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Abstract

Multiple-input multiple-output transmitted signal design for the partially coherent Rayleigh fading

channels with discrete inputs under a given average transmit power constraint is consider in this

thesis. The objective is to design the space-time constellations and linear precoders to adapt to the

degradation caused by the imperfect channel estimation at the receiver and the transmit-receive

antenna correlation. The system is partially coherent so that the multiple-input multiple-output

channel coefficients are estimated at the receiver and its error covariance matrix is fed back to the

transmitter. 

Two constellation design criteria, one for the single and another for the multiple transmit

antennae are proposed. An upper bound on the average bit error probability for the single transmit

antenna and cutoff rate, i.e., a lower bound on the mutual information, for multiple transmit

antennae are derived. Both criteria are functions of channel estimation error covariance matrix.

The designed constellations are called as partially coherent constellation. Additionally, to use the

resulting constellations together with forward error control codes requires efficient bit mapping

schemes. Because these constellations lack geometrical symmetry in general, the Gray mapping

is not always possible in the majority of the constellations obtained. 

Moreover, different mapping schemes may lead to highly different bit error rate performances.

Thus, an efficient bit mapping algorithm called the modified binary switching algorithm is

proposed. It minimizes an upper bound on the average bit error probability. It is shown through

computer simulations that the designed partially coherent constellation and their optimized bit

mapping algorithm together with turbo codes outperform the conventional constellations. 

Linear precoder design was also considered as a simpler, suboptimal alternative. The cutoff

rate expression is again used as a criterion to design the linear precoder. A linear precoder is

obtained by numerically maximizing the cutoff rate with respect to the precoder matrix with a

given average transmit power constraint. Furthermore, the precoder matrix is decomposed using

singular-value-decomposition into the input shaping, power loading, and beamforming matrices.

The beamforming matrix is found to coincide with the eigenvectors of the transmit correlation

matrix. The power loading and input shaping matrices are solved numerically using the difference

of convex functions programming algorithm and optimization under the unitary constraint,

respectively. Computer simulations show that the performance gains of the designed precoders are

significant compared to the cutoff rate optimized partially coherent constellations without

precoding. 

Keywords: cutoff rate, difference of convex functions programming, imperfect channel

state information, linear precoder, multiple-input multiple-output, sequential quadratic

programming, signal design, space-time codes
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Tiivistelmä

Väitöskirjassa tarkastellaan lähetyssignaalien suunnittelua osittain koherenteissa Rayleigh-häi-

pyvissä kanavissa toimiviin monitulo-monilähtöjärjestelmiin (MIMO). Lähettimen keskimääräi-

nen lähetysteho oletetaan rajoitetuksi ja lähetyssignaali diskreetiksi. Tavoitteena on suunnitella

tila-aikakonstellaatioita ja lineaarisia esikoodereita jotka mukautuvat epätäydellisen kanavaesti-

moinnin aiheuttamaan suorituskyvyn heikkenemiseen sekä lähetin- ja vastaanotinantennien väli-

seen korrelaatioon. Tarkasteltavien järjestelmien osittainen koherenttisuus tarkoittaa sitä, että

MIMO-kanavan kanavakertoimet estimoidaan vastaanottimessa, josta niiden virhekovarianssi-

matriisi lähetetään lähettimelle. 

Työssä esitetään kaksi konstellaatiosuunnittelukriteeriä, toinen yhdelle lähetinantennille ja

toinen moniantennilähettimelle. Molemmat kriteerit ovat kanavan estimaatiovirheen kovarians-

simatriisin funktioita. Työssä johdetaan yläraja keskimääräiselle bittivirhetodennäköisyydelle

yhden lähetinantennin tapauksessa sekä rajanopeus (cutoff rate), joka on alaraja keskinäisinfor-

maatiolle, usean lähetinantennin tapauksessa. Konstellaatioiden käyttö yhdessä virheenkorjaus-

koodien kanssa edellyttää tehokaita menetelmiä, joilla bitit kuvataan konstellaatiopisteisiin. Kos-

ka tarvittavat konstellaatiot eivät ole tyypillisesti geometrisesti symmetrisiä, Gray-kuvaus ei ole

yleensä mahdollinen.Lisäksi erilaiset kuvausmenetelmät voivat johtaa täysin erilaisiin bittivirhe-

suhteisiin. Tästä johtuen työssä esitetään uusi kuvausalgoritmi (modified bit switching algo-

rithm), joka minimoi keskimääräisen bittivirhetodennäköisyyden ylärajan. Simulointitulokset

osoittavat, että työssä kehitetyt konstellaatiot antavat paremman suorituskyvyn turbokoodatuis-

sa järjestelmissä kuin perinteiset konstellaatiot. 

Työssä tarkastellaan myös lineaarista esikoodausta yksinkertaisena, alioptimaalisena vaihto-

ehtona uusille konstellaatioille. Esikoodauksen suunnittelussa käytetään samaa kriteeriä kuin

konstellaatioiden kehityksessä eli rajanopeutta. Lineaarinen esikooderi löydetään numeerisesti

maksimoimalla rajanopeus kun rajoitusehtona on lähetysteho. Esikoodausmatriisi hajotetaan sin-

gulaariarvohajotelmaa käyttäen esisuodatus, tehoallokaatio ja keilanmuodostusmatriiseiksi, jon-

ka havaitaan vastaavan lähetyskorrelaatiomatriisin ominaisvektoreita. Tehoallokaatiomatriisi rat-

kaistaan numeerisesti käyttäen difference of convex functions -optimointia ja esisuodatusmatriisi

optimoinnilla unitaarista rajoitusehtoa käyttäen. Simulaatiotulokset osoittavat uusien esikoode-

reiden tarjoavan merkittävän suorituskykyedun sellaisiin rajanopeusoptimoituihin osittain kohe-

rentteihin konstellaatioihin nähden, jotka eivät käytä esikoodausta. 

Asiasanat: difference of convex functions -optimointi, epätäydellinen kanavatilatieto,

lineaarinen esikoodaus, monitulo-monilähtö (MIMO), rajanopeus, sarjamuotoinen

kvadraattinen ohjelmointi, signaalin suunnittelu, tila-aikakoodi
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1 Introduction

1.1 Motivation

Wireless communication systems have evolved from basic voice communication

to mobile-broadband multimedia services. Today, the key drivers for the con-

tinued technology evolution in wireless communications are emerging demands

for high data rate multimedia-based services, high spectral efficiency, low power

consumption, and reliable services. Due to the proliferation of wireless multi-

media applications and services such as video teleconferencing, network gaming,

and high quality audio/video streaming, it is apparent that a wireless cellular

system such as the Third Generation (3G) or its predecessor will be unable to

comply with this ever-increasing demand for broadband wireless services. The

recently deployed wireless communication system, the Fourth Generation (4G),

is supporting much higher data rate services compared to evolving 3G systems

(up to 100 megabits per second (Mbps) in outdoor environments and up to 1

gigabits per second (Gbps) in indoor environments) [1]. However, in the near

future, wireless data traffic is envisioned to increase by 1,000-fold [2]. Thus, the

next generation wireless systems, the Fifth Generation (5G), is expected to sup-

port up to 1,000 times higher data volume than today’s systems, with peak and

cell edge rates higher than 10 Gbps and 1,000 Mbps, respectively [3].

Recent research results show that the multiple-input multiple-output (MIMO)

wireless technology [4, 5] has potential to meet these demands by offering in-

creased spectral efficiency through spatial multiplexing (SM) gain and improved

link reliability due to antenna diversity gain. When perfect channel knowledge

is available at the receiver, the capacity has been shown to grow linearly with

the number of antennae. Most MIMO detection schemes are based on perfect

channel state information (CSI) being available at the receiver. Although perfect

estimates are desirable in practice, the channel estimation procedure is aided by

transmitting training sequences (also referred to as pilot signals) that are known

at the receiver. Since known training sequences carry no data information, they

consume the useful data power and bandwidth resources. Apparently, there is a

tradeoff in allocating these resources between training and data sequences. The

quality of the channel estimate depends on the length and power level of the
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training sequence. However, over-increasing the overhead for training reduces

information capacity. Therefore, it is desirable to limit the length and power

allocated to the transmitted training sequence such that the desired quality of

service is still maintained.

Moreover, MIMO systems are ideal for rich scattering environments where the

channel between any pair of transmit and receive antennae can be modeled as a

matrix of independent and identically distributed (i.i.d.) complex Gaussian ran-

dom variables. Possible occurrences of the idealized channel conditions include

the class of indoor channels, such as wireless local area networks, fixed wireless

networks, and wireless ad-hoc networks. However, in many practical situations,

the MIMO channels can be spatially correlated due to the limited scattering

environment and inter-antenna spacing. The presence of spatial correlation also

degrades the performance of the system because of the limited degree of freedom

in the channel [6]. The smaller the distance between the antenna elements, the

larger is the spatial correlation and the loss in the channel capacity [7–9]. With

the combined impact of the CSI estimation error and spatial correlation on the

symbol error rate (SER) performance [10–13], outage probability and capacity

has been reported to be significant [14–17].

Hence, proper signal and robust system designs are required to meet the

above-mentioned challenges. It is therefore of considerable relevance to study

and design i) the space-time (ST) modulation constellations1, and ii) the lin-

ear precoder matrices to be used with the finite discrete input such as quadra-

ture amplitude modulation (QAM) and phase-shift keying (PSK) constellations.

Consequently, the wireless communication system can achieve close-to-optimal

performances at low signal-to-noise ratio (SNR) and tolerate inaccuracies in the

channel estimates at the receiver and presence of spatial correlation and effi-

ciently exploit the receive antennae to improve the error rate performances.

1.2 Communication over the wireless channel

Wireless channels operate through electromagnetic radiation from the transmit-

ter to the receiver. The transmitter maps the information bearing symbols onto

the electromagnetic waves over the open atmosphere rather than using propaga-

tion medium as wires. Electromagnetic waves generally propagate according to

1Constellations, codebook and codes are used interchangeably throughout this thesis.
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three mechanisms: reflection, diffraction and scattering. Reflections arise when

the plane waves are incident upon a surface with dimensions that are very large

compared to the wavelength. Diffraction occurs according to Huygen’s principle

when there is an obstruction between the transmitter and receiver antennae and

secondary waves are generated behind the obstructing body. Scattering occurs

when the plane waves are incident upon an object whose dimensions are on the

order of a wavelength or less and causes the energy to be dissipated in many

directions. The relative importance of these three propagation mechanisms de-

pends on the particular propagation environment. As a result of the above

three mechanisms, electromagnetic wave propagation can be roughly suffered by

three nearly independent phenomena: path loss variation with distance, slow

log-normal shadowing, and fast multi-path fading [18]. Generally, these impedi-

ments of a radio channel can be categorized into two types of fading: large-scale

fading and small-scale fading.

Large-scale fading represents the average signal power attenuation due to

motion over large areas [19]. This phenomenon is affected by prominent terrain

contours (hills, forests, billboards, clumps of buildings, etc.) between the trans-

mitter and the receiver. The receiver is often represented as being “shadowed” by

such prominence. The statistics of large-scale fading provide a way of computing

an estimate of path loss as a function of distance.

Small-scale fading, on the other hand, refers to the dramatic changes in sig-

nal amplitude and the phase that can be experienced as a result of small changes

(as small as a half-wavelength) in the spatial separation between a receiver and

a transmitter. Small-scale fading manifests itself in two mechanisms, namely,

time-spreading of the signal (or signal dispersion) and time-variant behavior

of the channel [20]. For mobile radio applications, the channel is time-variant

because motion between the transmitter and the receiver results in a propaga-

tion path change. The rate of change of these propagation conditions account

for the fading rapidity (rate of change of the fading impairments). Depending

on the Doppler spread, small-scale fading can be slow or fast. The statistical

time-varying nature of the envelope of a flat-fading signal is characterized by

probability density functions (PDFs) such as Rayleigh, Ricean, Nakagami, etc.

[20]. When the multiple reflective paths are large in number and there is no

line-of-sight signal component, the envelope of the received signal is statistically

described by a Rayleigh PDF. When there is a dominant non-fading signal com-
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ponent present, such as a line-of-sight propagation path, the small-scale fading

envelope is described by a Rician PDF [20, Chs. 3 and 4]. A generic Nak-

agami PDF has also been widely adopted to characterize the small-scale fading

in wireless communications due to its good accuracy and versatility [21].

The fading results in attenuation, delay and sometimes even complete dis-

tortion of the transmitted signal. Moreover, fading changes with time in unpre-

dictable ways due to user movement. Thus, in order to be able to design good

wireless systems, it becomes imperative to have a good understanding of elec-

tromagnetic waves and the propagation media used in conjunction to achieve

communication. Furthermore, knowledge of the wireless CSI either at the re-

ceiver or both at the receiver and at the transmitter plays a significant role in

achieving reliable transmission at high data rates over wireless channels.

1.3 Wireless multiple antennae system

The pioneering works, earlier by Winter et al. [22] and later by Foschini [4], and

Telatar [23], revealed that in a rich scattering environment, the use of multiple

antenna elements on the transmitter and the receiver side forms a MIMO chan-

nel and has a potential to increase the data rates via SM (it is also regarded as

a special case of ST coding) and reliability via ST coding [24, 25] given a lim-

ited amount of frequency bandwidth compared to the traditional single antenna

systems.

The reason for the MIMO channel to offer greater reliability compared to

a single-input single-output (SISO) channel is diversity. A signal transmitted

via several antennae reaches the receiver antennae from a number of different

propagation paths. Each receive antenna thereby picks up the signal transmitted

by each transmit antenna. If the antennae are located sufficiently far apart from

each other such that the corresponding propagation coefficients are independent,

the probability that all paths are in deep fade is significantly reduced. In other

words, the probability of having a useless channel is smaller, which, in turn, leads

to a lower probability of error at the receiver compared to the case with only a

single antenna at both the transmitter and the receiver.

Whereas the diversity benefit leading to higher robustness against channel

fading is available in systems with multiple antennae at either the transmitter

or the receiver (or both), the advantage of SM requires multiple antennae on
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the both sides of the communication link. Essentially, the MIMO channel can

then be viewed as a set of parallel and independent SISO spatial channels that

can be used to send independent data. An information-theoretic discussion

concerning the exploitation of both spatial multiplexing and diversity and the

tradeoff between these effects is available in [26].

Consider a generic MIMO communication system with MT and MR transmit

and receive antennae, respectively. A block diagram of such a system is shown

in Figure 1. Transmit data can be jointly encoded: spatially over the transmit

antennae and temporally over the time dimension. The encoding is partitioned

into ST slots, where each slots represents a specific transmit antenna and a

specific signalling interval. The set of schemes aimed at realizing joint encoding

of multiple transmit antennae is called ST coding. Now consider a scenario where

an information source generates information bits. They are encoded and fed to

the multiple antenna transmitter, which parses the encoded data stream into

blocks. In order for these data blocks to be transmitted over a wireless channel,

the transmitter maps each block of bits to a corresponding ST channel symbol

using a mapper, where a ST channel symbol represents a particular assignment

of signalling waveforms to each ST slot. The set of all admissible channel symbols

is usually called a ST code [27]. The signalling waveform output from the ST

encoder are then amplified and fed to the transmit antennae that radiate these

signals to the respective ST slots.

Fig. 1. Block diagram of the MIMO system.

On the receiver side, the transmission process is reversed in order to retrieve

the original transmitted bits. The receiver first detects the transmitted symbols

using a ST detector. These symbols are then demapped to produce one stream

of data bits. This stream is then passed to the decoder, which produces a stream

of bits that corresponds to the original stream of raw bits.
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For the receiver to accurately detect the transmitted symbols, it needs to

learn the channel. In order to do so, the receiver often requires the transmitter to

send a known training sequence during some portion of the transmission interval.

Since the training sequence is known at the receiver, it is used to generate

the estimate of the channel coefficients. If the coherence time is sufficiently

long, the receiver can feed back the acquired channel knowledge it has to the

transmitter over a separate feedback channel. In this scenario, the coherence

time is said to be long if the time required to acquire the channel knowledge

at the communication terminals is negligible compared to the overall coherence

time. Now, the transmitter has perfect CSI and it can use this information to

distribute the available power to eigenmodes based on the waterfilling principle

in order to maximize the mutual information2 (MI) [29, 30]. The receiver exploits

the channel information to perform efficient detection of the received signal.

While perfect channel state information at the transmitter (CSIT) and chan-

nel state information at the receiver (CSIR) allows reliable transfer at high data

rates, the resources that are needed to realize this scenario are often hard to

accommodate [31]. In particular, even if we assume that a separate channel

is available for the receiver to feed accurate channel parameters back to the

transmitter, the mobility of the transmitter and of the receiver usually limits

the coherence time, and the channel may change significantly before the receiver

manages to convey its channel knowledge to the transmitter. Consequently, it

gives rise to the need of a more practical communication model where the re-

ceiver is assumed to be able to estimate the channel accurately but no channel

information is fed back to the transmitter [31]. An interesting feature that this

model shares with the previous one is that the maximum data that can be com-

municated over the MIMO channel is achieved through linearly structured ST

coding techniques [32, 33]. A communication system where the receiver has ac-

cess to an accurate channel model that facilitates the process of data recovery

is usually referred to as coherent [34].

In coherent communications, the coherence time is assumed to be long enough

to warrant neglecting the fraction of the transmission time required for the re-

ceiver to acquire an accurate model of the channel in comparison with the overall

2It is a measure of the amount of information that one random variable contains about another

random variable. It is the reduction in the uncertainty of one random variable due to the

knowledge of the other [28].
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transmission time. In many practical situations, the variations in the channel

parameters are fast and the time required for the receiver to acquire a reasonably

accurate channel model may consume a significant portion of the time available

for communication. This problem becomes more pronounced in systems that

employ a large number of transmit antennae [26]. For these instances, the com-

munication model is usually referred to as non-coherent [34]. Similar to the

coherent channel case, the transmitter can send pilot symbols for the receiver

to identify the channel parameters and perform coherent detection. However,

unlike the coherent channel model, this procedure is properly accounted for in

the design of the non-coherent communication system.

In addition to the communication models described in this section, there are

other intersecting models in which the receiver and possibly the transmitter have

access to partial channel information, i.e., some information about the channel

which cannot be considered to be perfect. This can be the case when the length or

energy of the training sequences is kept at a minimum (implying a noisy channel

estimate) or the channel fades between subsequent channel uses are such that

the current channel state is loosely correlated to the previous state (i.e., neither

perfectly the same nor completely independent).

Thus, wireless communication systems can be classified into three categories

in terms of the amount of channel state information available at the receiver:

– Coherent systems: perfect CSIR,

– Non-coherent systems: no CSIR,

– Partially coherent systems: estimated (hence imperfect) CSIR.

1.4 MIMO transmission design

Information theoretic results by Telatar, Foschini and Gans [4, 23, 35] for MIMO

flat-fading channels, later for multipath [36, 37] and correlated [38–40] fading

channels, triggered a large amount of research on MIMO technology. These

researches were mainly focused on channel coding, transceiver signal process-

ing algorithms to develop practical schemes that achieve a large fraction of the

promised capacity [41–43]. In general, the MIMO system design is strongly in-

fluenced by the CSI knowledge available on the transmitter side [44]. However,

below we characterize the MIMO system design based on the CSI knowledge

available on the receiver side.
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1.4.1 Coherent channels

Design with no CSIT

Signal design with no CSIT has received much attention for many years because

of its evident importance from a practical perspective. One of the first work

considering this case was the delay diversity technique proposed by Seshadri et

al. [45] for multiple transmit antenna system which transmits the same symbols

through all the antennae, but applying a different delay at each antenna. Besides

this approach, ST coding techniques have received a lot of attention. Tarokh

et al. [24] and Guey et al. [46] derived the fundamental design criteria of the

optimum ST codes for a Rayleigh flat-fading MIMO channel, providing both

diversity and coding gain. Based on the same criteria, several ST codes are

proposed, such as space-time trellis codes (STTCs) [24]. Tarokh et al. [47]

later accounted for imperfect CSIR on the performances of the STTCs. A new

metric for the Veterbi decoder was also proposed to improve the performance

in the presence of imperfect CSIR. One artifact of STTC is the increase in the

computational complexity both at the transmitter and at the receiver with the

higher number of transmit and receive antennae and code rate. To address this

problem, Tarokh et al. [48] considered a different approach, where they combined

the STTC with beamforming at the receiver. The receiver structure was not

optimal, which resulted in decreased diversity gain; however, the computational

complexity was reduced dramatically.

The unaffordable decoder computational complexity, based on the maximum

likelihood (ML) criterion, of STTC motivated the development of space-time

block code (STBC) for MIMO channels. Alamouti [49] proposed block codes

for a flat-fading channel with two transmit antennae and any number of receive

antennae, which has very low decoding computational complexity. Alamouti’s

STBC was later generalized [50–52] for any number of transmit antennae based

on orthogonal designs for both real and complex constellations. Full rate codes

for any number of transmit antennae were designed using real constellations and

for two transmit antennae using complex constellations. They have fast ML de-

coding and full diversity. Later, full-rate quasi-orthogonal STBCs for a larger

number of transmit antennae were designed using complex constellations by Ja-

farkhani [53], Tirkkonen et al. [54] and Papadias et al. [55]. In quasi-orthogonal
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STBC designs, the orthogonality is relaxed to provide s higher transmission rate.

With the quasi-orthogonal structure, the quasi-orthogonal STBCs still enable

fast ML decoding but do not achieve full diversity. The performance of these

codes was better than that of the codes from orthogonal designs at a low SNR

but worse at a high SNR. In order to improve the performances at higher SNRs,

Su et al. [56] proposed a method where half of the symbols in a quasi-orthogonal

design are chosen from a signal constellation set and the other half from its ro-

tated constellation. Stoica et al. [57] presented a maximum SNR solution with

no CSIT. There the idea was to transmit whole information about the most

favored subchannel, which also provides very good bit error rate (BER) perfor-

mance results.

SM is another MIMO transmission technique which can be used with no

CSIT. The well-known SM techniques are Bell Lab’s space-time (BLAST) [33]

based structures. The most prominent ones are vertical-BLAST (V-BLAST)

and diagonal-BLAST (D-BLAST). They both obtained full diversity and full

rate. Implementation complexity of D-BLAST is higher compared to that of

V-BLAST. In D-BLAST, the original stream to be transmitted is divided into

MT parallel substreams so that the symbols from each of them are transmitted

sequentially through all the transmit antennae in successive channel use [33].

Whereas in V-BLAST, the substreams are mapped one to one from each symbol

to each transmit antenna [58].

Design with perfect CSIT

If the channel is perfectly known on the transmitter side, the MIMO channel

can be converted into a set of parallel, non-interfering SISO channels through

a singular value decomposition (SVD) of the channel matrix [35]. The gains

of these elementary spatial subchannels, commonly denoted as eigenmodes, are

equal to the singular values of the MIMO channel matrix. To maximize the

MI, the total available power should be distributed to eigenmodes based on the

waterfilling (WF) principle [30, 59].

For a frequency selective MIMO channel, Scaglione et al. [60] divided the

transmitted symbols into disjoint groups and then encoded each group using

a matrix called linear precoder matrix. On the receiver side, the linear de-

coder matrix is applied to the received data to estimate the transmitted sym-
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bols. The linear precoder/decoder matrices are designed jointly by minimizing

the minimum mean-square error (MMSE), minimizing the determinant of the

mean-square error (MSE) matrix, and maximizing the minimum eigenvalue of

the SNR-like matrix. Numerous criteria can be found in the literature to design

the precoders, e.g., maximizing the mutual information (MI) [61, 62] or cutoff

rate (CR) [63, 64], minimizing the total MSE [65], minimum bit error probability

(BEP) [66], maximizing the received SNR [57], and minimum Euclidean distance

based designs [67, 68].

The capacity-optimal signaling strategy [59] and other criteria mentioned

above were developed with an assumption of Gaussian input distribution, which

is practically not feasible to implement, although capacity optimal. Furthermore,

Lozano et al. [69] showed that a power allocation policy to parallel Gaussian

channels with Gaussian input is sub-optimal for discrete inputs3. Therefore,

numerous works [61, 62, 70–73] have considered the design of linear precoders

for the discrete inputs over the MIMO fading channels as well.

1.4.2 Design for non-coherent channels with no CSIT

In fast-fading scenarios, however, fading coefficients can change into new, almost

independent values before being learned by the receiver through training signals.

This problem becomes even more acute when large numbers of transmit and

receive antennae are being used by the system, which requires very long training

sequences to estimate the fading coefficients. Even if the channel does not change

very rapidly, for applications which require transmission of short control packets,

long training sequences have a large overhead (in terms of the amount of time

and power spent on them) and significantly reduce the efficiency of the system.

A non-coherent detection scheme, where the receiver detects the transmitted

symbols without having any information about the current realization of the

channel, is more suitable for these fast-fading scenarios.

Motivated by this fact, numerous non-coherent channel ST code designs have

been considered. When the transmitter and the receiver both have no access to

the CSI, as shown by Marzetta and Hochwald [34], in the high SNR regime,

3The optimal policy allocates more power to the channels with high gain to support maximum

rate and finite constellation, on the other hand, might not support that high rate. Thus, power

allocated to that channel must be reduced, otherwise it would be wasted.
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the capacity optimal signalling scheme is to transmit the mutually orthogonal

data streams through different antennae. These types of codes are known as

unitary space-time codes (USTCs). Based on previous results, USTC designs

were presented in [74]. They also compared the performance of the codes with a

coherent ML detector to the codes with a non-coherent ML detector and reported

a 3 dB loss in terms of SNR. Later, Hochwald et al. [75] presented a systematic

design of unitary codes based on Fourier and algebraic models. On the other

hand, in a low SNR regime, a peaky signaling scheme [76–78] was found to be

optimal.

For continuously fading channels, differential unitary space-time modulation

has been proposed in [79]. In this scheme, the transmitted signal matrix at each

time block was the product of the previously transmitted matrix and the cur-

rent unitary data matrix. They also proposed a set of group-structured diagonal

constellations called cyclic codes, and a quantity defined as diversity product

was chosen as the design criterion of constellations for USTCs. Using the differ-

ential modulation approach, Tarokh and Jafarkhani [80] presented a differential

extension of the Alamouti code using PSK constellations with a simple encoder

and decoders. Another differential USTC construction similar to the one used

in [79] was proposed by Hughes [81], where the focus was on group codes and

two-antenna codes with cyclic and quaternionic structures explicitly designed.

A similar approach [82] but with a more simplified analysis was carried out with

the focus on the differential receiver. Hassibi et al. [83] presented a systematic

differential code design using the Cayley transform. It enables to finding simple

encoders based on linear mapping and transformation and low complex subop-

timal receivers based on the resolution of a set of linear equations. Numerous

methods have since been proposed to construct unitary ST signals [84–88] that

leverage the unitary codes designed in [34].

1.4.3 Partially coherent channels with partial CSIT

In the previous two sections, transmission strategies in two extreme cases have

been described. In a practical scenario, it may be too pessimistic that the receiver

is totally unaware of CSI, and assuming that perfect CSIR might not be very

realistic. Consequently, only partial or imperfect CSI is usually available at the

receiver, which further implies that the transmitter can have only partial CSI in
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the form of either mean or covariance of the channel estimate or both. Spectral

efficiency and the performance of MIMO systems degrade as the quality of the

channel estimates reduces from perfect to imperfect [89, 90]. Furthermore, Ray

et al. [91] studied the maximum capacity loss due to the lack of receiver CSI

for a wideband MIMO channel in Rayleigh-fading. The maximum penalty to be

paid in terms of capacity not having CSI at the receiver is shown. However, the

channel capacity with partial receiver CSI is an open problem, but useful bounds

are known [89, 92]. Transmitter design including constellation and precoder

design for this case has also received some attention. We briefly review the

MIMO constellations and precoder design adapted to the partial CSIR below.

Constellation design

Numerous methods to design and construct the multiple antenna constellations

adapted to the quality of channel estimated at the receiver, called partially co-

herent constellations (PCCs), have been investigated [93–96]. Baccarelli and

Biagi [93] designed the STBCs by maximizing the minimum squared Euclidean

distance and, at the same time, minimizing the maximum squared correlation be-

tween the codewords. They restricted the structure of the STBC to unitary ma-

trices that “self-match” to channel estimation errors to guarantee “full-diversity”,

for any value of channel estimation error variance σ2
E . They constructed the

self-matching STBC by augmenting an arbitrary unitary matrix U with those

codes V already designed for fully-coherent applications [25, 49, 97]. Similar to

this approach of code constructions Giese and Skoglund [94] also restricted the

structure of the STBC to a unitary matrix. They presented two approaches to

construct the unitary STBC adapted to the level of CSIR. First, they used a

gradient search method to designs unitary codes by optimizing the upper bound

on the pairwise error probability (PEP). The second approach was based on a

combination of constellations previously designed for coherent [25, 49, 97] and

non-coherent [34, 75] communications, where more weight was given to the co-

herent or non-coherent constellations depending on the available CSIR.

Unlike the above constellation construction methods, Borran et al. [96] pro-

posed constellations which were multi-level with multi-dimensional spherical con-

stellations at each level. They showed that the new constellations provide signif-

icant performance improvement over the conventional single-antenna PSK and
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QAM and multiple-antenna techniques such as the BLAST architecture and

orthogonal transmit diversity (OTD) schemes when the estimation variance is

comparable to the reciprocal of the SNR. Wu and Pätzold [95] proposed to us-

ing the asymptotic symbol error probability (ASEP) of orthogonal space-time

block codes (OSTBC) as a criterion to design the constellations that match well

with the level of the CSI error. All the constellation design criteria mentioned

above were based on minimizing the average symbol error probability of uncoded

constellations (when each block of symbols is decoded separately).

Precoder design

Much less literature exists concerning the transmission strategies with imperfect

CSI at both ends. This scenario is of paramount importance in practical imple-

mentations and should be taken into account when designing a system. Towards

this end, Palomar [98, Chapter 7] considered two different design philosophies:

the worst-case and the stochastic (Bayesian) robust designs. In [99], Zhang et

al. derived closed form robust designs including the minimum total MSE design

with an assumption that the channel mean and the receiver correlation matrix

were available to both ends. They also accounted for the channel correlation

into the design. Under the same CSI assumptions, Serbetli and Yener [100]

used the minimum total MSE criterion to design the precoder/decoder matri-

ces. Unlike [99, 100], Ming and Blostein [101, 102] considered the joint design

of a precoder/decoder matrix with an assumption that the channel mean and

the transmitter correlation matrix were available to both ends. These works as-

sumed that input distribution is Gaussian. However, in practice we use discrete

input (QAM and PSK, etc.). Therefore, some works [61, 62, 70–73] consider

the design of linear precoders for the discrete input over the MIMO fading chan-

nels. However, perfect CSIT/CSIR was assumed in [61, 70–73], and [62] assumes

perfect CSIR and partial CSIT.

1.5 Aims and outline of the thesis

The focus of this thesis is on the design single-user MIMO PCCs and linear

precoder matrices for partially coherent communication scenarios under a given

average power constraint. We assume a block Rayleigh flat-fading channel where
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the transmitter has access to the channel estimation error covariance matrix and

the receiver has only an imperfect estimate of them. Furthermore, in order to

use the PCCs with forward error control (FEC) codes, an algorithm is developed,

corresponding to the PCC, to find the bit mapping scheme. Performances, with

respect to MI, SER, peak-to-average power ratio (PAPR), BER, and frame error

rate (FER) of the newly designed PCCs and precoders are evaluated and com-

pared with those of Kullback-Leibler divergence (KLD)-optimized constellations

and conventional QAM constellations and precoders. All the results presented

in this thesis have been published, conditionally accepted or submitted for pub-

lication in peer reviewed international scientific journals.

We propose using CR as the primary criterion to design of the ST constella-

tions and linear precoder matrices for a partially coherent MIMO channel. CR

is a lower bound on channel capacity and determines the region of rates where a

communication system can operate to achieve an arbitrarily small probability of

error. Channel capacity is the maximum possible MI between input and output

of the channel for all input distributions. Its maximization minimizes an upper

bound on the codeword error probability over the ensemble of the binary channel

codes assuming sequential decoding while it is independent on a specific code

[103–105]. Although rates larger than the CR can be achieved (e.g., by turbo

codes or low-density parity check codes with iterative decoding [106] or optimum

Viterbi decoding of convolutional codes, etc.), it is still useful in predicting the

performance [107]. CR has been proposed for non-coherent channels as a signal

design criterion in [84, 87] and for companding channels in [108]. CR has also

been proposed to design precoders [64] and optimal binary inputs with imperfect

CSI [109].

A closed and tractable form of the mutual information for the MIMO fading

channels with imperfect CSIR is not known [110]. Moreover, the corresponding

capacity achieving input distribution is also an open problem [89, 92, 110]. Only

upper and lower bounds on the MI are known, but those can be rather loose

for certain non-Gaussian input distributions [89, 92]. Nevertheless, we propose

using CR as a criterion for the MIMO constellation and precoder design. The

CR expression is suitable for designing finite and discrete constellations and

has a closed and analytically tractable form. Furthermore, maximizing the CR

maximizes the MI of the channel.
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Especially for single transmit antenna constellations, we also propose using

the Bhattacharyya distance (BD) and upper bound (UB) on the average bit er-

ror probability (ABEP) as the design criteria. The BD, in a statistical context,

measures the similarity of two discrete or continuous probability distributions.

Moreover, the BD is a special case of the Chernoff distance, when the Chernoff

parameter is assigned the value 1
2 . The BD determines the asymptotic expo-

nential decay rate of the average pairwise error probability (APEP) of the ML

detector. In terms of the problem of signal selection, Kailath [111] found that

the BD is superior to the KLD. It has also been shown in [112] that the Bhat-

tacharyya upper bound is indeed the tightest Chernoff bound when signals have

equal priors. On the other hand, the UB on the ABEP criterion has been used

to design PCCs when they are to be used in conjunction with FEC codes. The

rationale for using an UB-ABEP expression as a constellation design criterion in

this case seems obvious: it allows taking both the Hamming distance and PEPs

into account in a single expression. Thus, a bit mapping can be fixed to the Gray

in advance and constellation can be searched through numerical optimization.

Chapter 2, the results of which have been presented in [113–115], considers

the ST codeword design for partially coherent i.i.d. MIMO channels. The BD

and the CR are derived and used as the design criteria. The single antenna

constellations are designed by maximizing the minimum BD and maximizing

the CR. Constellation diagrams are presented for different values of the channel

estimation error variance in order to study the impact of the imperfect CSIR

on them. When channel coherence time is equal to one symbol interval, the

multiple transmit antennae constellations are designed simultaneously across

the transmit antennae by maximizing the CR. On the other hand, when the

channel coherence time is equal to several symbol intervals, the USTCs are used

as a signal matrix. The USTCs are constructed by leveraging the unitary codes

designed in [93, 94]. Furthermore, there MI, SER and PAPR performances

are compared to the performances of the KLD-based design constellations and

conventional QAM constellations. In spite of the fact that CR, an information

theoretic measure, characterizes predicted performance with long FEC codes, it

is used in this chapter to investigate the uncoded SER performances. This is

done in order to compare the performances with other existing non-information

theoretic measures, such as KLD and APEP, which were used to measure the

uncoded SER performances.
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Chapter 3, the results of which have been documented in [116, 117], extends

the design of the PCCs developed in Chapter 2 to a spatial correlated MIMO

channel and there to performances with a practical coding scheme. The com-

bined impact of the CSI estimation error and spatial correlation on the ST code

design is studied in this chapter. Furthermore, using the PCCs with any FEC

coding requires efficient bit mapping. An efficient bit mapping algorithm called

modified bit switching algorithm (MBSA) is developed.

Two criteria, UB on the ABEP and CR expressions, are derived and used to

design the single and multiple antenna PCCs, respectively. Then, two method-

ologies to design the constellation and bit mapping schemes in two steps are

proposed. The first method, which is for the single transmit antenna case,

starts with some known conventional two-dimensional (2-D) constellations (e.g.,

M -QAM) which already apply the Gray mapping and then optimize the con-

stellation points by minimizing the UB-ABEP. The resulting constellation can

straight-forwardly apply the Gray mapping and maintain its simplicity. In the

second method, which is for multiple transmit antennae, the constellation is de-

signed simultaneously across the transmit antennae using an approach similar to

the one used in Chapter 2, which was based on maximizing the CR expression

(other criteria can also be used, e.g., maximizing the minimum BD [113], KLD,

etc.). The resulting symbols are subsequently mapped to a binary sequence us-

ing some efficient algorithms, e.g., tabu search or binary switching algorithm

(BSA) [118]. One artifact for this method is the difficulty in its use when the

cardinality of the constellation is large.

When the channel coherence time is equal to several symbol intervals, the CR-

optimized OSTBCs [49] and USTCs are used as a signal matrix. Combining the

turbo codes with the unitary ST codes was first considered in [119] but without

optimized mapping. The effects of mapping on the error performance of the

coded ST constellation have been studied in [120, 121] for bit-interleaved coded

modulation and iterative decoding (BICM-ID). In [121], two different mapping

rules were introduced for USTCs with iterative decoding. The results show

good performance gain but their mapping rules were limited only to the unitary

constellation obtained from the orthogonal designs. A faster algorithm to design

the mapping rule based on the BSA was introduced in [120]. We present a

MBSA to develop mapping rules for PCCs using a novel design metric suitable

for partially coherent channels. The coded BER and FER performances of the
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resulting PCCs are compared to those of the conventional QAM constellations

with turbo codes.

Chapter 4, the results of which are presented in [122, 123], considers the

problem of a single-user MIMO linear precoder matrix design for spatially corre-

lated partially coherent Rayleigh-fading channels with discrete inputs. A major

drawback of the PCC construction procedure, developed in Chapters 2 and 3,

is that it has two-fold computational complexity. First, searching the constel-

lation points itself, and, second, the search for a close-to-optimal, pseudo-Gray

bit mapping scheme. Moreover, due to the nonlinear fashion in which the op-

timal ST signal is structured, it is expected that this feature inhibits the use

of efficient suboptimal techniques like sphere detectors in the detection process.

Furthermore, linear precoders are easily backword compatible with the existing

conventional constellations and various wireless standards (e.g., 3rd Generation

Partnership Project (3GPP) Long Term Evolution (LTE), wireless local area net-

work (WLAN), etc.) Because of these reasons, linear precoder design is consider

as an alternative to PCC.

CR is proposed as a criterion for the MIMO linear precoder matrix design. It

is suitable for readily available finite and discrete constellations and has a closed

and analytically tractable form. A linear precoder is obtained by numerically

maximizing the CR with respect to the precoder matrix with a given average

power constraint. The precoder matrix is decomposed using SVD into the input

shaping matrix, power loading matrix, and beamforming matrix. The beamform-

ing matrix is found to coincide with the eigenvectors of the transmit correlation

matrix. The power loading and input shaping matrices are solved numerically

using the difference of convex (d.c.) programming algorithm and optimization

under the unitary constraint, respectively. Precoders are designed to be used in

conjunction with two MIMO transmission scheme: the SM and ST block trans-

mission modes. The MI and FER performance of the CR-optimized precoders

are compared to those of CR PCCs and conventional QAM constellations with

turbo codes.

Chapter 5 concludes the thesis. The main results are summarized and sug-

gestions for future research are presented.

39



1.6 Author’s contribution

The thesis is based, in parts, on three journal papers [114, 117, 122], and four

published conference papers [113, 115, 116, 123]. The first journal paper [114]

is already been published, second one [117] to appear and third one [122] is

under revision. The author has had the main responsibility for performing the

analysis, developing the simulation software, generating the numerical results,

and writing all the papers [113–117, 122, 123]. Other authors provided help,

ideas, comments, and criticism during the process.

In sum, the main contributions of the thesis are:

– Derivation of CR and UB-ABEP expressions as a function of the channel

estimation error covariance matrix for an i.i.d. and spatially correlated MIMO

channel.

– UB-ABEP and CR expressions are used as design criteria to design the single

transmit and multiple transmit antenna PCCs, respectively, under a given

average power constraint.

– MBSA is proposed to find out the bit mapping schemes for the PCCs.

– Detailed performance evaluations of the resulting PCCs for various MIMO

schemes (such as SM and ST coding) with and without FEC codes.

– CR expression, suitable for discrete input, is further modified to design the

precoder matrices adapted to the imperfect CSIT and transmit and receive

correlations.

– A difference of convex (d.c.) decomposition of the CR expression with respect

to the precoder matrices is derived.

– Detailed two-step iterative algorithm (the first step concerns the prismatic

branch-and-bound (BnB) algorithm and the second step the self-tuning Rie-

mannian steepest descent (SD) algorithm) is presented to solve the CR expres-

sion for the precoder matrix.

– Detailed performance evaluations of the resulting CR-optimized precoders for

various MIMO schemes (such as SM and ST coding) with FEC codes.
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2 Partially coherent constellation design in

i.i.d. channels

In this chapter, we consider the problem of ST constellation design for a MIMO

channel with partial CSIR and CSI estimation error variance available perfectly

via feedback4 from the receiver to the transmitter. We assume i.i.d. Rayleigh

flat-fading channels. Furthermore, the receiver CSI estimate is assumed to be an

unbiased Gaussian random variable with a variance known by both the receiver

and the transmitter. The BD and CR expressions as a function of channel esti-

mation error variance are derived and proposed as constellation design criteria.

No outer code is used during the performance evaluations of the newly designed

constellations.

The chapter is organized as follows: The assumptions and system model

are described in Section 2.1. The detailed derivations of the design criteria,

signal set construction method and constellation design with additional PAPR

constraint on the signal set are presented in Section 2.2. The details of the

numerical optimization method are presented in Section 2.3. The MI, PAPR

and numerical SER results are presented in Section 2.4. Section 2.5 concludes

the chapter.

2.1 System model

We consider a communication system with MT transmit and MR receiver anten-

nae in a block Rayleigh flat-fading channel with coherence time of T = Tt + Td

symbol intervals, where Tt ∈ Z+ and Td ∈ Z+ are the training symbol and data

transmission time in discrete symbol intervals, respectively. The matrix of the

received symbols can be expressed as

Rd = SdH + Wd, (1)

where Rd ∈ CTd×MR , Sd ∈ S ⊂ CTd×MT is the transmitted symbol5, S is the

4It should be noted that the transmission of CSI estimation variance from the receiver via a

feedback link to the transmitter will reduce the spectral efficiency of the system.
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modulation signal matrix alphabet with L elements or S = {Sd,1,Sd,2, . . .Sd,L},
H ∈ CMT×MR is the channel response and Wd ∈ CTd×MR the additive white

Gaussian noise (AWGN) matrix. Here, we capture the effect of SNRd factor in

Sd, and use the power normalization

1

Td

Td∑

t=1

MT∑

m=1

E[|stm|2] = Pd, (2)

where stm is the element at the tth row and mth column of the signal matrix S.

As we will see in Section 2.2, the structure of the optimal constellation depends

on the value of the SNRd, and constellation of the same size at different SNRd

are not necessarily scaled versions of each other. The elements of H and Wd are

modeled as i.i.d. circularly-symmetric complex Gaussian random variables from

the distribution CN (0, 1) with w � vec (Wd) and h � vec(H). The channel

H stays constant during the transmission of the signal matrix S (hereinafter we

drop the subscript d for convenience). We also assume that the receiver has

computed an estimate Ĥ of the channel matrix H. We model the channel as

[96], [124]

H = Ĥ + H̃, (3)

where Ĥ ∼ CN (0, (1 − σ2
E)I) is the estimate known to the receiver and H̃ ∼

CN (0, σ2
EI) is the unknown channel component, which can be viewed as an

additive channel estimation error. We can further assume that the entries of

Ĥ are independent from the entries of H̃. This can be obtained, e.g., by using

a linear MMSE (LMMSE) estimator6. Parameter σ2
E ∈ [0, 1] is the channel

estimation variance per channel coefficient. By setting σ2
E equal to zero or one,

this model reduces to the coherent and non-coherent system models, respectively.

The conditional PDF of the received signal is [96]

p
(

Rd|S, Ĥ
)

=
exp

{

−tr
[

(ITd
+ σ2

ESSH)−1(Rd − SĤ)(Rd − SĤ)H
]}

πTdMR |(ITd
+ σ2

ESSH)|MR

. (4)

5Note that Sd is a dedicated part of the actual transmitted symbol for data transmission sent

over Td symbol intervals. We assume that the receiver will estimate the channel from dedicated

training symbols sent over a training period in addition to Tt [124].
6Transmitting the training signal with longer sequences and/or a higher power level will in-

crease the estimation accuracy at the cost of more resources allocated to the control signalling

and less to the data payload. Therefore, in this section, we have kept the communication

resources (i.e., power and rate) allocation to the training symbols minimum.
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The ML detection finds the signal matrix that maximizes the above expression

for the given received signal matrix and channel estimate. The ML detector is

ŜML = argmax
S∈S

p
(

Rd|S, Ĥ
)

. (5)

2.2 Constellation design

In this section, we first derive the cutoff rate expression and adopt it as an ST

constellation design criterion for a partially coherent channel.

2.2.1 Cutoff rate matched to partially coherent channel

The CR for the discrete input of cardinality L and continuous output channel

under the additional assumption of partial CSI is given by [105]

R0 = max
{πi}L

i=1

− log

∫ ∫
[
∑

i

πi

√

p(Rd, Ĥ|Si)

]2

dĤdRd, (6)

where p(Rd, Ĥ|Si) is the joint PDF of matrix Rd and partial CSI matrix Ĥ,

when Si is transmitted and πi is the probability distribution over the set of

signal matrices S.7 The cutoff rate for the partially coherent MIMO channel is

given below.

Proposition 1 The cutoff rate of the partially coherent channel with discrete

input values and continuous output with the channel estimation variance σ2
E is

given by (7)

R0 = max
{πi}L

i=1
,{Si}L

i=1

− log

⎧

⎨

⎩

∑

i

πi

∑

j

πj

⎛

⎝
|IMT

+ σ2
ES

H
i Si|1/2|IMT

+ σ2
ES

H
j Sj |1/2

∣
∣
∣ITd

+ 1
2σ

2
E(SiS

H
i + SjS

H
j ) + 1

4 (1− σ2
E)(Si − Sj)(Si − Sj)H

∣
∣
∣

⎞

⎠

MR

⎫

⎪⎬

⎪⎭

,

(7)

where {Si}Li=1 is the constellation set with corresponding probabilities {πi}Li=1.

Proof. Appendix 2.

7Note that by definition (6), the CR implies finding the probabilities of the constellation points

maximizing certain expression.
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The inner expression of the CR in (7) is the Bhattacharyya bound on the

probability of error between any two signal matrices Si,Sj ∈ S, as a function of

CSI estimation error σ2
E , or

ρuncor(i, j) �

√

|ITd
+ σ2

ESiS
H
i |
√

|ITd
+ σ2

ESjS
H
j | ·

1
∣
∣
∣ITd

+ 1
2σ

2
E(SiS

H
i + SjS

H
j ) + 1

4 (1− σ2
E)(Si − Sj)(Si − Sj)H

∣
∣
∣

= e−B(Si‖Sj), (8)

where B(Si‖Sj) = − log ρuncor(i, j) is the BD between the two signals [125]. The

usefulness of (8) can be seen later in deriving Propositions 2 and 3.

For σ2
E = 0 or perfect CSIR, i.e., coherent communication, (7) reduces to

R0 = max
{πi}L

i=1
,{Si}L

i=1

− log

{
∑

i

πi

∑

j

πj

(

1

|IMT
+ 1

4 (Si − Sj)H(Si − Sj)|

)MR }

, (9)

which is the same performance criterion as given in [24] for coherent ST codes

with equal transmission probabilities, and results in rank and determinant design

criteria. For σ2
E = 1 or no CSIR, i.e., non-coherent communication, (7) reduces

to

R0 = max
{πi}L

i=1
,{Si}L

i=1

− log

⎧

⎪⎪⎨

⎪⎪⎩

∑

i

πi

∑

j

πj

⎛

⎜
⎝

√

|ITd
+ SiS

H
i |
√

|ITd
+ SjS

H
j |

|ITd
+ 1

2 (SiS
H
i + SjS

H
j )|

⎞

⎟
⎠

MR

⎫

⎪⎪⎬

⎪⎪⎭

, (10)

which is the same performance criterion as the one in [87] and [84] for non-

coherent space-time constellation design. We can infer from (9) and (10) that

an optimal CR for the intermediate values of σ2
E is a combination of the coherent

and non-coherent CR expressions.

Now we discuss few remarks on the BD which are useful in interpreting the

constellation obtained through CR maximization:

Remark 1: The minimum BD between two signal matrices B(Si‖Sj) is pro-

portional to the Euclidean distance when perfect CSI is available at the receiver,

i.e., log |ITd
+ 1

4 (Si − Sj)(Si − Sj)
H |.

Remark 2: A set of signal matrices which achieve the cutoff rate have a

maximum value of minimum B(Si‖Sj).

Remark 3: For the non-coherent channel (no CSIT), the minimum BD be-

tween two signal matrices is proportional to the squared norm of ‖SiS
H
i −SjS

H
j ‖2

of the matrix outer product difference [84].
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We refer to the argument of max(·) in (7) as the cutoff rate expression and

denote it as ̺. For the equiprobable signal set with probabilities {πi}Li=1 = 1/L,

the ST constellation design can be now formulated as the following continuous

optimization problem (for fixed L, elements of S can take any values on complex

plane)

maximize
{Si}L

i=1

̺

subject to 1
L

∑L
i=1 ‖Si‖2 = TdPd

(11)

where the maximization is with respect to the signal matrices.

The cutoff rate (11) is obviously not a convex function in the coordinates

of the signal points. There are several approaches to approximate a non-convex

function, for example, grid search, simulated annealing, SD, etc., but the solution

is not guaranteed to be optimal. The cutoff rate R0 and the rate-achieving signal

set can be iteratively computed using (11).

We now discuss two properties of the solution to (11); similar properties

have been discussed in [84] for non-coherent constellations under peak power

constraint. First, we give the relation between the expected BD of the rate-

optimal constellation and the largest possible minimum BD of any constellation

of identical dimension. Define this latter distance as

B⋆⋆
min = maximize

{Si}L
i=1

, 1
L

∑
L
i=1

‖Si‖2=TdPd

min
i�=j

B(Si‖Sj). (12)

A constellation whose minimum BD Bmin attains B⋆⋆
min is said to be distance-

optimal.

Proposition 2 Let {S⋆
i }Li=1 be the set of constellation points that attain the

cutoff rate R0. Then

B⋆⋆
ave ≥ B⋆⋆

min, (13)

where B⋆⋆
ave =

∑

i�=j B(S⋆
i ‖S⋆

j )/L
2 is the expected value.

Proof. Denote the argument of log(·) in (7) for the cutoff rate optimized signal

set as

Q⋆ =
∑

i�=j

πiπje
−MRB(S⋆

i ‖S
⋆
j ) +

∑

i

π2
i . (14)

For an equiprobable signal set, (14) becomes

Q⋆ =
1

L2

∑

i �=j

e−MRB(S⋆
i ‖S

⋆
j ) +

1

L
. (15)
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For any other equiprobable constellation of identical dimension

Q⋆ = min
{Si}K

i=1

⎧

⎨

⎩

1

L2

∑

i�=j

e−MRB(Si‖Sj) +
1

L

⎫

⎬

⎭
(16)

≤ min
{Si}K

i=1

{e
−MR min

i�=j
B(Si‖Sj)

} (L− 1)

L
+

1

L

=
L− 1

L
e
{−MR max

{Si}L
i=1

min
i �=j

B(Si‖Sj)}
+

1

L

=
L− 1

L
e−MRB⋆⋆

min +
1

L
. (17)

Using (15) and (16) we get,

∑

i �=j e
−MRB(S⋆

i ‖S
⋆
j )

L2
≤ e−MRB⋆⋆

min
L− 1

L
(18a)

e−MRB⋆⋆
ave ≤ e−MRB⋆⋆

min
L− 1

L
. (18b)

Equation (18b) is obtained by applying Jensen’s inequality to the left-hand side

of (18a), taking logarithm to both sides of (18b), and Proposition 2 follows.

Lemma 1 [126] Let Pe represent the average error probability of the ML detec-

tor, then

Pe ≤ βe−B⋆⋆
ave − 1

2
, (19)

where β > 0 and B⋆⋆
ave is an expected BD defined as in Proposition 2.

Remark 4: The relationship between the expected BD and Pe (Lemma 1) in

combination with Proposition 2 follows tight upper bound over Pe

Pe ≤ βe−B⋆⋆
ave − 1

2
≤ βe−B⋆⋆

min − 1

2
, (20)

which implies that maximizing the CR is a better criterion for constellation

design than maximizing the minimum BD.

Proposition 3 If the number of receive antennae is MR ≥ log(L−1)
B⋆⋆

min

, the optimal

cutoff rate obtained by constellation of size L is bounded as

logL− log 2 ≤ R0 ≤ logL. (21)
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Proof. Using an inequality

(
∑

i πi

√

p(Rd, Ĥ|Si)

)2

≥ ∑

i π
2
i p(Rd, Ĥ|Si) in

(6), we get the upper bound on R0

R0 ≤ max
{πi}L

i=1

− log
∑

i

π2
i ≤ logL (22)

where the last line follows from the inequality
∑

i π
2
i ≥ 1/L, for any set of

probabilities {πi}Li=1, with equality when πi = 1/L.

Taking negative logarithm to both sides of (16) with MR ≥ log(L−1)
B⋆⋆

min

, we get

R0 ≥ logL− log 2. (23)

which is a lower bound on R0.

2.2.2 Special cases

Single transmit antenna and Td = 1

In this section, we present two criteria to design single transmit antenna (MT

= 1) constellations in a fast fading environment (Td = 1): first, constellation

design by maximizing the minimum B(Si‖Sj), and second, by maximizing the

CR (7). Fast fading is an important benchmark, although it does not necessarily

happen as such in practice. Consedering the observation of Footnote 1, it can

also be approximately valid in practice. Each ST codeword S is now simply a

complex scalar s, e.g., (7) becomes:

R0 = max
{si}L

i=1

− log

⎧

⎨

⎩

1

L2

∑

i

∑

j

√

1 + σ2
E |si|2 ·

√

1 + σ2
E |sj |2

1 + 1
2σ

2
E(|si|2 + |sj |2) + 1

4 (1− σ2
E)|si − sj |2

⎫

⎬

⎭
. (24)

To find a close-to-optimal BD-based constellation with average power Pd, we

solve (12). For signal construction, we will adopt the idea of multilevel circular

constellations as described in [96]. We consider constellations which consist of

points on concentric circles, and solve the optimization problem to find the opti-

mum values for the number of circles, their radii, and the number of constellation

points on each circle.

An example of a 16-point BD PCCs design at SNRd per bit of 10 dB and for

σ2
E with values of 0 and 0.3 is shown in Fig. 2. Next, to find a CR-optimized
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Fig. 2. Partially coherent constellation (BD-optimized) of size L = 16 designed for

MT = 1, Td = 1, Eb/N0 = 10 dB and for fixed σ2
E = 0.5.

constellation, we solve the following optimization problem:

maximize
{si}L

i=1

̺

subject to 1
L

∑L
i=1 |si|2 = TdPd.

(25)

For signal construction, in this case, we perform numerical optimization for

which Matlab’s [127] optimization toolbox program fmincon is used. The pro-

gram fmincon solves nonlinear constrained optimization problems (e.g., (25))

and is based on the sequential quadratic programming (SQP) algorithm. In

this algorithm, the function solves a quadratic programming (QP) subproblem

in each major SQP iteration step. Figs. 3 and 4 show the 16-point PCCs for

SNRd per bit of 10 dB and for σ2
E with values of 0, 0.3 and 0.5, respectively. In

all cases, the constellation points lie on concentric circles. It has been observed

for several other PCCs obtained at different values of σ2
E and SNRd that the

majority of points lie in close vicinity of the origin. The reason for this is that as

the amplitude decreases, the numerator of (7) decreases in order to maximize the

cutoff rate. This phenomenon becomes more dominant at higher values of σ2
E
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or low values of SNRd. At low-to-medium SNRd regime or high values of σ2
E (≥

0.4) and starting with L equiprobable random constellation points, many of the

amplitudes are assigned the value 0 in the resulting CR PCCs. Therefore, the

cardinality reduces to K ≤ L. Since multiple points are assigned zero amplitude,

these points will coincide at the origin and yield one point with correspondingly

higher probability, e.g., CR PCCs in Fig. 4. It is also observed that the result-

ing CR PCCs always have a point at the origin, which is often not feasible in

practice.
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Fig. 3. Partially coherent constellation (cutoff rate-optimized and cutoff rate-

optimized with non-zero amplitudes) of size L = 16 designed for MT = 1, Td = 1,

Eb/N0 = 10 dB and for fixed σ2
E = 0.3, [114] ( c©2012 IEEE).
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optimized with non-zero amplitudes) of size L = 16 designed for MT = 1, Td = 1,

Eb/N0 = 10 dB and for fixed σ2
E = 0.5, [114] ( c©2012 IEEE).

To overcome the problems discussed above, we solve the optimization prob-

lem with an additional constraint that energy of every point must be larger

than some positive constant ε > 0 (|si|2 ≥ ε), chosen such that the result-

ing PCCs should have distinct points and cutoff rate higher than conventional

M -QAM and PCCs obtained by KLD-based design for fixed SNRd. The result-

ing cutoff rate, non-zero amplitude (CR-NZ) PCCs can also be seen in Figs. 3

and 4 for ε = 1 (obtained from several trials) with average power constraint
1
L

∑L
i=1 |si|2 = TdPd.

Multiple transmit antennae and Td = 1

We will now design the constellations with multiple transmit antennae (MT ≥
2) and in a fast-fading environment. Each S will now be a complex row vector
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and (7) reduces to

R0 = max
{si}L

i=1

− log

⎧

⎨

⎩

1

L2

∑

i

∑

j

√

1 + σ2
E ||si||2

√

1 + σ2
E ||sj ||2

1 + 1
2σ

2
E(||si||2 + ||sj ||2) + 1

4 (1− σ2
E)||si − sj ||2

⎫

⎬

⎭
. (26)

To find a close-to-optimal constellation with average power Pd, we use (25) with

replacing the complex scalar s with the complex row vector s. Like in [96],

the proposed constellations are jointly designed across transmit antennae. With

Td = 1, each transmit matrix will have a unit rank, independent of the number

of transmit antennae, and, thus, is not able to provide any transmit diversity

gain.

In both cases discussed above, signal set construction is started by first ran-

domly selecting 2L initial points according to a uniform probability density inside

a 2MT -dimensional real sphere (or L points inside an MT -dimensional complex

sphere centered at the origin). The SQP algorithm was tested for different values

of CSI estimation variance σ2
E and for various values of L. The algorithm al-

ways converged in less than 3,000 iterations. Numerous local optima were found

by taking several random starts, many of which were merely rotations or other

symmetric modifications of each other. The number of optimization variables

in the problem is 2LMT . In each major SQP iteration step, a QP subproblem

with computational complexity of O(8L3M3
T ) [128] has to be solved. This is the

dominating component in terms of computational complexity. Computational

complexity gets higher with large values of Td, since more constellation points

L need to be found and have huge decoding complexity. Note that since the

optimization process is independent of the number of the receive antennae MR,

the complexity term is independent of it. For relatively small size constellations

and transmit antennae, e.g., L = 32 and MT = 4, the algorithm solves the

optimization problem with a tractable complexity.

Multiple transmit antennae and Td ≥ 2

We will design the ST block code with block lengths of several symbol intervals

which can be applicable to a KLD-based design [96] as well. We constrain the

signal matrix to be unitary to guarantee transmit diversity. Unitary codes are

optimal in terms of capacity [34] in the absence of CSI, and they have very

simple ML decoding algorithms with perfect CSI [52]. We propose that the
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ST constellations have the structure S = {ΦiDi}Li=1, where Φi ∈ CTd×MT is a

matrix with orthonormal columns (i.e., ΦH
i Φi = IMT

) and Di ∈ RMT×MT is a

diagonal matrix with nonnegative and equal entries (i.e., Di =
√
diIMT

). Thus,

any Td ×MT transmitted matrix symbol S having the structure S = {ΦiDi}Li=1

can be used in this framework. The rationale for the above choice is that the

amplitudes of the signal matrix can now vary in order to maximize the cutoff

rate. Assuming the above code structure, we can write SH
i Si = diIMT

, i = 1 . . . L.

When Td ≥ 2 and MT ≥ 2, the cutoff rate in (7) will reduce to

R0 ≥ max
{di}L

i=1

− log

⎧

⎨

⎩

1

L2

∑

i

∑

j

[

(1 + σ2
Edi)

1/2(1 + σ2
Edj)

1/2

(1 + 1
2σ

2
Edi)(1 +

1
2σ

2
Edj)

]MT

1
∏MT

k=1(1− αi,jλk
i,j)

1
(

1 +
1−σ2

E

4 [MT (di + dj)− (didj)
1
2 tr(ΦiΦH

j +ΦjΦH
i )]
)

⎫

⎬

⎭
,

(27)

where λk
i,j are eigenvalues of the matrix ΦH

j ΦiΦ
H
i Φj and

αi,j =
σ4
E

4

didj

(1 + 1
2σ

2
Edi)(1 +

1
2σ

2
Edj)

. (28)

Detailed derivation of (27) is given in Appendix III.

We solve the following optimization problem to find a close-to-optimal con-

stellation with average power Pd over {di}Li=1, by leveraging {Φi}Li=1 that are

proposed in [94], [93] for the partially coherent channel:

maximize
{di}L

i=1

̺

subject to MT

L

∑L
i=1 d

2
i = TdPd.

(29)

In [94] and [93], the proposed unitary matrix code {Si}Li=1 has all the columns

of square norm equal to TdPd

MT
which are not cutoff rate optimal because fixed

norm will not give the largest minimum BD.

2.2.3 Constellation design criterion with PAPR constraint

In the previous section, we have assumed the average power constraint on signal

set matrices. In this section, we constrain the PAPR, defined as the ratio of the

peak energy of any signal matrix to the average energy or power, below a given

threshold.
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Adding a PAPR constraint, the design in (11) can be reformulated as the

following optimization problem:

maximize
{Si}L

i=1

̺

subject to 1
L

∑L
i=1 ‖Si‖2 = TdPd,

max{‖Si‖2}Li=1 ≤ TdPdPPAPR,

(30)

where the maximization is with respect to the signal matrices, and PPAPR is the

PAPR threshold power specified by the designer. The nonlinear constrained op-

timization problem (30) can be numerically solved in the same way as discussed

in the previous section to solve (11).

2.3 Numerical optimization

The CR (7) expressions are obviously not convex functions in the coordinates of

the signal points and their optimization does not lead to a closed form solution

for the optimal constellations. There are several approaches to approximate a

non-convex function, for example, grid search, simulated annealing, SD, etc., but

the solution is not guaranteed to be optimal. The CR and the optimal signal set

can be iteratively computed using (47).

The algorithm used in this chapter is SQP [128]. The complex vector x ∈
CLMT has to be transformed into the real vector x′ ∈ R2LMT before optimiza-

tion. Starting from an initial vector x0, a quadratic approximation (i.e., QP sub-

problem) of the objective function (e.g., CR) at the point x0 is calculated and

minimized. A line search is performed in the calculated direction of the function

minimum. This is repeated iteratively until the stopping condition is fulfilled.

For the QP subproblem, analytical values for CR at x0 and its first deriva-

tive and an approximation of the Hessian matrix WHess are necessary. The

approximation of the Hessian WHess is determined using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, also called a Quasi-Newton update [128].

There are three stopping conditions: i) a small enough value of the objective

function derivative (e.g., 10−10), ii) the maximum number of iterations, and iii)

a minimum function value. The algorithm iterates until one of the stopping

conditions is fulfilled and sets xk, where k is the current iteration index, as a

local optimal solution.
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In each major SQP iteration step, a QP subproblem with computational com-

plexity of O(8L3M3
T ) [128] has to be solved. This is the dominating component

in terms of computational complexity. Computational complexity gets higher

with large values of Td, since more constellation points L = 2RTd , where R is

the uncoded transmission rate, need to be found and have huge decoding com-

plexity. Note that although the optimization process depends on the number

of receive antennae MR, its impact on the complexity term is negligible. For

relatively small size constellations and a small number of transmit antennae, the

algorithm solves the optimization problem with a reasonable complexity (e.g.,

for L = 32 and MT = 4, the complexity order would be ≈ 107). The algorithm

always converges in less than 3,000 iterations. Furthermore, low order PCCs,

which can be computed with a reasonable complexity, are recommended to be

used when a considerable amount of CSI estimation errors exists at the receiver

input [113, 129]. Moreover, the PCCs can be computed off-line and made avail-

able to both the transmitter and the receiver in order to use them in a real

system, thus avoiding the delay caused in computing them.

2.4 Numerical results and discussion

Mutual information, SER and PAPR have been used as performance metrics

to compare the performance with conventional M -QAM and M -PSK, existing

Borran’s [96] PCC and self-match unitary constellations [93]. In all numerical ex-

amples, the constellations are optimized for a particular SNRd value. To obtain

the mutual information of the constellation, we use a Monte-Carlo computer sim-

ulation. The mutual information with a discrete-input and continuous-output

channel is given as

I(Rd;S|Ĥ) =
∑

i

πiEp(Rd|Si,Ĥ)

[

log

(

p(Rd|Si, Ĥ)
∑

j πjp(Rd|Sj , Ĥ)

)]

. (31)

2.4.1 Single transmit antenna partially coherent constellations

Performances of the single transmit antenna PCCs are considered in this section.

First, we evaluate the performance of the BD-optimized constellation BD PCC

for MT = 1, MR = 1, Td = 1. The SER versus SNRd performances of the 4-point
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BD PCC to those of the KL PCC and the conventional 4-QAM are presented in

Fig. 5. It can be observed that the BD PCC has better gains than the 4-QAM

and slightly better than the KL PCC while 4-QAM shows error floor.
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Fig. 5. Symbol error rate versus SNRd per bit with L = 4, MR = 2, MT = 1 and

fixed σ2
E = 0.5, [113] ( c©2010 IEEE).

Now, we evaluate the MI and SER values of the 16-point CR-optimized

constellations for MT = 1, MR = 1, Td = 1. In Fig. 6, the mutual information

values are plotted versus SNRd per bit for various channel estimation variances

which are assumed to be fixed over SNRd. It is observed that with estimation

variances of a small value equal to 0.3, the CR PCC and the KL PCC have the

same mutual information and at the intermediate value of 0.5 and larger value of

0.7, the CR PCC has higher mutual information than the KL PCC. In all cases,

the CR PCC shows better mutual information than the 16-QAM, especially at

higher SNRd.

55



0 5 10 15 20 25 30

10
0

E
b
/N

0
 [dB]

M
u
tu

a
l 
In

fo
rm

a
ti
o
n
 (

b
it
s
/T

)

M
T
 = 1, M

R
 = 1, T

d
 = 1, fixed estimation variance

 

 
QAM, σ

E

2
 = 0

QAM, σ
E

2
 = 0.3

QAM, σ
E

2
 = 0.7

CR PCC, σ
E

2
 = 0

CR PCC, σ
E

2
 = 0.3

CR PCC, σ
E

2
 = 0.7

KL PCC, σ
E

2
 = 0

KL PCC, σ
E

2
 = 0.3

KL PCC, σ
E

2
 = 0.7

Fig. 6. Mutual information versus SNRd per bit with L = 16, MT = 1, MR = 1,

Td = 1, and for various fixed σ2
E ∈ {0, 0.3, 0.5, 0.7}, [114] ( c©2012 IEEE).

The SER performance of the cutoff rate non-zero CR-NZ PCC is compared

to that of the KL PCC and 16-QAM in Fig. 7. For the estimation variance

values of 0, 0.1 and 0.3, the performance of the CR-NZ and the KL PCCs are

similar and shows significant gain over the conventional 16-QAM at high SNRd.
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Fig. 7. Symbol error rate versus SNRd per bit with L = 16, MT = 1, MR = 1, Td = 1,

and for various fixed σ2
E ∈ {0, 0.1, 0.3}, [114] ( c©2012 IEEE).

In Fig. 8, the PAPR of CR PCC is compared to those of the KL PCC and

16-QAM constellations versus SNRd for an estimation variance value equal to

0.3. It is observed that the cutoff rate-based constellation has PAPR values

lower than the KL PCC.
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fixed σ2
E = 0.3, [114] ( c©2012 IEEE).

The assumption of a fixed estimation variance for all SNRd values is not al-

ways realistic. As the SNRd increases, the estimation variance typically reduces

with training-based channel estimation. To evaluate the performance of the CR

PCC with SNRd dependent estimation variance [124] (σ2
E = 1/(1+SNRd)) as

would be the case with training-based LMMSE estimation, we keep the system

configuration the same as in the previous cases. In Fig. 10, the mutual infor-

mation values of the CR PCC and the CR-NZ PCC are compared to those of

the KL PCC and conventional M -QAM. In a higher SNRd region, as expected,

all constellations have the same mutual information, because the estimation

variance will have very low values. In a low SNRd region8, the CR PCC and

CR-NZ PCC have higher mutual information as compared to that of the KL

PCC and 16-QAM constellations. Similar behavior as for the L = 16 points

PCC is observed for the L = 4 points CR PCC and 4-QAM. The case for the

8In a low SNRd region where the channel estimation variance attains very high values (> 0.8),

the channel no longer can be considered as a partially coherent channel. Moreover, the optimal

signaling at low SNRd achieves same capacity as the coherent case [130].
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L = 2 is not shown here, but it has also similar behavior. Now if we look into

Fig. 9, which compares the PAPR values of the CR PCC to those of the KL

PCC and 16-QAM constellations at different SNRd values for SNRd dependent

estimation variance, we observe that in the low SNRd region, the resulting cut-

off rate-optimized constellations get peaky to achieve high mutual information

values; this is an expected result from [34] for non-coherent channels. Even in

this region, the PAPR values of the CR PCC can be brought down, for example,

to 1.8 (which is same as for 16-QAM by using (30) and shown in Fig. 9 but at

the expense of low MI values as shown in Fig. 10). In the medium-to-high SNRd

region, cutoff rate-optimized constellations have low PAPR values; even lower

than the conventional QAM constellations.
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magnify the low values of PAPR). [114] ( c© IEEE).
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MR = 1, Td = 1, and SNRd dependent σ2
E , [114] ( c©2012 IEEE).

As mentioned in Section 2.2.2, it is observed in Fig. 4 that the resulting CR

PCC has a lower number of constellation points, i.e., 12 with respect to the

initial 16 equiprobable points before the start of the optimization process. It

has one point at the origin with a probability of 5/16 and the rest of the points

with an equal probability of 1/16. Since the resulting constellation points are

no more equiprobable, variable-length bit assignment could be used [131]. In

order to keep the implementation simple and backward compatible, we compare

the SER performance of the CR-NZ PCC to those of the KL PCC and 16-QAM

constellations with SNRd dependent estimation variance in Fig. 11. At all SNRd

points, the proposed CR-NZ PCC outperforms the conventional one. The per-

formance of the CR-based constellations is better than that of the constellation

based on the KLD. The difference becomes more pronounced as the number of

receive antennae increases.
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Fig. 11. Symbol error rate versus SNRd per symbol with L = 16, MT = 1, MR =

{1, 4, 8}, Td = 1, and SNRd dependent σ2
E , [114] ( c©2012 IEEE).

So far we have seen the performances of PCCs which are obtained by using a

different constellation optimized for different SNRd values. These PCCs might

be useful for systems which use adaptive modulation techniques, etc. For systems

where using different constellations for different SNRd might not be applicable,

we have designed a PCC at some SNRd (e.g., 10 dB and 15 dB), for fixed σ2
E ,

and use its appropriately scaled version at all SNRd values to plot the SER

performance in Fig. 12. Its performance is observed to be slightly degraded

than of that obtained by the constellation designed at different values of the

SNRd but it still gives remarkable gains compared to 16-QAM.
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σ2
E = 0.1, [114] ( c©2012 IEEE).

2.4.2 Multiple transmit antenna partially coherent constellations

We now consider the constellation design for the MT = 2, MR = 1, Td = 1

system configuration and evaluate the mutual information values of the CR

PCC with the QAM constellations. Mutual information values versus SNRd

per bit is plotted in Fig. 13 for fixed estimation variance values of 0, 0.05, 0.3

and 0.5. In order to compare the performance, we use a 16-point CR PCC

designed jointly for two transmit antennae for our case and two independent

4-QAM for two transmit antennae as baseline for comparison so that they have

the same spectral efficiency of 4 bits/T . We can see a similar performance as we

have seen in the single transmit antenna case. As estimation variance increases,

the CR PCC shows higher mutual information compared to that of the QAM

constellations.
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Fig. 13. Mutual information versus SNRd per bit with L = 16, MT = 2, MR = 1,

Td = 1, and for fixed σ2
E ∈ {0, 0.05, 0.3, 0.5}, [114] ( c©2012 IEEE).

The SER performance for the same system configuration as that in Fig. 13

but with MR = 2 and for fixed estimation variance values of 0 and 0.05 is plotted

in Fig. 14. We compare the performances of the CR PCC designed for different

values of L = 4, 16, and 64 to that of a spatial multiplexing scheme, transmitting

two independent conventional binary phase-shift keying (BPSK), 4-QAM and 8-

PSK symbols to two transmit antennae, respectively. As expected, the CR PCC

shows significantly better gains compared to the conventional constellations even

with perfect CSIR. We can also observe that the performance plots experience

error floor for the case of non-zero estimation variances, which is more prominent

in the 16-QAM constellation than in the CR PCCs, especially at high SNRd. The

error floor at high SNRd is due to the presence of σ2
ESSH term in the covariance

matrix of the received symbols matrix (4), which is a self-interference that does

not decrease as the SNRd increase. The flooring effect can be obviated by using

an SNRd dependent estimation variance, e.g., as shown in Fig. 11.
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Fig. 14. Symbol error rate versus SNRd per bit with L = {4, 16, 64}, MT = 2, MR = 2,

Td = 1, and for fixed σ2
E ∈ {0, 0.05}, [114] ( c©2012 IEEE).

2.4.3 Partially coherent space-time constellations

Finally, we evaluate the performance of the ST constellations for Td > 1. In

this section, we present the performance results of two CR-optimized ST con-

stellations. First, the ST constellations are designed by leveraging the self-match

unitary constellations [93], and second, they are designed by leveraging the uni-

tary code obtained by combining the non-coherent [75] and coherent codes by

Giese and Skoglund [94].

The performance of the cutoff rate, self-match (CR-SM) and the cutoff rate,

self-match with non-zero amplitude (CR-SM-NZ) for the MT = 2, MR = 1,

Td = 8 system configuration with an SNRd dependent estimation variance is

considered first. The CR-SM-NZ ST constellations are obtained with an addi-

tional constraint that the energy of each matrix of a ST constellation set must

be larger than some positive constant ε > 0 (d2i ≥ ε). In this example, we have

used ε = 1 (obtained from several trials) at a SNRd of 10 dB. The self-match

unitary constellations are used in this example, as they are easy to construct,

64



guarantee full diversity and do not exhibit an error-floor with channel estimation

error [93]. The mutual information versus SNRd is plotted in Fig. 15. The mu-

tual information of the CR-SM and CR-SM-NZ constellation are compared to

that of the self-match unitary constellations. It is observed that the CR-SM has

higher mutual information at all SNRd values and especially in the low SNRd

region. Comparison is also made with the ST constellation with non-zero ampli-

tudes (CR-SM-NZ), which shows to have very minimal degradation in mutual

information as of the CR-SM.
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Fig. 15. Mutual information versus SNRd per symbol with L = 16, MT = 2, MR = 1,

Td = 8, and for SNRd dependent σ2
E , [114] ( c©2012 IEEE).

The corresponding block error rate performance is compared in Fig. 16. The

CR-SM constellation exhibits significantly better performance compared to that

of the SM constellations over entire SNRd region.
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Fig. 16. Block error rate versus SNRd per block with L = 16, MT = 2, MR = 1,

Td = 8, and for SNRd dependent σ2
E , [114] ( c©2012 IEEE).

Next, we consider the performance of the CR-optimized ST constellations,

leverages Giese and Skoglund [94] unitary codes, for the MT = 2, MR = 2, Td = 4

system configuration with spectral efficiency or code rate R = 1 bits/s per chan-

nel use. In this example, we compare the performance of a purely non-coherent

code (16 unitary code) with a signal set based on combining 8 non-coherent codes

with 2 coherent codes, and a constellation combining 4 non-coherent codes with

4 coherent codes. The idea of adaptively determining the number of coherent

and non-coherent component codes is dependent on the quality of the channel

estimate, i.e., estimation variance σ2
E . For the non-coherent case (σ2

E = 1), the

inter-subspace distance between two signals Φi and Φj depends upon the princi-

pal angles between the subspace spanned by Φi and Φj . For the coherent case

(σ2
E = 0), two signals in the same subspace have vanishing inter-subspace and

non-vanishing intra-subspace distances since it depends upon the singular values

of the difference Φi − Φj . In other words, a higher estimation variance will in-

volve more non-coherent components to achieve a large inter-subspace distance

and less coherent component codes, and vice versa.
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The block error rate (BLER) versus estimation variance performance of the

combined codes designed for SNR = 10 dB per block is compared in Fig. 17. All

the three CR-optimized constellation sets exhibit better performance compared

to that of the constellation sets proposed in [94] over different values of channel

estimation variance (σ2
E).
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block, [115] ( c©2013 VDE VERLAG GMBH).

2.5 Conclusion

The ST constellation design matched to imperfect CSIR in a Rayleigh-fading

channel has been considered. The cutoff rate as a function of the channel es-

timation variance has been proposed as a design criterion to obtain partially

coherent ST constellations. The resulting CR-optimized PCCs have the largest

minimum BD and are close to rate-optimal for a very large number of receive

antennae. We have also demonstrated the shape and structure of the resulting

constellations matched to channel estimation errors. The resulting constellations
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are shown to have higher MI in low or medium SNR regimes compared to those of

the KLD-based PCCs, USTCs and conventional QAM constellations. Numerical

results also demonstrated that SER performance of the new constellations is sim-

ilar to that of the KLD-based PCCs [96] and have better performance compared

to unitary codes [93, 94]. The resulting single transmit antenna constellations

are also shown to have lower PAPR values compared to those of KLD-based

PCCs. Another signal set construction method is discussed with additional con-

straints. It gives control over the constellation’s PAPR values and takes care

that no signal points have a zero amplitude.

One key benefit of using CR-based optimization is that it yields a computa-

tion framework which can be straightforwardly solved for ST block code design

for block lengths of several symbol intervals. This problem proved out to be a

difficult one with the KLD-based design [96]. Moreover, the code construction

method used in the KLD and the BD-based design is computationally more

intensive as it involves an exhaustive search in order to obtain the optimized

constellations.
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3 Partially coherent constellation design in

spatially correlated channels

As discussed in Section 1.1, apart from imperfect CSIR, the presence of spatial

correlation also degrades the performance of the MIMO system. To reduce

the performance losses incurred due to imperfect CSIR and spatial correlation,

various designs have been proposed, such as the precoder design [16, 101, 102] and

robust ST codes [132]. In this chapter, we study the combined impact of the CSI

estimation error and spatial correlation on the ST code design. We consider non-

CSIT schemes, and our goal is to use partial CSIT (channel estimation covariance

matrix, transmit and receive correlation matrices) to design the transmitted ST

codes and the corresponding bit mapping schemes to adapt to the available

accuracy of the CSIR.

This chapter is organized as follows: The assumptions, the system model,

and the Kronecker channel model for correlated channel and LMMSE channel

estimation method are detailed in Section 3.1. Detailed derivations of the UB-

ABEP and CR expressions for a spatially correlated MIMO channel with partial

CSIR, two methodologies for signal set construction, and an efficient bit-mapping

algorithm MBSA are presented in Section 3.2. The details of the numerical

optimization method are presented in Section 3.3. The numerical coded BER

and FER results are presented in Section 3.4. Section 3.5 concludes the chapter.

3.1 System model

Consider a similar communication system (1) as the one considered in Chapter 2

with a given power constraint (2).

We model the channel correlation with the Kronecker model [9, 133, 134], i.e.,

H = R
1/2
T HwR

1/2
R , where Hw is a spatially white matrix whose entries are i.i.d.

CN (0, 1). Matrices RT and RR represent normalized transmit and receive corre-

lation with eigenvalues {λi
T }MT

i=1 and {λi
R}MR

i=1, respectively. The normalizations

in (1) are assumed to be such that
∑MT

i=1 λ
i
T = MT and

∑MR

i=1 λ
i
R = MR.

We assume that RT and RR are measured accurately at the receiver and are

fed back to the transmitter via an error-free feedback link. However, in practice
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correlation matrices are estimated as in [135–137] with sufficiently high accuracy.

Now, the receiver computes an estimate Ĥw of the channel matrix Hw using the

well-established orthogonal training method [138]. The received signal matrix in

Tt time slots can be written as

Yt = StR
1/2
T HwR

1/2
R + Wt, (32)

where St is a known CMT×MT orthogonal training symbol matrix with total

energy, i.e., tr(StS
H
t ) = Pt =SNRt, and Wt is the AWGN noise matrix, during

the training period, from the distribution CN (0, I). Let St = AR
−1/2
T , where

A is a unitary matrix scaled by
√

Pt/tr(R
−1
T ) for equal power allocation to

the transmit antennae. Pre-multiplying both sides of (32) by A−1 and then

post-multiplying the resultant equation by R
−1/2
R , we get

Gw = A−1YtR
−1/2
R = Hw + A−1WtR

−1/2
R

︸ ︷︷ ︸

W0

. (33)

The LMMSE estimation [138] of Hw is performed on (33) to obtain

ĥw = vec(Ĥw) = [IMRMT
+ (σ2

ceR
−1
R ⊗ IMT

)]−1vec(Gw) (34)

and in the matrix version Ĥw = Gw[IMR
+σ2

ceR
−1
R ]−1, where σ2

ce = tr(R−1
T )/Pt.

Similarly, the channel estimation error vector and the corresponding matrix ver-

sion are given by

h̃w = hw − ĥw = vec(H̃w) = [IMR
+ σ−2

ce RR]
−1/2 ⊗ IMT

vec(Ew) (35)

H̃w = Ew[IMR
+ σ−2

ce RR]
−1/2, (36)

where Ew is a random matrix with i.i.d. complex Gaussian entries having

CN (0, 1), and is independent of Ĥw. A detailed derivation of (35) is given

in Appendix 4. By the orthogonality principle ĥw and h̃w are uncorrelated.

The CSI model based on the model above becomes

H = Ĥ + H̃ = R
1/2
T ĤwR

1/2
R + R

1/2
T H̃wR

1/2
R (37a)

= R
1/2
T Gw([IMR

+ σ2
ceR

−1
R ]−2RR

︸ ︷︷ ︸

= R̄R·R̂R

)1/2 + R
1/2
T Ew([IMR

+ σ−2
ce RR]

−1RR
︸ ︷︷ ︸

R̃R

)1/2, (37b)

where R̄R = [IMR
+ σ2

ceR
−1
R ]−1 and R̂R = [IMR

+ σ2
ceR

−1
R ]−1RR.
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Substituting the eigenvalue decompositions (EVDs) for RT = UTΛTUH
T ,

R̄R = URΛ̄RUH
R , R̂R = URΛ̂RUH

R and R̃R = URΛ̃RUH
R , where UT and

UR are the transmit and receive unitary matrices of the EVDs of RT and RR,

respectively, we get

H = UT Λ
1/2
T UH

T GwURΛ̄
1/2
R Λ̂

1/2
R

︸ ︷︷ ︸

ˆ
Ĥ

UH
R + UT Λ

1/2
T UH

T EwURΛ̃
1/2
R

︸ ︷︷ ︸

˜
H̃

UH
R

= UT
ˆ̂
HUH

R + UT
˜̃HUH

R .

(38)

After post-multiplying (1) by UR, denoting SdUT by X, and denoting RdUR

by Y, we get

Y = X
ˆ̂
H + X ˜̃H + N (39)

which represents the sufficient statistics of the received signal. The precoded

constellation {X} satisfies the same average-power constraint as the original

constellation {Sd}, and N has i.i.d. circularly symmetric CN (0, 1) entries, since

it has the same distribution as Wd.

Applying the vec operation to (39), we get

y = Z
ˆ̂
h + Z˜̃h + n, (40)

where Z = IMR
⊗X. The conditional probability density function (PDF) of the

received signal conditioned on given ˆ̂
h and Zi being sent is [96]

pi (y) = p
(

y|Zi,
ˆ̂
h
)

=
exp

{

−(y − Zi
ˆ̂
h)H(ITdMR

+ ZiΣ̃ZH
i )−1(y − Zi

ˆ̂
h)
}

πTMR |(ITdMR
+ ZiΣ̃ZH

i )|
, (41)

where Σ̃ = E[vec( ˜̃H)vec( ˜̃H)H ] = (Λ̃R ⊗ ΛT ) is a correlation matrix of ˜̃H, which

is the same as that of H̃.

In the remainder of the chapter, we will assume that RT , RR, and σ2
ce are

known to the receiver and the transmitter, which further implies knowledge of

the estimation covariance matrix Σ̃ at the transmitter.

We have used a channel model different from the one used in [116], which

had a genie-provided estimate at the receiver. However, the analysis presented

in this section can also be applied to the channel model in [116].
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3.2 Constellation design

In this section, we use upper bound on the ABEP (UB-ABEP) and CR expres-

sions as constellation design criteria for partially coherent channels for single

and multiple transmit antennae, respectively. The error rate performance of the

coded system depends on the bit mapping as well. Thus, we also need to design

the bit mapping (close to the Gray mapping), along with the constellation points

to minimize the error rate. We propose two methodologies to design the con-

stellations and bit mapping schemes in two steps. The first one is for the single

transmit antenna case, where the design of a 2-D constellation is of interest. In

this method, we minimize the UB-ABEP with a given average transmit power

and the Gray mapping constraint on the constellation set. The rationale for us-

ing a UB-ABEP expression as a constellation design criterion in this case seems

obvious: it allows taking both the Hamming distance and pairwise error prob-

abilities PEPs into account in a single expression. We start with some known

conventional 2-D constellations (e.g., M -QAM) which readily apply the Gray

mapping in the first step and then optimize the constellation points by minimiz-

ing the UB-ABEP in the second step. The resulting constellation can maintain

the same Gray mapping and its simplicity. The second method is for multiple

transmit antennae where constellations are designed simultaneously across the

transmit antennae and allowed to differ from an antenna to another. In this

method, we start with some R2MT vector and optimize it by maximizing the CR

under the average transmit power constraint in the first step. In the second step,

the resulting symbols are then mapped to a binary sequence using the MBSA.

It should be noted that the UB-ABEP expression is a suitable design criterion

for the single transmit antenna as 2-D constellations (e.g., M -QAM, M -PSK

etc.), where the Gray mapping can be used as initial starting points of the

iterative optimization. In the multiple transmit antenna case, on the other hand,

we design the constellations simultaneously across the transmit antennae. The

approach then gives rise to the need for higher dimensional constellations (e.g., 4-

D constellations for two transmit antennae). Since the 4-D or higher dimensional

constellations which readily apply the Gray mapping are not available, their bit

mapping schemes must also be designed. Thus, the CR expression is a useful

design criterion. As in [114], the CR criterion can also be used to design the 2-D

constellations. However, their bit mappings result often in non-Gray mappings.
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This deteriorates their bit error performance as compared to the constellations

designed using the UB-ABEP criterion. We overcome the problem by a specific

bit mapping design.

3.2.1 Single transmit antenna

We now derive a UB-ABEP expression and use it for designing the constellation

for the single transmit antenna case. Using the relationship between the average

BEP and the PEPs for the codebook of size L [139],

P̄b =
L∑

i=1

∑

j �=i

d(Xi,Xj)

log2 L
πiPr{Xi → Xj}, (42)

where d(Xi,Xj) is the Hamming distance between binary sequences representing

Xi and Xj , Pr{Xi → Xj} is the PEP of transmitting Xi and detecting Xj . πi is

the transmission probability of Xi and is equal to 1
L for the equiprobable inputs,

which is the case here. In the above equation, the PEPs can be approximated9

as

Pr(Xi → Xj) ≈ Prpi
{y : pj (y) > pi (y)}, (43)

where pi(y) is a conditional PDF as defined in (41) and Prpi
is used to de-

note the probability with respect to the probability density function pi(y). One

would like to select the signals by minimizing the PEP. Unfortunately, min-

imizing the PEP and even the Chernoff distance [29], which determines the

asymptotic exponential decay rate of the APEP of the ML detector, is usu-

ally not analytically tractable. To circumvent this problem, we use the BD

between two conditional distributions, which is a special case of the Chernoff

distance, when the Chernoff parameter is assigned the value 1
2 . We refer to

Pe = πiPrpi
{y : pj (y) > pi (y)} + πjPrpj

{y : pi (y) > pj (y)} as the APEP

between Xi and Xj .

The Bhattacharyya coefficient and the BD B(i, j) between pi(y) and pj(y)

are defined as [111] ρ(i, j) =
∫∞

−∞

√

pi(y)pj(y)dy, and B(i, j) = − log ρ(i, j),

respectively.

9When there are only two decision points (i.e., L =2), (14) should be an equality. For more

than two decision points (i.e., L >2), the equality no longer holds, however, we can still use

them as an approximation for the PEP.
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The relation between the Bhattacharyya coefficient and the APEP is [140]

1

2
min(πi, πj)ρ(i, j)

2 ≤ Pe ≤
√
πiπjρ(i, j), (44)

where πi and πj are the a priori probabilities of the codewords, which are as-

sumed to be equal. Based on (44), with equal priors, minimizing the maximum

Pe is equivalent to maximizing the minimum B(i, j) among all pairs i, j. The

next proposition is an extension of our result for the i.i.d. channel [113, 114] to

the correlated channel.

Proposition 4 The Bhattacharyya coefficient between the pair of symbols Xi

and Xj is given by

ρcor(i, j) =
MR∏

n=1

|ITd
+XiΛTX

H
i λ̃n

R|
1
2 |ITd

+XjΛTX
H
j λ̃n

R|
1
2

|ITd
+ 1

2 (XiΛTX
H
i +XjΛTX

H
j )λ̃n

R + 1
4 (Xi −Xj)ΛT (Xi −Xj)H λ̂n

R|
,

(45)

where λ̃n
R and λ̂n

R are the eigenvalues of R̃R and R̂R respectively, and {Xi}Li=1

is the constellation set with equiprobable transmit probabilities.

Proof. See Appendix 5.

Using (42), (44) and Proposition 1, an UB-ABEP is given by

P̄b ≤
1

L

L−1∑

i=1

L∑

j=i+1

d(Xi,Xj)

log2 L
ρcor(i, j) = P̄UB

b . (46)

Adopting the UB-ABEP expression (46) as the design criterion, the signal set

design can be formulated as the following optimization problem:

minimize
{Xi}L

i=1

P̄UB
b

subject to 1
L

∑L
i=1 ‖Xi‖2 = TdPd

Gray mapping.

(47)

For the single transmit antenna case and with Td = 1 each X will now be a

complex scalar.

For the numerical optimization, we use Matlab’s [127] optimization toolbox

program fmincon. The program fmincon solves nonlinear constrained optimiza-

tion problems (e.g., (47)) and is based on the SQP algorithm. In this algorithm,

the function solves a QP subproblem in each major SQP iteration step. Fig. 18
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shows the constellation diagrams of the M -BEP PCC (M -points PCCs designed

by minimizing the UB-ABEP), for M = 16, designed with the (Eb/N0)d = 10 dB

along with its bit mapping and 16-QAM constellation for structural comparison.

In this case, we used the Gray-mapped 16-QAM as an initial guess to the opti-

mization problem and finding the optimized 16-BEP PCC. It can be seen that

the majority of the points are shifted towards the origin as compared to those

of 16-QAM. The reason for this is that as the amplitude decreases, the variance

of the received signal decreases as it depends on the strength of the transmitted

symbol. It has been observed that this phenomenon becomes more dominant at

low values of SNRt (e.g., structure of the 16-BEP PCC designed at (Eb/N0)d of

10 dB and SNRt of 3.7 dB as shown in Fig. 19).
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Fig. 18. Constellation diagram: 16-QAM and partially coherent constellation (BEP-

optimized) of size L = 16 designed for MT = 1, Td = 1, (Eb/N0)d of 10 dB and for

fixed SNRt = 10 dB, [117] ( c©2013 IEEE).
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Fig. 19. Constellation diagram: 16-QAM and partially coherent constellation (BEP-

optimized) of size L = 16 designed for MT = 1, Td = 1, (Eb/N0)d of 10 dB and for

fixed SNRt = 3.7 dB, [117] ( c©2013 IEEE).

3.2.2 Multiple transmit antennae

We derive next the CR expression and use it as a constellation design criterion

for the multiple transmit antenna case. The next proposition is an extension of

our result for the i.i.d. channel in Chapter 2 to the correlated channel.

Proposition 5 The CR of the partially coherent spatially correlated channel

with discrete input values and continuous output is given by

R0 = max
{πi}L

i=1
,{Xi}L

i=1

− log

(
∑

i

πi

∑

j

πjρcor(i, j)

)

, (48)

where {Xi}Li=1 is the constellation set with corresponding probabilities {πi}Li=1.

Proof. Using the relation between the CR and BD [114] results in (48).
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We refer to the argument of max(·) in (48) as the cutoff rate expression and

denote it as ̺. For the equiprobable signal set with probabilities {πi}Li=1 = 1/L,

the ST constellation design can be now formulated as the following continuous

optimization problem (for fixed L, elements of X can take any values on the

complex plane):

maximize
{Xi}L

i=1

̺

subject to 1
L

∑L
i=1 ‖Xi‖2 = TdPd,

(49)

where the maximization is with respect to the signal matrices.

Spatial multiplexing (MT ≥ 2 and Td = 1)

We will now design the constellations with multiple transmit antennae (MT ≥
2) and fast fading environment. Like in [96] and Chapter 2, the proposed con-

stellations are jointly designed across the transmit antennae. With Td = 1 each

X will now be a complex row vector x.

To find a close-to-optimal constellation with average power Pd, we use (49),

replacing the complex X matrix with the complex row vector x. Moreover, with

Td = 1, each transmit matrix will have a unit rank, independent of the number

of transmit antennae, and, thus, is not able to provide any transmit diversity

gain.

Space-time codes (MT ≥ 2 and Td ≥ 2)

We will design the ST block codes, with block length of several intervals and for

more than one transmit antennae, to guarantee transmit diversity.

Orthogonal ST codes OSTBCs were first proposed for two transmit anten-

nae [49] and later extended to an arbitrary number of transmit antennae [52].

The OSTBCs are of particular interest here due to their simple decoding while

providing diversity gain. The OSTBC matrix used in all related works, includ-

ing [49, 52], draws its symbols either from the conventional M -QAM or M -PSK

constellation or 2-D constellation as designed in [95]. Let us take the example

of the Alamouti code, with spectral efficiency R = 2 bits/s/Hz, given by

X2×2 =

[

s1 s2

−s∗2 s∗1

]

. (50)
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In this case, the non-zero entries, i.e., s1 and s2 are drawn from a 4-QAM con-

stellation. We propose to jointly design s1 and s2 for the OSTBC matrix. In

order to achieve the spectral efficiency = 2 bits/s/Hz, we need 16 such combina-

tions to form 16 different Alamouti codes. Furthermore, this approach can also

be extended to other OSTBCs, e.g., X4×3, X4×4 and golden codes [141], etc.

Close-to-optimal OSTBC matrices with average power Pd can be obtained by

solving the continuous optimization problem (49). Furthermore, as the number

of non-zero and distinct entries increases, the optimization complexity increases.

Unitary matrix codes We constrain herein the STBC to be a unitary one

belonging to the class of optimal ST codes in terms of capacity [34] in the absence

of CSIR and having very simple ML decoding algorithms with perfect CSI [52].

We propose that the ST constellations have the structure S = {ΦiDi}Li=1, where

Φi ∈ CTd×MT is a matrix with orthonormal columns (i.e., ΦH
i Φi = IMT

), and

Di ∈ RMT×MT is a diagonal matrix with nonnegative and equal entries (i.e.,

Di =
√
diIMT

). In this way, we allow the amplitudes of the signal matrix to

vary in order to maximize the cutoff rate. Assuming the above code structure,

we can write SH
i Si = diIMT

, i = 1 . . . L. When Td ≥ 2 and MT ≥ 2, the

Bhattacharyya coefficient in (45) will reduce to

ρcor(i, j) =

MR∏

n=1

|ITd
+ diΦiΛTΦ

H
i λ̃n

R|
1
2 |ITd

+ djΦjΛTΦ
H
j λ̃n

R|
1
2

|ITd
+ 1

2 (diΦiΛTΦH
i + djΦjΛTΦH

j )λ̃n
R + 1

4δΦΛT δΦH λ̂n
R|

, (51)

where δΦ =
√
diΦi −

√
djΦj .

We solve the following optimization problem to find a close-to-optimal con-

stellation with the average power Pd over {di}Li=1, by leveraging combined non-

coherent and coherent unitary codes proposed in [94] for the partially coherent

channel:
maximize

{di}L
i=1

̺

subject to MT

L

∑L
i=1 d

2
i = TdPd.

(52)

Constellation mapping

In this section, we design the bit mapping scheme for the resulting PCCs designed

in previous sections for multiple transmit antennae. As mentioned above, the

optimal bit mapping is crucial for the performance of the decoder. Therefore,
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we propose a novel MBSA, which is a modified version of the BSA [118]. The

BSA was first used to perform index optimization vector quantization and then

for symbol mapping optimization in [142] for QAM and PSK and in [120] for ST

constellations in the BICM-ID scheme.

The main goal of the algorithm is to find the optimized mapping with min-

imum total cost as described below. The total cost of a mapping is the sum

of the individual costs of the symbols, as each symbol has a cost based on its

location in the mapping. Furthermore, switching between the symbols, indices

change the individual costs. This results either in an increment or a decrement

of the total cost. Both the BSA and MBSA start with some random mapping

assigned to the symbols. Then, in the case of the BSA, the algorithm constructs

a new mapping on each iteration (called the current mapped array) by sorting

the symbols according to the decreasing order of their individual costs. Now

the symbol with the highest cost switches its index with other symbols indices,

and calculates the total cost change for each symbol switching. If the lowest

total cost from all of the index switchings is lower than the initial total cost, the

corresponding index switching is performed to update the current mapped array,

and the iteration continues for the remaining (L− 1) symbols. However, in the

case of MBSA, the algorithm constructs the current mapped array in the same

way as done in the BSA on each iteration. The symbol index with the highest

individual cost is switched with all the other symbols indices. The total cost

for each index switching is calculated and the switching associated to the lowest

total cost is stored in an array (called switching array). Then the symbol index

with the second highest individual cost switches with the rest of the symbols

indices. The total cost for each index switching is calculated and the switching

associated to the lowest total cost is stored in a switching array and so on for

L(L− 1) times, until no more indices are left in the current mapped array. The

algorithm then selects the indices switching such that it has the lowest total

minimum cost to update the current mapped array, and the iteration continues

for the remaining (L−1) symbol times. In this way, the MBSA allows to search-

ing for the mapping with a lower total cost at the end of every iteration unlike

the BSA, which stops searching when it gets its first total cost lower than the

initial total cost. Thus, the MBSA converges to the mapping with better local

optimal values compared to those obtained using the BSA at the cost of L times

search complexity. For more insight on the MBSA, a pseudo code is given in
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Algorithm 1. The total cost function used in the MBSA is given by

C =
∑

i

C(Xi), (53)

where C(Xi) is the cost for individual symbols and is defined as

C(Xi) =
1

L

∑

j

d(Xi,Xj)

log2 L
Pr(Xj → Xi). (54)

The UB-ABEP given in (46) is used to calculate the total cost function. The

MBSA converges to a local optimal mapping, so to find the close-to-global-

optimal mapping, we started the algorithm with 10–15 different initial mappings

chosen randomly.

3.2.3 Special case of i.i.d. channels

In this section, we will reproduce the CR for the uncorrelated and i.i.d. channels

of Chapter 2. Assuming the fading coefficients are uncorrelated (i.e., RT = RR

= I), the Bhattacharyya coefficient (45) will reduce to the form [113]

ρuncor(i, j) =

(

|ITd
+σ2

EXiX
H
i |

1
2 |ITd

+σ2
EXjX

H
j |

1
2

|ITd
+ 1

2
σ2
E
(XiX

H
i
+XjX

H
j
)+ 1

4
(1−σ2

E
)(Xi−Xj)(Xi−Xj)H |

)MR

, (55)

where σ2
E = σ2

ce/(1 + σ2
ce) is the estimation variance per channel coefficient. An

UB-ABEP and CR can be rewritten as

P̄b ≤
1

L

L−1∑

i=1

L∑

j=i+1

d(Xi,Xj)

log2 L
ρuncor(i, j), (56)

R0 = max
{πi}L

i=1
,{Xi}L

i=1

− log

(
∑

i

πi

∑

j

πjρuncor(i, j)

)

, (57)

respectively.

It is important to note that the number of receive antennae in the uncorre-

lated and i.i.d. channels does not have any role in the numerical optimization

but does in the correlated channel case. As a result, the structures of the PCCs

differ from each other although obtained at the same value of (Eb/N0)d.
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Algorithm 1 Modified Binary Switching Algorithm.

Input: Input constellation set S ∈ {Si : 0 ≤ i ≤ L− 1}

Procedures: Procedures used in the algorithm–

– INITIALIZATION(): Assign some random indices to the each constellation

point of the set.

– SORT_INDICES(): Construct an array aL×1 of the indices of constellation

points stored in a decreasing order of Cost.

– SWITCH_INDEX(i, j): Swap the index assignments of the constellation

points Si and Sj in S.

– UPDATE_COST(): Calculate the cost of individual points and total cost Dπ

of the constellation set.

Output: Permuted version of the constellation set S

1: INITIALIZATION()

2: for (k = 1 to L) do

3: Dπ = UPDATE_COST()

4: a = SORT_INDICES()

5: δ⋆ = 0, j⋆ = 0

6: for (i = 1 to L) do

7: for (j = 1 to L) do

8: if (j �= [a]i) then

9: SWITCH_INDEX([a]i, j)

10: D
π
′ = UPDATE_COST()

11: δ = D
π
′ - Dπ

12: if (δ < 0) then

13: if (|δ| > [δ⋆]i) then

14: [δ⋆]i = |δ|

15: [j⋆]i = j

16: SWITCH_INDEX(j, [a]i)

17: [a, b] = MAX(δ⋆)

18: δ
′

= a

19: j
′

= [j⋆]b

20: if δ
′

== 0 then

21: BREAK

22: else

23: SWITCH_INDEX(j
′

, [a]b)

81



3.3 Numerical optimization

Similar to the CR expression for i.i.d. channels in Chapter 2, the UB-ABEP

(46) and CR (48) expressions for the correlation channel are not also convex

functions in the coordinates of the signal points and its optimization does not

lead to a closed form solution for the optimal constellations. There are sev-

eral approaches to approximate a non-convex function, for example, grid search,

simulated annealing, SD, etc., but the solution is not guaranteed to be optimal.

The UB-ABEP, CR and their corresponding optimal signal set can be iteratively

computed using (47) and (49), respectively. The algorithm used in this chapter

is same as the one used in Chapter 3, i.e., SQP [128].

As far as algorithm complexity is concern, low order PCCs, which can be

computed with a reasonable complexity, are recommended to be used when a

considerable amount of CSI estimation errors exists at the receiver input [113,

129]. Moreover, the PCCs can be computed off-line and made available to both

the transmitter and the receiver in order to use them in a real system, thus

avoiding the delay caused by computing them.

3.4 Numerical results and discussion

Coded FER and BER have been used as performance metrics to compare the

performance of the resulting PCCs with the M -QAM and combined unitary

constellation [94]. In all the presented simulated examples, the constellations

are optimized for the true SNR value unless otherwise stated. For the Monte

Carlo computer simulation, we considered the turbo-coded system with frames

of length equal to 512 symbols. The exponentially correlated fading model is

considered on both the transmit and the receive sides. The transmit and receive

correlation matrix is given by (R{T,R})i,j = ρ
|i−j|
{T,R} for i, j ∈ {1, · · · ,M{T,R}},

where ρ{T,R} denotes the normalized correlation coefficient of the channel and

satisfies 0 ≤ ρ{T,R} < 1. The values used for ρT and ρR in the simulations are

0.30 and 0.45, respectively.
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At the receiver, the knowledge of the channel estimation covariance matrix Σ̃

is also considered to be available to the decoding metric as in [143]. The decoder

estimates the log-likelihood ratios (LLRs) of the coded bit for soft decision de-

coding from the modulated symbols. Let us denote the transmitted bits of each

signal b = {b1, . . . , bN}. The LLR for the lth bit in b is given by

L(bl) = log

∑

X+:X=f(b),bl=1 p
(

Y|X+,
¯̂
H
)

∑

X−:X=f(b),bl=0 p
(

Y|X−,
¯̂
H
) . (58)

3.4.1 Single transmit antenna partially coherent constellations

We first compare the uncoded system’s, with no outer codes, SER and BER

performance of the 16-BEP PCCs to that of 16-CR PCCs (16-points PCCs

designed by maximizing the CR) and the conventional 16-QAM constellations

in the i.i.d. channel. The BEP PCCs and 16-QAM constellations are Gray-

mapped while the CR PCC has MBSA-optimized bit-mapping. The uncoded

SER and BER versus (Eb/N0)d for MT = 1, MR = 1, Td = 1 and at fixed value

of training power or SNRt = 10 dB are plotted in Fig. 20. As expected, the

CR PCCs and BEP PCCs show SER and BER gains compared to the QAM

constellations. However, the BEP PCC show better BER and worse SER gains

compared to the CR PCC. The reason for this is that the CR PCC are designed

without taking the bit mapping into account. Moreover, their structure does

not allow the use of the Gray mapping even after the MBSA optimization. In

the same figure, a similar effect can also be observed for the coded FER versus

(Eb/N0)d performance curve with turbo code rate Rc = 1
2 .

We now evaluate the FER performance of the 16-BEP PCCs and fixed (non

(Eb/N0)d dependent) 16-BEP PCCs designed at (Eb/N0)d of 10 dB and 5 dB

with MT = 1, MR = 2, Td = 1. In Fig. 21, the FER versus (Eb/N0)d for

fixed SNRt values of 3.7 dB and 10 dB are plotted with the Rc of 1
2 and 2

3 ,

respectively. It is observed that for a SNRt value equal to 3.7 dB, the BEP PCCs

show better gain as compared to that of 16-QAM. The performance significantly

improves when the value of SNRt further increases to 10 dB. The fixed BEP

PCCs in this example are appropriately scaled at all (Eb/N0)d values and have

negligible performance loss compared to the substantial gains obtained over the

conventional 16-QAM.
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Fig. 20. Coded FER and uncoded SER & BER of SISO system versus (Eb/N0)d for

fixed SNRt = 10 dB with L = 16, MT = 1, MR = 1 and Td = 1, [117] ( c©2013 IEEE).
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Fig. 21. Decoded FER of SIMO system versus (Eb/N0)d for fixed SNRt ∈

{3.7, 10} dB with L = 16, MT = 1, MR = 2 and Td = 1. The 16-BEP PCC,

(Eb/N0)d ∈ {5, 10} dB are the fixed (non-SNRd dependent) constellations designed

at 10 dB and 5 dB (Eb/N0)d, [117] ( c©2013 IEEE).
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In the examples presented so far, we used the PCCs matched to the quality of

CSI (error statistics) provided by the receiver to the transmitter while assuming

that the communication resource (i.e., power and rate) allocation to the training

symbols fixed. This is done in order to increase the robustness and study the

performance of the PCC against imperfect CSIR. However, the LMMSE based

channel estimation algorithms give inversely decreasing MSE versus SNR if the

training transmit power and overhead is kept fixed. In Fig. 22, we evaluate

the performances of the 16- and 64-BEP PCC with SNRd dependent channel

estimation, i.e., SNRt = SNRd or Pt = Pd and with different numbers of receive

antennae. Although the estimation covariance is a decreasing function of the

SNR, the coded FER performances of the BEP PCCs are better than that of

the conventional constellations. As can be expected, the performance gets even

better with higher order (i.e., L = 64) PCCs and with a large number of receive

antennae.
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Fig. 22. Decoded FER of SIMO system versus SNRd for signal-to-noise dependent

channel estimation covariance (i.e., SNRt = SNRd) with L ∈ {16, 64}, MT = 1, MR ∈

{2, 4, 8}, and Td = 1, [117] ( c©2013 IEEE).
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3.4.2 Multiple transmit antennae partially coherent constellations

Now we evaluate the performance of the multiple transmit antennae constella-

tions for MT = 2, MR = 2, Td = 1 and for fixed SNRt values of 3.7 dB, 8 dB and

10 dB. In order to have a fair performance comparison, we use a 16-CR PCC

designed jointly for two transmit antennae for our case and two independent 4-

QAM for two transmit antennae as a baseline for comparison so that they have

the same spectral efficiency R = 4 bits/T . In Fig. 23, their FER versus (Eb/N0)d

performances with Rc = 1
2 are plotted. The bit mapping used for the CR PCCs

is optimized using the MBSA. It can be observed that at SNRt = 3.7 dB, where

channel estimation covariance has small values, the CR PCCs have significant

performance gain compared to that of the conventional 4-QAM (spatial multi-

plexed). Performance gains of the CR PCCs naturally reduces for higher values

of SNRt, i.e. 8 dB and 10 dB, but still show significant as compared to the

conventional constellations.
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Fig. 23. Decoded FER of MIMO system versus (Eb/N0)d for fixed SNRt ∈

{3.7, 8, 10} dB with L = 16, MT = 2, MR = 2 and Td = 1. The 16-CR PCC,

(Eb/N0)d ∈ {5, 10, 14} dB are the fixed (non-SNRd dependent) constellations de-

signed at 5 dB, 10 dB and 14 dB (Eb/N0)d, [117] ( c©2013 IEEE).
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The coded FER performances of the CR PCC designed at fixed value of

(Eb/N0)d ∈ {5, 10, 14} dB are also shown in Fig. 23. They show substantial

performance gains compared to the conventional constellations and slight losses

compared to the CR PCCs. However, at some (Eb/N0)d values, their perfor-

mances get better as compared to the CR PCC designed for different values of

(Eb/N0)d. This performance loss for CR PCC is due to the bit mapping (ob-

tained using the MBSA) assigned to it. The MBSA converges to a local mapping,

and mapping can be good for a CR PCC designed for some value of (Eb/N0)d

and worse for some other CR PCC designed for a different value of (Eb/N0)d.

In this example, the CR PCC designed at (Eb/N0)d = 14 dB seems to have a

better mapping compared to those of CR PCCs designed for different values of

(Eb/N0)d.

The effects of different values of channel transmit and receive correlations

on the error performance are depicted in Fig. 24. The performances of the 16-

CR PCC with the conventional constellations for MT = 2, MR = 2, Td = 1,

Rc = 1/2 and for a fixed SNRt value of 8 dB are shown. As expected, both

constellations show better performances at lower values of channel correlations

(i.e., {ρT , ρR} ∈ [{0, 0}, {0.3, 0.45}]) than at higher ones {0.5, 0.7}. We can also

observe that the performances of the 16-CR PCC are significantly better than

those of the conventional constellations. The reason for this is that the design

criterion is a function of both the channel estimation covariance and channel

correlation matrices. Thus, the resulting CR PCC, which is adapted to both

the channel estimation covariance and the channel correlation matrices, jointly

compensates for the degradation caused by the imperfect channel estimation and

channel correlations.
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Fig. 24. Decoded FER of MIMO system versus (Eb/N0)d for fixed SNRt = 8 dB with

L = 16, MT = 2, MR = 2, Td = 1 and different values of transmit and receive

correlations, i.e., {ρT , ρR} = [{0, 0}, {0.3, 0.45}, {0.5, 0.7}], [117] ( c©2013 IEEE).

In Table 1, we have compared the total SNR = SNRd + SNRt or the total

power required by the CR PCCs with the conventional constellations in order to

achieve the target FER = 10−1 for various values of L ∈ {2, 4, 6} under different

values of training power SNRt ∈ {12, 10, 8, 3.7} dBs. The system parameters

are MT = 2, MR = 2, Td = 1, and Rc = 1
2 . The mark “-” in the table means

that the target FER is not achieved. It can be seen from the table that the

total SNR required by the CR PCCs is always less than that of the conventional

constellations. For R = 2 bits/T , the target FER is achieved by the 4-CR PCC

designed for SNRt = 3.7 dB at SNR = 13.98 dB, whereas the conventional

constellation required 1.7 dB more in total SNR and an SNRt value of 8 dB.

Thus, using the 4-CR PCC we can save some power on the training symbols.

As expected, the constellation with a larger number of symbol points needs a

higher training SNRt to achieve the target. Nevertheless, the CR PCC designed

for SNRt = 12 dB saves 0.28 dB and 2.21 dB in total SNR as compared to

that of QAM for R = 4 bits/T and R = 6 bits/T , respectively. Moreover, the
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conventional constellations of higher spectral efficiencies (i.e., R = 6 bits/T ) for

SNRt = 10, 8 and 3.7 dB never achieve the target FER, whereas the CR PCC

does achieve it, except for SNRt = 3.7 dB.

Table 1. Comparison of total SNR = SNRd + SNRt required by CR PCC with QAM

in MIMO system to achieve FER = 10−1 for SNRt ∈ {12, 10, 8, 3.7} dB with MT = 2,

MR = 2, Td = 1, and spectral efficiencies R ∈ {2, 4, 6} bits/T, [117] ( c©2013 IEEE).

Total SNR,

spectral efficiency

SNRt = 12 dB SNRt = 10 dB SNRt = 8 dB SNRt = 3.7 dB

CR PCC QAM CR PCC QAM CR PCC QAM CR PCC QAM

SNR, R=2 bits/T 17.63 17.65 15.95 16.39 14.88 15.68 13.98 27.13

SNR, R=4 bits/T 26.20 26.48 26.61 27.37 27.11 29.86 30.76 -

SNR, R=6 bits/T 37.80 40.01 44.86 - 50.50 - - -

3.4.3 Partially coherent space-time constellations

Finally, we evaluate the performance of the ST constellations for MT = 2,

MR = 2, Td ≥ 2. The SNRt is fixed for all values of (Eb/N0)d used in the

simulation. In this section, we present two examples, one for Td = 2 and an-

other for Td = 4. In the first example, we use the Alamouti codes as an OSTBC

and compare its performance with the CR-optimized OSTBC. In Fig. 25, we

evaluate the FER versus (Eb/N0)d performance of the Alamouti code, which

chooses its symbols from two independent conventional constellations with the

one which chooses its symbols from CR PCCs designed jointly across the MT

transmit antennae. The turbo code rate used here is Rc = 2
3 and SNRt = 3.7

dB. For a fair comparison, we use 4-QAM (2 bits/T ) constellations correspond-

ing to the 16-CR PCC. The Alamouti code which uses a CR-optimized 16-CR

PCC observed significant performance gain as compared to the one using the

4-QAM. The performances of 16-CR PCCs designed at fixed (Eb/N0)d values of

10 dB and 6 dB are also shown in the same figure. As expected, their gains are

substantial as compared to those of the 4-QAM constellation and show slight

loss compared to the CR PCCs. It should be pointed out that the imperfect

CSIR lose the diversity offered by Alamouti codes with perfect CSIR. However,

Alamouti codes using CR PCC achieve diversity.
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Fig. 25. Decoded FER of MIMO system versus (Eb/N0)d for fixed SNRt = 3.7 dB

with L = 16, MT = 2, MR = 2 and Td = 2. The 16-CR PCC, (Eb/N0)d ∈ {6, 10} dB

are the fixed (non-SNRd dependent) constellations designed at 6 dB and 10 dB

(Eb/N0)d, [117] ( c©2013 IEEE).

In the second example, we have used the unitary ST constellations obtained

by solving (52). Here, each ST constellation has the structure S = {ΦiDi}Li=1,

where Φi is a unitary matrix and is already known. In this example, we use

the unitary matrices which were found by Giese and Skoglund [94], as they were

designed for the partially coherent channels. Another unitary matrix designed

for the partially coherent channels proposed in [93] could also be used in this

example. The unitary matrices [94] are obtained by combining non-coherent [75]

and coherent codes. The idea of adaptively determining the number of coherent

and non-coherent component codes goes according to the weighting factor (es-

timation covariance or SNRt) between their intra-subspace and inter-subspace

distances [94]. For the non-coherent case (SNRt = 0), the inter-subspace dis-

tance between two signals Φiand Φj depends upon the principal angles between

the subspace spanned by Φi and Φj . For the coherent case (high SNRt), two

signals in the same subspace have vanishing inter-subspace and non-vanishing
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intra-subspace distance, since it depends upon the singular values of the dif-

ference Φi − Φj . In other words, higher estimation variance will involve more

non-coherent components to achieve a large inter-subspace distance and less

coherent component codes and vice versa. In this example, we compare the per-

formance of a purely non-coherent code (16 unitary code) to that of a signal set

based on combining eight non-coherent codes with two coherent codes, and a

constellation combining four non-coherent codes with four coherent codes. The

dominance of all three constellation sets in various regions of SNRt is shown in

the inset of Fig. 26 for both the unitary codes of [94] and their corresponding

CR-optimized constellation sets.
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Fig. 26. Decoded BER of MIMO system versus training SNRt for the codes de-

signed at SNRd per block of 3 dB with L = 16, MT = 2, MR = 2, Td =

4, [117] ( c©2013 IEEE).

The coded BER versus SNRt performance of the combined codes, designed

at SNRd per block of 3 dB, are compared in Fig. 26 with Rc = 2
3 . All three CR-

optimized constellation sets exhibit significantly better performance compared

to that of the constellation sets proposed by [94] over the entire SNRt region.
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3.5 Conclusion

The space-time constellation design and bit mapping schemes with imperfect

CSIR for a spatially correlated Rayleigh-fading channel were considered. The

UB-ABEP and CR as a function of channel estimation variance have been pro-

posed as design criteria to obtain partially coherent ST constellations. The UB-

ABEP and CR expressions for the partially coherent and spatially correlated

channel were derived. Two effective bit mapping schemes were presented. First,

for the single transmit antenna case, which maintains the Gray mapping, and

second, for the multiple transmit antennae using the MBSA. Numerical results

demonstrated the effectiveness of the optimized constellations and optimized bit

mapping. The resulting constellations were shown to have significantly better

FER gains and improved power efficiencies compared to those of the conventional

constellations with turbo codes.
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4 Linear precoder design for partially

coherent correlated channels

In this chapter, we consider the single-user MIMO linear precoder matrix design,

as an alternative to PCCs, for imperfectly estimated CSIR with the assumption

that the second order statistics of the CSI error covariance matrix are available

at the transmitter via an error-free feedback link. The designed linear precoder

is adapted to both the quality of the channel estimate at the receiver and the

transmiter/receiver antenna correlation.

This chapter is organized as follows: The assumptions and system and chan-

nel models are detailed in Section 4.1. A generic closed and tractable form of

CR expression is derived and used in the optimization problem to design the

linear precoder matrices for various MIMO transmission schemes such as SM

and STBC (e.g., OSTBC and USTC). These are presented in Section 4.2. The

details of the numerical optimization methods based on the branch-and-bound

(BnB) and self-tuning Riemannian SD algorithms are presented in Section 4.3.

Numerical-coded BER, FER, and MI performance results of the CR-optimized

precoder matrices in conjunction with SM and STBC (e.g., Alamouti and unitary

codes) are presented in Section 4.4. Section 4.5 concludes the chapter.

Fig. 27. Block diagram of the MIMO system with a linear precoder F at the trans-

mitter.
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4.1 System model

In this chapter as well we have considered the same communication system as

the one in Chapters 2 and 3, but with an additional linear precoding block, after

the SM/STBC encoder block, on the transmitter side as shown in Fig. 27. The

matrix of the received data symbols can be expressed as

Rd = SFH + Wd, (59)

where Rd ∈ CTd×MR , S ∈ S ⊂ CTd×MT is a data codeword matrix used to

transmit symbol vector s = [s0, s1, · · · , sK−1]
T ∈ SK , where si ∈ S, S is a

set of signal alphabets such as M -level QAM or PSK, satisfying E[|si|2] = 1.

F ∈ CMT×MT is a linear precoder matrix, H ∈ CMT×MR is the channel response

assumed to be constant during transmission of the codeword matrix S, and

Wd ∈ CTd×MR is an additive complex circularly symmetric white Gaussian

noise (WGN) matrix with zero mean and element-wise unit variance. Here, we

capture the effect of data signal-to-noise ratio (SNRd) factor in F thus, SNRd

= Pd, and use the power normalization

E[||SF||2] = TdPd. (60)

The model of imperfect channel estimation used in this chapter is the same

as in Chapter 3.

After post-multiplying (59) by UR, denoting SFUT by X, and denoting

RdUR by Y, we get

Y = X
ˆ̂
H + X ˜̃H + N (61)

which represents the sufficient statistics of the received signal. The unitary

transformed codeword matrix {X} satisfies the same average-power constraint

as the original precoded codeword matrix {SF}, and N has i.i.d. circularly

symmetric CN (0, 1) entries, since it has the same distribution as Wd.

Applying the vec operation to (61), we get

y = Z
ˆ̂
h + Z˜̃h + n, (62)

where Z = IMR
⊗X. The conditional probability density function (PDF) of the

received signal conditioned on given ˆ̂
H and Xi being sent is [96]

pi (y) = p
(

y|Zi,
ˆ̂
h
)

=
exp

{

−(y − Zi
ˆ̂
h)H(ITdMR

+ ZiΣ̃ZH
i )−1(y − Zi

ˆ̂
h)
}

πTMR |(ITdMR
+ ZiΣ̃ZH

i )|
, (63)
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where Σ̃ = E[vec( ˜̃H)vec( ˜̃H)H ] = (Λ̃R ⊗ ΛT ) is a correlation matrix of ˜̃H, which

is the same as that of H̃.

In the remainder of the chapter, we will assume that RT , RR, and σ2
ce are

known to the receiver and the transmitter, which further implies knowledge of

the estimation covariance matrix Σ̃ at the transmitter.

4.2 Precoder design

In this section, we derive the cutoff rate (CR) expression as a function of the

estimated channel covariance matrix and adopt it as a linear precoder design

criterion for a doubly correlated partially coherent channels.

4.2.1 Cutoff rate matched to a partially coherent channel

In the following proposition, we use the relationship between the Bhattacharyya

coefficient and the CR [114] to derive the CR expression.

Proposition 6 The Bhattacharyya coefficient ρcor(i, j) between the pair of code-

words Si and Sj and cutoff rate R0, in bits per channel use, for a doubly corre-

lated partially coherent channels with the discrete inputs and continuous output

are given by

ρcor(i, j) =

MR∏

n=1

|ITd
+ SiFRTF

H
S
H
i λ̃n

R|
1
2 |ITd

+ SjFRTF
H
S
H
j λ̃n

R|
1
2

1

|ITd
+ 1

2 (SiFRTF
H
S
H
i + SjFRTF

H
S
H
j )λ̃n

R + 1
4 (Si − Sj)FRTF

H(Si − Sj)H λ̂n
R|
,

(64)

and

R0 = max
{πi}L

i=1

− log

(
∑

i

πi

∑

j

πjρcor(i, j)

)

︸ ︷︷ ︸

̺

, (65)

respectively, where λ̃n
R and λ̂n

R are the eigenvalues of R̃R and R̂R and{Xi}Li=1 is

the constellation set with corresponding probabilities {πi}Li=1.

Proof. Derivations of the Bhattacharyya coefficient and the cutoff rate follow

the same line of steps as presented in Appendix 5. Replacing each codeword

matrix X in Proposition 4 with SFUT results in (64) and (65).
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We refer to the argument of max(·) in (65) as the CR expression and de-

note it as ̺. For the equiprobable signal set with transmission probabilities

{πi}Li=1 = 1/L, the linear precoder design can be now formulated as the follow-

ing continuous optimization problem (for fixed L, elements of S can take any

values from any constellation set, e.g., M -QAM, M -PSK)

maximize
F

̺

subject to tr{SiFFHSH
i } = TdPd,

(66)

where the maximization is with respect to the precoding matrix F.

Without loss of generality, we write F = VFΛFUH
F , which is the SVD of

matrix F. In order to find a close-to-optimal linear precoder matrix F, we need to

find three matrices: the input-shaping matrix (VF ), power loading matrix (ΛF ),

and beamforming matrix (UF ). For the case of the Gaussian input distributions,

the unitary matrix VF is always assumed to be an identity matrix [144] and

moreover, for any unitary matrix VF , with non-Gaussian input, the following

relationship holds: I(x;y) �= I(VFx;y) in general [145]. Thus, by properly

designing the unitary matrix VF , for the non-Gaussian inputs, we may improve

the average mutual information.

Proposition 7 The beamforming matrix UF of a linear precoder matrix F that

maximizes the cutoff rate, for a doubly correlated partially coherent channel,

coincides with the eigenvectors of the transmit correlation matrix RT

Proof. By setting XiVF = X̃i, we can write XiVΛFUH
F RTUFΛFVH

F XH
i as

X̃iΛFUH
F RTUFΛF X̃H

i . Now consider the EVD of ΛFUH
F RTUFΛF = QDQH ,

where D and Q are diagonal and unitary matrices, respectively. Furthermore,

the diagonal matrix D can be written as QHΛUHRTUFΛQ.

There exists a matrix M = UTΛM such that MHRTM = D and tr{MMH} ≤
tr{ΛFΛ

H
F } = tr{FFH}. We can write

FRTFH = VF ΛFUHRTUFΛ
︸ ︷︷ ︸

=QDQH

VH
F = VFQMH

︸ ︷︷ ︸

=F̃

RTMQHVH
F = F̃RT F̃H (67)

Now, F̃ = VFQMH = VFQΛH
MUH

T = ṼFΛ
H
MUH

T , where VFQ = ṼF , means

that the beamforming matrix UF of a linear precoder matrix must coincide

with eigenvectors UT of the transmit correlation matrix RT with lower transmit

power, tr{F̃F̃H} ≤ tr{FFH}.
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Using the results from Proposition 6 and Proposition 7, the Bhattacharyya

coefficient can be rewritten as

ρcor(i, j) =

MR∏

n=1

|ITd
+ SiVFΛVH

F SH
i λ̃n

R|
1
2 |ITd

+ SjVFΛVH
F SH

j λ̃n
R|

1
2

1

|ITd
+ 1

2 (SiVFΛVH
F XH

i + SjVFΛVH
F SH

j )λ̃n
R + 1

4 (Si − Sj)VFΛVH
F (Xi − Xj)H λ̂n

R|
,

(68)

where Λ = Λ2
FΛT , subject to the average power constraint, i.e., tr{ΛFΛ

H
F } ≤

TdPd and VFVH
F = VH

F VF = I.

We will now rewrite the CR optimization problem (66) with two new vari-

ables, i.e., ΛF and VF as

maximize
ΛF ,VF

̺

subject to tr{SiVFΛ
2
FVH

F SH
i } ≤ TdPd

VFVH
F = VH

F VF = I,

(69)

where the maximization is now with respect to the diagonal power loading matrix

ΛF and unitary input-shaping matrix VF . The CR expression in (69) is not a

convex function with respect to the VF and ΛF and moreover, its optimization

does not lead to a closed form solution for the linear precoders. There are several

approaches to approximate non-convex functions, e.g., gradient search, SD, etc.

However, the solution is not guaranteed to be optimal. Since there are two

matrices to be optimized in (69), we solve them in an iterative manner. Before

addressing numerical solutions in Section 4.3, we consider two special cases as

examples.

4.2.2 Special cases

We will now find the linear precoding matrices by solving (69) for two MIMO

schemes, i.e., spatial multiplexing and space-time coding.

Spatial multiplexing (MT ≥ 2 and Td = 1)

In this MIMO scheme, each transmit antenna draws its symbols independently

from the conventional M -QAM or M -PSK constellations. With Td = 1, each

S in (68) will be replaced by a complex row vector s, and the power constraint

becomes tr{Λ2
F } ≤ TdPd.
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Space-time codes (MT ≥ 2 and Td ≥ 2)

– Orthogonal ST codes: Herein, we use the OSTBC, designed to exploit the

spatial diversity of the MIMO systems [49, 52], as a codeword matrix. The

OSTBCs are of particular interest here due to their simple decoding while pro-

viding diversity gain. Precoder design combined with OSTBCs was previously

studied in [146–149] with perfect CSIR and statistical CSIT and in [150, 151]

with imperfect CSIR and partial CSIT (correlation matrix). However, the

channel assumption in this chapter is different from [150, 151], as we have

considered the covariance of the estimated channel is available as CSIT.

Assume that K independent complex symbols are transmitted simultane-

ously over Td periods of time, i.e., the rate R of the code is K/Td, and

SHS = a

K−1∑

i=0

|xi|2I, (70)

where a = 1, if S ∈ {G2,H3,H4} and a = 2 if S ∈ {G3,G4}10 [25]. Close-to-

optimal ΛF and VF matrices, with power constraint aKtr{Λ2
F } ≤ TdPd, can

be obtained by solving the optimization problem (69). Furthermore, the com-

plexity of the optimization increases with the number of transmit antennae.

– Unitary ST codes: We constrain herein the ST block code to be a unitary one.

The unitary space-time codes (USTC) [34, 74] are capacity optimal signals

for non-coherent channels. Moreover, they have very simple ML decoding

algorithms with perfect CSIR [97]. Recently, novel unitary signals or codes

were designed for the partially coherent channels in [93, 94] and their improved

form in [114]. Very little attention has been paid on the precoder design

combined with the USTCs, while examples are [152, 153].

We consider the unitary ST codes S = {Φi}Li=1, where Φi ∈ CTd×MT is

a matrix with orthonormal columns (i.e., ΦH
i Φi = IMT

and ΦiΦ
H
i �= ITd

).

In this case, close-to-optimal ΛF and VF matrices, with a power constraint

tr{Λ2
F } ≤ TdPd/MT , can be obtained by solving the optimization problem

(69).

10G2,G3,G4,H3 and, H4 are space-time block codes with rate R of 1, 1/2, 1/2, 3/4 and 3/4,

respectively and subscripts denote the number of transmit antennae.
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4.2.3 Difference of convex (d.c.) formulation

Let us now fix VF and focus on optimizing the ΛF which is calculated as

Λ1/2Λ
−1/2
T . Substituting X̃i = SiVF , the CR expression can be rewritten as

R0 = − log

(

1

L2

∑

i

∑

j

MR∏

n=1

|ITd
+ X̃iΛX̃H

i λ̃n
R|

1

2|ITd
+ X̃jΛX̃H

j λ̃n
R|

1
2

|ITd
+

1

2
(X̃iΛX̃H

i + X̃jΛX̃H
j )λ̃n

R +
1

4
(X̃i − X̃j)Λ(X̃i − X̃j)H λ̂n

R|

)

.

(71)

We now decompose (71) into a d.c. form.

Theorem 1 For a given VF , maximizing the cutoff rate with respect to Λ in (71)

can be decomposed as a difference of two convex functions, and, therefore, the

optimization problem (66) can be reformulated as a d.c. programming problem

as

R0 = maximize
Λ

{g(Λ)− f(Λ)} = −minimize
Λ

{f(Λ)− g(Λ)}
subject to tr{ΛFΛ

H
F } ≤ TdPd,

(72)

where f(Λ) and g(Λ) are convex functions of Λ given as

f(Λ) = log

(

1

L2

∑

i,j
j>i

MR∏

n=1

|ITd
+

1

2
(X̃iΛX̃

H
i + X̃jΛX̃

H
j )λ̃n

R

+
1

4
(X̃i − X̃j)Λ(X̃i − X̃j)

H λ̂n
R|−1·

∏

k �=i
l �=j,l>k

MR∏

n=1

|ITd
+ X̃kΛX̃

H
k λ̃n

R|−
1
2 |ITd

+ X̃lΛX̃
H
l λ̃n

R|−
1
2

)

,

(73)

and

g(Λ) = log

(
∏

i,j
j>i

MR∏

n=1

|ITd
+ X̃iΛX̃

H
i λ̃n

R|−
1
2 |ITd

+ X̃jΛX̃
H
j λ̃n

R|−
1
2

)

. (74)

Proof. See Appendix 6.
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4.3 Numerical optimization

There are several algorithms to solve the d.c. programming problem in (72),

e.g., BnB or outer approximation [154] and prismatic BnB algorithm [155]. Con-

verting the problem into a canonical d.c. program and then using the Edge

Following Algorithm [155] could be an alternative choice. More algorithms may

be found in [155] and [154]. In this section, we use the prismatic BnB algorithm

to obtain the optimal power loading matrix ΛΛH due to its smaller complexity

compared to the above-mentioned algorithms. The prismatic BnB algorithm re-

quires solving the linear program (LP) at each iteration. A detailed description

of the algorithm is given below.

4.3.1 Prismatic branch-and-bound (BnB) algorithm

Construction of simplex

For a given (MT − 1)-simplex S = [p1,p2, · · · ,pMT ] contains the feasible set

D ∈ RMT of (72), from which a prism is induced T = T (S) = {(p, t) ∈ RMT ×R :

p ∈ S}. The p1,p2, · · · ,pMT are the vertices of S. The prism T (S) has MT

edges that are vertical lines (i.e., lines parallel to the t-axis) which pass through

the MT vertices of S, respectively.

The initial simplex S ⊂ D is a polytope with a small number of vertices. We

construct S � {p ∈ RMT :
∑MT

k=1 pk ≤ TdPd,p � 0}.

Partitioning of simplex

For a sub-division process, also called branching, of the simplices, we use an

exhaustive bisection method [154] for ease of implementation. The sub-division

process determines the convergence of the algorithm. A simplex is bisected at

the mid-point over its longest edge into two sub-simplices. Consider the longest

edge is between vertices pi and pj for a simplex S1 with MT vertices. Now using

the bisection method, simplex S1 is replaced with two new sub-simplices S2, S3

with a shared vertex pw = (1/2)(pi + pj).
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Lower bound computation

In order to compute the lower bound, we reformulate the objective function

(72) into a concave minimization optimization problem which is relaxed to an

affine set constraint and a linear objective function. The d.c. program (72)

can be reformulated into a global concave minimization problem by adding an

additional variable t as:

ϕ(t⋆,p⋆) = maximize
t,p

{t− g(p)}
subject to 1

Td

∑MT

k=1 pk ≤ Pd, pk ≥ 0

f(p)− t ≤ 0,

(75)

where p = {p1, · · · , pMT
} is a vector containing diagonal elements of ΛΛH . The

objective function {t − g(p)} is concave and the feasible set D = {(p, t) ∈ R :
1
Td

∑MT

k=1 pk ≤ Pd, pk ≥ 0, f(p) − t ≤ 0} is convex. Clearly, if (t⋆,p⋆) is an

optimal solution of (75), then p⋆ is an optimal solution to (72) as well and

t⋆ = f(p⋆).

Now we will relax the convex constraint set D to a piecewise linear convex

set by outer approximating the convex function f(p) as

fMi
(p) = min

pz∈Mi

{(p − pz)T∂f(pz) + f(pz)}, (76)

where Mi is the set of feasible vectors p and ∂f(pz) is a sub-gradient of f at pz.

The approximated function fMi
(p) is piecewise linear approximation of f(p). Let

Pi = {(p, t) : p ∈ D, fMi
(p)− t ≤ 0} and F = {(p, t) : p ∈ D, f(p)− t ≤ 0}. For

all p, fMi
(p) ≤ f(p), implies F ⊆ Pi, and Pi is a linear piecewise approximation

of the feasible set F at ith iteration index. Furthermore, max{fMi
(p)−g(p)} ≤

max{f(p) − g(p)} and is a lower bound of the cutoff rate found using (72).

Moreover, by adding points to set Mi, the polyhedron outer approximation P of

F can be successively improved because fMi−1
(p) ≤ fMi

(p) if Mi−1 ⊆ Mi, with

Mi = Mi−1 ∪ {pmax,i−1} and M1 = V (F1), where pmax,i−1 is a feasible vector

found at (i− 1)th iteration index.

Now we write the approximate polyhedron P in matrix polyhedron form [156]

as

Pi = {(p, t) : Aip − ait ≤ bi}, (77)
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where

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11×MT

−IMT

∂f(p1)
T

...

∂f(p|Mi|)
T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(78a)

ai =

[

0(MT+1)×1

1(|Mi|+1)×1

]

(78b)

bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pd

0MT×1

(p1)
T∂f(p1)− f(p1)

...

(p|Mi|)
T∂f(p|Mi|)− f(p|Mi|)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (78c)

The sub-gradient of f(p) is ∇pf(p) = [
∂f(p)

∂p1
, · · · ,

∂f(p)

∂pMT

]T , where

∂f(p)

∂pm
=

− 1

log(2) qij

[
∑

i,j

(

qij

[MR∑

n

∂ log(|B|)
∂p

+
1

2

∑

k �=i
l �=j,l>k

MR∑

n=1

∂ log(|Ck|)
∂p

+
∂ log(|Cl|)

∂p

]
)]

m,m

,

(79a)

∂ log(|B|)
∂p

=
1

2
(ΛT X̃H

i B−1X̃i + ΛT X̃H
j B−1X̃j)

T λ̃n
R

+
1

4
(ΛT (X̃i − X̃j)

HB−1(X̃i − X̃j))
T λ̂n

R

(79b)

∂ log(|Ck|)
∂p

= (ΛT X̃H
k C−1

k X̃k)
T λ̃n

R (79c)

qij =

MR∏

n

|B|−1
∏

k �=i
l �=j,l>k

MR∏

n=1

|Ck|−
1
2 |Cl|−

1
2 . (79d)
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In order to compute the lower bound of the objective function t − g(p) over

T ∩ P, consider the points (p, t) which satisfy the total power constraint and

lead to constant values t− g(p) = αi, where

αi = min{fMi
(p)− g(p)} (80)

is a local upper bound at the ith iteration. Let V denote the matrix with

columns p1, . . . ,pMT . The lower bound of t− g(p) can be calculated by solving

the LP in (Γi, t) [156] as

maximize
Λi,t

t−∑MT

k=1 γ
k
i t

k

subject to ait− AiViΓi ≤ bi,
(81)

where Γi is a vector with elements γ1, . . . , γMT
, ti = αi + g(p), and A,a,b are

given in (78).

If the above LP has a feasible solution, (Γ⋆
i , t

⋆
i ) is an optimal solution and c⋆

its optimal value, the lower bound is given as

βi =

⎧

⎪⎨

⎪⎩

+∞, if LP has no feasible solution

αi, if c⋆ ≤ 0

αi − c⋆, if c⋆ > 0,

(82)

and the feasible point available for updating the upper bound is pmin,i = ViΓ
⋆
i .

Upper bound computation

The upper bound computation is rather simple and straightforward. Any fea-

sible vector p represents a valid upper bound. Starting with an initial upper

bound α1 = min{fM1
(p)− g(p)}, at the ith iterations, the upper bound can be

computed as:

αi = min{fMi
(p)− g(p)}, (83)

and the corresponding power vector given by pUB,i = argmin p{fMi
(p)− g(p)},

where p ∈ {Mi,pmin,i}.
Algorithm 2, which is presented below, finds the optimal power loading vector

to the transmit antennae.
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Algorithm 2 Prismatic BnB Algorithm.

Input: Input constellation set S ∈ {Si : 0 ≤ i ≤ L − 1}, matrix VF , Pd, MT , and

tolerance ǫ.

Output: Value of a cutoff rate (CR) and optimal power loading vector p⋆ across the

transmitting antennae.

1: Initialization: Given tolerance ǫ > 0. Set i = 1, R ∈ {T (S1)}.

2: Stopping criterion: if α− βi > ǫ|α| go to Step 3, otherwise STOP.

3: while R �= φ do

4: Vi = T (Si)

5: Set R(i) = φ

6: Solve LP to compute lower bound βi using (82),

7: If LP solution is feasible then pmin,i = ViΛ
⋆
i and update Mi ∈ {Mi,pmin,i}.

8: Compute upper bound αi = minp∈Mi
{fMi

(p) − g(p)}, pUB,i =

argminp∈Mi
{fMi

(p)− g(p)}.

9: Update α = min{α, αi}

10: if α == αi then

11: p⋆ = pUB,i

12: if α− βi > ǫ|α| then

13: Split T (Si) along one of its longest edge into T (S1
i ) and T (S2

i ).

14: Update R ∈ {T (S1
i ), T (S

2
i )}.

CR = α.

4.3.2 Optimization under unitary matrix constraint

Once we obtain the optimal matrix ΛF , the maximization of the CR with respect

to the VF , can be reformulated as

maximize
VF

̺

subject to VFVH
F = VH

F VF = I.
(84)

This is a nonconvex optimization problem with a nonlinear constraint. To solve

this problem, we use the self-tuning Riemannian SD Algorithm 3 given in [157,

Table-II]. We need to calculate the complex conjugate derivative of the CR with

respect to VF :

Γ =
∂̺

∂V∗
F

=

−
∑

i,j

(

wij

[MR∑

n

1

2
(
∂ log(|Ci|)

∂V∗
F

+
∂ log(|Cj |)

∂V∗
F

)−
∂ log(|B|)

∂V∗
F

]
)

log(2) wij
,

(85a)
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∂ log(|B|)
∂V∗

F

=
1

2
(λ̃n

R(X
H
i B−1Xi + XH

j B−1Xj)

+
1

4
λ̂n
R(Xi − Xj)

HB−1(Xi − Xj))VFΛ,

(85b)

∂ log(|Ci|)
∂V∗

F

= XH
i C−1

i XiVFΛλ̃
n
R, (85c)

wij =

MR∏

n

|B||Ci|−
1
2 |Cj |−

1
2 . (85d)

The gradient direction in Riemannian space is defined as [157]

G = ΓVH
F − VFΓ

H . (86)

Algorithm 3 Self-Tuning Riemannian SD Algorithm 3 [157, Table II].

Input: Unitary matrix VF .

Output: Optimized unitary matrix VF = Wk+1.

1: Initialization: k= 0, Wk = VF and µ = 1.

2: Compute the gradient of the cost function on the Euclidean space: Γ = ∂̺

∂V∗

F
.

3: Compute the gradient direction on the Riemannian space: Gk = ΓVH
F − VFΓ

H .

4: if 〈Gk,Gk〉I =
1
2
R{tr{GkG

H
k }} ≪ 0 then

5: STOP.

6: Determine the rotation matrices: Pk := exp(−µGk), Qk = PkPk.

7: while ̺(Wk)− ̺(QkWk) ≥ µ〈Gk,Gk〉I do

8: Pk := Qk, Qk = PkPk, µ := 2µ

9: while ̺(Wk)− ̺(PkWk)(µ/2)〈Gk,Gk〉I do

10: Pk := exp(−µGk), µ := µ/2

11: Update: Wk+1 = PkWk, k = k + 1, and go to Step 2.

By combining Algorithm 2 and Algorithm 3, we now present an iterative

two-step Algorithm 4 to find the linear precoder matrix F.
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Algorithm 4 Two-step iterative algorithm to find linear precoder.

Input: Input constellation set S ∈ {Si : 0 ≤ i ≤ L − 1}, matrices Vinit
F , UF Pd, and

MT .

Output: R0 value and close-to-optimal linear precoder matrix F.

1: Initialization: Set k = 1, V(0)
F = Vinit

F .

2: Stopping criterion: Convergence STOP otherwise go to step 3.

3: Solve (72) using Algorithm 2 for Λ
(k)
F for a given V(k−1)

F .

4: Solve (84) using Algorithm 3 for V(k)
F using Λ

(k)
F from previous step.

5: Set k := k + 1.

4.4 Numerical results and discussion

Coded FER and MI are used as performance metrics to compare the performance

of the CR-optimized precoders with the conventional methods (no precoding)

and the PCCs in various MIMO transmission schemes. In all the presented

examples, the precoder matrices are optimized for the true SNRd value, unless

otherwise stated. For the computer simulation, we considered the turbo-coded

system with frames of length equal to 512 symbols. The exponentially correlated

fading model is considered on both the transmit and the receive sides. The

transmit and receive correlation matrix is given by: (R{T,R})i,j = ρ
|i−j|
{T,R} for

i, j ∈ {1, · · · ,M{T,R}}, where ρ{T,R} denotes normalized correlation coefficient

of the channel and satisfies 0 ≤ ρ{T,R} < 1. The values used for ρT and ρR in

the simulations are 0.45 and 0.90, respectively.

At the receiver, the knowledge of the channel estimation covariance matrix

Σ̃ is also considered to be available to the decoding metric as in [143]. The

decoder estimates the LLRs of the coded bit for soft decision decoding from

the modulated symbols. Let us denote the transmitted bits of each signal b =

{b1, . . . , bN}. The LLR for the lth bit in b is given by (58).

Since our design criterion is a lower bound to the mutual information, we

consider the mutual information as one of our performance metrics. The Monte

Carlo computer simulations have been used to obtain the mutual information of

the conventional constellations with/without precoder and CR PCCs in the SM

and STBC transmission schemes. The mutual information with a discrete-input

and continuous-output channel with imperfect CSIR is given by (31).
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4.4.1 Spatial multiplexing

First, we compare the coded FER performances and the MIs of the CR-optimized

precoder with the no precoder case, and CR-PCCs in the SM transmission mode.

In the case with/without precoders, the spatial multiplexed codeword s draws

its symbols from the conventional constellations, e.g., M -QAM, independently

for each MT transmit antenna. On the other hand, with the PCCs, the spa-

tial multiplexed codewords are designed simultaneously across the MT transmit

antennae and their bit-mapping performed using the modified binary switching

algorithm (MBSA)[117].
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QPSK (no precoding)

16 CR−PCC
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Fig. 28. Coded FER of 2× 2 MIMO system versus SNRd for fixed SNRt = 8 dB with

L = 16, MT = 2, MR = 2, Td = 1, ρT = 0.45 and ρR = 0.9.

The coded FER versus SNRd performances for the SM transmission with

precoding, no precoding and PCCs, for 2 × 2 MIMO systems, are plotted in

Fig. 28. In this example, the codeword vector s draws its symbols from the

QPSK and 16-CR PCC constellation for the precoding/no precoding and PCC

cases, respectively. We further set the value of the training power or SNRt to

be fixed and equal to 8 dB and turbo code rate (Rc) = 1/2.
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Fig. 29. Coded FER of 2 × 2 MIMO system versus SNRd with varying SNRt and

L = 16, MT = 2, MR = 2, Td = 1, ρT = 0.45 and ρR = 0.9.

In the previous example, we used a fixed training power. However, usually the

training power increases with the data power and their ratio remains the same. In

all subsequent numerical examples, we allow the training power to vary with the

data power with data-to-training power ratio (i.e., Pd/Pt) of 3.5. In Fig. 29, we

compare the coded FER versus SNRd performances of the SM transmission with

the CR precoding, conventional precoding, fixed CR precoding, no precoding

and CR PCCs. In the conventional precoding, the correlation of the actual

channel is used as CSIT. In the fixed CR precoding, a precoder designed for

some fixed value of SNRd is used for all other SNRd values; this is to illustrate

the more practical performance. In Fig. 30, we compare the coded FER versus

SNRd performances of the SM transmission with the precoding, no precoding

and PCCs. In these two examples, we kept the simulation parameters similar

to those in the previous example, except for the number of transmit antennae,

which is MT = 2 in Fig. 29 and MT = 4 in Fig. 30. In the next example, we

evaluate and compare the MI versus SNRd performance of the precoded, no
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Fig. 30. Coded FER of 4 × 2 MIMO system versus SNRd with varying SNRt and

L = 16, MT = 4, MR = 2, Td = 1, ρT = 0.45 and ρR = 0.9.

precoded and CR-PCCs. The results are illustrated in Fig. 31. The simulation

parameters in this example are kept the same as those in Fig. 29.

It can be observed form Figs. 28-31 that the spatially multiplexed CR-PCCs

have significantly higher FER and MI performance gains compared to those of

conventional constellations (e.g., QAM, BPSK, etc.) combined with the CR-

optimized precoder and no precoder cases. In the SM mode of transmission,

designing the codewords11 adapted to the imperfect CSIR not only gives a good

minimum distance between the codewords, which is essential to combat imperfect

CSIR, but also the beamforming gains. On the other hand, the precoder com-

bined with the conventional constellations provides beamforming gains. Thus,

utilizing the available CSIT in designing the codebook is beneficial as compared

to using it to design precoders. Given the simplicity and backward compatibility

of the precoding approach, its performance can be very competitive in realistic

applications.

11The PPC are constructed simultaneously across the MT transmit antennae and codewords

lie inside an 2MT dimensional real sphere [114].
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Fig. 31. Mutual information of 2× 2 MIMO system versus SNRd with varying SNRt

and L = 16, MT = 2, MR = 2, Td = 1, ρT = 0.45 and ρR = 0.9.

.

Conventionally, precoders are designed to adapt to the channel correlation

matrix knowledge as partial CSIT. The conventional precoder used in this ex-

ample is numerically obtained by solving (69) with an assumption that Σ of the

actual channel is available as CSIT. With this assumption, designing the conven-

tional precoder using the CR criterion is fairly equivalent to criteria proposed

by others, such as maximizing capacity in [62, 158], etc. As expected, it can be

observed that the CR-optimized precoder, designed to adapt to the estimated

channel error covariance matrix Σ̃, gives better performance as compared to the

conventional precoders.

4.4.2 Space-time codes

Now we will evaluate and compare the performances of the CR-optimized pre-

coder combined with the ST codes for MT = 2, MR = 2, and Td ≥2. The

training power also varies with the data power as Pd/Pt = 3.5. We present two

examples, one for Td = 2 and another for Td = 4. In the first example, we use the
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Alamouti codes as the OSTBC, and in the second example, a USTC obtained

by Giese and Skoglund [94].
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Fig. 32. Coded FER of 2 × 2 MIMO system versus SNRd for the Alamouti codes

with varying SNRt and L = 16, MT = 2, MR = 2, Td = 2, ρT = 0.45 and ρR =

0.9, [123] ( c©2013 VDE VERLAG GMBH).

Fig. 32 compares the coded FER versus SNRd performances of the Alam-

outi code in conjunction with the CR-optimized precoder, fixed CR-optimized

precoder (designed for fixed SNRd = 11 dB), conventional (no precoder), con-

ventional precoder12, and the CR-optimized Alamouti code [117]. For a fair

comparison, the Alamouti code chooses its elements from the conventional 4-

QAM constellation, and, on the other hand, the CR-optimized Alamouti code

chooses its elements from the CR-optimized 16-CR partially coherent constella-

tions (PCCs) such that the data rate is the same in all five cases shown. The

turbo code rate Rc =
2
3 and training power varies as Pd/Pt = 3.5. In Fig. 33, we

present the MI versus SNRd plots of the CR-optimized Alamouti code [117] and

the conventional Alamouti codes combined with the CR-optimized precoder and

12Conventional precoders are designed with an assumption that covariance Σ of the actual

channel is available as CSIT [149].
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Fig. 33. Mutual information of 2 × 2 MIMO system versus SNRd for the Alamouti

codes with varying SNRt and L = 16, MT = 2, MR = 2, Td = 2, ρT = 0.45 and

ρR = 0.9.

no precoder. Simulation parameters used in this example are kept the same as

those in Fig. 32. In the STBC transmission mode, the MI of the CR-optimized

precoders is higher than that of the CR-optimized constellations and conven-

tional constellations with no precoders.

Next, we evaluate the performance of the linear precoder, combined with the

unitary ST codes, obtained by solving (69). Another unitary matrix designed

for the partially coherent channels proposed in [93] could also be used in this

example. The unitary matrices [94] are obtained by combining non-coherent [75]

and coherent codes. The idea of adaptively determining the number of coherent

and non-coherent component codes goes according to the weighting factor (es-

timation covariance or SNRt) between their intra-subspace and inter-subspace

distances [94]. For the non-coherent case (SNRt = 0), the inter-subspace dis-

tance between two signals Φiand Φj depends on the principal angles between

the subspaces spanned by Φi and Φj . For the coherent case (high SNRt), two

signals in the same subspace have vanishing inter-subspace and non-vanishing
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Fig. 34. Coded FER of 2 × 2 MIMO system versus SNRd for the Alamouti codes

with varying SNRt and L = 16, MT = 2, MR = 2, Td = 2, and i.i.d. channel.

intra-subspace distances since they depend on the singular values of the differ-

ence matrix Φi − Φj . In other words, a higher estimation variance will involve

more non-coherent components to achieve a large inter-subspace distance and

less coherent component codes, and vice versa.

In the example above, we could have compared the performances of a purely

non-coherent code (16 unitary code) to those of a signal set based on combining

eight non-coherent codes with two coherent codes, and a constellation combining

four non-coherent codes with four coherent codes. However, for the clarity of

the plots in Fig. 35, we only evaluate the performance of the USTC obtained

combining four non-coherent codes with four coherent codes. The coded FER

and BER versus SNRt performances of the USTC combined with precoding,

no precoding and CR-optimized USTC, designed at SNRd per block of 3 dB,

are compared in Fig. 35 with Rc = 2
3 . In the next example, we evaluate and

compare the MI of the CR-optimized precoder to the CR-optimized unitary

constellations and conventional unitary constellations in the STBC transmission
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Fig. 35. Coded FER of 2 × 2 MIMO system versus SNRt for the USTC with

varying SNRt and L = 16, MT = 2, MR = 2, Td = 4, ρT = 0.3 and ρR =

0.45, [123] ( c©2013 VDE VERLAG GMBH).

mode in Fig. 36. The simulation parameters in this example are kept the same

as those in Fig. 35.

In the case of STBCs, which provide diversity gains, we can observe from

Figs. 32, 33, 35, and 36 that the CR-optimized precoders show significant FER

and MI gains as compared to the CR-optimized and the conventional Alamouti

codes and USTCs. The reason for this is that the CR-optimized Alamouti codes

and USTCs, designed to combat imperfect CSIR, are sub-optimal. Moreover,

they transmit energy in an isotropic manner similar to their conventional coun-

terparts. Whereas the conventional Alamouti codes and USTCs combined with

CR-optimized precoder generate beamforming gains along with the diversity

gains. Thus, utilizing CSIT in designing the precoders is beneficial, especially

in the low-to-medium SNRd ratio regime, as compared to using it to design the

codewords as done in [117]. However, in the high SNRd regime, the MI of the

CR-optimized Alamouti codes shows better gains. At high SNRd, the impact of
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Fig. 36. Mutual information of 2 × 2 MIMO system versus SNRt for the USTC de-

signed for a SNRd value of 3 dB and MT = 2, MR = 2, Td = 4, ρT = 0.30 and

ρR = 0.45.

transmit correlation is negligible on the performance [159]. Therefore, the power

allocation approaches uniform directions resulting in no beamforming gain.

Furthermore, the performance for the CR-optimized precoders with the con-

ventional precoders is also plotted in Fig. 32. The conventional precoders used in

this example are numerically obtained by solving (69) with the assumption that

covariance Σ of the actual channel is available as CSIT. As mentioned before,

with the above CSIT assumption, designing the precoders with the CR criterion

is fairly equivalent to other criteria such as minimizing SER in [149], PEP in

[160], etc. As expected, the performance of the CR-optimized precoder is higher

as compared to the conventional precoders.

Finally, we compare the performances of the Alamouti codes combined with

CR-optimized prcoders with the CR PCC and no precoding in Fig. 34. We

assumed that the transmitter and the receiver antennae are uncorrelated and

channel estimation error variance is available as CSIT. All other simulation pa-

rameters in this example are the same as those in Fig. 32. It can be observed
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that the CR-optimized precoders show higher performance gains compared to

the CR PCCs and no precoding cases. Generally, for the uncorrelated antenna

case, the CR optimized precoders should transmit in an isotropic manner (i.e.,

equal power allocation to the transmit antennae). However, in a low SNRd

regime, where channel estimation error is high, the CR-optimized precoder allo-

cates full power to one of the transmit antenna in order to reduce the cross terms

(due to channel estimation errors) appearing while decoding. In the Alamouti

case, the higher the channel estimation error is, the worse would be the perfor-

mance. However, in a high SNRd regime, the performances of the CR-optimized

precoder and CR PCC are the same (not shown here).

4.5 Conclusion

We have studied the single-user MIMO precoder design problem for the doubly

spatially correlated, partially coherent Rayleigh-fading channels with discrete

inputs. We assumed that the channel is estimated at the receiver using the

LMMSE estimator while the transmitter has the perfect knowledge of the es-

timated channel covariance matrix. The precoder matrix is designed to adapt

to the degradation caused by the imperfect channel estimation at the receiver

and the presence of the spatial correlation. The cutoff rate, a lower bound on

the MI, has been proposed to be used as the design criterion. A closed and

tractable form of the cutoff rate expression has been derived. The suitability

of the cutoff rate expression for the discrete inputs makes it possible to design

close-to-optimal precoders which can be used with the conventional constella-

tions such as M -QAM or M -PSK. A prismatic BnB and self-tuning Riemannian

SD algorithms are proposed to be used in an iterative manner to numerically

search a close-to-optimal linear precoder with a given average power constraint

at the transmitter. The proposed CR-optimized precoders are used with the

SM and ST block transmission modes. Numerical examples are presented to

compare the performances of the CR-optimized precoders with the conventional

no precoder case and CR-optimized PCCs in terms of the FER and MI. In the

SM transmission mode, it is demonstrated through numerical examples that the

use of available CSIT in designing the PCCs is useful over the precoder design.

However, in the ST block transmission case, CSIT can be useful in designing the

precoders over the PCCs.
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5 Conclusion and future directions

The problem of single-user MIMO ST codes and linear precoder matrix design for

a partially coherent channel was considered. We assumed a Rayleigh flat-fading

channel and its coefficients had been estimated at the receiver using the LMMSE

estimator while the transmitter had a perfect knowledge of the estimated channel

covariance matrix. The aim was to design the ST codes and linear precoder

matrices, to adapt to the degradation caused by the imperfect channel estimation

at the receiver and the presence of the spatial correlation, in order to extract

the diversity and multiplexing gain offered by the MIMO systems with partial

(imperfect) CSIR. The first chapter included motivation and a literature review

related to the topic under consideration.

The ST code design for a partially coherent i.i.d. channel was considered

in Chapter 2. A design criterion for ST codes in this scenario based on the

CR maximization was derived. Close-to-optimal PCCs were obtained for both

single and multiple transmit antennae. The continuous optimization problem

was solved numerically using the SQP algorithm. Through single transmit an-

tenna PCCs, we demonstrated the dependency of shape and structure of the

resulting constellations on the channel estimation errors. The MI and SER per-

formance of the PCCs were compared to KLD-optimized PCCs and conventional

constellations. Numerical results demonstrated that the CR-PCCs have higher

mutual information in a low or medium SNR regime compared to that of the

KLD-based PCCs, USTCs and conventional QAM constellations. The SER per-

formance of the CR-PCCs is similar to that of the KLD-based PCCs and have

better performance compared to USTCs. The resulting single transmit antenna

constellations are also shown to have lower PAPR values compared to those of

KLD based PCCs. In addition, the signal set construction method was presented

which provides control over the constellation’s PAPR values and takes care that

no signal points have a zero amplitude.

In Chapter 3, the ST code design for a doubly correlated partially coherent

channel and its performance evaluation with FEC codes were considered. We

considered two criteria: first one was the UB-ABEP for a single transmit antenna

and the second one was the CR for multiple transmit antennae. Both UB-ABEP
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and CR expressions were derived to take the spatial correlation into account

along with the channel estimation error covariance matrix. Efficient bit mapping

schemes were presented for the resulting PCCs in order to use them with FEC

codes. The single transmit antenna PCC optimized using the UB-ABEP was

able to maintain the Gray mapping. For multiple transmit antennae, a two-

step methodology was proposed. In the first step, the CR was maximized to

obtain the codebook, and, in the second step, a MBSA was used to find the

corresponding efficient bit mapping. The numerical results demonstrated the

effectiveness of the optimized constellations and bit mappings. The resulting

constellations were shown to have significantly better FER gains and improved

power efficiencies compared to those of the conventional constellations with turbo

codes.

The problem of linear precoder matrix design for a single-user MIMO for a

doubly correlated partially coherent channel was studied in Chapter 4. The pre-

coder matrix was designed to adapt to the degradation caused by the imperfect

channel estimation at the receiver and the presence of the spatial correlation.

The CR expression was again used as a linear precoder matrix. Furthermore,

the CR expression was modified to include the precoder matrix into the expres-

sion. The precoder matrix was decomposed using the SVD into the input shap-

ing matrix, power loading matrix, and beamforming matrix. The beamforming

matrix was found to coincide with the eigenvectors of the transmit correlation

matrix. The power loading and input shaping matrices were solved numerically

using the difference of convex (d.c.) programming algorithm and optimization

under the unitary constraint, respectively. A two-step iterative algorithm (the

first step concerned using a prismatic BnB algorithm and the second step a

self-tuning Riemannian SD algorithm) was proposed to numerically search a

close-to-optimal linear precoder with a given average power constraint at the

transmitter. Precoders were used in conjunction with two MIMO transmission

schemes: the spatial multiplexing (SM) and space-time (ST) block transmission

modes. Numerical examples were presented to compare the performances of

the CR optimized precoders with a conventional no precoder case and the CR-

optimized PCCs in terms of the FER and MI. In the SM transmission mode, it

was demonstrated through numerical examples that the use of available CSIT

in designing the PCCs was useful over the precoder design. However, in the ST
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block transmission case, CSIT was found to be useful in designing the precoders

over the PCCs.

The designs and methodologies presented in this thesis unfold several inter-

esting research avenues. Below, we list some possible topics for further studies:

– Code design for multiple-access channels and broadcast channels seems largely

unexplored with respect to the imperfect CSIR case. Impact of imperfect

channel estimates on the performance of the multi-user systems is as inevitable

as in the single-user case. An extension from a single-user partially coherent

constellation design to a multi-user scenario is a promising direction for future

work.

– Cooperative communication through distributed single antenna nodes has

been extensively studied for improved signal quality and better coverage [161–

163]. Therein the source node broadcasts information to the relay and the

destination. The destination node detects the received data assuming that

perfect CSI of source-to-relay, source-to-destination, and relay-to-destination

links is available. Again, this assumption is not always true in practice. De-

sign of distributed PCCs when the destination node has partial CSI of all the

links is another possible direction for future research.

– Spectrum and energy efficiencies are among the most important venues for

technological advancement in current and emerging wireless communication

networks. Coded modulation [164–166] is one way to reduce both the spectrum

and the energy usage. Extending the CR expression as a criterion to design the

coded modulations schemes for partially coherent channels is also a promising

future direction.

– Due to the nonlinear structure of PCCs, it is expected that this feature inhibits

the use of efficient suboptimal techniques like sphere detectors in the detection

process. Thus, design of low-complexity receiver algorithms is an important

future research topic.
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Appendix 1 Some standard results

The following results are used throughout these appendices.

Lemma 2 [167–169] Let for any M -by-N matrix A, N -by-M matrix B, and

M -by-M matrix X, the following identities hold

|IM +AB| = |IN +BA|, (87)

|IM ⊗A| = |A|M , (88)

(A⊗B)(C⊗D) = AC⊗BD (89)

|X+AB| = |X||IM +BX
−1

A|, (90)

|I+ ǫX| = 1 + tr(X)ǫ+O(ǫ2), (91)

|I− αX| =

M∏

i=1

(1− αλi), (92)

where ǫ is a very small positive number, λi are eigenvalues of X and α is some

constant.

131



132



Appendix 2 Proof of Proposition 1: Cutoff rate

expression for i.i.d. channel

For notational convenience, we rewrite (1) by stacking the columns of Y, H, and

W into their respective vector counterparts, and we obtain

y = Zh + w, (93)

where Z = IMR
⊗ S.

The received vector (y|Zi, ĥ) ∼ CN (Ziĥ,Ri), where Ri = (I + σ2
EZiZ

H
i ),

is the variance of the received vector when Zi is transmitted. The cutoff rate

(6) for the discrete input and continuous output channel with partial channel

information at the receiver can be rewritten as

R0 = max
{πi}L

i=1

− log

⎧

⎨

⎩

∑

i

∑

j

E
ĥ

[∫ √

p(y|Zi, ĥ)p(y|Zj , ĥ)dy

]
⎫

⎬

⎭
, (94)

since p(y, ĥ|Zi) = p(y|Zi, ĥ)p(ĥ) and interchanging the order of summation and

integration.

The inner integral

I =

∫ √

p(y|Zi, ĥ)p(y|Zj , ĥ)dy (95)

is computed in the following lemma.

Lemma 3 [112, Appendix-I] Let B represent a positive-definite Hermitian n×n

matrix and A a Hermitian n× n matrix; let a and b represent n× 1 vectors of

complex constant; let a0 and b0 represent complex scalars. Then

∫ 1

2
(xHAx+ xHa+ aHx+ a0 + a∗0) exp{−

1

2
(xHBx+ xHb+ b

H
x+ b0 + b∗0)}dx

=
1

2
πn| 12B|−1 · [2tr(AB

−1)− b
H
B

−1
a− aHB

−1
b+ b

H
B

−1
AB

−1
b

+2Re{a0}] exp
[
1
2b

H
B

−1
b− Re{b0}

]

.

(96)

Apply Lemma 3 with x = y − Ziĥ, B = [R−1
i + R−1

j ], A = 0, a=0, b =

R−1
i (Zi−Zj)ĥ, a0 = 1/(|πRi|

1
2 |πRj |

1
2 ), and b0 = 1

2 ĥ
H(Zi−Zj)

HR−1
i (Zi−Zj)ĥ
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on (95), we get

I =
|Ri|1/2 · |Rj |1/2
| 12Ri +

1
2Rj |

︸ ︷︷ ︸

K

exp{− 1
4 ĥ

H (Zi − Zj)
H(

1

2
Ri +

1

2
Rj)

−1(Zi − Zj)
︸ ︷︷ ︸

Q

ĥ}.
(97)

Now using the Rayleigh-fading model for the channel coefficients, we average

(97) over ĥ

Ī =

∫

I · 1

|π(1− σ2
E)|

· exp
[

−ĥH(1− σ2
E)

−1ĥ
]

dĥ, (98)

which can be computed again by applying Lemma 3 with x = ĥ, B = 2(1 −
σ2
E)

−1 + 1
2Q, A = 0, a = 0, b = 0, a0 = K

2|π(1−σ2
E
)|

, and b0 = 0, yielding

Ī =
|K|

|IMTMR
+ 1

4Q(1− σ2
E)|

. (99)

Using (88), (90) and (99) results in (7).
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Appendix 3 Derivation of (27): Cutoff rate with

unitary constellations

Starting from (7) and using (87), [84, Lemma 6] and Fischer’s inequality [167,

Theorem 7.8.3], we can write (7) in the following form

R0 ≥ max
{si}L

i=1

− log

⎧

⎨

⎩

1

L2

∑

i

∑

j

|IMT
+ σ2

ESH
i Si|1/2|IMT

+ σ2
ESH

j Sj |1/2

|IMT
+ 1

2σ
2
ESH

i Si||IMT
+ 1

2σ
2
ESH

j Sj ||IMT
−KH

ijKij |
1

|ITd
+ 1

4 (1− σ2
E)(Si − Sj)(Si − Sj)H |

}

,

(100)

where Kij = S̃H
j S̃i, S̃i = Si[I +

1
2S

H
i Si]

−1/2 and S̃j = Sj [I +
1
2S

H
j Sj ]

−1/2.

Now replacing matrix Si with ΦiDi, where Di =
√
diIMT

, assuming 1
4 (1−σ2

E)

is small and using (91) and (92), we get (27).

135



136



Appendix 4 Derivation of (35)

Starting with (33) and performing a vectorization operation followed by the

linear MMSE estimate of vec(Gw), we get ĥw. Now the channel estimation

error covariance matrix is given by [138]

Σ̃ = E[vec(H̃)vec(H̃)H ] (101a)

= E[{vec(Hw)− vec(Ĥw)}{vec(Hw)− vec(Ĥ)w}H ] (101b)

= IMRMT
− [IMRMT

+ σ2
ceR

−1
R ⊗ IMT

]−1 (101c)

= (IMR
− [IMR

+ σ2
ceR

−1
R ]−1)⊗ IMT

. (101d)

Using the matrix inversion lemma [138]

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (102)

we can write

IMR
− [IMR

+ σ2
ceR

−1
R ]−1 = [IMR

+ σ−2
ce RR]

−1. (103)

Now substituting (103) into (101d) and the estimation error vector can be written

as [IMR
+σ−2

ce RR]
−1/2⊗IMT

vec(Ew), where Ew is a random matrix which has a

zero mean and identity covariance matrix, which is the same as (35). The matrix

version of the channel estimation vector is given by Ew[IMR
+σ−2

ce RR]
−1/2 which

is the same as (36).
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Appendix 5 Proof of Proposition 4: Cutoff rate

expression for correlated channel

Starting from (40), the received vector (y|Zi,
ˆ̂
h) ∼ CN (Zi

ˆ̂
h,Ri), where Ri =

(I+ZiΛ̃ZH
i ) is the covariance of the received vector when Zi is transmitted. Λ̃ is

a covariance matrix of ˜̃h and is equal to E[˜̃h˜̃hH ] = Λ̃R⊗ΛT . The Bhattacharyya

coefficient ρcor(i, j) between Zi and Zj averaged over ˆ̂
h is given by

ρcor(i, j) = E

[∫

Y

√

p(y|Zi,
ˆ̂
h)p(y|Zj ,

ˆ̂
h)dy

]

. (104)

The expectation and integral can be evaluated in the same manner as in Ap-

pendix 2 to get

|ITdMR
+ ZiΛ̃ZH

i | 12 |ITdMR
+ ZjΛ̃ZH

j | 12

|ITdMR
+ 1

2 (ZiΛ̃ZH
i + ZjΛ̃ZH

j )||IMTMR
+ 1

4
Λ̂(Zi−Zj)H(Zi−Zj)

ITMR
+ 1

2
(ZiΛ̃ZH

i
+ZjΛ̃ZH

j
)
|

(105)

which can be further simplified by using an identity (90) to

|ITdMR
+ ZiΛ̃ZH

i | 12 |ITdMR
+ ZjΛ̃ZH

j | 12
|ITdMR

+ 1
2 (ZiΛ̃ZH

i + ZjΛ̃ZH
j ) + 1

4 (Zi − Zj)Λ̂(Zi − Zj)H |
. (106)

We can simplify further (106) by using an identity (89), rewriting ITdMR
+

ZiΛ̃ZH
i as

IMR
⊗ ITd

+ (IMR
⊗ Xi)(Λ̃R ⊗ ΛT )(IMR

⊗ Xi)
H

= IMR
⊗ ITd

+ (IMR
Λ̃RIMR

⊗ XiΛTXH
i ) (107a)

= IMR
⊗ ITd

+ (IMR
⊗ λ̃n

RXiΛTXH
i ) (107b)

= IMR
⊗ (IT + λ̃n

RXiΛTXH
i ), (107c)

and ITdMR
+ 1

2 (ZiΛ̃ZH
i + ZjΛ̃ZH

j ) + 1
4 (Zi − Zj)Λ̂(Zi − Zj)

H as

IMR
⊗
(

ITd
+ 1

2 λ̃
n
R(XiΛTXH

i + XjΛTXH
j ) + 1

4 λ̂
n
R(Xi − Xj)ΛT (Xi − Xj)

H

)

. (108)

Substituting (107c) and (108) in (106) and using an identity (88) results in (45).
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Appendix 6 Proof of Theorem 1

In order to proof Theorem 1, we use the following two lemmas:

Lemma 4 [87, Lemma 1] Function f(µ,D1,D2) = |(I+µ(AD1A
H+BD2B

H))|−1

defined over positive semidefinite diagonal matrices D1,D2 and positive number

µ is a jointly log-convex function of D1 and D2 for fixed µ.

Lemma 5 [87, Lemma 2] Let hi(x) and gi(x) be log-convex functions ∀i =

1, · · · , L over Rn and ci be nonnegative constants. Then f(x) = log(
∑

i ci
hi(x)
gi(x)

)

is d.c. and has a d.c. decomposition

log

(
∑

i

cigi(x)
∏

j �=i

hj(x)

)

−
∑

i

log hi(x) (109)

Now, without loss of generality, we can write the (71) as

R0 = − log

(

1

L2

∑

i

∑

j

MR∏

n=1

|ITd
+ 1

2 (X̃iΛX̃H
i + X̃jΛX̃H

j )λ̃n
R + 1

4 (X̃i − X̃j)Λ(X̃i − X̃j)
H λ̂n

R|−1

|ITd
+ X̃iΛX̃H

i λ̃n
R|−

1
2 |ITd

+ X̃jΛX̃H
j λ̃n

R|−
1
2

)

.

(110)

Using Lemma 5, the argument of log(·) in (110) may be expressed as

1

L2

∑

i,j
j>i

(

MR
∏

n=1

|ITd
+

1

2
(X̃kΛX̃H

k + X̃lΛX̃H
l )λ̃n

R +
1

4
(X̃k − X̃l)Λ(X̃k − X̃l)

H λ̂n
R|

−1 ·

∏

k �=i
l �=j,l>k

MR
∏

n=1

|ITd
+ X̃iΛX̃H

i λ̃n
R|

− 1
2 |ITd

+ X̃jΛ
˜XH
j λ̃n

R|
− 1

2

)

∏

i,j
j>i

MR
∏

n=1

|ITd
+ X̃iΛX̃H

i λ̃n
R|

− 1
2 |ITd

+ X̃jΛ
˜XH
j λ̃n

R|
− 1

2

. (111)

By Lemma 4, |ITd
+ 1

2 (X̃kΛX̃H
k + X̃lΛX̃H

l )λ̃n
R + 1

4 (X̃k − X̃l)Λ(X̃k − X̃l)
H λ̂n

R|−1,

|ITd
+ X̃iΛX̃H

i λ̃n
R|−1 and |ITd

+ X̃jΛX̃H
j λ̃n

R|−1 are log-convex functions of Λ.

Operations like raised to a positive index, times positive constant, sum, and

product of log-convex functions preserve log-convexity. Thus, (111) is the ratio
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of two log-convex functions. Taking log(·) therefore gives d.c. decomposition

for CR expression as f(Λ)− g(Λ), where f(Λ) and g(Λ) are defined in (73) and

(74), respectively. Maximizing the negative CR expression can be written as its

minimization, which is (72).
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