
Space-Time Completion of Video
Yonatan Wexler, Member, IEEE Computer Society,

Eli Shechtman, Student Member, IEEE Computer Society, and

Michal Irani, Member, IEEE Computer Society

Abstract—This paper presents a new framework for the completion of missing information based on local structures. It poses the task

of completion as a global optimization problem with a well-defined objective function and derives a new algorithm to optimize it. Missing

values are constrained to form coherent structures with respect to reference examples. We apply this method to space-time completion

of large space-time “holes” in video sequences of complex dynamic scenes. The missing portions are filled in by sampling spatio-

temporal patches from the available parts of the video, while enforcing global spatio-temporal consistency between all patches in and

around the hole. The consistent completion of static scene parts simultaneously with dynamic behaviors leads to realistic looking video

sequences and images. Space-time video completion is useful for a variety of tasks, including, but not limited to: 1) Sophisticated video

removal (of undesired static or dynamic objects) by completing the appropriate static or dynamic background information. 2) Correction

of missing/corrupted video frames in old movies. 3) Modifying a visual story by replacing unwanted elements. 4) Creation of video

textures by extending smaller ones. 5) Creation of complete field-of-view stabilized video. 6) As images are one-frame videos, we

apply the method to this special case as well.

Index Terms—Video analysis, texture, space-time analysis.

Ç

1 INTRODUCTION

WE present a method for space-time completion of large

space-time “holes” in video sequences of complex

dynamic scenes. We follow the spirit of [14] and use non-

parametric sampling, while extending it to handle static and

dynamic information simultaneously. The missing video

portions are filled in by sampling spatio-temporal patches
from other video portions, while enforcing global spatio-

temporal consistency between all patches in and around the

hole. Global consistency is obtained by posing the problem of

video completion/synthesis as a global optimization pro-

blem with a well-defined objective function and solving it

appropriately. The objective function states that the resulting

completion should satisfy the following two constraints:

1) Every local space-time patch of the video sequence should
be similar to some local space-time patch in the remaining

parts of the video sequence (the “input data set”), while

2)globallyall thesepatchesmustbe consistentwith eachother,

both spatially and temporally.
Solving the above optimization problem is not a simple

task, especially due to the large dimensionality of video data.

However, we exploit the spatio-temporal relations and

redundancies tospeedandconstrain theoptimizationprocess

in order to obtain realistic looking video sequences with

complex scene dynamics at reasonable computation times.

Fig. 1 showsanexampleof the taskathand.Giventhe input
video (Fig. 1a), a space-time hole is specified in the sequence
(Fig. 1b). The algorithm is requested to complete this hole
using information from the remainder of the sequence. We
assume that the hole is provided to the algorithm.While in all
examples here it was marked manually, it can also be the
outcome of some segmentation algorithm. The resulting
completion and the output sequence are shown in Fig. 1c.

The goal of this work is close to a few well-studied
domains. Texture Synthesis (e.g., [2], [14], [28]) extends and
fills regular fronto-parallel image textures. This is similar to
Image Completion (e.g., [9], [12]) which aims at filling in large
missing image portions. While impressive results have been
achieved recently in some very challenging cases (e.g., see
[12]), the goal and the proposed algorithms have so far been
defined only in a heuristic way. Global inconsistencies often
result from independent local decisions taken at indepen-
dent image positions. For this reason, these algorithms use
large image patches in order to increase the chances of
correct output. The two drawbacks of this approach are that
elaborate methods for combining the large patches are
needed for hiding inconsistencies [12], [13], [21], and that
the data set needs to be artificially enlarged by including
various skewed and scaled replicas that might be needed
for completion. When compared to the pioneering work of
[14] and its derivatives, the algorithm presented here can be
viewed as stating an objective function explicitly. From this
angle, the algorithm of [14] makes a greedy decision in each
pixel based on the currently available pixels around it. It
only uses a directional neighborhood around each pixel. A
greedy approach requires the correct decision to be made at
every step. Hence, the chances for errors increase rapidly as
the gap grows. The work of [9] showed that this may be
alleviated by prioritizing the completion order using local
image structure. In challenging cases containing complex
scenes and large gaps, the local neighborhood does not hold
enough information for a globally correct solution. This is
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more pronounced in video. Due to motion aliasing, there is

little chance that an exact match will be found.
The framework presented here requires that the whole

neighborhood around each pixel is considered, not just a

causal subset of it. Moreover, it considers all windows

containing each pixel simultaneously, thus effectively using

an even larger neighborhood.

Image Inpainting (e.g., [5], [6], [22]) was defined in a
principled way as an edge continuation process, but is
restricted to small (narrow) missing image portions in
highly structured image data. These approaches have been
restricted to the completion of spatial information alone in
images. Even when applied to video sequences (as in [4]),
the completion was still performed spatially. The temporal
component of video has mostly been ignored. The basic
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Fig. 1. 1) Few frames out of a video sequence showing one person standing and waving her hands while the other person is hopping behind her. The
video size is 100� 300� 240, with 97,520 missing pixels. 2) A zoomed-in view on a portion of the video around the space-time hole before and after
the completion. Note that the recovered arms of the hopping person are at slightly different orientations than the removed ones. As this particular
instance does not exist anywhere else in the sequence, a similar one from a different time instance was chosen to provide an equally likely
completion. See video at: http://www.wisdom.weizmann.ac.il/~vision/VideoCompletion.html. (a) Input Sequence. (b) Occluder cut out manually.
(c) Spatio-temporal completion.

Fig. 2. Sources of information. Output frame 114, shown in (a), is a combination of the patches marked here in red over the input sequence (c). It is
noticeable that large continuous regions have been automatically picked whenever possible. Note that the hair, head, and body were taken from
different frames. The original frame is shown in (b). (a) Output. (b) Input. (c) Selected patches.



assumption of Image Inpainting, that edges should be
interpolated in some smooth way, does not naturally extend
to time. Temporal aliasing is typically much stronger than
spatial aliasing in video sequences of dynamic scenes.
Often, a pixel may contain background information in one
frame and foreground information in the next frame,
resulting in very nonsmooth temporal changes. These
violate the underlying assumptions of Inpainting.

In [19], amethod has been proposed for employing spatio-
temporal information to correct scratches and noise in poor-
quality video sequences. This approach relies on optical-flow
estimation and propagation into the missing parts followed
by reconstruction of the color data. Themethodwas extended
to removal of large objects in [20] under the assumption of
planar rigid layers and small camera motions.

View Synthesis deals with computing the appearance of a
scene from a new viewpoint, given several images. A
similar objective was already used in [15] for successfully
resolving ambiguities which are otherwise inherent to the
geometric problem of new-view synthesis from multiple
camera views. The objective function of [15] was defined on
2D images. Their local distance between 2D patches was
based on SSD of color information and included geometric
constraints. The algorithm there did not take into account
the dependencies between neighboring pixels as only the
central point was updated in each step.

Recently, there have been a few notable approaches to
video completion. Fromthealgorithmicperspective, themost
similar work to ours is [7], which learns a mapping from the
input video into a smaller volume, aptly called “epitome.”
These are then used for various tasks including completion.
While our work has a similar formulation, there are major
differences. We seek some cover of the missing data by the
available information. Some regions may contribute more
than once while some may not contribute at all. In contrast,
the epitome contains a proportional representation of all the
data. One implication of this is that the windows will be
averaged and, so, will lose some fidelity. The recent work of
[24] uses estimated optical flow to separate foreground and
background layers. Each is then filled incrementallyusing the
priority-based ordering idea similar to [9].

Finally, the work of [18] takes an object-based approach
where large portions of the video are tracked, their cycles
are analyzed, and they can then be inserted into the video.
This allows warping of the object so it fits better, but
requires a complete appearance of the object to be identified
and, so, is not applicable to more complex dynamics, such
as articulated motion or stochastic textures.

A closely related area of research which regards temporal
information explicitly is that of dynamic texture synthesis in
videos (e.g., [3], [11]).Dynamic textures areusually character-
ized by an unstructured stochastic process. They model and
synthesize smoke, water, fire, etc., but cannot model nor
synthesize structured dynamic objects, such as behaving
people.We demonstrate the use of ourmethod for synthesiz-
ing large video textures from small ones in Section 6. While
[26] has been able to synthesize/complete video frames of
structured dynamic scenes, it assumes that the “missing”
frames already appear in their entirety elsewhere in the input
video and, therefore, needed only to identify the correct
permutation of frames. An extension of that paper [25]
manually composed smaller “video sprites” to a new
sequence.

The approach presented here can automatically handle
the completion and synthesis of both structured dynamic
objects as well as unstructured dynamic objects under a
single framework. It can complete frames (or portions of
them) that never existed in the data set. Such frames are
constructed from various space-time patches, which are
automatically selected from different parts of the video
sequence, all put together consistently. The use of a global
objective function removes the pitfalls of local inconsisten-
cies and the heuristics of using large patches. As can be seen
in the figures and in the attached videos, the method is
capable of completing large space-time areas of missing
information containing complex structured dynamic scenes,
just as it can work on complex images. Moreover, this
method provides a unified framework for various types of
image and video completion and synthesis tasks, with the
appropriate choice of the spatial and temporal extents of the
space-time “hole” and of the space-time patches. A
preliminary version of this work appeared in CVPR ’04 [29].

This paper is organized as follows: Section 2 introduces
the objective function and Section 3 describes the algorithm
used for optimizing it. Sections 4 and 5 discuss trade-offs
between space and time dimensions in video and how they
are unified into one framework. Section 6 demonstrates the
application of this method to various problems. Finally,
Section 7 concludes this paper.

2 COMPLETION AS A GLOBAL OPTIMIZATION

Given a video sequence, we wish to complete the missing
portions in suchaway that it looks just like theavailableparts.
For this, we define a global objective function to rank the
quality of a completion. Such a function needs to take a
completedvideoandrate itsqualitywithrespect toareference
one. Its extremum should denote the best possible solution.

Our basic observation is that, in order for a video to
look good, it needs to be coherent everywhere. That is, a
good completion should resemble the given data locally
everywhere.

The constraint on the color of each pixel depends on the
joint color assignment of its neighbors. This induces a
structure where each pixel depends on the neighboring ones.
The correctness of a pixel value depends on whether its local
neighborhood forms a coherent structure. Rather than
modeling this structure, we follow [14] and use the reference
video as a library of video samples that are considered to be
coherent.

Given these guidelines, we are now ready to describe our
framework in detail.

2.1 The Global Objective Function

To allow for a uniform treatment of dynamic and static
information, we treat video sequences as space-time
volumes. We use the following notations: A pixel ðx; yÞ in a
frame t will be regarded as a space-time point p ¼ ðx; y; tÞ in
the volume.Wp denotes a small, fixed-sized window around
the point p both in space and in time. The diameter of the
window is given as a parameter. We use indices i and j to
denote locations relative to p. For example,Wp is the window
centered around p and W i

p is the ith window containing p
and is centered around the ith neighbor of p.

We say that a video sequence S has global visual coherence
with some other sequenceD if every local space-time patch in
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S can be found somewhere within the sequence D. In other
words,we can coverSwith smallwindows fromD.Windows
in the data set D are denoted by V and are indexed by a
reference pixel (e.g., Vq and V i

q ).
Let S andH � S be an input sequence and a “hole” region

within it. That is,H denotes all the missing space-time points
within S. For example, H can be an undesired object to be
erased, a scratch or noise in old corrupt footage, or entire
missing frames, etc. We assume that both S andH are given.

Wewish to complete themissing space-time regionHwith
some new dataH� such that the resulting video sequence S�

will have as much global visual coherence with some
reference sequence D (the data set). Typically, D ¼ S n H,
namely, the remaining video portions outside the hole, are
used to fill in thehole. Therefore,we seeka sequenceS�which
maximizes the following objective function:

CoherenceðS�jDÞ ¼
Y

p2S�

max
q2D

simðWp; VqÞ; ð1Þ

where p, q run over all space-time points in their respective
sequences. simð�; �Þ is a local similarity measure between
two space-time patches that will be defined shortly
(Section 2.2). The patches need not necessarily be isotropic
and can have different sizes in the spatial and temporal
dimensions. We typically use 5� 5� 5 patches which are
large enough to be statistically meaningful but small
enough so that effects, such as parallax or small rotations,
will not affect them. They are the basic building blocks of
the algorithm. The use of windows with temporal extent
assumes that the patches are correlated in time, and not
only in space. When the camera is static or fully stabilized,
this is trivially true. However, it may also apply in other
cases where the same camera motion appears in the
database (as shown in Fig. 16).

Fig. 3 explains why (1) induces global coherence. Each
space-time point p belongs to other space-time patches of
other space-time points in its vicinity. For example, for a
5� 5� 5 window, 125 different patches involve p. The red
and green boxes in Fig. 3a are examples of two such
patches. Equation (1) requires that all 125 patches agree on
the value of p and, therefore, (1) leads to globally coherent
completions such as the one in Fig. 3b. If the global
coherence of (1) is not enforced, and the value of p is
determined locally by a single best-matching patch (i.e.,
using a sequential greedy algorithm as in [9], [14], [24]),
then global inconsistencies will occur in a later stage of the
recovery. An example of temporal incoherence is shown in

Fig. 3c. A greedy approach requires the correct answer to be
found at every step and this is rarely the case as local image
structure will often contain ambiguous information.

The above objective function seeks a cover of the missing
data using the available one. That is, among the exponen-
tially large number of possible covers, we seek the one that
will give us the least amount of total error. The motivation
here is to find a solution that is correct everywhere, as any
local inconsistency will push the solution away from the
minimum.

2.2 The Local Space-Time Similarity Measure

At the heart of the algorithm is a well-suited similarity
measure between space-time patches. A good measure
needs to agree perceptually with a human observer. The Sum
of Squared Differences (SSD) of color information, which is
so widely used for image completion, does not suffice for
the desired results in video (regardless of the choice of color
space). The main reason for this is that the human eye is
very sensitive to motion. Maintaining motion continuity is
more important than finding the exact spatial pattern match
within an image of the video.

Fig. 4 illustrates (in 1D) that very different temporal
behaviors can lead to the same SSD score. The function fðtÞ
has a noticeable temporal change. Yet, its SSD score relative
to a similar looking function g1ðtÞ is the same as the SSD score
of fðtÞ with a flat function g2ðtÞ:

R

ðf � g1Þ
2dt ¼

R

ðf � g2Þ
2dt.

However, perceptually, fðtÞ and g1ðtÞ are more similar, as
they both encode a temporal change.

We would like to incorporate this into our algorithm so
to create a similarity measure that agrees with perceptual
similarity. Therefore, we add a measure that is similar to
that of normal-flow to obtain a quick and rough approx-
imation of the motion information. Let Y be the sequence
containing the grayscale (intensity) information obtained
from the color sequence. At each space-time point, we
compute the spatial and temporal derivatives ðYx; Yy; YtÞ. If
the motion were only horizontal, then u ¼ Yt=Yx would
capture the instantaneous motion in the x direction. If the
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Fig. 3. Local and global space-time consistency. (a) Enforcement of the global objective function of (1) requires coherence of all space-time patches
containing the point p. (b) Such coherence leads to a globally correct solution. The true trajectory of the moving object is marked in red and is
correctly recovered. When only local constraints are used and no global consistency enforced, the resulting completion leads to inconsistencies (c).
The background figure is wrongly recovered twice with wrong motion trajectories.

Fig. 4. Importance of matching derivatives (see text).



motion were only vertical, then v ¼ Yt=Yy would capture the

instantaneous motion in the y direction. The fractions factor

out most of the dependence between the spatial and

the temporal changes (such as frame-rate) while capturing

object velocities and directions. These two components

are scaled and added to the RGB measurements to obtain

a five-dimensional representation for each space-time point:

ðR;G;B; �u; �vÞ, where � ¼ 5. Note that we do not compute

optical flow. We apply an L2-norm (SSD) to this

5D representation in order to capture space-time similarities

for static and dynamic parts simultaneously. Namely, for

two space-time windows Wp and Vq, we have dðWp; VqÞ ¼
P

ðx;y;tÞ kWpðx; y; tÞ � Vqðx; y; tÞk
2, where, for each ðx; y; tÞ

within the patch, Wpðx; y; tÞ denotes its 5D measurement

vector. The distance is translated to the similarity measure

simðWp; VqÞ ¼ e�
dðWp;Vq Þ

2�2 : ð2Þ

The choice of � is important as it controls the smoothness of
the induced error surface. Rather than using a fixed value, it
is chosen to be the 75-percentile of all distances in the
current search in all locations. In this way, the majority of
locations are taken into account and, hence, there is a high
probability that the overall error will reduce.

3 THE OPTIMIZATION

The inputs to the optimization are a sequence S and a
“hole” H � S, marking the missing space-time points to be
corrected or filled in. The algorithm seeks an assignment of
color values for all the space-time points (pixels) in the hole
so to satisfy (1). While (1) does not imply any optimization
scheme, we note that it will be satisfied if the following two
local conditions are met at every space-time point p:

1. All windows W 1
p . . .W

k
p containing p appear in the

data set D:

9V i 2 D; W i
p ¼ V i:

2. All those V 1 . . .V k agree on the color value c at
location p:

c ¼ V iðpÞ ¼ V jðpÞ:

This is trivially true since the second condition is a
particular case of the first. These conditions imply an
iterative algorithm. The iterative step will aim at satisfying
these two conditions locally at every point p. Any change in
p will affect all the windows that contain it and, so, the
update rule must take all of them into account.

Note that (1) may have an almost trivial solution in which
the hole H contains an exact copy of some part in the
database. For such a solution, the error inside the hole will
be zero (as both conditions above are satisfied) and, so, the
total coherence error will be proportional to the surface area
of the space-time boundary. This error might be much
smaller than small noise errors spread across the entire
volume of the hole. Therefore, we associate an additional
quantity �p to each point p 2 S. Known points p 2 S n H
have fixed high confidence, whereas missing points p 2 H
will have lower confidence. This weight is chosen so to
ensure that the total error inside the hole is less than that on
the hole boundary. This argument needs to hold recursively
in every layer in the hole. An approximation to such
weighting is to compute the distance transform for every
hole pixel and then use �p ¼ ��dist. When the hole is roughly
spherical, choosing � ¼ 1:3 gives the desired weighting. This
measure bears some similarity to the priority used in [9]
except that, here, it is fixed throughout the process. Another
motivation for using such weighting is to speed up
convergence by directing the flow of information inward
from the boundary.

3.1 The Iterative Step

Let p 2 H be some hole point which we wish to improve.

Let W 1
p . . .W

k
p be all space-time patches containing p. Let
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V 1 . . .V k denote the patches in D that are most similar

to W 1
p . . .W

k
p per (2). According to Condition 1 above, if W i

p

is reliable, then dðW i
p; V

iÞ � 0. Therefore, simðW i
p; V

iÞ

measures the degree of reliability of the patch W i
p.

We need to pick a color c at location p so that the coherence

at all windows containing it will increase. Each window V i

provides an evidence of possible solution for c and the

confidence in thisevidence isgivenby(2)assip ¼ simðW i
p; V

iÞ.

According to Condition 2 above, the most likely color c at p

should minimize the variance of the colors c1 . . . ck proposed

by V 1 . . .V k at location p. As mentioned before, these values

should be scaled according to the fixed �i
p to avoid the trivial

solution. Thus, the most likely color at p will minimize
P

i !
i
pðc� ciÞ2, where !i

p ¼ �i
p � s

i
p. Therefore,

c ¼

P

i !
i
pc

i

P

i !
i
p

: ð3Þ

This c is assigned to be the color of p at the end of the

current iteration. Such an update rule minimizes the local

error around each space-time point p 2 H while maintain-

ing consistency in all directions, leading to a global

consistency.
One drawback of the update rule in (3) is its sensitivity to

outliers. It is enough that a few neighbors suggest the wrong
color to bias the mean color c and thus prevent or delay the
convergence of the algorithm. In order to avoid such effects,
we treat the k possible assignments as evidence. These
evidences give discrete samples in the continuous space of
possible color assignments. The reliability of each evidence is
proportional to !i

p and we seek the Maximum Likelihood
(ML) in this space. This is computed using the Mean-Shift
algorithm [8] with a variable bandwidth (window size). The
Mean-Shift algorithm finds the density modes of the
distribution (which is related to Parzen windows density

estimation). It is used here to extract the dominant mode of
the density. The bandwidth is defined with respect to the
standard deviation � of the colors c1; . . . ; ck at each point. It is
typically set to be 3� at the beginning and is reduced
gradually to 0:2�. The highest mode M is picked and so the
update rule in Table 5 is:

c ¼

P

i2M !i
pc

i

P

i2M !i
p

: ð4Þ

Thisupdate ruleproducesa robustestimate for thepixel in the
presence of noise. While making the algorithm slightly more
complex, this step has further advantages. The bandwidth
parameter controls the degree of smoothness of the error
surface. When it is large, it reduces to simple weighted
averaging (as in (3)), hence allowing rapid convergence.
When it is small, it inducesaweightedmajorityvote, avoiding
blurring in the resulting output. The use of a varying � value
has significantly improved the convergence of the algorithm.
When compared with the original work in [29], the results
shownhere achievebetter convergence. This canbe seen from
the improved amount of detail in areas which were
previously smoothed unnecessarily. The ability to rely on
outlier rejection also allows us to use approximate nearest
neighbors, as discussed in Section 3.3.

3.2 Multiscale Solution

To further enforce global consistency and to speed up
convergence, we perform the iterative process in multiple
scales using spatio-temporal pyramids. Each pyramid level
contains half the resolution in the spatial and in the temporal
dimensions. The optimization starts at the coarsest pyramid
level and the solution is propagated to finer levels for further
refinement. Fig. 6 shows a typical multiscale V-cycle
performed by the algorithm. It is worth mentioning that, as
each level contains 1/8th of the pixels, both in the holeH and
in the databaseD, the computational cost of using a pyramid
is almost negligible (8/7 of the work). In hard examples, it is
sometimes necessary to repeat several such cycles, gradually
reducing the pyramid height. This is inspired by multigrid
methods [27].

The propagation of the solution from a coarse level to the
one above it is done as follows: Let p" be a location in the finer
level and let p# be its corresponding location in the coarser
level. As before, let Let W i

p#
be the windows around p# and

let V i
# be the matching windows in the database. We

propagate the locations of V i
# onto the finer level to get V i

" .
Some of these (about k

8
, half in each dimension) will overlap

p" and these will be used for the maximum-likelihood step,
just as before (except that here there are less windows). This
method is better than plain interpolation as the initial guess
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Fig. 6. Multiscale solution. The algorithm starts by shrinking the input video (both in space and in time). The completion starts at the coarsest level,

iterating each level several times and propagating the result upward.



for the next level will preserve high spatio-temporal

frequencies and will not be blurred unnecessarily.

3.3 Algorithm Complexity

We now discuss the computational complexity of the
suggested method. Assume we have N ¼ jHj pixels in the
hole and that there are K windows in the database. The
algorithm has the following structure.

First, a spatio-temporal pyramid is constructed and the
algorithm iterates a few times in each level (typically, five to
10 iterations in each level). Level l contains roughlyN=8l hole
pixels andK=8l database windows.

Each iteration of the algorithm has two stages: searching
the database and per-pixel Maximum Likelihood.

The first stage performs a nearest-neighbor search once
for each window overlapping the space-time hole H. This is
the same computational cost as all the derivatives from Efros
and Leung’s work [14]. The search time depends on K and
the nearest-neighbor search method. Since each patch is
searched independently, this step can be parallelized
trivially. While brute-force would take OðK=8l �N=8lÞ,

we use the method of [1] so the search time is logarithmic

in K. We typically obtain a speedup of two orders of

magnitude over brute force search. This approach is very

suitable for our method for three reasons: First, it is much

faster. Second, we always search for windows of the same

size. Third, our robust maximum-likelihood estimation

allows us to deal with wrong results that may be returned

by this approximate algorithm.
The second stage is the per pixel maximum-likelihood

computation. We do this using the Mean-Shift algorithm

[8]. The input is a set of 125 RGB triplets along with their

weights. A trivial implementation is quadratic in this small

number and so is very fast.
The running time depends on the above factors. For

small problems, such as image completion, the running

time is about a minute. For the “Umbrella” sequence in

Fig. 7 of size 120� 340� 100 with 422,000 missing pixels

each iteration in the top level takes roughly one hour on a

2.6Ghz Pentium computer. Roughly 95 percent of this time

is used for the nearest neighbor search. This suggests that
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Fig. 7. Removal of a beach umbrella. The video size is 120� 340� 100, with 422,000 missing pixels. See the video at: http://www.wisdom.weizmann.

ac.il/~vision/VideoCompletion.html. (a) Input sequence. (b) Umbrella removed. (c) Output. (d) Full-size frames (input and output).



pruning the database (as in [24]) or simplifying the search
(as in [2]) would give a significant speedup.

3.4 Relation to Statistical Estimation

The above algorithm can be viewed in terms of a statistical
estimation framework. The global visual coherence in (1)
can be derived as a Likelihood function via a graphical
model, and our iterative optimization process can be seen as
an approximation of the EM method to find the maximum-
likelihood estimate. According to this model, the para-
meters are the colors of the missing points in the space-time
hole and pixels in the boundary around the hole are the
observed variables. The space-time patches are the hidden
variables and are drawn from the data set (patches outside
the hole in our case).

We show in the Appendix how the likelihood function is
derived from this model, and that the maximum-likelihood
solution is the best visually coherent completion, as defined
in (1). We also show that our optimization algorithm fits the
EM method [10] for maximizing the Likelihood function.
Under some simplifying assumptions, the E step is
equivalent to the nearest neighbor match of a patch from
the data set to the current estimated corresponding “hole”
patch. The M step is equivalent to the update rule of (3).

The above procedure also bears some similarity to the
Belief Propagation (BP) approach to completion such as in
[22]. As BP communicates a PDF (probability density
function), it is practically limited to modeling no more than
three neighboring connections at once. There, a standard
grid-based graphical model is used (as is, for example, in
[16]), in which each pixel is connected to its immediate
neighbors. Our graphical model has a completely different
structure. Unlike BP, our model does not have links between
nodes (pixels). Rather, the patch structure induces an implicit
connection between nodes. It takes into account not only a
few immediate neighbors, but all of them (e.g., 125). This
allows us to deal with more complex visual structures. In
addition,we assume that the point values are parameters and
not random variables. Instead of modeling the PDF, we use
the local structure to estimate its likelihood and derive an
update step using the nearest neighbor in the data set.

When seen as a variant of belief propagation, one can
think of this method as propagating only one evidence. In
the context of this work, this is reasonable, as the space of
all patches is very high dimensional and is sparsely
populated. Typically, the data set occupies “only” a few
million samples out of ð3 � 255Þ125 possible combinations.
The typical distance between the points is very high and, so,
only a few are relevant, so passing a full PDF is not
advantageous.

4 SPACE-TIME VISUAL TRADE-OFFS

The spatial and temporal dimensions are very different in
nature, yet are interrelated. This introduces visual trade-offs
between space and time that are beneficial to our space-time
completion process. On one hand, these relations are
exploited to narrow down the search space and to speed
up the completion process. On the other hand, they often
entail different treatments of the spatial and temporal
dimensions in the completion process. Some of these issues
have been mentioned in previous sections in different

contexts, and are therefore only briefly mentioned here.
Other issues are discussed here in more length.

Temporal versus spatial aliasing. Typically, there is more
temporal aliasing than spatial aliasing in video sequences of
dynamic scenes. This is mainly due to the different nature of
blur functions that precede the sampling process (digitiza-
tion) in the spatial and in the temporal dimensions: The
spatial blur induced by the video camera (a Gaussian whose
extent is several pixels) is a much better low-pass filter than
the temporal blur inducedby the exposure time of the camera
(a Rectangular blur functionwhose extent is less than a single
frame-gap in time). This leads to a number of observations:

1. Extending the family of Inpainting methods to
include the temporal dimension may be able to
handle completion of (narrow) missing video por-
tions that undergo slow motions, but there is a high
likelihood that it will not be able to handle fast
motions or even simple everyday human motions
(such as walking, running, etc). This is because
Inpainting relies on edge continuity, which will be
hampered by strong temporal aliasing.

Space-time completion, on the other hand, does
not rely on smoothness of information within patches
and can therefore handle aliased data as well.

2. Because temporal aliasing is shorter than spatial
aliasing, our multiscale treatment is not identical in
space and in time. In particular, after applying the
video completion algorithm of Section 3, residual
spatial (appearance) errors may still appear in fast
recovered moving objects. To correct those effects,
an additional refinement step of space-time comple-
tion is added, but this time, only the spatial scales
vary (using a spatial pyramid), while the temporal
scale is kept at the original temporal resolution. The
completion process, however, is still space-time. This
allows for completion using patches which have a
large spatial extent to correct the spatial information,
while maintaining a minimal temporal extent so that
temporal coherence is preserved without being
affected too much by the temporal aliasing.

The local patch size. In our space-time completion process,
we typically use 5� 5� 5patches. Such a patch size provides
53 ¼ 125 measurements per patch. This usually provides
sufficient statistical information to make reliable inferences
based on this patch. To obtain a similar number of measure-
ments for reliable inference in the case of 2D image
completion, we would need to use patches of size 11� 11.
Such patches, however, are not small, and are thereforemore
sensitive to geometric distortions (effects of 3D parallax,
change in scale, and orientation) due to different viewing
directions between the camera and the imaged objects. This
restricts the applicability of image-based completion or else
requires the use of patches at different sizes and orientations
[12], which increases the complexity of the search space
combinatorially.

One may claim that, due to the new added dimension
(time), there is a need to select patches with a larger number
of samples to reflect the increase in data complexity. This,
however, is not the case, due to the large degree of spatio-
temporal redundancy in video data. The data complexity
indeed increases slightly, but this increase is in no way
proportional to the increase in the amounts of data.
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The added temporal dimension therefore provides
greater flexibility. The locality of the 5� 5� 5 patches both
in space and in time makes them relatively insensitive to
small variations in scaling, orientation, or viewing direction
and, therefore, applicable to a richer set of scenes (richer
both in the spatial sense and in the temporal sense).

Interplay between time and space. Often, the lack of spatial
information can be compensated for by the existence of
temporal information, and vice versa. To show the impor-
tance of combining the two cues of information, we compare
the results of spatial completion alone to those of space-time
completion. The top row of Fig. 9 displays the resulting
completed frames of Fig. 1 using space-time completion. The
bottom row of Fig. 9 shows the results obtained by filling in
the same missing regions, but this time, using only image
(spatial) completion. In order to provide the 2D image
completion with the best possible conditions, the image
completion process was allowed to choose the spatial image
patches from anyof the frames in the input sequence. It is clear
from the comparison that image completion failed to recover
the dynamic information. Moreover, it failed to complete the
hopping woman in any reasonable way, regardless of the
temporal coherence.

Furthermore,due to the large spatio-temporal redundancy
in video data, the added temporal component provides
additional flexibility in the completion process. When the
missing space-time region (the “hole”) is spatially large and
temporally small, then the temporal informationwill provide
most of the constraints in the completion process. In such
cases, image completion will not work, especially if the
missing information is dynamic. Similarly, if the hole is
temporally large, but spatially small, then spatial information
will provide most of the constraints in the completion,
whereas pure temporal completion/synthesis will fail. Our
approach provides a unified treatment of all these cases,
without the need to commit to a spatial or a temporal
treatment in advance.

5 UNIFIED APPROACH TO COMPLETION

The approach presented in this paper provides a unified

framework for various types of image and video comple-

tion/synthesis tasks. With the appropriate choice of the

spatial and temporal extents of the space-time “hole” H and

of the space-time patches Wp, our method reduces to any of

the following special cases:

1. When the space-time patches Wp of (1) have only a
spatial extent (i.e., their temporal extent is set to 1),
then our method becomes the classical spatial image
completion and synthesis. However, because our
completion process employs a global objective func-
tion (1), global consistency is obtained that is other-
wise lacking when not enforced. A comparison of our
method to other image completion/synthesis meth-
ods is shown in Figs. 12, 13, and 14. (We could not
check the performance of [12] on these examples. We
have, however, applied our method to the examples
shown in [12] and obtained comparably good results.)

2. When the spatial extent of the space-time patchesWp

of (1) is set to be the entire image, then our method
reduces to temporal completion of missing frames or

synthesis of new frames using existing frames to fill in

temporal gaps (similar to the problem posed by [26]).
3. If, on the other hand, the spatial extent of the space-

time “hole” H is set to be the entire frame (but the
patches Wp of (1) remain small), then our method
still reduces to temporal completion of missing video
frames (or synthesis of new frames), but this time,
unlike [26], the completed frames may have never
appeared in their entirety anywhere in the input
sequence. Such an example is shown in Fig. 8, where
three frames were dropped from the video sequence
of a man walking on the beach. The completed
frames were synthesized from bits of information
gathered from different portions of the remaining
video sequence. Waves, body, legs, arms, etc., were
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Fig. 8. Completion of missing frames. The video size is 63� 131� 42 and has 57,771 missing pixels in seven frames.

Fig. 9. Image completion versus video completion.



automatically selected from different space-time
locations in the sequence so that they all match
coherently (both in space and in time) to each other
as well as to the surrounding frames.

6 APPLICATIONS

Space-time video completion is useful for a variety of tasks

in video postproduction and video restoration. A few

example applications are listed below. In all the examples

below, we crop the video so to contain only relevant

portions. The size of the original videos for most of them is

half PAL video resolution (360� 288).

1. Sophisticated video removal. Video sequences often
contain undesired objects (static or dynamic), which
were either not noticed or else were unavoidable at
the time of recording. When a moving object reveals
all portions of the background at different time
instances, then it can be easily removed from the
video data, while the background information can be
correctly recovered using simple techniques (e.g.,
[17]). Our approach can handle the more complicated
case, when portions of the background scene are
never revealed, and these occluded portions may
further change dynamically. Such examples are
shown in Figs. 1, 7, and 10. Note that, in both Figs. 7
and 10, all the completed information is dynamic and,

so, reliance on background subtraction or segmenta-
tion is not likely to succeed here.

2. Restoration of old movies. Old video footage is

often very noisy and visually corrupted. Entire

frames or portions of frames may be missing, and

severe noise may appear in other video portions.

These kinds of problems can be handled by our

method. Such an example is shown in Fig. 11.
3. Modify a visual story. Our method can be used to

make people in a movie change their behavior. For

example, if an actor has absent mindedly picked his

nose during a film recording, then the video parts

containing the obscene behavior can be removed, to

be coherently replaced by information from data

containing a range of “acceptable” behaviors. This is

demonstrated in Fig. 15, where an unwanted scratch-

ing of the ear is removed.
4. Complete field-of-viewof a stabilizedvideo.Whena

video sequence is stabilized, there will be missing
parts in the perimeter of each frame. Since the hole

does not have to be bounded, the method can be

appliedhereaswell.Fig. 16showssuchanapplication.
5. Creation of video textures. The method is also

capable of creating large video textures from small
ones. In Fig. 17, a small video sequence (32 frames)
was extended to a larger one, both spatially and
temporally.

7 SUMMARY AND CONCLUSIONS

We have presented an objective function for the completion
of missing data and an algorithm to optimize it. The
objective treats the data uniformly in all dimensions and the
algorithm was demonstrated on the completion of several
challenging video sequences. In this realm, the objective
proved to be very suitable as it only relies on very small,
local parts of information. It successfully solved problems
with hundreds of thousands of unknowns. The algorithm
takes advantage of the sparsity of the database within the
huge space of all image patches to derive an update step.
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Fig. 10. Removal of a running person. The video size is 80� 170� 88 with 74,625 missing pixels.

Fig. 11. Restoration of a corrupted old Charlie Chaplin movie. The video

is of size 135� 180� 96 with 3,522 missing pixels.



The method provides a principled approach with a clear

objective function that extends those used in other works.

We have shown here that it can be seen as a variant of EM

and we have also shown its relation to BP.
There are several possible improvements to this method.

First, we did not attempt to prune the database in any way,

even though this is clearly the bottleneck with regard to

running time. Second, we applied the measure to windows

around every pixel, rather than a sparser set. Using a

sparser grid (say, every third pixel) will give a significant

speedup ð33Þ. Third, breaking the database into meaningful

portions can prevent the algorithm from completing one

class of data with another, even if they are similar (e.g.,

complete a person with background), as was done in [18],

[24]. Fourth, the proposed method does not attempt to

coalesce identical pixels that come from the same (static)

part of the scene. These can be combined to form a joint

constraint rather than being solved almost independently in

each frame as was done here.

APPENDIX

In this section, we derive the optimization algorithm from

Section 3 using the statistical estimation framework for the

interested reader. In this framework, the global visual

coherence of (1) can be derived as a likelihood function via a

graphical model and our iterative optimization process can

be viewed as a variant of the EM algorithm to find the

maximum-likelihood estimate.
Under this model, the unknown parameters, denoted by

�, are the color values of the missing pixel locations p in the
space-time hole: � ¼ fcpjp 2 Hg. The known pixels around

the hole are the observed variables Y ¼ fcpjp 2 S n Hg. The

windows fWng
N
1 are defined as small space-time patches

overlapping the hole where N is their total number. The set

of patches X ¼ fXng
N
1 are the hidden variables correspond-

ing to Wn. The space of possible assignments for each Xn

are the data set patches in D. We assume that each Xn can

have any assignment with some probability. For the

completion examples here, the data set is composed of all
the patches from the same sequence that are completely
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Fig. 12. Image completion example. (a) Original. (b) Our result. (c) Result from [9].

Fig. 13. Texture synthesis example. The original texture (a) was rotated
90 degrees and its central region (marked by white square) was filled
using the original input image. (b) Our result. (c) Best results of (our
implementation of) [14] were achieved with 9� 9 windows (the only user
defined parameter). Although the window size is large, the global
structure is not maintained.

Fig. 14. The Kanitzsa triangle example is taken from [9] and compared
with the algorithm here. The preference of [9] to complete straight lines

creates the black corners in (c) which do not appear in (b). (a) Input.

(b) Our result. (c) Result from [9].



known, i.e.,X ¼ fXnjXn � S n Hg, but the data set may also

contain patches from another source.
This setup can be described as a graphical model which is

illustrated in Fig. 18 in one dimension. Each patch Wn is

associated with one hidden variable Xn. This, in turn, is

connected to all the pixel locations it covers, p 2 Wn. As each

Wn denotes a patch overlapping the hole, at least some of

these pixel locations are unknowns, i.e., they belong to�. Let

cp ¼ W p
n denote the color of the pixel p in the appropriate

location within the window Wn and let Xp
n denote the color

at the same location within the data set windows. Note that,

while the color valuesXp
n corresponding to pixel pmay vary
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Fig. 15. Modification of a visual story. The woman in the top row scratches her ear but in the bottom row she does not. The video size is
90� 360� 190 with 70,305 missing pixels.

Fig. 16. Stabilization example. The top row shows a stabilized video sequence (courtesy of Matsushita [23]) of size 240� 352� 91 with
466,501 missing pixels. Each frame was transformed to cancel the camera motion and, as a result, parts of each frame are missing (shown here in
red). Traditionally, the video would be cropped to avoid these areas and to keep only the region that is visible throughout. Here, the missing parts
are filled up using our method to create video with the full spatial extent. The results here are comparable with those in [23].

Fig. 17. Video texture synthesis. (a) A small video (sized 128� 128� 32) is expanded to a larger one, both in space and in time. (b) is the larger
volume of 128� 270� 60 frames with 1,081,584 missing pixels. Small pieces of (a) were randomly placed in the volume with gaps between them. In
(c), the gaps were filled automatically by the algorithm. Several frames from the initial and resulting videos are shown in (d). (a) Input video texture.
(b) Initial volume. (c) Output video texture. (d) Initial and final resulting texture.



for different window locations n, the actual pixel color cp is

the same for all overlapping windows W p
n . Using these

notations, an edge in the graph that connects an unknown

pixel p with an overlapping window Xn has an edge

potential of the form �ðcp; XnÞ ¼ e�
1

2�2
ðcp�Xp

nÞ
2

.

The graph in Fig. 18 with the definition of its edge

potentials is equivalent to the following joint probability

density of the observed boundary variables and the hidden

patches given the parameters �:

fðY;X; �Þ ¼ �
Y

N

n¼1

Y

p2Wn

�ðcp; XnÞ ¼ �
Y

N

n¼1

Y

p2Wn

e�
ðcp�X

p
nÞ

2

2�2 ;

where p denotes here either a missing or observed pixel and

� is a constant normalizing the product to 1. This product is

exactly the similarity measure defined previously in (2):

fðY;X; �Þ ¼ �
Y

N

n¼1

e�dðXn ;WnÞ ¼ �
Y

N

n¼1

simðXn;WnÞ:

To obtain the likelihood function, we need to marginalize

over the hidden variables. Thus, we need to integrate over

all possible assignments for the hidden variables X1 . . .XN :

L ¼ fðY; �Þ ¼
X

ðX1;...;XN Þ2D
N

fðY;X; �Þ ð5Þ

¼
X

ðX1;...;XN Þ2D
N

�
Y

N

n¼1

simðXn;WnÞ: ð6Þ

The maximum-likelihood solution to the completion

problem under the above model assumptions is the set of

hole pixel values ð�Þ that maximize this likelihood function.

Note that, since the summation termsareproducts of all patch

similarities, we will assume that this sum is dominated by

the maximal product value (deviation of one of the patches

from its best match will cause a significant decrease of the

entire product term): maxL � maxfXg �
QN

n¼1 simðXn;WnÞ.

Given the point values, seeking the best patchmatches can be

done independently for each Wn; hence, we can change the

order of the max and product operators:

maxL � �
Y

N

n¼1

max
Xn

simðXn;WnÞ;

meaning that the maximum-likelihood solution is the same

completion that attains best visual coherence according to (1).

We will next show that our optimization algorithm fits

the EM algorithm [10] for maximizing the above likelihood

function.

In the E step, at iteration t, the posterior probability

density �̂t is computed. Due to conditional independence of

the hidden patches, this posterior can be written as the

following product:

�̂t ¼ fðXjY; �tÞ ¼
Y

N

n¼1

fðXnjY; �tÞ ¼
Y

N

n¼1

�nsimðXn;WnÞ:

Thus, we get a probability value �̂t for each possible
assignment of the data set patches. Given the above
considerations, these probabilities vanish in all but the best
match assignments in each pixel, thus, the resulting PDF is an
indicator function. This common assumption, also known as
“Hard EM,” justifies the choice of one nearest neighbor.

In the M step, the current set of parameters � are
estimated by maximizing the following function:

�̂tþ1 ¼ argmax
�

X

ðX1;...;XN Þ2D
N

�̂t log fðX;Y; �Þ

0

@

1

A:

Given the graphical model in Fig. 18, each unknown p
depends only on its overlapping patches and the pixels are
conditionally independent. Thus, the global maximization
may be separated to local operations on each pixel:

ĉtþ1
p ¼ argmax

cp
�

X

fn j p2Wng

ðcp � X̂p
nÞ

2

0

@

1

A;

where the X̂n are the best patch assignments for the current
iteration (denoted also by V in Section 3.1). This is an L2

distance between the point value and the corresponding
color values in all covering patches and it is maximized by
the mean of these values similar to (3).

Similar to the classic EM, the likelihood in the “Hard

EM” presented here is increased in each E and M steps.

Thus, the algorithm converges to some local maxima. The

use of a multiscale process (see Section 3.2) and other

adjustments (see Section 3.1) leads to a quick convergence

and to a realistic solution with high likelihood.
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