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Abstract

In this thesis we investigate the effects of the physical constraints such as antenna

aperture size, antenna geometry and non-isotropic scattering distribution parame-

ters (angle of arrival/departure and angular spread) on the performance of coherent

and non-coherent space-time coded wireless communication systems. First, we de-

rive analytical expressions for the exact pairwise error probability (PEP) and PEP

upper-bound of coherent and non-coherent space-time coded systems operating

over spatially correlated fading channels using a moment-generating function-based

approach. These analytical expressions account for antenna spacing, antenna ge-

ometries and scattering distribution models. Using these new PEP expressions,

the degree of the effect of antenna spacing, antenna geometry and angular spread

is quantified on the diversity advantage (robustness) given by a space-time code.

It is shown that the number of antennas that can be employed in a fixed antenna

aperture without diminishing the diversity advantage of a space-time code is de-

termined by the size of the antenna aperture, antenna geometry and the richness

of the scattering environment.

In realistic channel environments the performance of space-time coded multiple-

input multiple output (MIMO) systems is significantly reduced due to non-ideal

antenna placement and non-isotropic scattering. In this thesis, by exploiting the

spatial dimension of a MIMO channel we introduce the novel use of linear spatial

precoding (or power-loading) based on fixed and known parameters of MIMO chan-

nels to ameliorate the effects of non-ideal antenna placement on the performance

of coherent and non-coherent space-time codes. The spatial precoder virtually ar-

ranges the antennas into an optimal configuration so that the spatial correlation

between all antenna elements is minimum. With this design, the precoder is fixed

for fixed antenna placement and the transmitter does not require any feedback

of channel state information (partial or full) from the receiver. We also derive

precoding schemes to exploit non-isotropic scattering distribution parameters of

the scattering channel to improve the performance of space-time codes applied on

MIMO systems in non-isotropic scattering environments. However, these schemes

vii
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require the receiver to estimate the non-isotropic parameters and feed them back

to the transmitter.

The idea of precoding based on fixed parameters of MIMO channels is extended

to maximize the capacity of spatially constrained dense antenna arrays. It is shown

that the theoretical maximum capacity available from a fixed region of space can be

achieved by power loading based on previously unutilized channel state information

contained in the antenna locations. We analyzed the correlation between different

modal orders generated at the transmitter region due to spatially constrained an-

tenna arrays in non-isotropic scattering environments, and showed that adjacent

modes contribute to higher correlation at the transmitter region. Based on this

result, a power loading scheme is proposed which reduces the effects of correlation

between adjacent modes at the transmitter region by nulling power onto adjacent

transmit modes.

Furthermore, in this thesis a general space-time channel model for down-link

transmission in a mobile multiple antenna communication system is developed. The

model incorporates deterministic quantities such as physical antenna positions and

the motion of the mobile unit (velocity and the direction), and random quantities

to capture random scattering environment modeled using a bi-angular power dis-

tribution and, in the simplest case, the covariance between transmit and receive

angles which captures statistical interdependency. The Kronecker model is shown

to be a special case when the power distribution is separable and is shown to over-

estimate MIMO system performance whenever there is more than one scattering

cluster. Expressions for space-time cross correlations and space-frequency cross

spectra are given for a number of scattering distributions using Gaussian and Mor-

genstern’s family of multivariate distributions. These new expressions extend the

classical Jake’s and Clarke’s correlation models to general non-isotropic scattering

environments.
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