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Abstract— We address communication protocols for N -way
relay networks with M antennas at the relay and a single antenna
at the N source terminals. In particular, amplify-and-forward
(AF), decode-and-forward (DF), and compress-and-forward (CF)
strategies are extended to these networks, and in addition, two
new relaying protocols, denoise-and-forward and estimate-and-
forward, are proposed. In the first part of the paper, the perfor-
mance of these schemes is analyzed in terms of the achievable
rate region. Also, the optimal diversity-multiplexing tradeoff is
derived for both AF and DF. The second part of the paper is
devoted to practical space-time transmission strategies. Linear
dispersion codes are used, which are optimized by maximizing
the sum rate. For AF a diversity order of close to M can be
achieved by using a specific space-time code construction.

I. INTRODUCTION

The N -way relay network (NWRN) is a promising wireless
network architecture for applications such as wireless telecon-
ferencing, where there are N source terminals in the network
and each source terminal needs to exchange information
between all other terminals with the help of a relay node.
The communication is carried out in two transmission phases,
a multiple access channel (MAC) phase where the source
terminals send data to the relay in the uplink, and a broadcast
phase for the downlink. When N=2, the N -way relay network
degenerates to the two-way relay channel (TWRC), which has
drawn renewed interest [1]–[4] recently. In [1], AF and DF
protocols for one-way relay channels in [5] are extended to the
half-duplex Gaussian TWRC. Performance analysis and relay
function design are discussed in [2], [3] for TWRC with a sin-
gle relay without memory. In [4], distributed space time coding
is proposed in TWRC with multiple relays, where several
space time protocols are proposed with different time slots.

In this paper, the achievable rate regions for different
protocols such as amplify-and-forward (AF), decode-and-
forward (DF), and compress-and-forward (CF) are derived
for NWRNs. We also characterize the fundamental diversity-
multiplexing tradeoff [6], [7]. Several practical space-time
coding protocols are also proposed. Linear dispersion codes [8]
are used at the relay, which can be optimized by maximizing
the sum capacity. Since each source terminal already knows
the signal it has just transmitted, the received signal at the relay
can be compressed by network coding to reduce bandwidth
usage. A simple space time code is proposed where at any time
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slot at most one antenna is active. By analyzing the pairwise
error probability (PEP), we find that this code achieves a
diversity order M

(
1− log(1+logP )

logP

)
, where M is the number

of antennas at the relay and P is the total power of the NWRN.
By using an Alamouti type space time code with M=2,
we find that the diversity order two can be attained by AF.
Moreover, two new relaying protocols: denoise-and-forward
(DNF) and estimate-and-forward (EF) are also proposed.

II. SYSTEM MODEL

We consider an N -way relay network with N source
terminals and one relay node. The case of multiple relays
is discussed in [9]. There are M antennas on the relay
node while each source terminal only has a single antenna.
Each source terminal wants to send its data to all the other
source terminals. We consider a half duplex system with time
division multiplexing. Given time interval T , αT is used for
uplink transmission from the source terminals to the relay and
(1−α)T is spent for the downlink broadcast from the relay
to the source terminals. We further assume that there does not
exist direct transmission between source terminals. Let xi,t

and yi,t be the signal sent and received by source terminal i
at time t, respectively, and let xm

r,t and ym
r,t be the signal sent

and received by the m-th antenna of the relay node at time t,
respectively. We thus have the following model

ym
r,t=

N∑
i=1

hm
i xi,t+w

m
r,t, t=1,...,�αT �, m=1,...,M,

yi,t=
M∑

m=1

hm
i x

m
r,t+wi,t, t=�αT �+1,...,T, i=1,...,N,

(1)

where hm
i is the channel fading between source i and the m-th

antenna of the relay (we assume reciprocal channels), wm
r,t and

wi,t are additive white Gaussian noise (AWGN) realizations
with distribution CN (0,1). The transmitted signals xi,t and
xr,t are subject to average power constraints 1

T

∑�αT�
t=1 |xi,t|2≤

Pi, ∀i=1,...,N , and 1
T

∑T
t=�αT�+1 |xm

r,t|2≤Pr. We assume
that hm

i is known perfectly at all the nodes for simplicity and
does not change during interval T . The results in this paper
also generalize to full duplex transmission by setting α=1/2
and doubling the achievable rate regions in Section III.

III. ACHIEVABLE RATE REGIONS

In the following, we assume that the data rate of source
terminal i is Ri. The key feature of an N -way relay channel
is that each source terminal knows its transmitted signal as side
information, which may potentially improve the data rate.



A. Amplify-and-Forward
In AF, we assume α= 1

2 . The relay precodes the received
signals yn

r,t at time t from antenna n, n=1,...,M , by multiply-
ing them with a precoding matrix Ψ=[ψm,n]. The transmitted
signal from antenna m at time t+T/2 is

xm
r,t+ T

2
=

M∑
n=1

ψm,nyn
r,t, m=1,...,M, subject to

N∑
i=1

M∑
m=1

⎛
⎝2

∣∣∣∣∣
M∑

n=1

ψm,nhn
i

∣∣∣∣∣
2

Pi+
M∑

n=1

|ψm,n|2
⎞
⎠≤2Pr.

(2)

The received signal at source node i at time t+ T
2 is

yi,t+ T
2

=

M∑
m=1

hm
i x

m
r,t+ T

2
+wi,t+ T

2

=
N∑

j=1

(
M∑

m=1

M∑
n=1

ψm,nhm
i h

n
j

)
xj,t+

M∑
m=1

hm
i

M∑
n=1

ψm,nwn
r,t+wi,t+ T

2
.

(3)

By canceling the contribution of xi,t from yi,t+ T
2

, we obtain
a MAC with N−1 users, whose capacity region is given by

N∑
j∈S

Rj≤ 1

4
log

⎛
⎜⎝1+

2
∑

j∈S

∣∣∣∑M
m=1

∑M
n=1ψ

m,nhm
i h

n
j

∣∣∣2Pj∑M
n=1

∣∣∣∑M
m=1h

m
i ψ

m,n

∣∣∣2+1

⎞
⎟⎠ (4)

for all S⊆Si where Si={1,...,N}/i. The achievable rate
region is the convex hull of the intersection of the regions
(4) for all i. A more general AF can be found in [9], where
α is not restricted to α= 1

2 .

B. Decode-and-Forward
In DF, the relay first decodes the signals from the source

terminals during time interval αT with a MAC uplink channel.
It then re-encodes the resulting signal and broadcasts the
encoded signal. To decode the signals at the relay, the source
rates should satisfy∑

j∈S
Rj≤α

2
logdet

(
IM +

∑
j∈S

Pj

α
hjh

H
j

)
,∀S⊆{1,...,N}, (5)

where hj=[h1
j ,...,h

M
j ]T . The downlink channel can be con-

sidered to be a broadcast channel with side information, where
each source knows the signal it just sent. We consider a general
scenario where a source needs to communicate messages
W1,...,WN to N receivers and receiver i already knows Wi.
At the relay, Wi is first encoded using codewords XT

i =
{Xi,1,...,Xi,T } of length T with rate Ri. The transmitted
signal XT is chosen to be the vector (X1,...,XN )T . The
received signal at receiver i is denoted as Y T

i . According to
[10, Theorem 1], the set of rates {Ri} is achievable iff

H(X|Wi)=
N∑

j=1,j �=i

Rj≤I(Yi;X), i=1,...,N. (6)

The signal after re-encoding is precoded with a matrix Φ=
[ψm,n] before transmitting over different antennas at the relay,
i.e.,

∑M
n=1ψ

m,nxn
r,t where xn

r,t’s are generated independently
with unit average power. Thus, the achievable rate region is∑

j∈S
Rj≤α

2
logdet

(
IM +

∑
j∈S

Pj

α
hjh

H
j

)
, ∀S⊆{1,...,N},

N∑
j=1,j �=i

Rj≤ 1−α
2

log

⎛
⎝1+

M∑
n=1

∣∣∣∣∣
M∑

m=1

hm
i ψ

m,n

∣∣∣∣∣
2
⎞
⎠, i=1,...,N,

(7)

where we require that
∑M

m=1

∑M
n=1 |ψm,n|2= Pr

1−α .
We can show that (5) is achievable by using network coding

[11] at the physical layer. In general (7) is larger than the
rate region by superimposing decoded signals without network
coding. Here, network coding acts as a compressor.

C. Compress-and-Forward
CF has been first mentioned in [5] for the relay channel.

In our case, a quantization codebook with 2TR̂ codewords
{ŷ�αT�

i } is generated at the relay according to pdf pŶ (ŷ).
On receiving y

�αT�
r ={yr,1,...,yr,�αT�}, the relay first finds

a codeword ŷ
�αT�
i that is jointly typical with y

�αT�
r . The

index of ŷ�αT�
i is then encoded using a codebook {x�αT�

i }. To
guarantee that there exists at least one codeword ŷ�αT�

i that is
jointly typical with y�αT�

r , we require that
R̂≥αI(Yr;Ŷ ). (8)

To decode Ŷ correctly at source terminal i, by using (6), the
downlink transmission requires that

H(Ŷ |Xi)≤ 1−α
2

log

⎛
⎝1+

M∑
n=1

∣∣∣∣∣
M∑

m=1

hm
i ψ

m,n

∣∣∣∣∣
2
⎞
⎠, (9)

where ψm,n is defined as in (7). Given Ŷ , we can decode Xj ,
j �=i if and only if∑

j∈S
Rj≤(1−α)I(Ŷ ;XS |XSi/S ,Xi),S⊆Si, (10)

where XS={Xi|i∈S} and Si={1,...,N}/i.
One way to choose Ŷ is by generating {ŷ�αT�

k } using
y
�αT�
r +ŵ�αT�

k , where the entries of ŵ�αT�
k are i.i.d. AWGN

with zero mean and variance σ̂2
r (the entries of ŵ�αT�

k may
have different variances). We thus obtain H(Ŷ |Xi)=R̂−Ri,

I(Yr;Ŷ )=
1

2
logdet

(
(1+σ̂2

r)IM +
∑N

j=1

Pj

α
hjh

H
j

σ̂2
r

)
, (11)

I(Ŷ ;XS |XSi/S ,Xi)=
1

2
logdet

(
IM +

∑
j∈S

Pj

α
hjh

H
j

σ̂2
r

)
,∀S⊆Si.

(12)
Therefore, the achievable rate region is given by

Ri≥α

2
logdet

(
(1+σ̂2

r)IM +
∑N

j=1

Pj

α
hjh

H
j

σ̂2
r

)

− 1−α
2

log

⎛
⎝1+

M∑
n=1

∣∣∣∣∣
M∑

m=1

hm
i ψ

m,n

∣∣∣∣∣
2
⎞
⎠,

∑
j∈S

Rj≤ 1−α
2

logdet

(
IM +

∑
j∈S

Pj

α
hjh

H
j

1+σ̂2
r

)
,∀S⊆Si.

(13)

In [9], we also show how to choose Ri and how to determine
ψm,n using utility maximization.

IV. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we characterize the fundamental tradeoff
between the diversity and multiplexing gain [6], [7] in N -
way relay networks using AF and DF. In the following, we
assume that

∑N
i=1Pi+Pr=P with the overall power P , P1=

···=PN =Ps and NPs=Pr, i.e., Ps= P
2N and Pr= P

2 and all
channel gains are complex Gaussian. As there are N sources
in the network, we consider the symmetric case as in [7],



where all the sources transmit at the same rate and they have
a common diversity requirement. Let Ri(P ) be the achievable
rate and P i

e(P ) be the average error probability of source i in
a transmission strategy. The strategy is said to achieve spatial
multiplexing gain r and diversity gain d if

lim
P→+∞

Ri(P )

logP
≥r, lim

P→+∞
P i

e(P )

logP
≤−d, ∀i=1,...,N. (14)

In AF, by following [6], [7], we obtain the diversity gain

d=

{
M(1−2|S|r), if |S|>M,
|S|(1−2|S|r), if |S|≤M.

, (15)

where S⊆Si. Note that the second case is concave in |S| and
its minimum is attained at its boundary |S|=1 or |S|=M . The
first case is a decreasing function in |S|. Thus, the worst case
d is attained at |S|=1 or |S|=N−1. Finally, we obtain

dAF=

{
M(1−2(N−1)r), if r≥ M−1

2(M(N−1)−1)
,

1−2r, if r< M−1
2(M(N−1)−1)

.
(16)

From (16), we can see that when the system is lightly loaded
r< M−1

2(M(N−1)−1) , single user performance is achieved.
In DF, the uplink channel is a MAC, whose diversity

multiplexing tradeoff is obtained in [7], i.e.,

dup=

⎧⎨
⎩

(
1− r

α

)(
M− r

α

)
, if r≤αmin

(
1, M

N+1

)
,

N(1− r
α
)(M−Nr

α
), if r>αmin

(
1, M

N+1

)
,

(17)

where 2r is due to half duplex. From (7) the downlink channel
can be considered to be a MISO channel whose diversity
multiplexing tradeoff can be easily obtained as in [6], i.e.,

ddown=

(
1−(N−1)

r

1−α
)(

M−(N−1)
r

1−α
)
. (18)

The diversity gain is the minimum diversity gain of the
uplink (17) and the downlink (18), i.e., dDF=min{dup,ddown}.

When r≤αmin
(
1, M

N+1

)
, it is easy to see that the maximum

diversity gain is attained at α
1−α = 1

N−1 , or α= 1
N . When

r>αmin
(
1, M

N+1

)
, the optimal α depends on M,N,r in a

complicated way. We can find the optimal α by numerical
analysis. Note that the transmission protocols in Section V
correspond to the first case or a lightly loaded system as the
rate is fixed by using a specific constellation. Therefore, we
should choose α= 1

N .

V. PRACTICAL SPACE TIME PROTOCOLS

The devised transmission protocols in this section parallel
those in Section III. Specifically, we consider a class of
strategies where the source terminals transmit one symbol
si∈Q simultaneously in the first time slot, and the relay
transmits in the following K time slots after processing its
received signals, where Q is a finite constellation set with
average power one. We assume that the channel remains static
during K+1 time slots. At the relay, the received signal at the
m-th antenna at the end of the first time slot is

ym
r =

N∑
i=1

√
(K+1)Pih

m
i si+w

m
r , m=1,...,M. (19)

The protocols can be classified into two classes: compression
based protocols where the relay compresses its received signal
by reducing the alphabet size of constellation seen by the
relay, and non-compression based protocols. Different from [4]

where coding is performed over symbols received at different
time, we apply space time coding over symbols received by
different antennas at the relay.

A. Non-Compression Based Protocols
1) Amplify-and-Forward: In AF, at the relay, the transmit-

ted signal over the m-th antenna at time slot k+1 is

xm
r,k=

M∑
n=1

ψm,n
k yn

r , k=1,...,K, (20)

which is actually a special case of linear dispersion code [8].
Let yi,k be the received signal of source i at time slot k+1.
We can write yi,k as

yi,k=hT
i ΨkHΛs+hT

i Ψkwr+wi,k, (21)

where s=[s1,...,sN ]T , hi=[h1
i ,...,h

M
i ]T , H=[h1,...,hN ],

Ψk=[ψm,n
k ], Λ=diag{√(K+1)P1, ···,√(K+1)PN}, and

wr=[w1
r ,...,w

M
r ]T . To satisfy the average power constraint

at the relay, we require that(
(K+1)

N∑
j=1

Pj+1

)
tr
(
ΨkΨH

k

)
=
K+1

K
Pr. (22)

Note that (21) can be further written as
yi=GiHΛs+Gwr+wi, (23)

where Gi=[ΨT
1 hi,···,ΨT

Khi]T , yi=[yi,1,...,yi,K ]T and wi=
[wi,1,...,wi,K ]T . The maximum likelihood (ML) decoder of s
can be obtained as

ŝ= argmin
{s̃|s̃j∈Q,j �=i,s̃i=si}

∥∥∥(GiG
H
i +IK)−

1
2 (yi−GiHΛs)

∥∥∥2

. (24)

By using the Chernoff bound, the PEP between s1 and s2

at source terminal i can be bounded as

PEP≤E
{
eλ(logp(yi|s1)−logp(yi|s2))

}
=Ehi

{
det−1

(
IM +

‖Δs‖2

4
GH

i (GiG
H
i +IK)−1Gi

)}
,
(25)

where p(yi|s) is the pdf of yi given s, and Δs=Λ(s1−s2)
without the i-th entry.

We consider two special forms of space time coding. i)
We choose Ψk to be an all zero matrix except the (k,k)-
th entry is

√
γ, k=1,...,min{K,M}. This corresponds to the

case that only the k-th antenna is active at time slot k. The
relay scales its received signal from antenna k and transmits it
over antenna k. We assume that the total power in the network
is P , i.e.,

∑N
i=1Pi+Pr=P . To minimize the PEP, we find that

MNPs=Pr or Ps= P
N(M+1) . In this case we obtain from (25)

PEP�
(

4N(M+1)

d2

)M

P
M

(
1− log(1+logP )

logP

)
, (26)

where d is the minimum distance of constellation Q, which
achieves a diversity order M

(
1− log(1+logP )

logP

)
.

ii) We consider an Alamouti-type code with M=K=2.
Note that we can also transmit (ym

r )∗ instead of (ym
r ) in (20).

By using an Alamouti-type code, we have

x1
r,1=

√
γy1

r ,x
2
r,1=

√
γy2

r ,x
1
r,2=

√
γ(y2

r)∗,x2
r,2=−√

γ(y1
r)∗, (27)

where γ satisfies M2γ((K+1)
∑N

i Pi+1)=(K+1)Pr. In this
case, the PEP can be obtained by using a similar derivation as
in (26). We can show that by using Alamouti code, a diversity
order of two can be achieved.



2) Decode-and-Forward: In DF, after receiving the signals
from the source terminals, the relay jointly decodes the all
source terminals’ messages using an ML decoder

{ŝ1,...,ŝN}=argmin
s1,...,sN

M∑
m=1

∣∣∣∣∣ym
r −

N∑
i=1

hm
i si

∣∣∣∣∣
2

, (28)

which can be achieved by using a sphere decoder [12]. By
(28), the uplink achievable diversity order is M .

After obtaining ŝ1,...,ŝN from (28), there are two ways
to send these symbols. The first approach does not employ
network coding. The downlink channel becomes a multiple
input and single output (MISO) channel. We use a linear
dispersion code [8] to code s1,...,sN . The transmitted signal
from the relay can be written as a K by M matrix

Xr=
N∑

i=1

(siCi+s
∗
i Di). (29)

The average power constraint requires that E{tr(XrXH
r )}=

(K+1)Pr. The design of Ci and Di is similar to that in [8].
The only difference is that here we need to maximize the sum
rate. Let s=[s1,...,sN ]T . The ML decoder for sj , j �=i, at each
source terminal can be readily obtained as in [8] and can be
implemented by using a sphere decoder [12].

A simple realization of (29) is to transmit Ums over antenna
m, m=1,...,M , where Um is a K by N unitary matrix and
Um can be chosen randomly to ensure distributed design.
Another way to use linear dispersion code is to generate
N−1 symbols s̃1,...,s̃N−1, where s̃i=

∑N
j=1ϕi,jsj is a linear

combination of decoded s1,...,sN . Existing space time codes
can be applied on s̃i. We only need to optimize the linear
coefficients ϕi,j to maximize the sum rate.

The second approach is to use network coding. As source i
already knows si, it is a waste of bandwidth to transmit a linear
combination of si. We apply network coding on a finite field
F of size q=max{|Q|,N} [11]. Let χi be the element in F is
corresponding to the index of si in Q. We then choose ξi,j∈F

such that for the given χi′ and ηi=
∑

j=1ξi,jχj , i=1,...,N1

we can decode χi, ∀i �=i′. For example, we can choose ξi,j=1
if j=i,i+1 modN and 0 otherwise. It is easy to verify that
by deleting any column from the Toeplitz matrix the resulting
matrix is invertible. This Toeplitz matrix also suggests that
a modular group is sufficient instead of a finite field, which
exists for all |Q|. At the relay we want to transmit x̃i∈Qr by
using a linear dispersion code as (29), i=1,...,N−1, where
the index of x̃i in Qr corresponds to ηi. By the construction
of ηi, the source terminals can recover the signals correctly.
Note that by using network coding, the number of symbols
need to transmit is reduced by one and the transmit symbols
are superimposed in finite fields rather than in real algebra,
which reduces power consumption.

3) Denoise-and-Forward: Denoise-and-forward is similar
to DF. At the relay, s1,...,sN are jointly decoded using
the ML decoder (28). Different from DF where ŝ1,...,ŝN

are transmitted using a linear dispersion code directly, DNF
reconstructs zm

r =
∑N

i=1h
m
i ŝi. As in AF, the transmitted signal

over the m-th antenna at time slot k+1 is

xm
r,k=

M∑
n=1

ψm,n
k zn

r , k=1,...,K. (30)

Also, the ML decoding and precoder design are similar to AF.
4) Estimate-and-Forward: At each received antenna, we

first use a function gm(·) to process the received signal such
that the MSE between the transmitted signal without noise and
the processed signal is minimized, i.e.,

min
gm

Es

⎧⎨
⎩
∣∣∣∣∣

N∑
i=1

hm
i si−gm(ym

r )

∣∣∣∣∣
2
⎫⎬
⎭, (31)

which has the solution

gm(ym
r )=

∑
s∈QN

∑N
i=1h

m
i sie

−|ym
r −∑N

i=1hm
i si|2∑

s∈QN e
−|ym

r −∑N
i=1hm

i si|2 . (32)

Let zm
r =βgm(ym

r ), where β is a constant to maintain the
average power at the relay. The rest of the protocol follows
AF by transmitting

∑M
n=1ψ

m,n
k zn

r over antenna m at time
slot k+1. We have considered minimizing the estimation
error at each antenna. Given ψm,n

k , we can also minimize the
MSE of symbols at source terminals. When applying EF to
Gaussian codebooks, we find that EF reduces to AF and that
the achievable rate region is identical to that of AF.

B. Compression Based Protocols
We mainly consider compression based DF (CDF), where

other protocols can be extended similarly. To motivate the
design principle, we consider a two-way relay network with a
single antenna at the relay, i.e., N=2 and M=1. The received
signal at the relay is yr=h1x1+h2x2+wr. Let Qq and Qt be
the quantization and transmission constellations, respectively.
There exists a mapping that maps xq∈Qq to xt∈Qt, i.e.,
xt=M(xq). On receiving yr, the relay first finds that

xq=argmin
x∈Qq

|yr−x|2. (33)

The relay then transmits xt=M(xq). If we choose Qq=
{h1x1+h2x2|x1,x2∈Q}, CF is similar to DNF by decoding
h1x1+h2x2 first. But different from DNF which transmits a
scaled version of xq, CF transmits xt instead. If M(x)=βx,
then CF reduces to DNF but clearly this is not the optimal
choice of Qq and Qt. In the following, we always choose Qq=
{h1x1+h2x2|x1,x2∈Q}. The problem now becomes how
to choose M(·) and Qt. Note that an important difference
between CDF in this subsection and the traditional CF in one-
way relay channel [5] is that the size of Qt can be smaller than
that of Qq due to the availability of side information at the
receivers. This approach can be interpreted as network coding
at the physical layer, where the size of the constellation is
reduced due to the inherent compression in network coding.

To ensure correct decoding, we need to make sure that given
xt and x1, there exists a unique x2 such that xt=M(h1x1+
h2x2). Therefore, we can construct a graph G, where each
vertex in G corresponds to a point in Qq. There is an edge
between h1x1+h2x2 and h1x1+h2x

′
2 and an edge between

h1x1+h2x2 and h1x
′
1+h2x2, ∀x1 �=x′1,x2 �=x′2. Hence, a valid



mapping M(·) corresponds to a coloring of G. To find the
optimal constellations, we can exhaust all possible colorings
of G and for each coloring we can find Qt to maximize
min{|h1|2d2

2,t,|h2|2d2
1,t} under the average power constraint

at the relay, where di,t is the minimum distance between any
two points in Qt given xi. The optimal M(·) is the one that
achieves the minimum average end-to-end error probability.
Note that the above approach can be extended to the general
case where the relay has multiple antennas and to more than
two source terminals.

After obtaining Qq and Qt, CDF can be naturally extended
to AF and EF. After finding xq from (33), compression based
AF transmits β(yr−xq+M(xq)), where β is a scalar to
satisfy the average power constraint. Likewise, assuming that
xq is received at the relay without noise, compression based EF
chooses a relay function f to minimize E

{|M(xq)−f(yr)|2
}

.

VI. SIMULATION RESULTS

Exemplarily we consider a three-way relay network where
the relay has M=2 antennas. Fig. 1 compares the average
symbol error probability of different protocols as a function
of P . The power is allocated according to the considerations
in Section V. The AF protocols by using the Alamouti type
space time code and the diagonal space time code in Section
V-A.1 are denoted as “AF Alamouti” and “AF Diagonal”,
respectively. The AF scheme obtained by using random unitary
precoding matrix is denoted as “AF Unitary”. The DF protocol
by concatenating a linear code with an Alamouti code is
optimized by maximizing the sum rate of all three terminals
at P=20. After optimization, we find the coding matrix is
[−0.1314x1+0.7687x2+0.6260x3 0.7880x1−0.1830x2+0.5878x3

−0.7880x∗
1+0.1830x∗

2−0.5878x∗
3 −0.1314x∗

1+0.7687x∗
2+0.6260x∗

3

]
,

(34)

which is denoted as “DF Sum Opt”. The DF strategy with
Toeplitz matrix-based network coding and an Alamouti code
in Section V-A.2 is denoted as “DF Network Coding”. Further,
the DF scheme with random unitary precoding matrices is
denoted as “DF Unitary”. The DNF protocols are defined
similarly as their AF counterparts. We do not show the results
of EF because its performance is very close to DNF. From
Fig. 1, we can see that DF protocols achieve a much better
performance than both AF and DNF protocols when P is large.
It seems that both DNF and AF attain a smaller diversity order
than DF in the observed region. The DNF protocols perform
better than their AF counterparts but still are inferior to the DF
protocols. For these protocols, we find that by using network
coding there is a performance gain over those schemes which
are not employing network coding. Furthermore, in all AF, DF
and DNF, we find that using random unitary matrices incurs a
performance loss even though it may be suitable for distributed
scenarios as random linear network coding [11]. More results
can be found in [9]. In particular, we find that if P is small,
DF outperforms both CF and AF strategies in terms of the
average sum rate, where CF is superior for larger values of P .
Also, DF is seen to outperform all other strategies in terms of
the average symbol error probability.
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Fig. 1. Average symbol error probability comparison of different protocols
as a function of P in a 3-way relay network. The relay has M=2 antennas.

VII. CONCLUSION

We have analyzed several space-time communication pro-
tocols for N -way relay networks in terms of the achievable
rate region. In particular, for CF and DF strategies we have
seen that applying network coding at the relay improves the
rate region. Moreover, for AF and DF we also determined
the optimal diversity-multiplexing tradeoff. The second part
of the paper was devoted to practical transmission strategies.
We demonstrated that for AF with M antennas at the relay
and an overall power of P a diversity order slightly smaller
than M can be achieved by employing a specific space-time
code construction.
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