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The method developed previously for calculating the correlations 1 quantal hiary mix-
tures is applied to liquid metals which are considered as mixtures of classical particles Gons)
and quantal particles (electrons); as a result, the dynamic and static structure factors as well
as the radial distribution functions of 10ns, ion-electrons and electrons are calculated on the
basis of model potentials with the use of the parameters appropriate to Na. The 1on-ion
structure factor 1s similar to that of the Percus-Yevick hard-sphere model except that the
first peak 1s shifted to the small wave-number side and distorted in an asymmetrical [orm.
The 1on-electron correlation is shown to be very small: thus, the radial distribution fune-
fion of electrons almost coincides with that calculated from the jellium model. 1t is
mmportant to mtroduce quantal direct correlation functions, in terms of which we can represent
the compressibility of a liquid metal, including the Bohm-Staver term, and that of a fused salt
1w a unified manner; and the effective direct correlation function of ions in the one-component
model for liquid metal can also be defined by using these quantal direct correlation functions.
The Triedel sum rule is extended to the case of the electron density distribution around a
constituent ion m a liguid metal; hence. we can also show the distortion of the electron
density distribation around each 1on to be small. We may conclude that the 1ons in a sumple
liquid metal are moving around without disturbing the uniform density distribution of the
electron gas. which behaves as if in the jellium model.

§ 1. Inwroduction

5o far, liquid metals have been treated as one-component systems in usual
theoretical work on static or dynamical structures of ions, and the presence of
conduction electrons has been taken into account only through the construction of
the effective jon-ion potentials. However, it may be a matter of great interest to
investigate the conduction electrons themselves on the same footing as the ions
by treating liquid metals as coupled electrondon svstems: thus, we are able to
clarify the limit of the approach through effective potentials and to throw light
on the novel aspects of electron-ion systems.

Earlier work by Cowan and Kirkwood” is an attempt to calculate the radial
distribution functions (RDF) in liquid metals on the basis of the two-component
model. However, their procedure is not applicable to real liquid metals at normal

Some preliminary results of the present paper were reported at the Second International
Conference on “The Properties of Liquid Metals” held at Tokyo. 1972.
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Liguid Metals as Electron-Ion Systems 341

temperatures since they treated the ions with the Debye-Hiickel approximation and
the electrons with the Thomas-Fermi method. Recently there have also been

2~ (o investigate the dynamical structure of liquid metals

developed several theories
in the zero sound wave region from this model, but these treatments cannot afford
to caleulate the RDF of ion-ion. ion-electron and electron-electron, namely, ¢,(7).
() and ¢.() in liquid metals.

In a previous preliminary work,” we have presented a method of calculating the
static and dvnamic structure factors of liquid metals as mixtures of ions and electrons
in a self-consistent manner, where integral equations are used for g¢; () in an ad
hoc way without derivation. Since then, we have derived various types of integral
equations of liquid structures in quantal mixtures by extending Percus’ functional-

’ In the present paper, we investigate the

expansion method to quantal systems.’
behaviour of the ions and the electrons in liquid metals with the use of these
results.

Very recently, Egelstaff et al.'"” have proposed to extract the electronic correla-
tions in liquid metals by combining neutron, X-ray and electron scattering data.
In the near future, the behaviour of the electronic correlations such as ¢, () and
(e (77) in liquid metals will be clarified from both theoretical and experimental
points of view.

In §2 we give a summary and supplement of the previous results for quantal
mixtures.” In §3 on making use of the results in § 2, some general results in
a liquid metal are derived, including its compressibility and the Friedel sum rule
for the electron density distribution around a constituent ion in the liquid metal.
We calculate the static and dynamic structure factors and also the RDF by solving
an integral equation numerically with the use of model potentials in §4. In the
last section, we discuss the important role of the quantal direct correlation functions
(DCF) in treating a liquid metal and construct a physical picture of simple liquid
metals.

§ 2. Previous results and supplement

In a previous paper” (hereafter referred to as I), on the basis of a generalized

)

Hartree approximation,’” we have introduced the quantal DCF (N/'i]- () {for binary

mixtures in the form

Tod (ni”.f)l/zéij ()} Eio-aij — ()" Fg {w’]} 2-1)
%o 072; (")
1. ivi., 7 2 s
- Fow = ()" e e — 10 te} (2-2)®
Q
ol )= [rireedr. 23

* This equation corresponds to Eq. (2-21) of I, which was miswritten: fv;(Q) of T must be

defined as fvy;(Q) =—'CV“-(Q), using C;;(Q) in this paper.
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342 J. Chihara

Here, 72, is the average number of particles ol species 71 40"

represents the density-
density canonical correlation which reduces to the structure factor S;(€2) in the
classical Limit; 7 denotes the component of a tvpe different from 7; and 7. the
density-density canonical correlation of the corresponding non-interacting syvstem.
On the other hand, in classical binary muxtures. when one imposes external
potentials U7, () upon i-species particles in the nuxture, and scts these external
potentials equal to their interatomic potentials v, () in such a way as U, (1)
v, (7) and U,(r) =v, (7). there follow the general relations™ between the
and the DCEF C, ()

component density distribution 7z, (| U= oy, T, —wv,,) =n,

N (O L—pU: )J {;/ i) b dr’ =C(r). (2-4)
o 0n, (7" '

Here, 3 is the inverse temperature. I, denotes the functional derrvative being taken
t ] 'o

at 7, () =n. It sheuld be noted that s, (7)) denctes the fspecies density distribu-

tion around a fixed j-species particle at the o since the imposition of the eox-

ternal potentmls U,=wvy, is equivalent to fxing a jspecdies particle at the origin.
At this point. bv making the ansatz that the above relation (2-4) remains valid
even in quantal mixtures only if we replace the elassical quantities by thelr quantul

analogs, we obtain the Fourier transform of 2, (rj) in quantal mistures as follows:

(7707 " ¥ . .5
= ol (rlj)y —n]= - 2-5)
70" 7(
= (n,7;)" J,; (7)) —1]. (2-6)%
From Eq. (2-5), it follows that
XQOI.QTQ[”EU:]D — (7i2) _.1]’ (2.7
72 7 ,

which means that the symmetrical relation in a eclassical misture, #,(r|1)/n,
=n,(r|2) /i, becomes no longer valid in the case of a quantal mixture. In this
vespect, it should be mentioned that the linear vesponse result for Fg{m(r4) /7,
—~1} is consistent with the general relation (2-7). that is, Eq. (2-7) can be proved
to be satisfied. at least, for mixtures interacting via weak interatomic potentials.

In addition. we have obtained the density-density response functions in terms
of the quantal DCF as follows

20" (@) = 2" (0) & (Q. ) /2 (Q ) (2-8)%%
B0t (@) = (nay) VC o (Q) 1™ () 7" () /E(Q, ) (2-9)¥H8

where
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Liguid Metals as FElectron-Ton Systems 343

(O, w)=¢e,(0Q, w)e(Q.w) — it {612<C2) }ZXQM () 7" (), (2-10)

(o]

2, (0, (/))Elf;’liéi,-(Q)zQOi((')), (2-11)

and 7" (w) is the free-particle polarizability of component 2. In these expressions
the densitv-density canonical correlations 7,” remain undetermined.

In order to evaluate ',5(‘;"" we have derived several integral equations for n,(#|7)
by extending Percus’ method to be applicable to quantal mixtures. As a first
example, we have obtained a quantal hyvpernetted chain equation for mixtures,

which is written as

1, (7)) =1, (o) (2-12)
with
v (r) =0, () — 3 % (Qz( r—r'[){n,G715) —ntdr’, (2-13)
AN
where 2,"(7|u) 1s defined by
02 () =N e () (2-14)
I

m terms of the soluiion ' (r) of the wave equation in the presence of an external

potential #:

( e .
L ) g ) = a0, (2:15)
1 2m,

and 75" denotes the distribution {unction of component 7.  That is, 7,°(71«) denotes
the 7-species particle density distribution in the presence of an external potential
# 1 the case where 7-species particles have no interaction with each other. Ina
second example, by dividing the bare interatomic potentials vy into the weak long-
ratige part vy" and the strong short-range part vy°, we have obtained an integral

equation appropriate to charged mixtures in the form
PCi, () = = F[(B:B) ™G0, ) {1/F0, (riof) = 1] =T, (M ol (), (2:-16)%)
where
F {0, (rlof) — T =49 o [0 (rlofy) /e — 1] Toln, (rlof) — 1114, (2-17)
and (B;B;)® with 2 real number « is an operator defined by
Fol (BB f(r) 1= (1" 1e™) “F oS (1) ] (2-18)

acting on any function f(7) which has the IFourier transform.
It should be kept in mind that there is the Ornstein-Zernike relation between
F;;(7y and Cy; () for quantal mixtures which is written in the form

¥ Eq. (2:57) of 1.
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344 J. Chihara

Uiy () = 1= (BiB#Cyy (1) + 2] j{g (Ir=r']) =1} 2 (BB,"C, (7 dr!
(2.19)®

In general, the isothermal compressibility £; of a binary mixture is given by

the formula®¥®
> i
-*j—*hln\ 72470, ‘fQL 1 BU: (})}], (2-20)
Kr @0 kl ()7;,(7')

which can be written with the aid of Eq. (2:1) for a quantal mixture in the
form

B im {_’%—1- L2 2C(Q) 12 Cos (Q) — 2ninnCia (Q )} (2-21)
o 1e 1o

For a classical neutral binary mixture, Eq. (2-21) is reduced to a well-known form*

B
Kr

~= 1y 1y — 1, "Cra (0) — 715" Clg (0) — 272,2,C 1, (0) (2-22)

§ 3. Formulas in liquid metals

(N\)  Response and correlation functions

In liquid metals, we can deal with the ions classically, so that the results of

§ 2 can be written in simpler forms because of ¥, =1 and 2" =S;(Q). and the

free-ion polarizability is given by a classical one

= exp( ¢ .
2o () =1~ pi >dt (3-1)
'\//L - x—1
with o= (w/O) vV M3/2. In liquid metals, the Fermi energy Ep of the electron
was is so high compared with the temperature of liquid metals that the electron gas
is treated as at absolute zero temperature. Therefore, the free-electron polariza-

bilitv in the zero self-energy approximation may be written as

211
o = C = " 3.2
S1e” (@) SFF[ ‘2O{QW1 (f)(sf)}], (3-2)
B(z)=(1—Hn{(z+1)/(z—1)} (3-3)

with v.=0/2+ (1/2Q) - (®+07) in units of the Fermi-wave number Qy and Er.
Thus, we can express the density-density canonical correlations in terms of
N Eq. (2-41) of L
## Thys equation may be obtamed by extending the derivation of Kirkwood-Buff?® to the case
ol the relations between Q-dependent quantities with the use of the formula®™
0n:/08u;=1im ¢ 0 Fol[On: (r|U) 6 {—3U; ("}

=1im g0 V7472, %Y .
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Liquid Metals as Flectron-lon <Systems 346

the DCF by taking the Fourier transform of the Ornstein-Zernike relation

Su(@) = 2" = 11— mC..(Q) 1"}/ D(Q), (3-4)
Ser(Q) = 10" = (nony) *Coy (Q) 10"/ D(Q). (35)
720 = {1=n,Cr(Q)} 2"/ D(Q) (3-6)
with
DQ)={1-mCu(Q} {1 -nCo( D 1" —n0.Cll (D 7. (37

At this point, it is important to realize that, although the electrons in a liquid
metal behave as a quantum fluid, the density-density canonical correlation of elec-
tron-ions v, reduces to classical form, namely, the structure factor S,;(Q): the
reason for this fact is discussed later.

The relation (2-7) in the case of liquid metals states that, when an ion is
fixed at the origin, the electron density distribution around it is connected to S,;(Q)
by the relation

neckod " a1l == 5.0, (3-8)

le
which is rewritten by the inverse Fourier transform as
] / — - — g ‘
”0(7.’[>/”<’7(]61(1) *(]I(’(])‘ (‘SED

In the case where an electron is fixed at the origin, the ion density distribution

around it satisfies the relation

niF g {’”1 v

5 . Le \
). 1} e SelQ) (3-10)

nr Le Ze

that is, n;(rle) fiy¢5. (7). In this respect, we should refer to the work bv Cowan
and Kirkwood.” in which thev used the relation n,(r|e)/ny=n,(r|I1)/n, in their
calenlation for ¢, (7)) in liquid metals with the aid of the Debye-Hiickel, Thomas-
Fermi theory. However, this relation is not an exact one as shown by Eqs. (3-8)
and (3-10) since the electrons in a liquid metal constitute a quantum fluid. Also,
their identification 7, (7

€) /1.~ 0. (r) is no longer exact in a liquid metal.

It is important to know the distinction between #2,;(r|[j) /7, and g;; (+) in quan-
tum fluids although 7 (r|7) /7, =¢:; (r) in classical fluids. In previous work™ on
the electron gas in the jellium model, we have calculated the electron density
distribution around a fixed electron #n(r|v)/n, and the radial distribution function
g(r). and have shown that these two quantities are different from each other for
small interparticle separation while they become identical in the large distances:
The reason for this difference is attributed to the recoil effect and the indistinguisha-
bility of identical particles since n(rlv)/n, is identical with the density distribution
around a point impurity particle with an infinite mass and the same charge as an

electron.  The same is the situation for the electrons in a liquid metal.
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346 J. Chihara

Following March and Tosi® we can define an effective direct correlation fune
tion of ions as

9 (7 —1=CsF(r j{gu(; y —1YCE (lr—¢" N dr’ (3-11)

and treat liquid metals as one-component svstems.  From the Fourier transform of
the Ornstein-Zernike relation (2-19), we can rewrite the definition of CE(O) as

]_7771ICWdi Q) = 17-”1611(Q2 .Zioe

: o . (3-12)
1—- }/ecee (Q) ZQM XQ“

This expression differs from that of March and Tosi® in that ., and ~," are
W VAY
replaced by S, (Q) and unity, respectively: This distinction comes from the fact
that their definition of the DCTF is the same as that of the classical DCF of binary
mixtures. On the other hand, an effective DCF defined above mav be introduced
from a different point of view. The jondon response function of liquid metals in
1 1 1

the two-component model is written on the basis of a generalized Hartree approxi-
mation” in the form

7 (:1
1o () = (@) , (3-13)
1 Hm?z' (Q, U))ZQOI(U))
where
SO wy= - Cu(Q), 2% (C. m), (3-14)
Cht Q) .
(Q, ) =1 el 41 1/e/(Q, ) (3-15)
2l O Gy e Qo)

If we neglect w-dependence of $1(Q. w). Eq. (3-14) reduces exactly to
23S Q- 0) =2 1/855(0) — 1= — i, CE D), (3-16)
that is, i this approximation Eq. (3-13) is written as

e (W) (317)

17
% (U)) = = .
he 1 1,C () 70" ()

This is nothing but the result from a one-component model for liquid metals,
e . . . . ~eff
where CH¥(Q) is used to caleulate 7" (w). Therefore. introduction of C37(Q)
. . . . ]
m an attempt to ftreat thld metals as one-component svstems 1s equivalent to the

eff (

1eglect of w-dependence of ©5 L) in the two-component model in the generaliz-

ed Hartree approximation. The result of numerical calculation based on Egs.

(3-13) and (3:17) is shown in §4.

(BY  Compressibility and Friedel sum rule

Before proceeding to the numerical calculation of correlations, we may discuss
the general properties of a liquid metal, provided that we can divide the electrons

distinetively into core and conduction electrons as is the case in a simple liquid
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Liquid Metals as Electron-Ton Systems 347

metal.

From Eqs. (3-4) to (3-6), we obtain in the zero wave-number lmit

N LD . al ., le
lim 42 —Jim Al Qe 1 (3-18)

e 1o e {1 Cu(@lge”  Z
and similarly

lim 4"/ =1/VZ , (3-19)
Q-0

since in the small Q region the DCF have the following singularities due to the

Coulomb interaction:

~ 4ese
C;; (Q) ~o g2 (3-20)

1)

By combining Eqgs. (3-18) and (3-19), we find
1= 2365 = VZ 18 s (3-21)

which 1s written in an alternative form:
S,e (0) =ZS;(0) =VZ.S,,(0), (3-22)

because of general relations®™ in binary mixtures

lim (z2m )25 " = - e (g Y2S;, (0). (3:23)
-0 0B

These results, (3-21) and (3-22), have been obtained previously.

4), 8

Next, we express the structure factors in the zero wave-number limit in terms
of the isothermal compressibility of a liquid metal. In the first place, we shall
try to write S;(0) in terms of the DCF; Eq. (3-4) is rewritten as

L Gl Q) - mCrl @) n G 1" - Cr(0) /O ) Cu(O))

ZQII 1— ”eéee (Q) ZQOE
(3-24)
whence we obtain by taking the zero wavemnumber limit
lim L 142, 8 (0) — 7200, Cl(0) — 220, T (0),  (3-25)
@0 g Y=o
because of
2 2 - ~ ~
lim g 47 (Z0) {1 ¢ IBSQLW} L (0) = 2T, (0) — 2284, (0). (3-26)
Q-0 Q“ CII (Q) Cee (Q)

In this expression, the prime denotes the non-Coulomb part of the DCF, that is,

1 (Q)=Cis () + B@Q%e—]- (3.27)

In the second place, on making use of Eq. (2:21) we can relate Syp(0) to the
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348 J. Chihara

isothermal compressibility as follows:

&

Nkt

14 %EFBZ g G (0) — 220, E0 (0 — 270,80 (O

—=1/8,,(0). (3-28)

Here, we have used the relation™ limg.37¢" =2/3Er which vields to the Bohm-
Staver term’® in the above formula for £

Now, the above results are summarized as

S (0) = Z8,,00) = VZSp (0) = Zn e Ty (3.29)
where
= T4- ZEFTZ%I@;IU)) Gl (0 — 27,8 (0). (3430

It is important to realize that if we use the classical form of the DCF, as was

o . . -
¥ the Bohm-Staver term does not appear in the formula

done by March and Tosi,”
for the isothermal compressibility.
Furthermore, we can also obtain the similar [ormula for fused salts by taking

the classical limit of Eq. (3-25) and by putting Z=1 and n,=n,=n

1 =2—nCl 0y = nChL0) —2nC,(0), (3-31)

kgl p

and there follows the same relation as that of liquid metals

S5 (0) =55, (0) =5, (0) =~ nkgTk . (3-32)

> for molten CuCl indi-

A recent experimental result obtained by Page and Mika"
cates the trend to be consistent with the relation (3-32) in the small wave-number
region.

Moreover, the physical significance of the relations (3-21) and (3-22) can

be clarified by rewriting them in the form

—Ze =g j{ne(r}l) —n)dr + Ze J‘{n[(ﬁ[) —updr, (3-33)
Ze— —en, j{ge,()-) Aydr - Zeny f () — 1 dr (3-34)

which mean that the net charge surrounding a given ion is equal to the negative

of the charge on itself. By combining Eqs. (3:33) and (3-34) we obtain
j{ne (r| Ly —ng dr =, j-{(/d(z‘) — 1 dr=25,00). (3.305)

Since the electron density distribution 2, (7 1) around a fixed ion can be represented
in terms of phase shifts 7,(Q). we obtain from Eq. (3-33) the Iriedel sum rule

concerning the electron distribution around a constituent jon in a liquid metal

220z 1snbny 0z uo 3senb Aq 867£881/0%€/2/GG/a101e/did/wod dnoojwepese//:sdiy woly papeojumoq



Liguid Metals as Electron-lon Systems 349

j 010G o dr = Z85(0) = 2 3121+ 1) 5, (Qu). (3-36)
T 1

This equation shows that the distortion of the electron density around a constituent
jon in a liquid metal is small due to the factor S;(0) which is of order 107%, and
also phase shifts 7,(Qp) will be small. This situation presents a strong contrast
with the case of an impurity ion in an electron gas immersed in the uniform background
of positive charges, where the ion is screened by building up the large electron

accumulation around it to fulfil the condition

j{ne(rﬂ) st dr=7. (3-37)

This fact can be understood more clearly by noting thatin Eq. (3-33) the second
term on the right-hand side makes larger contribution to compensate the positive
charge of the ion than the first term: that is, the ion constituting the liquid metal
keeps the charge neutrality by displacing away the positive charges (jons) rather
than by inducing the electron charge accumulation around it.

In addition, this situation can also be investigated {rom another point of view.
In the hypernetted chain approximation an effective mean field potential experienced
by electrons around a given ion is expressed by Eq. (2-13), of which the Fourier

transform is written as

VB (Q) =2ur(Q) + - Cor(Q) — - Gl (3-38)
3 B Ee(Q)
with §QE(Q)EI~1166%(Q) ve-  1f we take a pseudo-potential approximation to
v (7), the electron-on interaction can be treated as a weak one so that it is valid
to approximate 6(;[(@) = —3v,;(Q), which is nothing but the random-phase approxi-
mation: then we obtain

VH(Q) = 17 80(Q), (3:39)

and in the zero wave-number limit
0% (0) = — %EFZSH(O) . (3-40)

Therefore, we realize that the effective electron mean field potential caused by

the ion is small in the small wavenumber region owing to the factor S;(0).

§ 4. Numerical calculation

In the preceding section, we have studied the general properties of simple
liquid metals on the basis of the result of I. In this section we calculate the
structure factors S;(Q), the RDF ¢;(») and the dynamic structure factors S; (Q,
m) of a liquid metal with the use of mode!l potentials
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350 J. Chihara

v (r) = (Ze)” exdt (L) /r —hard-sphere | (4-1)
v (r) = — Z& exl (%) /. (4-2)
Ve (7)) = €%/ 7. (4-3)

As integral equations for ", we use Lq. (2.16) with v, =07, =0, of which the

Fourier transforms are written as

Cr(Q) = — 3ok ()11 —Gr(Q)} +C5,(Q). (4-4)
Cr(Q) = — 307 (Q) {1 —Gr(Q)}. (4-5)
Coe(Q) = — B0, (D) {1 =G (O}, (4-6)
where
080k (Q)Grr(Q) = — (%:‘)‘(ﬁ ]25; |z f@ [ 4o~ 0@, 1,

4.7

, . v (o, 2Epy s 3 (7, & D i
(1) Bv, (QYGL(Q) = <2—E;> (/ijF:/‘ \/Z%:f‘ L dr tSp () h(Q, 15 an),
(4.8)

3 (4% @ Qo]

Gee<») = 7-—\{ dz ‘See Z W‘l 4 {17; T90) ¢ J = (> 49\
) i} {See (1) I 50 n — ( ( )
pit

hip,t: ai)EJ

ip

. ZﬁZ
dg SO gy

¢ S

L oot ey L P [ 2 (o — Bt (p - 03],
2cy 2

E (r)= (m e}(p%:t)dt; S, (Q) =90"/ (1" 0" (4-10)

Jz

and

1,C3(Q) = F@O) + ny jK(Q O Fuls) +7nls) + Crilo)bds,  (4-11)

F(Q) =247 {sin(aQ) —aQ cos (aQ)} / (a Q) R
KO, 5= [sin{@ 9} sin{(Q-9)a) 413

©.9 EQ[ (Q+s)a (Q--s)a ] k )
Fir(Q) = {S(Q) — 1 Crr(Q); 70(Q) =7 Cr(Q) (414

with Q=0Q/Qyp. a=Qpay, 0, =47én,/m, and 7 the packing fraction.

In this calculation, the parameters of the model are taken as appropriate to
Na in the following way: The diameter of a hard-sphere, ap=3.4 A, the packing
fraction 7 =mna;’/6=0.45, the mass ratio of ion to electron M;/m,=4200, Z=1,
T=500°C, 2.0r=0.2 and £,=+/2%,. These parameters give the factor erf(Z7)
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Liguid Metals as Electron-Ion Systems 351

to the long-range part of the iondon potential the following values: erf(Ziaz) =0.6,
erf(Z,-2a,) =0.9 and erf(Z;-3a;) =0.99.

The equations from (4-4) to (4-6) are solved by an iterative procedure.
In order to avoid the difficulty associated with the Coulomb divergence, we treat

the small wave-number region with the use of the relation

Cr(Q)Co(Q) —C2(Q) =C (D) Coe (Q) A(Q), (4-15)
where
__1-B(Q) +C%:(9) /C1(Q) 4.16
4D 14C5:(0) /C(Q) (16
B(Q) = {C%(Q) ¥/ {C(Q)C..(Q)}. (4-17)

Once we solved equations for Y, we can obtain immediately the ion-on and elec-
trondon RDF by their inverse TFourier transforms, since %" =Sp(Q) and 7,7
=5,;(Q). In order to obtain the electron-electron RDF, however, we must evaluate
the following integral:
Se(@ = [T 1 Imggret(0)}d 4.1
ee (Q) == e mA{Be" (@) dw . (4-18)
This integral can be transformed by a suitable choice of contours™ into the form

Sl =10*(0) +2 3 g (2284). (4-19)

By using Eqs. (2-8) and (2-9), the right-hand side of Eq. (4-19) is represented

in terms of

1" (Gw) =1V gye” erfe(y), (4.20)

o s s 3 [1 N 1—-q2+t}21 1+ +2" v {t #1<1—q _1<1—[—q }]
4 - —_— = In-— . — +1 - *
i) =g o g g O S e (0 et ()
(4.21)

with =+ (Ep/kTs) - (M;/m.) (w/2Ep) (Qp/Q), a=0Q/20r and v=(W/2Ey)
X (Q/Qr). The sum in Eq. (4-19) has been carried out by using Gregory’s for-

mula.”

It should be mentioned, at this point, that S;(Q) can be approximated
by % since S,;(QQ) can be, also, expressed exactly by the sum similar to Eq.
(4-19) and all terms except %o (0) =%, are very small compared with it.

In Fig. 1 the structure factors S;(Q) are shown; the dotted curve denotes
Si(Q) calculated from the Percus-Yevick hard-sphere model with 7=0.45. On
comparison with the Percus-Yevick result, the main peak position is shifted to the
small wave-number side and its shape is distorted asymmetrically, The shoulder
in the main peak comes from the ion-on potential consisting of the hard-sphere

part and the Coulomb part. This shoulder is present also in the case of the one-
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X component model® for an ion fluid

‘\\ immersed in the negative charge
20 ‘1\ backgreund, if we wuse the same

! ion-ion potential and the same in-
tegral equation to this case. The
: electron-electron  structure  factor
of Sie \ g See () shows no significant difference

H In  comparison

! = except near Q=

with that calculated from the jellium

o LJ o model.”™ It should be noted that

3‘OQ/4C§F %0 80 70 80 90 the i01.1»e]ectron structure  factor
S, (Q) 1s very small.

Fig. 1. Structure factors of ions, electron-ions and n
electrons. The dotted curve is calenlated from the
Percus-Yevick hard-sphere model with 7=0.45.

the case where 7,7 are
determined by Eq. (2-16) the com-

pressibility can be represented as

— 1 -

1 . 2 ZEP<
nikg Tk, ‘B/eBT ksl

/ II ‘ /Nf’é’ 2/”(’)
—1;C5(0) — 1, C5(0) 21,85, (0), (4-22)

where

-

/z”—hm J? LG, (D

HI
1 = N d s ,
L as, 0 - m.,»}z[\{r bi (O} + 14, <z>], (4.23)
2 0 dt B
90y (Q/ Q)= T2 1y w5 (D) (4-24)

BwrZ nr Ir

The model potentials (4-1) ~(4-3) and the parameters used in this calculation give
the second Bohm-Staver term a values 28.5, the third term 38.0 and the fourth
term a value —66.0 with 6?6(0):~§Q(O)TO' the sum of these terms is 58.2.
In the third term, /5 and #y are negligible compared with the electron contribution
/.. This result shows that the hard-sphere part of ion-ion potential has an im-
portant contribution to the compressibility in liquid metals as well as the Bohm-
Staver term and electron correlation.

The RDF ¢y (r) are shown in Fig. 2. At first sight it is surprising that
there is no effective correlation between ion and electron in this model. As is
well known in the Wigner-Seitz method for the calculation of band structures,
an ion in a simple solid metal does not disturb the unilorm electron density distribu-
tion significantly except in the ion core region. The above result g, (#) =1 shows
that this situation also holds in liquid metals. The analysis in § 3 also supports

this fact. Therefore, we may expect that in simple liquid metals the ions are

220z 1snbny 0z uo 3senb Aq 867£881/0%€/2/GG/a101e/did/wod dnoojwepese//:sdiy woly papeojumoq



Liquid Metals as Electron-Ion Svystems 353

(a) Q/Qe
2.0F [
1.0+ gee\
_ Gy
0.0
g 1/ N 10 ; ; ; . —
T (B) Q/Qr
00 10 20 30 40 50 60 70 80 30 100 10
rQe
Fig. 2. Radial distribution functions of ions, electron- =3

ions and electrons.

0.0 1.0 20 30 40 50
w/\/2_ VTQ

Fig. 3. The dynamic structure factor Sr;(Q, w) of 1oms, calculated from the
one-component model (A) and that from the two-component model (B).
Si(Q, ») in (A) has d-function-like peaks in the positions corresponding
to peaks in (B)

moving around in the homogeneous eleciron gas as though they had no interaction
with the electrons, and thus the electron gas in the simple liquid metal is quite
consistent with the jellium model: ¢..(») in Fig. 2 coincides with that calculated
from the jellium model.™

Curves of the dynamic structure factor of ions S;(Q.w) calculated from Eq.
(3-13) are shown in Fig. 3(B): curves in Fig. 3(A) are obtained on the basis of
the one-component model (3-17). The dynamic structure factor S;(Q, w) based
on the two-component model differs {from that based on the one-component model
in that the former (Fig.3(B)) has the broader zero sound peaks than the latter
(Fig. 3(A)) at the small wavenumbers. This difference is ascribed to the fact
that the zero sound of ions in the two-component model subjects to the Landau
damping due to individual motions of the electrons contrary to the one-component

model.

§ 5. Coneluding remarks

In the present work, we have shown a method of calculating the ionic and
electronic correlations in liquid metals as coupled electrondon systems., Since in
a liquid metal the ions behave as a classical fluid and the electrons constitute a

quantum fluid, theories to treat classical and quantum liquids in a unified manner
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may be regarded as examined by applying them to liquid metals. In fact, the
application of our theory to liquid metals reveals the importance of quantal DCF
C'if () in dealing with classical and quantum fluids in a unified fashion:

For example, the compressibility formula (2-21) for a quantal binary mixture
is applicable to fused salts, liquid metals as well as classical neutral mixtures; the
Bohm-Staver term in formula (3:30) for liquid metals could not be included with-
out the use of the quantal DCF.

Without using the quantal DCF we may not construct also those integral
equations for gquantum mixtures which reduce to equations for classical mixtures
in the limit #—0; as a simple example, the random-phase approximated equation
for quantum mixtures is given by 6'1-1- (r) = —Bvy (r), and not by Cy (1) = — Buy; (7).

In §4 we have used an integral equation for the ions

PCu(r) = —V [gu(r) {#H0 —1}] — g, () P B0% (). (5-1)

This equation is quite similar to that used previously for an ion liquid in the
uniform negative charge background, except that the DCF is the quantal one: we
must use this quantal form in liquid metals due to the presence of electrons which
behave as a quantum fluid.

Turthermore, the difference between our definition and that of March-Tosi”
concerning the effective ion-don DCF also shows the significance of the quantal
DCF: this problem is closely concerned with establishing integral equations with
the use of the quantal DCF as mentioned before.

It should be noted that an ion constituting a liquid metal distorts the electron
charge distribution so as to satisfy the sum rule [{n,(+|I) —n} dr =25,,(0), which
presents a contrast with the case of an impurity ion in the jellium model: [ {n,
X (r|I) —npdr=2. That is, a constituent ion in the liquid metal displaces only
about one-hundredth electrons from the uniform electron distribution compared with
an impurity ion in the jellium model due to the factor Sy(0)~107%  This fact
gives an answer to the difference in the positron annihilation experiments between
solids and liquids: a positron in a solid metal cannot push away ions surrounding
it so that it behaves as if in the jellium model and satisfies the sum rule (3-37)
with Z=1 by accumulating electrons around it. Omn the other hand, a positron in
the liquid metal can displace ions off from its surrounding and as a consequence
electrons accumulate around it in a much smaller amount than in the solid metal.

In the present calculation we have used model potentials for ion-don and ion-
electron interactions. In order to compare with experimental results of S;(Q),
we must use more rtealistic potentials. In particular, the quantal hypernetted
chain equation should be used in attempting to investigate the conduction electron
distribution in the core region of an ion, since in this approximation #,(r]I) can
be given by solving the wave equation (2-15). However, RDF, ¢, () and ¢.(7),
in this calculation may not be altered essentiallv even if we proceed to the calcula-

tion in a refined manner as mentioned above. provided that [ {n.({1) —n.}dr=20
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as is the case in simple metals.

In simple liquid metals the behaviour of the electron is quite similar to that

in the jellium model and the ions are moving through the electron gas without

disturbing its uniform charge distribution on the average. This picture makes a

strong contrast with Ziman’s neutral pseudo-atom model®” of Jiquid metals, which

states that each ion moves about in a liquid taking with it screening charges

rigidly:

His model is founded on the linear response theory to calculate the

screening charge distribution around each ion.
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