uncertainty in the decision process arises
from the additive white Gaussian noise.

4.4. An orthogonal design example:
the Alamouti scheme

Alamouti in [9] proposed a simple transmit diversity tech-
nique using two transmit apertures (N = 2), two time-slots
(T = 2), M receive apertures, and a complex QAM signal
� constellation of size 2b. During the first time-slot, 2b bits
arrive, determining two signal constellation points, s1 and s2

that are transmitted simultaneously on the first and second
apertures, respectively. During the second time-slot, the first
aperture transmits −s∗2, while the second sends s∗1. In other
words, this STC consists of all the codewords of the form
c = (c1(1), c1(2), c2(1), c2(2)) = (s1,−s∗2, s2, s∗1) where s1 and
s2 range over all possible signal constellation points. Tarokh
in [2] showed that the Alamouti scheme is an example of a
STC created from a complex orthogonal design.

The design matrix of this STC for two codewords c =
(c1,−c∗2, c2, c∗1) and e = (e1,−e∗2, e2, e∗1) satisfies our design cri-
teria A = (Ed/2)I , where Ed = 2|c1 − e1|2 + 2|c2 − e2|2 is the en-
ergy difference between the codewords. The performance of
this code for pairs of codewords is shown in Figure 7 for eight
receive apertures (M = 8) in moderate fading (σ2

χ = 0.1).
Orthogonal designs have the property that the sym-

bol sequences on each aperture are orthogonal, that is,∑T
t=1 cn(t)c∗k(t) = 0 for n 
= k. As a result, space-time

codes created from orthogonal designs, such as the Alamouti
scheme, have a simple decoding algorithm. Rewriting the de-
cision metric in (2) as

ĉ = argmin
c∈�NT

M∑
m=1

T∑
t=1


∣∣rm(t)

∣∣2 +
N∑
n=1

N∑
k=1

αnmα
∗
kmcn(t)c∗k(t)

− 2 Re

{
r∗m(t)

N∑
n=1

αnmcn(t)

}

= argmin
c∈�NT

N∑
n=1

T∑
t=1


( M∑

m=1

∣∣αnm∣∣2
)∣∣cn(t)

∣∣2

− 2 Re

{(
M∑
m=1

r∗m(t)αnm

)
cn(t)

}
(41)

shows that joint detection of (c1(1), . . . , cN (T)) is equivalent
to decoding each individual symbol, cn(t), separately. The
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structure of the Alamouti STC allows for further simplifica-
tion, and the decision rules become

ŝ1 = argmin
s∈�


( − 1 +

2∑
n=1

M∑
m=1

∣∣αnm∣∣2
)
|s|2

+

∣∣∣∣∣s −
M∑
m=1

(
rm(1)α∗1m + r∗m(2)α2m

)∣∣∣∣∣
2

,

ŝ2 = argmin
s∈�


( − 1 +

2∑
n=1

M∑
m=1

∣∣αnm∣∣2
)
|s|2

+

∣∣∣∣∣s −
M∑
m=1

(
rm(1)α∗2m + r∗m(2)α1m

)∣∣∣∣∣
2

.

(42)

5. CONCLUSIONS

In this paper, we presented a framework for developing
space-time codes for an atmospheric optical heterodyne
communication system. Through a central limit theorem ap-
proximation, we found that the design criterion A = (Ed/N)I
minimized the pairwise probability of codeword error for
large numbers of apertures. Although developed for lognor-
mal fading, this method generalizes to other fading distribu-
tions in which the fades are zero-mean and independent.

Our design criterion also satisfies the rank and determi-
nant criteria presented in [1] for Rayleigh channels. Further-
more, orthogonal designs provide a method of constructing
STCs that satisfy our criterion, and require only linear pro-
cessing at the receiver [2].
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