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SPACE�TIME CONTINUOUS ANALYSIS OF WAVEFORM
RELAXATION FOR THE HEAT EQUATION

MARTIN J� GANDER� ANDREW M� STUART

Abstract� Waveform relaxation algorithms for partial di�erential equations �PDEs� are tradi�
tionally obtained by discretizing the PDE in space and then splitting the discrete operator using
matrix splittings� For the semidiscrete heat equation one can show linear convergence on unbounded
time intervals and superlinear convergence on bounded time intervals by this approach� However the
bounds depend in general on the mesh parameter and convergence rates deteriorate as one re�nes
the mesh�

Motivated by the original development of waveform relaxation in circuit simulation� where the
circuits are split in the physical domain into subcircuits� we split the PDE by using overlapping
domain decomposition� We prove linear convergence of the algorithm in the continuous case on an
in�nite time interval� at a rate depending on the size of the overlap� This result remains valid after
discretization in space and the convergence rates are robust with respect to mesh re�nement� The
algorithm is in the class of waveform relaxation algorithms based on overlapping multi�splittings�
Our analysis quanti�es the empirical observation by Jeltsch and Pohl 	SISC� 
� no� 
 �
���� that
the convergence rate of a multi�splitting algorithm depends on the overlap�

Numerical results are presented which support the convergence theory�

Key words� waveform relaxation� domain decomposition� overlapping Schwarz� multi�splitting

AMS subject classi�cations� �M� �M
�� �M
� �Y�

�� Introduction� The basic ideas of waveform relaxation were introduced in
the late ��th century by Picard ���� and Lindel�of ���� to study initial value problems�
There has been much recent interest in waveform relaxation as a practical parallel
method for the solution of sti	 ordinary di	erential equations 
ODEs� after the pub�
lication of a paper by Lelarasmee and coworkers ��� in the area of circuit simulation�

There are two classical convergence results for waveform relaxation algorithms
for ODEs� 
i� for linear systems of ODEs on unbounded time intervals one can show
linear convergence of the algorithm under some dissipation assumptions on the split�
ting 
����� ����� ��� and ����� 
ii� for nonlinear systems of ODEs 
including linear ones�
on bounded time intervals one can show superlinear convergence assuming a Lips�
chitz condition on the splitting function 
����� ��� and ����� For classical relaxation
methods 
Jacobi� Gauss Seidel� SOR� the above convergence results depend on the
discretization parameter if the ODE arises from a PDE which is discretized in space�
The convergence rates deteriorate as one re�nes the mesh�

Jeltsch and Pohl propose in ��� a multi�splitting algorithm with overlap� gener�
alizing the eliptic analysis of O�Leary and White in ���� to the parabolic case� They
prove results 
i� and 
ii� for their algorithm� but the convergence rates are mesh de�
pendent� However they show numerically that increasing the overlap accelerates the
convergence of the waveform relaxation algorithm� We quantify their numerical re�
sults by formulating the waveform relaxation algorithm at the space�time continuous
level using overlapping domain decomposition� this approach was motivated by the
work of Bj�rhus ���� We show linear convergence of this algorithm on unbounded
time intervals at a rate depending on the size of the overlap� This is an extension of
the �rst classical convergence result 
i� for waveform relaxation from ODEs to PDEs�
Discretizing the algorithm� the size of the physical overlap corresponds to the overlap
of the multi�splitting algorithm analyzed by Jeltsch and Pohl� We show furthermore
that the convergence rate is robust with respect to mesh re�nement� provided the
physical overlap is hold constant during the re�nement process�






Giladi and Keller ��� study superlinear convergence of domain decomposition al�
gorithms for the convection di	usion equation on bounded time intervals� hence gen�
eralizing the second classical waveform relaxation result 
ii� from ODEs to PDEs�

It is interesting to note that� using multigrid to formulate a waveform relaxation
algorithm� Lubich and Osterman ���� prove linear convergence for the heat equation
independent of the mesh parameter�

In section � we consider a decomposition of the domain into two subdomains� This
section is mainly for illustrative purposes� since the analysis can be performed in great
detail� In section � we generalize the results to an arbitrary number of subdomains�
In section � we show numerical experiments which con�rm the convergence results�

Although the analysis presented is restricted to the one dimensional heat equation�
the techiques applied in the proofs are more general� Future work successfully applies
these techniques to higher dimensional problems and to nonlinear parabolic equations�

�� Two Subdomains�

���� Continuous Case� Consider the one dimensional heat equation on the
interval �� L��

�u
�t

� ��u
�x�

� f
x� t�  � x � L� t � 

u
� t� � g�
t� t � 
u
L� t� � g�
t� t � 
u
x� � � u�
x�  � x � L�


����

where we assume f
x� t� to be bounded on the domain �� L�� ���� and uniformly
H�older continuous on each compact subset of the domain� We assume furthermore
that the initial data u�
x� and the boundary data g�
t�� g�
t� are piecewise continuous�
Then 
���� has a unique bounded solution ���� We consider in the following functions
in L� �� L�
IR�� IR� with the in�nity norm

jjf
��jj� �� sup
t��

jf
t�j�

The maximum principle� and a corollary thereof� establishing the steady state solution
as a bound on the solution of the heat equation are instrumental in our analysis�

Theorem ���� �Maximum Principle� The solution u
x� t� of the heat equation
����� with f
x� t� �  attains its maximum and minimum either on the initial line
t �  or on the boundary at x �  or x � L� If u
x� t� attains its maximum in the
interior� then u
x� t� must be constant�

Proof� The proof can be found in �����
Corollary ���� The solution u
x� t� of the heat equation ����� with f
x� t� � 

and u� �  satis�es the inequality

jju
x� ��jj� �
L� x

L
jjg�
��jj� �

x

L
jjg�
��jj��  � x � L�
����

Proof� Consider �u solving

��u
�t

� ���u
�x�

 � x � L� t � 

�u
� t� � jjg�
��jj� t � 
�u
L� t� � jjg�
��jj� t � 

�u
x� � � L� x
L

jjg�
��jj� � x
L
jjg�
��jj�  � x � L


����

�



The solution �u of 
���� does not depend on t and is given by the steady state solution

�u
x� �
L� x

L
jjg�
��jj� �

x

L
jjg�
��jj�

By construction we have �u
x� � u
x� t� �  at t �  and on the boundary x �  and
x � L� Since �u � u is in the kernel of the heat operator� we have by the maximum
principle for the heat equation �u
x�� u
x� t� �  on the whole domain �� L�� Hence

u
x� t� �
L� x

L
jjg�
��jj� �

x

L
jjg�
��jj��

Likewise �u
x� � u
x� t� �  at t � � x �  and x � L and is in the kernel of the heat
operator� Hence

u
x� t� � �

�
L� x

L
jjg�
��jj� �

x

L
jjg�
��jj�

�
�

Therefore we have

ju
x� t�j �
L� x

L
jjg�
��jj� �

x

L
jjg�
��jj��

Now the right hand side does not depend on t� so we can take the supremum over t�
which leads to the desired result�

To obtain a waveform relaxation algorithm� we decompose the domain � � �� L��
���� into two overlapping subdomains �� � �� �L������ and �� � ��L�L������
where  � � � � � � as given in �gure ���� The solution u
x� t� of 
���� can now

t

x

L

�� � ���� ��

 �L �L

Fig� ���� Decomposition into two overlapping subdomains�

be obtained from the solutions v
x� t� on �� and w
x� t� on ��� which satisfy the
equations

�v
�t

� ��v
�x�

� f
x� t�  � x � �L� t � 

v
� t� � g�
t� t � 
v
�L� t� � w
�L� t� t � 
v
x� � � u�
x�  � x � �L


����

and

�w
�t

� ��w
�x�

� f
x� t� �L � x � L� t � 

w
�L� t� � v
�L� t� t � 
w
L� t� � g�
t� t � 
w
x� � � u�
x� �L � x � L�


����

�



First note that v � u on �� and w � u on �� are solutions to 
���� and 
�����
Uniqueness follows from our analysis of a Schwarz type iteration introduced for eliptic
problems in ���� and further studied in ���� and ���� We get

�vk��

�t
� ��vk��

�x�
� f
x� t�  � x � �L� t � 

vk��
� t� � g�
t� t � 
vk��
�L� t� � wk
�L� t� t � 
vk��
x� � � u�
x�  � x � �L

and

�wk��

�t
� ��wk��

�x�
� f
x� t� �L � x � L� t � 

wk��
�L� t� � vk
�L� t� t � 
wk��
L� t� � g�
t� t � 
wk��
x� � � u�
x� �L � x � L�

Let dk
x� t� �� vk
x� t� � v
x� t� and ek
x� t� �� wk
x� t� � w
x� t� and consider the
error equations

�dk��

�t
� ��dk��

�x�
 � x � �L� t � 

dk��
� t� �  t � 
dk��
�L� t� � ek
�L� t� t � 
dk��
x� � �   � x � �L


����

and

�ek��

�t
� ��ek��

�x�
�L � x � L� t � 

ek��
�L� t� � dk
�L� t� t � 
ek��
L� t� �  t � 
ek��
x� � �  �L � x � L�


����

The following Lemma establishes convergence of the Schwarz iteration on the inter�
faces of the subdomains in L� � Using the maximum principle convergence in the
interior follows�

Lemma ���� On the interfaces x � �L and x � �L the error of the Schwarz
iteration decays at the rate

jjdk��
�L� ��jj� �
�
�� ��

�
�� ��
jjdk
�L� ��jj��
����

jjek��
�L� ��jj� �
�
�� ��

�
�� ��
jjek
�L� ��jj��
����

Proof� By Corollary ��� we have

jjdk��
x� ��jj� �
x

�L
jjek��
�L� ��jj� 	x 
 �� �L��
����

and

jjek��
x� ��jj� �
L� x


�� ��L
jjdk
�L� ��jj� 	x 
 ��L�L��
�����

�



Evaluating 
����� at x � �L and 
���� at x � �L and combining the two we obtain
inequality 
����� Inequality 
���� is obtained similarly�

For any function g
�� t� in L�
�a� b�� L�� we introduce the norm

jjg
�� ��jj��� �� sup
a�x�b

jjg
x� ��jj��

Theorem ���� The Schwarz iteration for the heat equation with two subdomains
converges in L�
�a� b�� L�� at the linear rate

jjd�k��
�� ��jj��� �

�
�
�� ��

�
�� ��

�k

jje�
�L� ��jj�
�����

jje�k��
�� ��jj��� �

�
�
�� ��

�
�� ��

�k

jjd�
�L� ��jj��
�����

Proof� Since the errors dk and ek are both in the kernel of the heat operator
they obtain� by the maximum principle� their maximum value on the boundary or on
the initial line� On the initial line and the exterior boundary both dk and ek vanish�
Hence

jjd�k��
�� ��jj��� � jje�k
�L� ��jj�� jje�k��
�� ��jj��� � jjd�k
�L� ��jj��

Using Lemma ��� the result follows�

���� Semi�Discrete Case� Consider the heat equation continuous in time� but
discretized in space using a centered second order �nite di	erence scheme on a grid
with n grid points and �x � L

n�� � This gives the linear system of ODEs

�u
�t

� A�n�u� f
t� t � 

u
� � u��

�����

where the n�n matrix A�n�� the vector valued function f 
t� and the initial condition
u� are given by

A�n��
�


�x��

�
�����

�� � 

� ��
� � �

� � �
� � � �

 � ��

�
������f
t��

	
BBBBB


f
�x� t� � �
��x�� g�
t�

f
��x� t�
���

f

n� ���x� t�
f
n�x� t� � �

��x�� g�
t�

�
CCCCCA
�u��

	
B


u�
�x�
���

u�
n�x�

�
CA �


�����
We note the following property of A�n� for later use� let p �� 
p�� � � � � pn�

T where
pj �� j� Then

A�n�p � 
� � � � � �
�
n� ��


�x��
�T �
�����

Likewise let q �� 
q�� � � � � qn�
T where qj �� n� �� j� Then

A�n�q � 

�
n� ��


�x��
� � � � � � �T
�����





We denote the i�th component of a vector valued function v
t� by v
i� t� and v
t� �
u
t� is understood component wise� We establish now the discrete analogs of the
Maximum Principle and Corollary ����

Theorem ���� �Semi�Discrete Maximum Principle� Assume u
t� solves
the semi	discrete heat equation ����
� with f
t� � 
f�
t�� � � � � � � f�
t��

T and u
� �

u�
�� � � � � un
��

T � If f�
t� and f�
t� are non	negative for t �  and u
i� � �  for
i � �� � � � � n then

u
t� � � 	t � �

Proof� We follow Varga�s proof in ���� By Duhamel�s principle the solution u
t�
is given by

u
t� � eA�n�tu
� �

Z t

�

eA�n��t�s�f
s�ds
�����

The key is to note that the matrix eA�n�t contains only non�negative entries� To see
why write A�n� � ��I�n��J�n� where J�n� contains only non�negative entries and I�n�
is the identity matrix of size n� n� We get

eA�n�t � e��I�n�teJ�n�t � e��teJ�n�t � e��t
�X
l��

J l
�n�t

l

l�

where the last expression has clearly only non�negative entries� Since the matrix
exponential in 
����� is applied only to vectors with non�negative entries� it follows
that u
t� can not become negative�

Corollary ���� The solution u
t� of the semi	discrete heat equation ����
� with
f
t� � 
 �

��x�� g�
t�� � � � � � �
�

��x�� g�
t��
T and u� �  satis�es the inequality

jju
j� ��jj� �
n� �� j

n� �
jjg�
��jj� �

j

n� �
jjg�
��jj�� � � j � n�
�����

Proof� Consider �u
t� solving

��u
�t

� A�n��u� �f � t � 

�u
j� � � n� �� j
n� � jjg�
��jj� � j

n� � jjg�
��jj�� � � j � n�

����

with �f � 
 �
��x�� jjg�
t�jj�� � � � � � � �

��x�� jjg�
t�jj��T � Using the properties 
����� and


����� of A�n� and the linearity of 
���� we �nd that the solution �u of 
���� does
not depend on t and is given by the steady state solution

�u
j� �
n� �� j

n� �
jjg�
��jj� �

j

n� �
jjg�
��jj�� � � j � n�

The di	erence �
j� t� �� �u
j�� u
j� t� satis�es the equation

��
�t

� A�n���

	
BBBBB


�
��x�� 
jjg�
��jj� � g�
t��


���


�
��x�� 
jjg�
��jj� � g�
t��

�
CCCCCA

� t � 

�
j� � �
n� �� j
n� � jjg�
��jj� �

j
n� � jjg�
��jj�� � � j � n�

�



and hence by the discrete maximum principle �
j� t� �  for all t �  and � � j � n�
Thus

u
j� t� �
n� �� j

n� �
jjg�
��jj� �

j

n� �
jjg�
��jj�� � � j � n�

Likewise from �
j� t� �� �u
j� � u
j� t� we get

u
j� t� � �

�
n� �� j

n� �
jjg�
��jj� �

j

n� �
jjg�
��jj�

�
� � � j � n�

Hence we can bound the modulus of u by

ju
j� t�j �
n� �� j

n� �
jjg�
��jj� �

j

n� �
jjg�
��jj�� � � j � n�

Now the right hand side does not depend on t� so we can take the supremum over t�
which leads to the desired result�

We decompose the domain into two overlapping subdomains �� and �� as in
�gure ���� We assume for simplicity that �L falls on the grid point i � a and �L on

bc for �� bc for ��

bc for ��bc for ��

x
nba��

��

��

Fig� ���� Decomposition in the semi�discrete case�

the grid point i � b� We therefore have a�x � �L and b�x � �L� For notational
convenience we de�ne

f �
x� y� z� �� 
x
�� �
y


�x��
�x
��� � � � �x
b� ���x
b� �� �

z


�x��
�T

f
�
x� y� z� �� 
x
a� �� �

y


�x��
�x
a� ��� � � � �x
n� ���x
n� �

z


�x��
�T �

As in the continuous case� the solution u
t� of 
����� can be obtained from the solu�
tions v
t� on �� and w
t� on ��� which satisfy the equations

�v
�t

� A�b���v � f�
f
t�� g�
t��w
b� a� t�� t � 

v
j� � � u�
j�� � � j � b�

�����

and

�w
�t

� A�n�a�w � f�
f 
t��v
a� t�� g�
t�� t � 

w
j � a� � � u�
j� b � j � n�

�����

Applying the Schwarz iteration to 
����� and 
����� we obtain

�vk��

�t
� A�b���v

k�� � f�
f 
t�� g�
t��w
k
b� a� t�� t � 

vk��
j� � � u�
j� � � j � b�

�



and

�wk��

�t
� A�n�a�w

k�� � f �
f 
t��vk
a� t�� g�
t�� t � 

wk��
j � a� � � u�
j� b � j � n�

Let dk
t� �� vk
t�� v
t� and ek
t� �� wk
t��w
t� and consider the error equations

�dk��

�t
� A�b���d

k�� � f�
� � ek
b� a� t�� t � 

d
k��
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�����

and

�ek��

�t
� A�n�a�e

k�� � f�
�dk
a� t�� � t � 

ek��
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�����

The following Lemma establishes convergence of the Schwarz iteration on the interface
nodes of the subdomains in L� � Using the discrete maximum principle convergence
in the interior then follows�

Lemma ��	� On the interface gridpoints a and b the error of the Schwarz iteration
decays at the rate

jjdk��
a� ��jj� �
�
�� ��

�
�� ��
jjdk
a� ��jj�
�����

jjek��
b� ��jj� �
�
�� ��

�
�� ��
jjek
b� ��jj��
�����

Proof� By Corollary ��� we have

jjdk��
j� ��jj� �
j

b
jjek��
b� a� ��jj�� � � j � b
�����

and

jjek��
j� ��jj� �
n� �� a� j

n� �� a
jjdk
a� ��jj�� � � j � b� a�
�����

Evaluating 
����� at j � b� a and 
����� at j � a and combining the two we get

jjdk��
a� ��jj� �
a
n� �� b�

b
n� �� a�
jjdk
a� ��jj��

Now using a�x � �L� b�x � �L and 
n� ���x � L we get the desired result� The
second inequality 
����� is obtained similarly�

For any vector valued function h
t� in L�
IR�� IRn� we de�ne

jjh
�� ��jj��� �� max
��j�n

jjh
j� ��jj�

Theorem ��
� The Schwarz iteration for the semi	discrete heat equation with
two subdomains converges in L�
IR�� IRn� at the linear rate

jjd�k��
�� ��jj��� �
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Proof� By Corollary ��� we have

jjd�k��
�� ��jj��� � jje�k
b� a� ��jj�� jje�k��
�� ��jj��� � jjd�k
a� ��jj��

Using Lemma ��� the result follows�

	� Arbitrary number of subdomains� We generalize the two subdomain case
described in section � to an arbitrary number of subdomains N � This leads to an
algorithm which can be run in parallel� Subdomains with even indices depend only
on subdomains with odd indices� Hence one can solve on all the even subdomains
in parallel in one sweep� and then on all the odd ones in the next one� Boundary
information is propagated in between sweeps�

Consider N subdomains �i of �� i � �� � � � � N where �i � ��iL� �iL�� ���� and
�� � � �N � � and �i�� � �i for i � �� � � � � N�� so that all the subdomains overlap�
as in �gure ���� We assume also that �i � �i�� for i � �� � � � � N � � so that domains
which are not adjacent do not overlap� The solution u
x� t� of 
���� can be obtained

��L ��L�	L �N��L �NL � L

���� �N

t

��L��L �  �NL

x

Fig� ���� Decomposition into N overlapping subdomains�

as in the case of two subdomains by composing the solutions vi
x� t�� i � �� � � � � N �
which satisfy the equations

�vi
�t

� ��vi
�x�

� f
x� t� �iL � x � �iL� t � 
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v
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����

where we have introduced for convenience of notation the two functions v� and vN��

which are constant in x and satisfy the given boundary conditions� namely v�
x� t� �
g�
t� and vN��
x� t� � g�
t�� The system of equations 
����� which is coupled through
the boundary� can be solved using the Schwarz iteration� We get for i � �� � � � � N
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��vk��i
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� f
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where again vk� 
t� � g�
t� and vkN��
t� � g�
t�� Let eki �� vki 
x� t� � vi
x� t�� i �
�� � � � � N and consider the error equations 
compare �gure ����

�
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Fig� ���� Overlapping subdomains and corresponding error functions ei

�ek��i

�t
�

��ek��i

�x�
�iL � x � �iL� t � 

ek��i 
�iL� t� � eki��
�iL� t� t � 

ek��i 
�iL� t� � eki��
�iL� t� t � 

ek��i 
x� � �  �iL � x � �iL�


����

with ek�
t� �  and ekN��
t� � �
For the following Lemma� we need some additional de�nitions to facilitate the

notation� We de�ne �� � �� � � �N�� � �N�� � � and the constant functions
e�� �  and eN�� � �

Lemma ���� The error ek��i of the i	th subdomain of the Schwarz iteration �����
decays on the interfaces x � �i��L and x � �i��L at the rate

jjek��i 
�i��L� ��jj� � riri��jjeki��
�i��L� ��jj� � ripi��jjeki 
�i��L� ��jj�
�piqi��jjeki 
�i��L� ��jj� � pisi��jjeki��
�i��L� ��jj��


����

for i � �� � � � � N and

jjek��i 
�i��L� ��jj� � qiri��jjeki��
�i��L� ��jj� � qipi��jjeki 
�i��L� ��jj�
�siqi��jje

k
i 
�i��L� ��jj� � sisi��jje

k
i��
�i��L� ��jj��


����

for i � �� � � � � N � �� where the ratios of the overlaps are given by

ri �
�i�� � �i

�i � �i
� pi �

�i � �i��

�i � �i
� qi �

�i�� � �i

�i � �i
� si �

�i � �i��

�i � �i
�
����

Proof� By Corollary ��� we have

jjek��i 
x� ��jj� �
x� �iL


�i � �i�L
jjek��i�� 
�iL� ��jj� �

�iL� x


�i � �i�L
jjek��i�� 
�iL� ��jj��
����

Since this result holds on all the subdomains �i� we can recursively apply it to the
errors on the right in 
����� namely

jjek��i�� 
�iL� ��jj� �
�i � �i��

�i�� � �i��
jjeki��
�i��L� ��jj� �

�i�� � �i

�i�� � �i��
jjeki 
�i��L� ��jj��

jjek��i�� 
�iL� ��jj� �
�i � �i��

�i�� � �i��
jjeki 
�i��L� ��jj� �

�i�� � �i

�i�� � �i��
jjeki��
�i��L� ��jj��

Substituting these equations back into the right hand side of 
���� and evaluating 
����
at x � �i��L leads to inequality 
����� Evaluation at x � �i�� leads to inequality

�����


�



This result is di	erent from the result in the two subdomain case 
Lemma �����
because we cannot get the error directly as a function of the error at the same location
two steps before� The error at a given location depends on the errors at di	erent
locations also� This leads to the two independent linear systems of inequalities�

�
k�� � D�

k and �k�� � E�k�
����

where the inequality sign here means less than or equal for each component of the
vectors �k�� and �k��� These vectors and the matrices D and E are slightly di	erent
if the number of subdomains N is even or odd� We assume in the sequel that N is
even� The case where N is odd can be treated in a similar way� For N even we have

�k �

	
BBBBBBBBB


jjek�
��L� ��jj�
jjek	
��L� ��jj�
jjek	
�
L� ��jj�
jjek�
�
L� ��jj�

���
jjekN��
�N��L� ��jj�
jjekN��
�NL� ��jj�

�
CCCCCCCCCA

and �k �

	
BBBBBBBBB


jjek�
��L� ��jj�
jjek�
�	L� ��jj�
jjek

�	L� ��jj�
jjek

��L� ��jj�

���
jjekN��
�N��L� ��jj�
jjekN 
�N��L� ��jj�

�
CCCCCCCCCA

and the banded 
N � ��� 
N � �� matrices

D �

�
������������

q�p� q�r�
p	s� p	q� r	p
 r	r

s	s� s	q� q	p
 q	r


p�s
 p�q
 r�p� r�r�
s�s
 s�q
 q�p� q�r�

� � �
� � �

pN��sN�� pN��qN�� rN��pN
sN��sN�� sN��qN�� qN��pN

�
������������

�
����

and

E�

�
������������

p�q� r�p	 r�r	
s�q� q�p	 q�r	

p
s	 p
q	 r
p� r
r�
s
s	 s
q	 q
p� q
r�

� � �
� � �

pN��sN�	 pN��qN�	 rN��pN�� rN��rN��
sN��SN�	 sN��qN�	 qN��pN�� qN��rN��

pNsN�� pNqN��

�
������������

�
����

Note that the in�nity norm of D and E equals one� This can be seen for example for
D by looking at the row sum of interior rows�

pisi���piqi���ripi���riri�� � pi
si���qi����ri
pi���ri����pi�ri���
sisi���siqi���qipi���qiri�� � si
si���qi����qi
pi���ri����si�qi���


�����

The boundary rows however sum up to a value less than one� namely

q�p� � q�r� � q�
p� � r�� � q� � �
pN��sN�� � pN��qN�� � rN��pN � pN��
sN�� � qN��� � rN��pN

� pN�� � rN��pN � �
sN��sN�� � sN��qN�� � qN��pN � sN��
sN�� � qN��� � qN��pN

� sN�� � qN��pN � ��


�����







A similar result holds for the matrix E� Since the in�nity norm of bothD and E equals
one� convergence is not obvious at �rst glance� In the special case with two subdomains
treated in section � the matrices E and D degenerate to the scalar q�p�� which is
strictly less than one and convergence follows� In the case of N subdomains the
information from the boundary needs to propagate inward to the interior subdomains�
before the algorithm exhibits convergence� Hence we expect that the in�nity norm
of E and D raised to a certain power becomes strictly less than one� We need the
following Lemmas to prove convergence�

Lemma ���� Let r
A� 
 IRp denote the vector containing the row sums of the
p� p square matrix A� Then r
An��� � Anr
A��

Proof� Let �I � 
�� �� � � � � ��T � Then we have r
A� � A�I and hence r
An��� �
An���I � AnA�I � Anr
A��

Lemma ���� Let A be a real p�q matrix with aij �  and B be a real q�r matrix
with bij � � De�ne the sets Ii
A� �� fk � aik � g and Jj
A� �� fk � bkj � g� Then
for the product C �� AB we have

Ii
C� � fk � Ii
A� � Jk
B� �� �g

Proof� We have� since aik� bkj � 

cij � �

qX
k��

aikbkj � � �k s�t� aik �  and bkj � � Ii
A� � Jj
B� �� ��

Hence for �xed i� cij �  if and only if Ii
A� � Jj
B� �� ��

Lemma ���� Dk and Ek have strictly positive entries for all integer k � N��
� �

Proof� We show the proof for the matrix D� the proof for E is similar� The row
index sets Ii
D� are given by

Ii
D� �

��
�

f�� � � � � i� �g
f�� � � � � i� �g

i even
i odd

�
� � i � �

fi� �� � � � � i� �g
fi� �� � � � � i� �g

i even
i odd

�
� � i � N � �

fi� �� � � � � N � �g
fi� �� � � � � N � �g

i even
i odd

�
N � � � i � N � �

The column index sets are given by

Jj
D� �

��
�

f�� � � � � �g � � j � �
fj � �� � � � � j � �g
fj � �� � � � � j � �g

j odd
j even

�
� � j � N � �

fN � �� N � �g j � N � �

We are interested in the growth of the index sets Ii
D
k� as a function of k� Once

every index set contains all the numbers � � j � N � �� the matrix Dk has strictly
positive entries� We show that every multiplication with D enlarges the index sets
Ii
D

k� on both sides by two elements� as long as the elements � and N � � are not


�



yet reached� The proof is done by induction� For D� we have using Lemma ���

Ii
D
�� �

��
�

f�� � � � � i� �g
f�� � � � � i� �g

i even
i odd

�
� � i � �

fi� �� � � � � i� �g
fi� �� � � � � i� �g

i even
i odd

�
� � i � N � �

fi� �� � � � � N � �g
fi� �� � � � � N � �g

i even
i odd

�
N � � � i � N � �

Now suppose that for k we obtained the sets

Ii
D
k� �

��
�

f�� � � � � i� �kg
f�� � � � � i� �k � �g

i even
i odd

�
� � i � � � �k

fi� �k � �� � � � � i� �kg
fi� �k� � � � � i� �k � �g

i even
i odd

�
� � �k � i � N � �k � �

fi� �k � �� � � � � N � �g
fi� �k� � � � � N � �g

i even
i odd

�
N � �k � � � i � N � �

Then for k � � we have applying Lemma ��� again

Ii
D
k����

��
�

f�� � � � � i� �
k � ��g
f�� � � � � i� �
k � ��� �g

i even
i odd

�
� � i � � � �
k � ��

fi��
k������ � � � � i��
k���g
fi��
k���� � � � � i��
k�����g

i even
i odd

�
���
k��� � i � N��
k�����

fi��
k���� �� � � � � N � �g
fi��
k���� � � � � N � �g

i even
i odd

�
N � �
k � ��� � � i � N � �

Hence every row index set Ii
D
k� grows on both sides by � when Dk is multiplied by

D� as long as the boundary numbers � and N � � are not yet reached� Now the index
set I�
D

k� � f�� � � � � �kg has to grow most to reach the boundary number N � �� so
we need for the number of iterations

k �
N � �

�

for the matrix Dk to have strictly positive entries�
The in�nity norm of a vector v in IRn and a matrix A in IRn�n is de�ned by

jjvjj� �� max
��j�n

jv
j�j� jjAjj� �� max
��i�n

nX
j��

jAij j�

Lemma ���� For all k � N
� there exists � � �
k� � � such that

jjDkjj� � � and jjEkjj� � �

Proof� We prove the result for D� the proof for E is similar� We have from 
�����
and 
����� that

r
D� �

	
BBBBBBB


q�
�
���
�

pN�� � rN��pN
sN�� � qN��pN

�
CCCCCCCA
�


�



By Lemma ���Dk has strictly positive entries for any k � N
� � Note also that jjD

kjj� �
� since jjDjj� � �� Now by Lemma ��� we have

jjDk��jj� � max
i

ri
D
k��� � max

i

X
j

Dk
ijrj
D� � �

sinceDk
ij �  for all i� j�

P
j D

k
ij � � for all i� rj
D� 
 �� �� and r�
D� � �� rN��
D� �

� and rN 
D� � ��

Remark
 It su ces for each row index set to reach one of the boundaries� either
� or N � �� for the in�nity norm to start decaying� Hence it is enough that there are
no more index sets Ii
D

k� 
compare the proof of Lemma ���� such that � � �k � i �
N � �� �k so that the requirement k � N��

� can be relaxed to k � N�	

 �

We now �x some k � N�	

 and set

� �� max
jjDkjj�� jjEkjj�� � ��
�����

Lemma ���� The vectors � and � satisfy

jj��kmjj� � �mjj��jj�
�����

jj��kmjj� � �mjj��jj��
�����

Proof� By induction on 
����� using that the entries of D� E� �k and �k are
non�negative� we get

��km � Dkm�� and ��km � Ekm���

Taking norms on both sides and applying Lemma ��� the result follows�

Theorem ��	� The Schwarz iteration for the heat equation with N subdomains
converges in the in�nity norm in time and space� We have

max
���i�N

jje�km��
�i 
�� ��jj��� � �mjj��jj�
�����

max
���i���N

jje�km��
�i�� 
�� ��jj��� � �mjj��jj��
�����

Proof� We use again the maximum principle� Since the error eki is in the kernel of
the heat operator� by the maximum principle eki attains its maximum on the initial
line or on the boundary� On the initial line eki vanishes� therefore

max
���i�N

jje�km��
�i 
�� ��jj��� � jj��kmjj�� max

���i���N
jje�km��

�i�� 
�� ��jj��� � jj��kmjj��

Using Lemma ��� the result follows�

Note that the bound for the rate of convergence in Theorem ��� is not explicit�
This is unavoidable for the level of generality employed� But� if we assume for sim�
plicity that the overlaps are all of the same size then we can get more explicit rates
of convergence� We set ri � si � r 
 
� �� and pi � qi � p 
 
� �� where p� r � ��


�



The matrices D and E then simplify to

�D �

�
������������

p� pr

pr p� pr r�

r� pr p� pr

pr p� pr r�

r� pr p� pr
� � �

� � �

pr p� pr

r� pr p�

�
������������

� �E �

�
������������

p� pr r�

pr p� pr

pr p� pr r�

r� pr p� pr
� � �

� � �

pr p� pr r�

r� pr p� pr

pr p�

�
������������

�

In this case we can bound the spectral norm of �D and �E by an explicit expression
less than one� We use common notation for the spectral norm� namely

jjvjj� ��

vuut nX
i��

v
i��� jjAjj� �� sup
jjvjj���

jjAvjj��

Lemma ��
� The spectral norms of �D and �E are bounded by

jj �Djj� � �� �pr sin�
	

�
N � ��
� jj �Ejj� � �� �pr sin�

	

�
N � ��
�

Proof� We prove the bound for �D� The bound for �E can be obtained similarly�
We can estimate the spectral norm of �D by letting �D � J�r�F where J is tridiagonal
and F has only O
N� nonzero entries and these are equal to �� In fact jjF jj� � ��
Using that the eigenvalues of J are given by


j
J� � p� � �pr cos
	j

N � �
�

the spectral norm of �D can be estimated by

jj �Djj� � jjJ jj� � r�jjF jj� � p� � �pr cos
	

N � �
� r�

� p� � �pr � r� � �pr sin�
	

�
N � ��
� �� �pr sin�

	

�
N � ��
�

since p� r � ��
Lemma ���� Assume that all the N subdomains overlap at the same ratio r 



� ���� Then the vectors � and � satisfy

jj��kjj� �

�
�� �r
�� r� sin�

	

�
N � ��

�k

jj��jj�

jj��kjj� �

�
�� �r
�� r� sin�

	

�
N � ��

�k

jj��jj��

Proof� The proof follows as in Lemma ����
Note that r � ��� which minimizes the upper bound in Lemma ���� corresponds

to the maximum possible overlap in this setting� namely �i�� � �i�� in Figure ����






Theorem ����� The Schwarz iteration for the heat equation with N subdomains
that overlap at the same ratio r 
 
� ��� converges in the in�nity norm in time and
space� Speci�cally we have

max
���i�N

jje�k�i 
�� ��jj��� �

�
�� �r
�� r� sin�

	

�
N � ��

�k

jj��jj�
�����

max
���i���N

jje�k�i��
�� ��jj��� �

�
�� �r
�� r� sin�

	

�
N � ��

�k

jj��jj��
�����

Proof� From the proof of Theorem ��� we have

max
���i�N

jje�k��
�i 
�� ��jj��� � jj��kjj�� max

���i���N
jje�k��

�i�� 
�� ��jj��� � jj��kjj��

Since the in�nity norm is bounded by the spectral norm we get

max
���i�N

jje�k��
�i 
�� ��jj��� � jj��kjj�� max

���i���N
jje�k��

�i�� 
�� ��jj��� � jj��kjj��

Using Lemma ��� the result follows�
The results derived above for the continuous heat equation remain valid as in the

two subdomain case� when the heat equation is discretized� Details of this analysis
can be found in ����

�� Numerical Experiments� We perform numerical experiments to measure
the actual convergence rate of the algorithm for the example problem

�u
�t

� ��u
�x�

� e��t���
���x� �

� �
�

 � x � ��  � t � �

u
� t� � e��t  � t � �
u
�� t� � e�t  � t � �
u
x� � � �  � x � ��


����

To solve the semi�discrete heat equation� we use the Backward Euler method in time�
The �rst experiment is done splitting the domain � � �� �� � �� �� into the two
subdomains �� � �� �� � �� �� and �� � ��� �� � �� �� for three pairs of values

�� �� 
 f
��� ���� 
���� ����� 
���� ����g� Figure ��� shows the convergence of
the algorithm on the grid point b for �x � �� and �t � ��� The solid line is
the predicted convergence rate according to Theorem ��� and the dashed line is the
measured one� The measured error displayed is the di	erence between the numerical
solution on the whole domain and the solution obtained from the domain decomposi�
tion algorithm� As initial guess for the iteration we used the initial condition constant
in time� We also checked the robustness of the method by re�ning the time step and
obtained similar results�

We solved the same problem 
���� using eight subdomains which overlap by ��!�
Figure ��� shows the decay of the in�nity norm of �k� The dashed line shows the
measured decay rate and the solid line the predicted one� Note that in the initial
phase of the iteration the error stagnates� since information has to be propagated
across domains�
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