Space-Time Coding and Space-Time Channel Modelling for Wireless Communications

Tharaka Anuradha Lamahewa

B.E. (Hons 1)(University of Adelaide, South Australia)

November 2006

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

Department of Information Engineering Research School of Information Sciences and Engineering The Australian National University

Declaration

The contents of this thesis are the results of original research and have not been submitted for a higher degree to any other university or institution.

Much of the work in this thesis has been published or has been submitted for publication as journal papers or conference proceedings. These papers are:

- Tharaka A. Lamahewa, Marvin K. Simon, Thushara D. Abhayapala, and Rodney A. Kennedy, "Performance analysis of space-time codes in realistic propagation environments: A moment generating function-based approach, *International Journal on Communications and Networks*, vol. 7, no. 4, pp. 450–461, Dec. 2005.
- Tharaka A. Lamahewa, Marvin K. Simon, Thushara D. Abhayapala, and Rodney A. Kennedy, "Exact pairwise error probability analysis of space-time codes in spatially correlated fading channels," *Special issue of the Journal* of Telecommunications and Information Technology, vol. 1/2006, pp. 60–68, Apr. 2006.
- Tharaka A. Lamahewa, Rodney A. Kennedy, Thushara D. Abhayapala, and Van K. Nguyen, "Spatial precoder design for space-time coded MIMO systems: Based on fixed parameters of MIMO channels," in *Wireless Personal Communications*, DOI: 10.1007/s11277-007-9281-4 (to appear in 2007).
- 4. Tharaka A. Lamahewa, Thushara D. Abhayapala, Rodney A. Kennedy, Terence Betlehem, and Jaunty T. Y. Ho, "Space-time channel modelling in general scattering environments," submitted to *IEEE Trans. Signal Processing*.
- 5. Tharaka A. Lamahewa, Tony S. Pollock, and Thushara D. Abhayapala, "Achieving maximum capacity from spatially constrained dense MIMO systems," to be submitted to *IEEE Journal on Selected Areas in Communications*.

- 6. Tharaka A. Lamahewa, Thushara D. Abhayapala, and Rodney A. Kennedy, "Fading resistance of orthogonal space-time block codes under spatial correlation," in *IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC*, Lisbon, Portugal, July 2004, pp 278–282.
- Tharaka A. Lamahewa, Thushara D. Abhayapala, and Rodney A. Kennedy, "Effect of transmit antenna configuration on rank-determinant criteria of space-time trellis codes," in *IEEE International Symposium on Spread Spec*trum Techniques and Applications, ISSSTA 2004, Sydney, Australia, Sept. 2004, pp. 750 - 754.
- Tharaka A. Lamahewa, Marvin K. Simon, Thushara D. Abhayapala, and Rodney A. Kennedy, "Exact pairwise error probability analysis of space-time codes in realistic propagation environments," in Workshop on the Internet, Telecommunications, and Signal Processing, WITSP-2004, Adelaide, Australia, Dec. 2004, pp 170–175.
- Tharaka A. Lamahewa, Rodney A. Kennedy, and Thushara D. Abhayapala, "Upper-bound for the pairwise error probability of space-time codes in physical channel scenarios, in *Proc. 5th Australian Communications Theory Work*shop, Brisbane, Australia, Feb. 2005, pp. 26 - 32.
- Tharaka A. Lamahewa, Rodney A. Kennedy, and Thushara D. Abhayapala, "Spatial precoder design using fixed parameters of MIMO channels," in *Proc.* 11th Asia-Pacific Conference on Communications APCC 2005, Perth, Western Australia, Oct. 2005, pp. 82–86.
- Tharaka A. Lamahewa, Tony S. Pollock, and Thushara D. Abhayapala, "Achieving Maximum Capacity from a Fixed Region of Space," in Workshop on the Internet, Telecommunications, and Signal Processing, WITSP-2005, Noosa Heads, Brisbane, Australia, Dec. 2005, pp. 38–43.
- Tharaka A. Lamahewa, Rodney A. Kennedy, Thushara D. Abhayapala, and Terence Betlehem, MIMO channel correlation in general scattering environments," in *Proc. 6th Australian Communication Theory Workshop*, Perth, Western Australia, Feb. 2006, pp. 91–96.
- Terence Betlehem, Thushara D. Abhayapala, and Tharaka A. Lamahewa, "Space-time MIMO channel modelling using angular power distributions," in *Australian Communication Theory Workshop*, Perth, Western Australia, Feb. 2006, pp. 163–168.

- Tharaka A. Lamahewa, Van K. Nguyen, and Thushara D. Abhayapala, "Exact pairwise error probability of differential space-time codes in spatially correlated channels," in *IEEE International Communications Conference, ICC* 2006, Istanbul, Turkey, June 2006, Vol. 10, pp 4853–4858.
- Tharaka A. Lamahewa, Thushara D. Abhayapala, Rodney A. Kennedy, and J. T. Y. Ho, "Space-time cross correlation and space-frequency cross spectrum in non-isotropic scattering environments," in *Proc. IEEE Int. Conf. Acoust., Speech Signal Processing*, Toulouse, France, May 2006, vol. IV, pp. IV–609– 612.
- 16. Tharaka A. Lamahewa, Van K. Nguyen, Thushara D. Abhayapala, and Rodney A. Kennedy, "Spatial precoder design for differential space-time coded systems: Based on fixed parameters of MIMO channels," in *IEEE Workshop* on Signal Processing Advances in Wireless Communications, SPAWC'06, France, July 2006.
- Terence Betlehem, Tharaka A. Lamahewa, and Thushara D. Abhayapala, "Dependence of MIMO system performance on the joint properties of angular power," in *IEEE International Symposium on Information Theory*, *ISIT* 2006, Seattle USA, July 2006, pp. 2849–2853.
- Rauf Iqbal, Thushara D. Abhayapala and Tharaka A. Lamahewa, "Information Rates of Time-Varying Rayleigh Fading Channels in Non-Isotropic Scattering Environments," in Workshop on the Internet, Telecommunications, and Signal Processing, WITSP-2006, Hobart, Australia, Dec. 2006 (ISBN: 0 9756934 2 5).

The research work presented in this thesis has been performed jointly with A/Prof. Thushara D. Abhayapala (The Australian National University), Prof. Rodney A. Kennedy (The Australian National University), Dr. Marvin K. Simon (NASA Jet Propulsion Laboratory, USA), Dr. Tony S. Pollock (National ICT Australia), Dr. Van K. Nguyen (Deakin University, Australia), Dr. Terence Betlehem (The Australian National University) and Dr. Jaunty Ho (Monash University, Australia). The substantial majority of this work was my own. Tharaka A. Lamahewa Research School of Information Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia.

Acknowledgements

The work presented in this thesis would not have been possible without the support of a number of individuals and organizations and they are gratefully acknowledged below:

- My supervisors A/Prof. Thushara D. Abhayapala and Prof. Rodney A. Kennedy for their guidance, insight, support and encouragement throughout my PhD studies.
- Drs Marvin K. Simon (Jet Propulsion Laboratory, NASA), Tony S. Pollock (National ICT Australia), Terence Betlehem (The Australian National University), Van K. Nguyen (Deakin University) and Jaunty Ho (Monash University) for their collaboration on some of the work presented in this thesis. Also, Drs Leif Hanlen (National ICT Australia) Dhammika Jayalath (Australian National University) and David Smith (The National ICT Australia) for many fruitful discussions during my PhD studies.
- Everyone in the former Telecommunications Engineering group and NICTA Wireless Signal Processing (WSP) Group for their efforts in providing a friendly research environment. Special thanks to Ms Lesley Goldburg, the department administrator for all her assistance.
- The Australian Research Council (Discovery Grant DP0343804) and The Australian National University for the PhD scholarship. Special thanks to Thushara and Rod for their help in arranging my scholarship.
- My parents and siblings for everything they have provided for me in terms of education, guidance, encouragement and financial support.
- My wife Sankha and two sons Thimitha and Savitha for their understanding, support, encouragement and patience through out my PhD studies. Also, special thanks to my wife's parents for their continual support and encouragement.

Abstract

In this thesis we investigate the effects of the physical constraints such as antenna aperture size, antenna geometry and non-isotropic scattering distribution parameters (angle of arrival/departure and angular spread) on the performance of coherent and non-coherent space-time coded wireless communication systems. First, we derive analytical expressions for the exact pairwise error probability (PEP) and PEP upper-bound of coherent and non-coherent space-time coded systems operating over spatially correlated fading channels using a moment-generating function-based approach. These analytical expressions account for antenna spacing, antenna geometries and scattering distribution models. Using these new PEP expressions, the degree of the effect of antenna spacing, antenna geometry and angular spread is quantified on the diversity advantage (robustness) given by a space-time code. It is shown that the number of antennas that can be employed in a fixed antenna aperture without diminishing the diversity advantage of a space-time code is determined by the size of the antenna aperture, antenna geometry and the richness of the scattering environment.

In realistic channel environments the performance of space-time coded multipleinput multiple output (MIMO) systems is significantly reduced due to non-ideal antenna placement and non-isotropic scattering. In this thesis, by exploiting the spatial dimension of a MIMO channel we introduce the novel use of linear spatial precoding (or power-loading) based on fixed and known parameters of MIMO channels to ameliorate the effects of non-ideal antenna placement on the performance of coherent and non-coherent space-time codes. The spatial precoder virtually arranges the antennas into an optimal configuration so that the spatial correlation between all antenna elements is minimum. With this design, the precoder is fixed for fixed antenna placement and the transmitter does not require any feedback of channel state information (partial or full) from the receiver. We also derive precoding schemes to exploit non-isotropic scattering distribution parameters of the scattering channel to improve the performance of space-time codes applied on MIMO systems in non-isotropic scattering environments. However, these schemes require the receiver to estimate the non-isotropic parameters and feed them back to the transmitter.

The idea of precoding based on fixed parameters of MIMO channels is extended to maximize the capacity of spatially constrained dense antenna arrays. It is shown that the theoretical maximum capacity available from a fixed region of space can be achieved by power loading based on previously unutilized channel state information contained in the antenna locations. We analyzed the correlation between different modal orders generated at the transmitter region due to spatially constrained antenna arrays in non-isotropic scattering environments, and showed that adjacent modes contribute to higher correlation at the transmitter region. Based on this result, a power loading scheme is proposed which reduces the effects of correlation between adjacent modes at the transmitter region by nulling power onto adjacent transmit modes.

Furthermore, in this thesis a general space-time channel model for down-link transmission in a mobile multiple antenna communication system is developed. The model incorporates deterministic quantities such as physical antenna positions and the motion of the mobile unit (velocity and the direction), and random quantities to capture random scattering environment modeled using a bi-angular power distribution and, in the simplest case, the covariance between transmit and receive angles which captures statistical interdependency. The Kronecker model is shown to be a special case when the power distribution is separable and is shown to overestimate MIMO system performance whenever there is more than one scattering cluster. Expressions for space-time cross correlations and space-frequency cross spectra are given for a number of scattering distributions using Gaussian and Morgenstern's family of multivariate distributions. These new expressions extend the classical Jake's and Clarke's correlation models to general non-isotropic scattering environments.

List of Acronyms

AOD	angle of departure
AOA	angle of arrival
AWGN	additive white Gaussian noise
BER	bit-error rate
BPSK	binary phase shift keying
CSI	channel state information
MGF	moment generating function
MISO	multiple-input single-output
MIMO	multiple-input multiple-output
OFDM	orthogonal frequency-division multiplexing
PEP	pair-wise error probability
PSD	power spectral density
QPSK	quadrature phase shift keying
SIMO	single-input multiple-output
SISO	single-input single-output
SNR	signal to noise ratio
STBC	space-time block code
STTC	space-time trellis code
UCA	uniform circular array
ULA	uniform linear array
UGA	uniform grid array

Notations and Symbols

$oldsymbol{A}^{\dagger}$	complex conjugate transpose of matrix \boldsymbol{A}
$oldsymbol{a}^\dagger$	complex conjugate transpose of vector \boldsymbol{a}
$oldsymbol{A}^T$	transpose of matrix \boldsymbol{A}
$oldsymbol{a}^T$	transpose of vector \boldsymbol{a}
A^*	complex conjugate of matrix \boldsymbol{A}
$oldsymbol{a}^*$	complex conjugate of vector \boldsymbol{a}
$\overline{f(\cdot)}$	complex conjugate of scalar or function $f(\cdot)$
$\parallel a \parallel$	euclidian norm of vector \boldsymbol{a}
$\parallel oldsymbol{A} \parallel^2$	squared norm of matrix \boldsymbol{A}
A	determinant of matrix \boldsymbol{A}
$\mathrm{tr}\{oldsymbol{A}\}$	trace of matrix \boldsymbol{A}
$\operatorname{vec}(\boldsymbol{A})$	matrix vectorization operator: stacks the columns of \boldsymbol{A}
\otimes	matrix Kronecker product
$\delta(\cdot)$	Dirac delta function
[.]	ceiling operator
$\mathcal{E}\left\{ \cdot ight\}$	mathematical expectation
$oldsymbol{I}_n$	$n \times n$ identity matrix
1	vector of all ones
\mathbb{S}^1	unit circle
\mathbb{S}^2	unit sphere
Q(x)	Gaussian <i>Q</i> -function: $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-u^2/2} du$
	v

Contents

D	eclara	ation	i
A	cknov	wledgements	\mathbf{v}
A	bstra	let	vii
Li	st of	Acronyms	ix
N	otati	ons and Symbols	xi
Li	st of	Figures	xix
Li	st of	Tables xx	xix
1	Intr	roduction	1
	1.1	Motivation and Background	1
		1.1.1 Mutual Information and Capacity of MIMO Channels	3
		1.1.2 Space-Time Coding over Multi Antenna Wireless Channels .	9
		1.1.3 Space-Time Channel Modelling	15
	1.2	Questions to be Answered	19
	1.3	Content and Contribution of Thesis	19
2	Ort	hogonal Space-Time Block Codes: Performance Analysis	23
	2.1	Introduction	23
	2.2	Spatial Channel Model	24
	2.3	Transmitter and Receiver Spatial Correlation for General Distribu-	
		tions of Far-field Scatterers	26
		2.3.1 Two Dimensional Scattering Environment	29
		2.3.2 Non-isotropic Scattering Environments and Closed-Form Scat-	
		tering Environment Coefficients	31
	2.4	Simulation Results: Alamouti Scheme	35

		2.4.1	Generation of Correlated Channel Gains	36
		2.4.2	Effects of Antenna Separation	36
		2.4.3	Effects of Non-isotropic Scattering	38
		2.4.4	A Rule of Thumb: Alamouti Scheme	40
		2.4.5	Effects of Scattering Distributions	41
	2.5	Analys	sis of Orthogonal STBC: A Modal Approach	43
	2.6	Summ	ary and Contributions	46
3	Perf	forman	ce Limits of Space-Time Codes in Physical Channels	49
	3.1	Introd	uction \ldots	49
	Part	t I: Pe	rformance Limits of Coherent Space-Time Codes	51
	3.2	System	n Model: Coherent Space-Time Codes	51
	3.3	Spatia	l Channel Model	52
		3.3.1	Spatial Channel Decomposition	53
		3.3.2	Transmitter and Receiver Modal Correlation	55
	3.4	Exact	PEP on Correlated MIMO Channels	57
		3.4.1	Fast Fading Channel Model	58
		3.4.2	Slow Fading Channel Model	62
		3.4.3	Kronecker Product Model as a Special Case	64
	3.5	PEP A	Analysis of Space-Time Codes in Physical Channel Scenarios .	65
		3.5.1	Diversity vs Antenna Aperture Size and Antenna Configuration	66
		3.5.2	Diversity vs Non-isotropic Scattering	67
	3.6	Exact-	PEP in Closed-Form	69
		3.6.1	Direct Partial Fraction Expansion	69
		3.6.2	Partial Fraction Expansion via Eigenvalue Decomposition	70
	3.7	Analyt	cical Performance Evaluation: Examples	71
	3.8	Effect	of Antenna Separation	72
		3.8.1	Slow Fading Channel	73
		3.8.2	Fast Fading Channel	80
	3.9	Effects	of Non-isotropic Scattering	81
		3.9.1	Slow Fading Channel	81
		3.9.2	Fast Fading Channel	83
	3.10	Extens	sion of PEP to Average Bit Error Probability	87
	Part	t II: Pe	erformance Limits of Non-coherent Space-Time Codes	88
	3.11	System	n Model: Non-Coherent Space-Time Codes	88
	3.12	Exact	PEP of Differential Space-Time Codes	89
		3.12.1	Exact-PEP for Uncorrelated Channels	92
		3.12.2	Exact-PEP for Correlated Channels	92

	3.13	Analy	tical Performance Evaluation		. 93
		3.13.1	Effects of Antenna Spacing		. 93
		3.13.2	Effects of Antenna Configuration		. 95
		3.13.3	Effects of Non-Isotropic Scattering		. 96
	3.14	Summ	nary and Contributions	· • ·	. 99
4	Spa	tial Pr	recoder Designs: Based on Fixed Parameters of M	IM	0
	Cha	nnels			101
	4.1	Introd	luction	· • ·	. 101
	4.2	System	n Model		. 103
		4.2.1	Coherent Space-Time Block Codes		. 103
		4.2.2	Differential Space-time Block Codes 104
	4.3	Proble	em Setup: Coherent STBC		. 105
		4.3.1	Optimum Spatial Precoder: Coherent STBC		. 107
		4.3.2	MISO Channel		. 110
		4.3.3	$n_{\rm T} \times 2$ MIMO Channel		. 110
		4.3.4	$n_{\rm T} \times 3$ MIMO Channel		. 110
		4.3.5	A Generalized Method		. 111
		4.3.6	Spatially Uncorrelated Receive Antennas		. 111
	4.4	Proble	em Setup: Differential STBC		. 112
		4.4.1	Optimum Spatial Precoder: Differential STBC		. 113
	4.5	Simula	ation Results: Coherent STBC		. 114
		4.5.1	Performance in Non-isotropic Scattering Environments		. 116
	4.6	Simula	ation Results: Differential STBC		. 120
	4.7	Perfor	mance in other Channel Models		. 121
		4.7.1	Chen et al.'s MISO Channel Model		. 124
		4.7.2	Abdi et al.'s MIMO Channel Model		. 126
	4.8	Summ	ary and Contributions		. 128
5	Ach	ieving	Maximum Capacity: Spatially Constrained Dense	A A	n-
0		na Arr			131
	5.1		luction		. 131
	5.2		n Model		
	5.3	U U	tity of Spatially Constrained Antenna Arrays		
	5.4	-	nization Problem Setup: Isotropic Scattering		
	_	5.4.1	Optimum input signal covariance		
		5.4.2	Numerical Results		
		5.4.3	Capacity with Finite Number of Receiver Antennas		

		5.4.4	Transmit Modes and Power Allocation	141
		5.4.5	Effects of Non-isotropic Scattering	144
	5.5	Optim	um Power Loading in Non-isotropic Scattering Environments	150
		5.5.1	Numerical Results	152
	5.6	Power	Loading Based on Mode Nulling	154
		5.6.1	Modal Correlation at the Transmitter	155
		5.6.2	Optimum Power Loading Scheme	156
		5.6.3	Numerical Results	157
	5.7	Summ	ary and Contributions	160
6	Spa	ce-Tin	ne Channel Modelling in General Scattering Environ-	-
	men	\mathbf{ts}		163
	6.1	Introd	uction	163
	6.2	Space-	Time Channel Model	164
	6.3	-	Time and Space-Frequency Channel Correlation in General	
		Scatte	ring Environments	169
		6.3.1	Space-Time Cross Correlation	170
		6.3.2	Space-Frequency Cross Spectrum	172
		6.3.3	SISO Time-varying Channel: Temporal Correlation	173
		6.3.4	Jake's model for MIMO channels in isotropic scattering	174
		6.3.5	Kronecker Model as a Special Case	
	6.4	Non-is	sotropic Scattering Distributions	175
		6.4.1	Univariate Scattering Distributions	176
		6.4.2	Bivariate Scattering Distributions	
	6.5	Simula	ation Examples	180
		6.5.1	Univariate Distributions: Space-Time Cross Correlation	180
		6.5.2	Uni-modal Distributed Field within a Limited Spread: Space-	
			Time Cross Correlation and Space-Frequency Cross Spectrum	182
		6.5.3	Uni-modal vs Bi-modal Distributions: Spatial Correlation	184
		6.5.4	Validity of the Kronecker Channel Model	
	6.6	Summ	ary and Contributions	189
7	Con	clusio	ns and Future Research Directions	193
	7.1	Conclu	usions	193
	7.2	Future	e Research Directions	194

Appendices

Appen	ppendix A 197	
A.1	Proof of the Matrix Proposition	197
A.2	Error Events of 4-State QPSK STTC	198
	A.2.1 Error Events of Length 2	198
	A.2.2 Error Events of Length 3	199
	A.2.3 Error Events of Length 4	200
A.3	Proof of the Conditional Mean and the Conditional Variance of $u =$	
	$2\operatorname{Re}\{\boldsymbol{w}(k)\boldsymbol{\Delta}_{i,j}^{\dagger}\boldsymbol{y}^{\dagger}(k-1)\} \ldots \ldots$	201
	A.3.1 Proof of the Conditional Mean	201
	A.3.2 Proof of the Conditional Variance	202
Appen	dix B	203
B.1	Proof of PEP Upper bound: Coherent Receiver	203
B.2	Proof of PEP Upper bound: Non-coherent Receiver	204
B.3	Proof of Generalized Water-filling Solution for $n_{\rm R} = 2$ Receive An-	
	tennas	206
B.4	Proof of Generalized Water-filling Solution for $n_{\rm R} = 3$ Receive An-	
	tennas	206
B.5	Optimum Precoder for Differential STBC	207
	B.5.1 MISO Channel \ldots	207
	B.5.2 $n_{\rm T} \times 2$ MIMO Channel	207
	B.5.3 $n_{\rm T} \times 3$ MIMO Channel	208
Bibliog	graphy	209

List of Figures

1.1	Illustration of a MIMO transmission system with $n_{\rm T}$ transmit an-	4
1.0	tennas and $n_{\rm R}$ receive antennas	4
1.2	Ergodic capacity of different multi-antenna systems when the chan-	_
	nel is only known to the receiver: equal power-loading scheme	7
1.3	A generic block diagram of space-time coding across a MIMO channel.	10
1.4	4-state QPSK space-time trellis code with two transmit antennas proposed by Tarokh et al.	12
1.5	The two-branch diversity scheme with $n_{\rm R}$ receive antennas proposed	
		13
2.1	A General scattering model for a flat fading MIMO system. $r_{\rm T}$ and $r_{\rm R}$ are the radius of spheres which enclose the transmitter and the receiver antennas, respectively. $g(\hat{\phi}, \hat{\varphi})$ represents the gain of the complex scattering environment for signals leaving the transmitter scattering free region from direction $\hat{\phi}$ and entering at the receiver scattering free region from direction $\hat{\varphi}$.	25
2.2	Spatial correlation between two receiver antenna elements for mean AOA $\varphi_0 = 90^\circ$ (broadside) and angular spread $\sigma = \{20^\circ, 5^\circ, 1^\circ\}$ against antenna separation for uniform-limited, truncated Gaussian,	20
	truncated Laplacian and von-Mises scattering distributions	34
2.3	Spatial correlation between two receiver antenna elements for mean AOA $\varphi_0 = 30^{\circ}$ (60° from broadside) and angular spread $\sigma = \{20^{\circ}, 5^{\circ}, 1^{\circ}\}$ against antenna separation for uniform-limited, truncated Gaussian, truncated Laplacian and von-Mises scattering distributions	35
2.4	BER performance vs receiver spatial separation for 2×2 orthogonal STBC and uncoded systems for a Uniform-limited distribution at the receiver antenna array. Mean AOA 0° from broadside, angular	
	spread $\sigma = \{104^\circ, 20^\circ, 5^\circ\}$ and SNR = 10dB	37

2.5	(a). Spatial correlation between two receiver antennas positioned on	
	the x-axis for mean AOA 0° from broadside vs the spatial separation	
	for a uniform-limited scattering distribution with angular spreads	
	$\sigma = [104^{\circ}, 20^{\circ}, 5^{\circ}, 1^{\circ}].$ (b). BER performance vs spatial separation	
	for 2×2 orthogonal STBC under the scattering environments given	
	in (a)	39
2.6	(a). Spatial correlation between two receiver antennas positioned	
	on the x-axis for mean AOA 60° from broadside against the spatial	
	separation for a uniform-limited scattering distribution with angular	
	spreads $\sigma = [104^{\circ}, 20^{\circ}, 5^{\circ}, 1^{\circ}]$. (b). BER performance vs spatial sep-	
	aration for 2×2 orthogonal STBC under the scattering environments	
	given in (a)	40
2.7	Angular spread (σ) vs optimum antenna separation where the BER	
	performance of 2×2 orthogonal STBC is optimum for mean AOAs	
	$0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60° from broadside.	41
2.8	BER performance of 2×2 orthogonal STBC against the non-isotropic	
	parameter for mean AOAs $0^\circ, 30^\circ$ and 60° from broadside, SNR 10dB	
	and antenna separation $\lambda/2$: (a). uniform-limited (b). truncated	
	Gaussian (c). von-Mises (d). truncated Laplacian	42
2.9	Radiation patterns and $ a_m ^2$ for orthogonal STBC with two trans-	
	mit antennas: antenna separation 0.5λ (or $r_T = 0.25\lambda$)	44
2.10	Radiation patterns and $\left a_{m}\right ^{2}$ for orthogonal STBC with two trans-	
	mit antennas: antenna separation λ (or $r_T = 0.5\lambda$)	45
3.1	Trellis diagram for 4-state space-time code for QPSK constellation.	72
3.2	Exact pairwise error probability performance of the 4-state space-	. –
0.2	time trellis code with 2-transmit antennas and 1-receive antenna:	
	length 2 error event, slow fading channel	73
3.3	Exact PEP performance of the 4-state space-time trellis code with	
	2-transmit antennas and n-receive antennas: length 2 error event,	
	slow fading channel.	75
3.4	Length 2 error event of 4-state QPSK space-time trellis code with	
	two transmit antennas for an increasing number of receive antennas	
	in an isotropic scattering environment. $r_{\rm T} = 0.5\lambda, r_{\rm R} = \{0.15\lambda, 0.25\lambda\}$	
	and $SNR = 10dB$; slow-fading channel	76
3.5	The exact-PEP performance of the 16-state code with 3-transmit	
	and 1-receive antennas for UCA and ULA transmit antenna config-	
	urations: length 3 error event, slow fading channel	77

3.6	Frame error rate performance of the 16-state QPSK, space-time trel-	
	lis code with three transmit antennas for UCL and ULA antenna	
	configurations in an isotropic scattering environment; slow-fading	
	channel	78
3.7	Frame error rate performance of the 64-state QPSK space-time trel-	
	lis code with four transmit antennas for UCL and ULA antenna	
	configurations in an isotropic scattering environment; slow-fading	
	channel	79
3.8	Exact pairwise error probability performance of the 4-state space-	
	time trellis code with 2-transmit antennas and 2-receive antennas-	
	length two error event: fast fading channel	80
3.9	Length 2 error event of 4-state QPSK space-time trellis code with	
	two transmit antennas for an increasing number of receive antennas	
	in a non-isotropic scattering environment; $r_{\rm T} = 0.5\lambda$, $r_{\rm R} = 2\lambda$ and	
	SNR = 10dB: slow-fading channel.	82
3.10	Effect of receiver modal correlation on the exact-PEP of the 4-state	
	QPSK space-time trellis code with 2-transmit antennas and 2-receive	
	antennas for the length 2 error event. Uniform limited power dis-	
	tribution with mean angle of arrival 0° from broadside and angular	
	spreads $\Delta_r = \{5^\circ, 30^\circ, 60^\circ, 180^\circ\}$; fast fading channel.	83
3.11	Effect of receiver modal correlation on the exact-PEP of the 4-state	
	QPSK space-time trellis code with 2-transmit antennas and 2-receive	
	antennas for the length 2 error event. Uniform limited power distri-	
	bution with mean angle of arrival 45° from broadside and angular	
	spreads $\Delta_r = \{5^\circ, 30^\circ, 60^\circ, 180^\circ\}$; fast fading channel	84
3.12	Exact-PEP of the 4-state QPSK space-time trellis code with 2-	
	transmit antennas and 2-receive antennas against the receive an-	
	tenna separation at 8dB SNR. Uniform limited power distribution	
	with mean angle of arrival 45° from broads ide and angular spreads	
	$\Delta_r = \{5^{\circ}, 30^{\circ}, 180^{\circ}\}; \text{ fast fading channel } \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	85
3.13	Exact-PEP of the 4-state QPSK space-time trellis code with 2-	
	transmit antennas and 2-receive antennas against the receive an-	
	tenna separation at 10dB SNR. Uniform limited power distribution $% \mathcal{A} = \mathcal{A} = \mathcal{A}$	
	with mean angle of arrival 45° from broadside and angular spreads	
	$\Delta_r = \{5^{\circ}, 30^{\circ}, 180^{\circ}\}; \text{ fast fading channel } \ldots \ldots \ldots \ldots \ldots \ldots$	86
3.14	Exact-PEP performance of DSTC scheme with two transmit and two $$	
	receive antennas for transmit antenna separation 0.5λ and $\beta_{0,1} = 2$.	94

3.15	Exact-PEP performance of DSTC scheme with two transmit and	
	three receive antennas for UCA and ULA receiver antenna configu-	
	rations; $\beta_{0,1} = 2$.	95
3.16	Exact-PEP performance of the DSTC scheme with two transmit	
	and two receive antennas against the receive antenna separation for	
	a uniform limited power distribution at the receiver with mean angle	
	of arrival $\varphi_0 = 45^{\circ}$ from broadside and $\Delta_r = [5^{\circ}, 30^{\circ}, 180^{\circ}]$ at 15dB	
	SNR; Transmit antenna separation 0.5λ and $\beta_{0,1} = 2.$	96
3.17	Exact-PEP performance of the DSTC scheme with two transmit	
	and two receive antennas against the receive antenna separation for	
	a uniform limited power distribution at the receiver with mean angle	
	of arrival $\varphi_0 = 45^{\circ}$ from broadside and $\Delta_r = [5^{\circ}, 30^{\circ}, 180^{\circ}]$ at 20dB	
	SNR; Transmit antenna separation 0.5λ and $\beta_{0,1} = 2.$	97
3.18	Exact-PEP performance of DSTC scheme with two transmit and	
	three receive antennas for UCA and ULA receiver antenna configu-	
	rations for a uniform limited power distribution at the receiver with	
	mean angle of arrivals $\varphi_0 = [60^\circ, 45^\circ, 15^\circ]$ from broadside and non-	
	isotropic parameter $\Delta_r = 180^\circ$; Transmit antenna separation 0.5λ ,	
	receive antenna separation 0.15λ and $\beta_{0,1} = 2.$	98
4.1	Water level $(1/v_c)$ for various SNRs for a MISO system. (a) $n_T = 2$,	
	(b) $n_{\rm T} = 3$ - UCA, (c) $n_{\rm T} = 4$ - UCA, (d) $n_{\rm T} = 3$ - ULA and (e)	
	$n_{\rm T} = 4$ - ULA for 0.2 λ minimum separation between two adjacent	
	transmit antennas.	115
4.2	BER performance of the rate-1 coherent STBC (QPSK) with $n_{\rm T} = 2$	
	and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power dis-	
	tribution with angular spread $\sigma_t = 15^\circ$ and mean AOD $\phi_0 = 0^\circ$;	
	transmit antenna separation 0.2λ .	117
4.3	BER performance of the rate-1 coherent STBC (BPSK) with $n_{\rm T} = 4$	
	and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power distri-	
	bution with angular spread $\sigma_t = 15^\circ$ and mean AOD $\phi_0 = 0^\circ$; UCA	
	transmit antenna configuration and 0.2λ minimum separation be-	
	tween two adjacent transmit antenna elements	118
4.4	BER performance of the rate-1 coherent STBC (BPSK) with $n_{\rm T} = 4$	
	and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power distri-	
	bution with angular spread $\sigma_t = 15^{\circ}$ and mean AOD $\phi_0 = 0^{\circ}$; ULA	
	transmit antenna configuration and 0.2λ minimum separation be-	
	tween two adjacent transmit antenna elements	119

4.5	BER performance of the rate-1 differential STBC (QPSK) with $n_{\rm T} = 2$ and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power distribution with angular spread $\sigma_t = 15^{\circ}$ and mean AOD $\phi_0 = 0^{\circ}$; transmit antenna separation 0.1λ .	121
4.6	BER performance of the rate-1 differential STBC (BPSK) with $n_{\rm T} = 4$ and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power distribution with angular spread $\sigma_t = 15^{\circ}$ and mean AOD $\phi_0 = 0^{\circ}$; UCA transmit antenna configuration and 0.2λ minimum separation between two adjacent transmit antenna elements.	122
4.7	BER performance of the rate-1 differential STBC (BPSK) with $n_{\rm T} = 4$ and $n_{\rm R} = 1, 2$ antennas for a uniform-limited azimuth power distribution with angular spread $\sigma_t = 15^{\circ}$ and mean AOD $\phi_0 = 0^{\circ}$; ULA transmit antenna configuration and 0.2λ minimum separation between two adjacent transmit antenna elements.	123
4.8	Scattering channel model proposed by Chen <i>et al.</i> for three transmit and one receive antennas.	125
4.9	Spatial precoder performance with three transmit and one receive antennas for 0.2λ minimum separation between two adjacent trans- mit antennas placed in a uniform linear array, using Chen et al's channel model: rate-3/4 coherent STBC	126
4.10	Scattering channel model proposed by Abdi <i>et al.</i> for two transmit and two receive antennas.	127
4.11	Spatial precoder performance with two transmit and two receive antennas using Abdi et al's channel model: rate-1 differential STBC.	128
5.1	Capacity comparison between spatial precoder and equal power load- ing $(\mathbf{Q} = (P_{\rm T}/n_{\rm T})\mathbf{I}_{n_{\rm T}})$ schemes for uniform circular arrays and uni- form linear arrays in a rich scattering environment with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of uncorrelated receive antennas $(r_{\rm R} \to \infty)$ for an increasing number of transmit antennas. Also shown is the maximum achievable capacity (5.14) from the transmitter region.	139
5.2	Simulated capacity of equal power loading and spatial precoding schemes for uniform circular arrays in a rich scattering environment with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and receiver aperture radius $r_{\rm R} = 5\lambda$ for an increasing number of transmit antennas	140

5.3	Simulated capacity of equal power loading and spatial precoding schemes for uniform linear arrays in a rich scattering environment with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and receiver aperture radius $r_{\rm R} = 5\lambda$ for an increasing number of transmit antennas.	141
5.4	Average power allocated to each transmit mode for the UCA and ULA antenna configurations, within a circular aperture of radius 0.5λ . $P_{\rm T} = 10$ dB and $n_{\rm T} = 80$.	143
5.5	Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 0^\circ$ and angular spreads $\sigma =$ {104°, 30°, 15°, 5°}, for UCA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of un- correlated receive antennas ($r_{\rm R} \rightarrow \infty$), for increasing number of transmit antennas.	146
5.6	Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 0^\circ$ and angular spreads $\sigma =$ {104°, 30°, 15°, 5°}, for ULA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of un- correlated receive antennas ($r_{\rm R} \rightarrow \infty$), for increasing number of transmit antennas	147
5.7	Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 0^\circ$ and increasing angular spread, for UCA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of uncorrelated receive antennas $(r_{\rm R} \to \infty)$, for $n_{\rm T} = \{10, 11, 25, 60, 80\}$ transmit antennas	148

5.8 Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 90^\circ$ and increasing angular spread, for UCA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of uncorrelated receive antennas $(r_{\rm R} \to \infty)$, for $n_{\rm T} = \{10, 11, 25, 60, 80\}$ transmit antennas. 149

- 5.9 Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 0^\circ$ and increasing angular spread, for ULA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of uncorrelated receive antennas $(r_{\rm R} \to \infty)$, for $n_{\rm T} = \{10, 11, 25, 60, 80\}$ transmit antennas. 150
- 5.10 Capacity comparison between spatial precoding and equal power loading schemes for a uniform limited scattering distribution at the transmitter with mean AOD $\phi_0 = 90^\circ$ and increasing angular spread, for UCA transmit antenna configurations with transmitter aperture radius $r_{\rm T} = 0.5\lambda$ and a large number of uncorrelated receive antennas $(r_{\rm R} \to \infty)$, for $n_{\rm T} = \{10, 11, 25, 60, 80\}$ transmit antennas. 151

5.16	Capacity comparison between power-loading $scheme-1$ and $scheme-$
	3 for a uniform limited azimuth power distribution at the transmit-
	ter with mean AOD $\phi_0 = 0^\circ$ for increasing angular spread: $n_{\rm T} = 5$
	transmit antennas
5.17	Average power allocated to each effective transmit mode in a circular
	aperture of radius 0.25 λ . $P_{\rm T} = 10$ dB: UCA antenna configuration,
	$n_{\rm T} = 5$ transmit antennas
5.18	Average power allocated to each effective transmit mode in a circular
	aperture of radius 0.25 λ . $P_{\rm T} = 10$ dB: ULA antenna configuration,
	$n_{\rm T} = 5$ transmit antennas
C 1	
6.1	General scattering model for a down-link MIMO communication sys-
	tem. r_T and r_R are the radius of spheres which enclose the trans-
	mitter and the receiver antennas, respectively. We demonstrate the
	generality of the model by showing three sample scatterers S_1 , S_2 and S_2 and S_3 and S_4 and S_4 and S_5 and S_4 and S_5 and S_4 and S_5 and S_5 and S_6 and
	S_3 which show a single bounce (reflection off S_2), multiple bounces
	(sequential reflection off S_2 and S_3), and wave splitting (with diver-
	gence at S_2), and also a direct path
6.2	Space-time cross correlation between two MU receive antennas with
	$f_{\rm D}T_{\rm S} = 0.038$ against the spatial separation for Uniform-limited,
	truncated Gaussian, truncated Laplacian and von-Mises scattering
	distributions with angular spread $\sigma_r = \{20^\circ, 5^\circ, 2^\circ\}$ and mean AOA
	$\varphi_0 = 0^\circ$: (a) $\tau = 0$, (b) $\tau = 5T_S$, (c) $\tau = 20T_S$ and (d) $\tau = 30T_S$ 181
6.3	Space-time cross correlation between two MU receive antennas against
	$f_{\rm D}T_{\rm S}$ for Uniform-limited, truncated Gaussian, truncated Laplacian
	and von-Mises scattering distributions with angular spread σ_r =
	$\{20^{\circ}, 5^{\circ}, 2^{\circ}\}$ and mean AOA $\varphi_0 = 0^{\circ}$, for $\tau = 5T_{\rm S}$: (a) $\ \boldsymbol{z}_p - \boldsymbol{z}_p'\ =$
	0.1 λ , (b) $\ \boldsymbol{z}_p - \boldsymbol{z}'_p\ = 0.25\lambda$, (c) $\ \boldsymbol{z}_p - \boldsymbol{z}'_p\ = 0.5\lambda$ and (d) $\ \boldsymbol{z}_p - \boldsymbol{z}'_p\ = \lambda.182$
6.4	Magnitude of the space-time cross correlation function for $f_{\rm D}$ =
	$\omega_{\rm D}/2\pi~=~0.05,~\varphi_v~=~30^\circ$ and a Laplacian distributed field with
	mean AOA 60° from broadside and angular spread $\sigma_r = \{20^\circ, 10^\circ\}$. 183
6.5	Comparison of uni-modal and bi-modal von-Mises distributions 185
6.6	Average mutual information of 3-transmit UCA and 3-receive UCA
	MIMO system in separable (Kronecker with $\rho = 0$) and non-separable
	$(\rho = 0.8)$ scattering environments: bivariate truncated Gaussian az-
	imuth field with mean AOD = 90° , mean AOA = 90° , transmitter
	angular spread $\sigma_t = 10^{\circ}$ and receiver angular spreads $\sigma_r = \{30^{\circ}, 10^{\circ}\}.186$
6.7	An example multi-modal bivariate Gaussian distributed azimuth field. 187

6.8	Average mutual information of 3-transmit UCA and 3-receive UCA	
	MIMO system for separable and non-separable scattering channel	
	considered in Figure 6.7	188
6.9	Kronecker model PSD $\widetilde{G}(\phi, \varphi) = \mathcal{P}_{Tx}(\phi)\mathcal{P}_{Rx}(\varphi)$ of the non-separable	
	scattering distribution considered in Figure 6.7.	189
6.10	Kronecker model PSD $\widetilde{G}(\phi, \varphi) = \mathcal{P}_{Tx}(\phi)\mathcal{P}_{Rx}(\varphi)$ of the uni-modal	
	non-separable scattering distribution used in the first example to	
	obtain the results in Figure 6.6 for $\sigma_r = 10^{\circ}$	190

List of Tables

2.1	Maximum and minimum bit-error rates produced by coded and un-	
	coded systems.	38
4.1	Transmit antenna configuration details corresponding to water-filling	
	scenarios considered in Figure 4.1	115
6.1	Scattering Coefficients β^n for Uniform-limited, truncated Gaussian,	
	$\operatorname{cosine},\operatorname{von-Mises}$ and truncated Laplacian univariate uni-modal power	
	distributions	176
A.1	$4\mbox{-state}$ QPSK space-time trellis code: Error events of length two. $% A^{2}$.	198
A.2	4-state QPSK space-time trellis code: Error events of length three	199
A.3	4-state QPSK space-time trellis code: Error events of length four. $\ .$	200