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Dual particle image velocimetry (dual PIV) measurements have been performed to investigate the space–time

correlations in two subsonic isothermal round jets at Mach numbers of 0.6 and 0.9. The correlation scales are

analyzed along the centerline and in the shear-layer center over the first 11 jet diameters from the nozzle exit. To

provide robust results over a wide range of flow conditions, these correlation scales are given in terms of their

appropriate quantities, namely, themean or rms velocity in reference to velocity and themomentum thickness or the

half-velocity diameter in reference to length in the shear layer and on the jet axis, respectively. From these results, a

discussion on the modeling of turbulence in jets is addressed. The self-similarity of some space correlation functions

in the shear layer and on the jet axis is shown. Furthermore, far enough downstream in the shear layer, some of the

ratios between the space and time scales are relatively close to the values expected in homogeneous and isotropic

turbulence. It is also found that the ratio between the integral length and the time scales in the fixed frame is of the

order of the local mean flow velocity. In the convected frame, the appropriate scaling factor is the rms velocity.

Nomenclature

c0 = ambient sound speed
D = jet exit diameter
D1=2 = half-velocity diameter, U1�x1; x2 �D1=2=2� �

Ua=2
Lc = potential core length, axial length where Ua �

0:95 �UJ
Lcii = length scale in the convected frame, Lcii �UcTcii
L�j�ii = integral length scale
M = jet Mach number, U1�x1 � 0; x2 � 0�=c0
Mc = convection Mach number, Uc=c0
Rii�x; �; �� = autocorrelation function
Tcii = integral time scale in the convected frame
Tii = integral time scale in the fixed frame
t = time
Ua = mean velocity on the jet axis, U1�x1; x2 � 0�
Uc = convection velocity, kd�c=d�k.

Ui = mean velocity
u0i = velocity fluctuation
ui = root mean square value of u0i, ui �

������
�u02i

p
where

the overline operator stands for ensemble
averaging

UJ = jet exit velocity, U1�x1 � 0; x2 � 0�
xi, zi = positions; the origin is located at the center

of the nozzle, in the exit plane
�� = momentum quantity
�cii = reference time for the convected frame, L�1�ii =ui
�ii = reference time for the fixed frame, L�1�ii =U1

�ci = location of the correlation peak in the convected
frame

�i = separation vector in the fixed frame
���j�0i , ���j�0i = locations of first zero crossing of Rii�x; �j; � � 0�,

where ���j�0i > 0 and ���j�0i < 0
� = time delay
�0ii = time delay to first zero crossing of

Rii�x; �� 0; ��

Subscripts and Superscripts

1 = component in the axial direction
2 = component in the radial direction

I. Introduction

T HE concept of correlation is well adapted to characterize the
space–time statistical properties of turbulence. As an example,

one of the first applications to aerodynamic noise was derived by
Proudman [1] from the theory developed by Lighthill [2,3]. To
estimate the acoustic intensity I�z�, Proudman introduced the
correlations of the turbulent fluctuations and related this quantity to
the fourth-order time derivative of the two-point two-time correlation
of the Lighthill tensor. For isentropic, stationary, low Mach number
and high Reynolds number flows, this reduces to

I�z� � 1

16�2�0c
5
0z

2

�
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�u0iu0j�x;t�u0ku0l�x��;t��a j�a�z��=�c0z� d�3 dx3
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where �a is the retarded time. The problem then reduces to the
evaluation of the integration of the fourth-order velocity correlations
over the flowdomain. Ribner [4] tackled this problem by considering
isotropic turbulence superimposed on a mean shear axisymmetric
flow. The derivation of the model is not reproduced, but through
usual statistical assumptions, the integrand is expressed as a function
of second-order velocity correlations. To develop an engineering
tool, a reasonable idea is to first introduce some numerical data
provided by a k–� turbulence model. Béchara et al. [5], Bailly et al.
[6], and Khavaran [7], among others, developed such applications to
subsonic and supersonic jet noise. Note that a connected and
interesting discussion has been proposed byMorris and Farassat [8].
Assuming a separation of variables, the space–time second-order
velocity autocorrelation function

Rii�x; �; �� �
u0i�x; t�u0i�x� �; t� ��
	ui�x�ui�x� ��
�1

is usually expressed as

Rii�x; �; �� � f
��

�j

L�j�ii

�
j�1���3

�
g

�
�

Tii

�
(1)

in the fixed frame, and

Rii�x;Uc� � �; �� � f
��

�j

L�j�ii

�
j�1���3

�
g

�
�

Tcii

�
(2)

in the convected frame. Here,

L�j�ii �
1

2

Z
�
��j�
0i

�
��j�
0i

Rii�x; �; � � 0� d�j

is an integral space scale and

Tii �
Z
�0i

0

Rii�x; �� 0; �� d�

and

Tcii �
Z
�0i

0

Rii�x; �� Uc�; �� d�

are integral time scales in the fixed frame and in the convected frame,
respectively. The functions f and g and the space–time integral
scales are taken from experiments or semi-empirical relations; for
instance, see Ribner [9], Goldstein and Rosenbaum [10], or Morris
and Farassat [8]. Note also that, with the progress of time-dependent
Navier–Stokes simulations, a direct computation of these functions
is also possible, as proposed by Morris et al. [11] and He et al. [12],
for instance.

Several experiments have been devoted to the measurement of the
correlation scales of velocity in nearly isotropic grid-generated
turbulence [13]. A detailed bibliography of the pioneering
investigations can be found in Comte-Bellot and Corrsin [14]. In
such flows, the turbulence decreases due to viscous dissipation
effects only. From physical arguments, Batchelor [15] and
Townsend [16] estimated the space and time integral scales
according to the viscous dissipation rate � and u1 as follows:

�� � u21

L�1�11 =u1
or �� � u21

�c11

where the constant � is of the order of unity. This was confirmed
experimentally by Comte-Bellot and Corrsin [17], who obtained a
value of � close to 1. In a free shear flow, turbulence decay is mainly
due to the intensity of the mean velocity gradients. The
measurements of Davies et al. [18] supplied the following estimates

of the integral scales L�1�11 and T11 in the mixing-layer of a jet:

L�1�11 �
5u1

jdU1=dx2j
and Tc11 �

3

jdU1=dx2j

Assuming a hyperbolic tangent profile for the mean flow (see also
Eq. (4) in Sec. III), the mean velocity gradient can be estimated by
jdU1=dx2j �UJ=�4���. By noting [18,19] that u1=UJ � 0:16, the
two following equivalent relations can then be derived:

L�1�11 � 3:2�� and Tc11 � 12
��
UJ
� 0:6�c11 (3)

The scaling of a characteristic time associated with the correlation
function according toUJ and �� is in agreementwith the results found
by Dimotakis and Brown [20] in a planar turbulent mixing layer. In
these investigations, the velocity fluctuations have been measured
with two single hot wires, and thus only the correlation of the axial
velocity could be characterized. With the development of new
measurement techniques, the database on velocity correlations in jets
has filled out. Using laser Doppler anemometry (LDA), Lau [21] and
Kerhervé et al. [22] investigated the correlation of the radial and axial
velocity components in high-speed jets. More recently, the
development of particle image velocimetry (PIV) has allowed the
exploration of the correlation functions over a 2-D map and for a
large, almost unlimited, number of reference points. Examples of 2-
D contour plots of space correlation functions are found in Ukeiley
et al. [23]. To measure the space–time distribution of the correlation
functions, Bridges and Wernet [24] used two coupled PIV systems
(dual PIV) to control the time delay between two velocity snapshots.
Thiswas used tomeasure the space–time correlations of the axial and
radial components of velocity in the shear layer of subsonic jets.
Thanks to recent breakthroughs, a PIV acquisition at tens of kHz is
now possible, though still restricted to small acquisition windows,
which is very promising for the measurement of space–time
quantities, for example, the time-resolved PIV measurements made
by Wernet [25]. Other techniques have also been developed, for
instance, the combined use of LDA and PIV by Chatellier and
Fitzpatrick [26] and the use of quantitative optical deflectometry by
Doty and McLaughlin [27] and Petitjean et al. [28].

However, in spite of the increase in the amount of correlation data
in jets, a fine description of the correlation scales is still needed to
draw robust conclusions over a wide range of flow conditions. In the
most recent studies, the evolution of the correlation scales in the shear
layer is usually expressed as a function of the axial distance x1.
Owing to the earliest studies of Davies et al. [18] and Dimotakis and
Brown [20], these results depend on the expansion rate of the shear
layer specific to these experiments. The use of these databases as
input in acoustic models, for instance, is then limited to the range in
which the extrapolation of the measurements is valid, which is not
straightforward to predict a priori. Furthermore, to the authors’
knowledge, the characterization of the correlations of velocity on the
jet axis, especially just downstream of the potential core, is still
incomplete.

The aim of the present work is to provide measurements of the
space–correlation scales in subsonic isotherm round jets for the axial

and radial velocity components, L�j�ii , Tii, and Tcii. Turbulence is
assumed to be stationary in space, and the present results are reported
with an appropriate scaling. The ratios between the space and time
scales are also analyzed in light of the values expected for
homogeneous and isotropic turbulence [15,16]. In the present work,
a dual PIV technique is used to explore in detail the shear layer and
the jet axis at two Mach numbers,M� 0:6 and 0.9. The jet facility
and the instrumentation are described in Sec. II. Section III is devoted
to the one-point statistics of turbulence. PIV data are compared with
the LDA and pitot tube data for validation. The correlation length
scales are provided in Sec. IV and the correlation time scales in
Sec. V.
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II. Experimental Setup

A. Facility

The experiments were performed in a facility of the Ecole Centrale
de Lyon (ECL) designed for acoustic testing of transonic single-
stream hot jets. This jet facility is composed of a centrifugal
compressor (maximal power of 350 kW, mass-flow rate up to
1 kg � s�1), an air drier system (power of 12 kW), and of a set of
controllable electric resistances (power 64 kW, stagnation
temperature <500 K). A nozzle of conical shape with an inlet
diameter of 90 mm, an exit diameter of D� 38 mm, an inside face
angle of 18 deg, and a lip thickness of 2 mm is used. In this
installation, Mach numbers up to 1.6 can be investigated and the
static temperature can be kept equal to the ambient temperature for
M < 1:1. The measurement of the near-field and far-field acoustic
spectra over thewholeMach number range of 0:6<M < 1 are found
in Bogey et al. [29].

In the present study, the aerodynamic characterization of the jet
alone is concerned. TwoMach numbers are prescribed,M� 0:6 and
0.9, corresponding to an exit velocity of UJ � 202 and 303 m � s�1,
respectively. The temperature is controlled to get isothermal
conditions. At the nozzle exit, the Mach number and the static
temperature are, respectively, kept with less than 3% variation and
2�C according to the ambient temperature throughout the
experiments.

For the use of PIV, the jet is seededwith droplets of olive oil. Eight
injectors are located in the settling portion of the jet facility, at 3 m
upstream of the nozzle exit and spread out regularly over the
circumference of the round tunnel. The injection of the olive-oil
spray is made through flush-mounted annular slots to reduce flow
distortion. The olive-oil droplets are produced by a homemade
generator. The droplet size has been estimated by particle dynamics
analysis (PDA) in nearly standard thermodynamic conditions and in
the absence of flow and has been found to be less than 1 	m. To
measure the velocity of the ambient flow entrained and mixed in the
jet core, the experimentation room is seededwithmineral oil droplets
produced by a commercial smoke generator. A similar PIV seeding
for jet flows was used by Samimy et al. [30], for instance.

B. Instrumentation

The dual PIV system consists of two coupled conventional PIV
systems, as shown in Fig. 1. Each system is composed of a pulsed
double-cavity Nd:Yag laser (NewWave Solo PIV III laser or Quantel
Brillant laser, wavelength of 532 nm, energy of 50 mJ=pulse, pulse
length of 5 ns, and operating frequency of 4 Hz) and a double-frame
charge-coupled device (CCD) camera (PCO SensiCam, 12 bits,

1280 � 1024 pixels). The laser beams are combined by a homemade
optical system and then refracted by a cylindrical lens to form a light
sheet (2 mm of thickness) propagating across the jet axis. The two
cameras are mounted side by side and can be traversed in the axial
direction over more than 15D. A passive beam splitter allows the
visualization of the same region of the jet with the two cameras.With
a working distance of nearly 600 mm between light sheets and
cameras, and using objectives with a focal length of 60mm, a field of
view of 2:2D � 1:8D is obtained. The calibration is performed
before operating the jet by recording with both cameras the image of
the same calibration plate. Because of the long exposure time of the
second frame of CCD cameras (120ms), a fast optical shutter is used
with the first camera. Owing to the small closure delay of the shutter,
the firing of both cavities of the second laser is triggered when the
shutter is closed, and the second frame of the first camera is not
contaminated by spurious diffused light during operation of the
second PIV system.With this device, the time lag � has been lowered
to 20 	s.

The synchronization of the two PIV systems is carried out by a
commercial PIV software (DaVis v7.1 from LaVision). The basic
acquisition cycle breaks down as follows. Two conventional single
PIV acquisitions are operated successively at a time interval of �.
This time lag � is controlled by the software and has been varied from
20 	s (minimal polarization time of the shutter) to 250 	s at M�
0:9 and 330 	s atM� 0:6. To obtain � � 0, the data from one single
PIV system are used. The time interval between the two images
required for each of the two conventional single PIV acquisitions is
2:5 	s for M � 0:6 and 1:6 	s for M� 0:9. After postprocessing,
two instantaneous velocity fields time lagged of � are then obtained.
This acquisition cycle is repeated at a frequency of 4 Hz to obtain
2000 velocity field pairs.

The postprocessing of the velocity maps is operated by the PIV
software after the acquisition is completed. A multipass algorithm is
used, with three steps from the initial window size of 128 � 128
pixels to the final size of 32 � 32 pixels (0:052D � 0:052D). Owing
to a 50% overlapping of the interrogation windows, around 38
velocity vectors are measured over a distance of 1D.

III. Single Point Measurements

The validation of the PIV acquisition has been checked with a
comparison to the pitot tube and LDA measurements performed in
identical flow conditions.

First, the mean axial velocity is analyzed. Radial profiles across
the shear layer and longitudinal profiles along the jet axis are given in
Fig. 2. The agreement between the different techniques is quite
satisfying. Furthermore, the data collapse well with the classical
hyperbolic tangent profile in the shear layer:

U1

Ua
� 0:5

�
1 � tanh

�
D

8��

�
2x2
D
� D

2x2

���
(4)

and with the curve given by the expression

U1

UJ
� 1

�x1 � Lc�=D� b
(5)

far enough downstream on the jet axis. The length of the potential
core Lc is 6:5D for M � 0:6 and 7D for M� 0:9 in the present
measurements. The two constants a and b have been adjusted by a
least-mean-square approximation, and the following values a�
0:11 and b� 0:95 are found for both Mach numbers.

For the discussion addressed herein, the distribution of the
momentum thickness �� is plotted in Fig. 3. For bothMach numbers,
�� varies linearly and faster atM� 0:6

�� � 0:0289x1 � 0:3460 � 10�3 �m�

than atM� 0:9

�� � 0:0265x1 � 0:1140 � 10�3 �m�

x 1

x 2

nozzle

laser
sheet

*
⊗

PIV
control system

dual lasers

Fig. 1 Sketch of the dual PIV system in the jet facility at the ECL (*:
beam splitter and optical shutter, �: two CCD cameras, crosshatch
region: recorded view).
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as expected. The distribution of the half-velocity diameter D1=2

is also presented in Fig. 3. At the nozzle exit, D1=2 coincides with
D, and it reaches a constant value slightly higher than D
farther downstream over the potential domain x1 < Lc. Downstream
of the potential domain, D1=2 increases due to the breakdown of
the jet.

Second, the fluctuating velocity PIV data are commented upon. In
Fig. 4, the radial profiles of the fluctuation of the axial and radial
velocities across the shear layer are compared with the LDV
measurements. The agreement between the data obtained by the two
techniques is satisfying. Themaximal rms velocity normalized byUJ
is approximately 16% for the axial component and 11% for the radial
one.

Fluctuating velocity components on the jet axis are shown in
Fig. 5. The agreement between the PIV and LDV is pretty good, with
the exception of the axial fluctuating velocity at M� 0:6
downstream of the potential core, x1 � Lc. In this case, the LDV
measurements are questioned owing to the surprising low level of

turbulence obtained compared with theM� 0:9 jet. The PIV results,
conversely, are comparable for the two Mach numbers. The
maximum is reached between 2.5 and 3:5D downstream of Lc, with
roughly 14.5% and 10.5% for the axial and radial velocity
components, respectively.

IV. Space Scales

The space correlation functions Rii�x; �; � � 0� have been
estimated for a multitude of reference points x over the first 11
diameters from the nozzle exit, in the shear-layer center (x2 � 0:5D),
and along the jet axis (x2 � 0) downstream of the potential core.

From this data set, the integral length scales L�j�ii �x� have been
calculated. Note that all the integral scales are determined by
integration to the first zero crossing instead of the theoretical full
integration as explicitly defined in the nomenclature. These results
are presented in the following two subsections.

x 2 − (x 2)1/ 2 /δθ

U1

Ua

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

(x 1 − L c)/D

UJ

U1

-8 -6 -4 -2 0 2 4 6
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

a) b)

Fig. 2 Axialmean velocityU1: a) radial profiles in the shear layer, from x1 � D to x1 � 6D every�x1 � D=2; and b) axial profiles on the jet axis. PIV (▽,
□), LDA (▼■), and pitot tube data (▲) are superimposed for comparison. The triangle symbols (▽▼) refer to theM � 0:6 jet and the squares (□,■)
refer to theM � 0:9 jet. The hyperbolic tangent velocity profile (Eq. (4) with ��=D� 0:1) and the velocity decay law on the jet axis (Eq. (5) with a� 0:11
and b� 0:95) are also plotted (---) in parts a and b, respectively.

x 1 /D

δθ

D
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0.00
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x 1 /D

D 1/ 2

D
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0.0
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0.8

1.2
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a) b)

Fig. 3 Distribution of the momentum thickness �� and of the half-velocity diameterD1=2: a)M � 0:6 (▽ ) and 0.9 (□ ), and b) (—)M � 0:6 and (---) 0.9.

x 2 − (x 2)1/ 2 /δ θ

u1

UJ
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x 2 − (x 2)1/ 2 /δθ
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UJ
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Fig. 4 Radial profiles from x1 � 2D to x1 � 5D every�x1 �D=2: a) fluctuating longitudinal velocity, and b) radial velocity. The legend is the same as in
Fig. 2.
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A. Shear Layer

As an illustration, the space correlation functions R11 and R22

obtained in the shear layer are shown in Fig. 6. This figure illustrates
the quality of the PIV acquisition and the statistical convergence of
the data. The complex pattern of the correlation functionsR11 andR22

is also noticeable. The contour plots of R11 present two directions
along which the low-level and positive values of correlation are
stretched and compressed.

These principal directions are distinct from the axial and radial
directions and delimit four quadrants of negative correlation levels,
R11 < 0. The principal direction represented by the dashed line in the
figure is approximately �� 18 deg from the axial direction. This
angle � is roughly similar all over the shear layer at the two Mach
numbers.Other correlation patterns are available in Fleury [31]. Such
an inclination of the isocontours of R11 was also highlighted in
circular pipe flows by Sabot and Comte-Bellot [32], for instance,
and is attributed to the turbulence anisotropy induced by the mean
shear flow.

For R22, the isocontours of positive values stretch out only in the
radial direction, and two areas of negative correlation level are
observed upstream and downstream of the reference point, rather
than on the high-speed side of the shear layer. Further downstream,
for x1 > 2D, the contour plots of R11 and R22 stretch around the
reference point x but the pattern is nearly the same.

To illustrate the calculation of the length scales L�1�ii , the axial
distribution of the correlation functions Rii at x1 � 2D, where i� 1
or 2, is plotted in Fig. 7. The integration of Rii is made by a classical
trapezoidal method from the experimental data alone, that is, without
any extrapolation, and over the domain of positive Rii values around
the origin �1 � 0. IfRii vanishes outside of themeasurement domain,

the location of the first zero crossing ���1�0i or ���1�0i is extrapolated
linearly from the values in the neighborhood of the window
boundary. A similar data analysis is carried out for the radial length

scales L�2�ii .

The evolution of the correlation length scalesL�j�ii in the shear layer
is shown in Fig. 8. Several results found in the literature are also
superimposed for comparison. A rather poor agreement with the

pioneering results of Laurence [33] and Davies et al. [18] is

noticeable for L�1�11 , whereas a satisfying agreement is found with the

data of Liepmann and Laufer [34] concerning L�2�11 . The more recent
data of Lau [21], Jordan and Gervais [35], and Kerhervé et al. [22]

collapse better, with the notable exception of the scalesL�j�22 based on
the radial velocity.

The inspection of these results shows the linear evolution of the

length scalesL�j�ii according to the position along the shear layer. This

suggests a linear relation between L�j�ii and the local momentum
thickness of the shear layer ��, as supported by the results displayed
in Fig. 9. Far enough downstream, remarkable relations are indeed
obtained:

L�1�11 � 2��; L�2�11 � ��; and L�1�22 � �� (6)

Such a simple relation cannot be provided for L�2�22 . Note that Eq. (3),
which is derived from Davies’s measurements, is in agreement with
the present results.

The self-similarity of the correlation functions in the shear layer is
analyzed in light of these results in Fig. 10. The two Mach numbers
and two positions of the reference point x1 are considered. Using the

(x 1 − L c)/D

u1
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a) b)

Fig. 5 Axial profiles: a) of the longitudinal velocity, and b) radial velocities. The legend is the same as in Fig. 2.

ξ1 /D

ξ2

D

-1.0 -0.5 0.0 0.5 1.0
-0.50

-0.25

0.00

0.25

0.50

ξ1 /D

ξ2

D

-1.0 -0.5 0.0 0.5 1.0
-0.50

-0.25

0.00

0.25

0.50

a) b)

Fig. 6 Isocontours of the space correlation functions in the shear layer, at �x1; x2� � �2D; 0:5D� forM � 0:9: a)R11�x; �; �� 0�, andb)R22�x; �; �� 0� .
The R11-correlation levels are 0.8, 0.6, 0.4, 0.2, and 0.05 in black and �0:05 and �0:1 in gray. The R22-correlation levels are 0.8, 0.6, 0.4, 0.2, and 0.1 in
black and �0:1 and �0:2 in gray.
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Fig. 7 Axial distribution (�2 � 0) of the space correlation functionsR11

(■) and R22 (□) in the shear layer at �x1; x2� � �2D; 0:5D� forM � 0:9.
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reduced variables �1=D and �2=D, the R11 plots do not collapse.
Conversely, with the reference length ��, a quasi self-similarity of the
R11 function is obtained. The R22 function is also plotted in Fig. 10,
and the conclusions are the same in the axial direction: R22 is self-
similar according to the reduced variable �1=��. The distribution of
R22 in the radial direction, however, is more subtle. In the low-speed
side of the shear layer for �2 � 0 the appropriate reduced variable is
�2=��, but in the high-speed side for �2 < �� the appropriate reference
length is rather the diameter D. This explains why the length scale

L�2�22 is neither well scaled by D nor by �� alone.
For isotropic turbulence, specific relations between the length

scales are expected (see Batchelor [15] and Townsend [16]):

L�1�11 =L
�2�
22 � 1 and L�2�11 =L

�1�
22 � 1 (7)

L�1�11 =L
�2�
11 � 2 and L�2�22 =L

�1�
22 � 2 (8)

These isotropic ratios are tested in Fig. 11. The relations (7) and (8),

which do not involve the length scaleL�2�22 , are roughly well satisfied,

in spite of the anisotropy of the turbulence in the shear layer. As L�2�22
is involved, the isotropic ratios cannot be constant as L�2�22 does not
scale according to ��, conversely to the other correlation scales.

Surprisingly, the ratios L�1�11 =L
�2�
22 and L�2�22 =L

�1�
22 do not strongly

deviate from the values expected in isotropic turbulence.

B. Jet Axis

An example of the space correlation functions R11 and R22

obtained on the jet axis is shown in Fig. 12. The isocontours of R11

andR22 are aligned along orthogonal directions, in the axial direction
for R11 and in the radial direction for R22. Negative correlation
regions are also noticed on the two sides of the stretching directions,
that is, in the �2 > 0 and �2 < 0 regions for R11 and in the �1 < 0 and
�1 > 0 regions for R22. This type of correlation pattern has been
observed all over the jet axis, far enough downstream of the potential

core. At the end of the potential core, x1 � Lc, the regions of negative
correlation levels of R11 are turned by 90 deg with regard to the
present illustration and are thus on the �1 < 0 and �1 > 0 sides (see
Fleury [31]).

The integral length scales associated with R11 and R22 have been
calculated as earlier in Sec. IV.A. The results are plotted in Fig. 13.
They are presented in terms of the jet diameter D and the half-
velocity diameterD1=2. AsD1=2 is used to normalize the length scales

L�j�11 associated with the axial fluctuating velocity, a roughly constant
value is reached downstream of the potential core, the same for the
two Mach numbers:

L�1�11 � 0:25D1=2 and L�2�11 � 0:11D1=2 (9)

For the length scales L�j�22 associated with the radial velocity, the
results are too scattered to draw unambiguous conclusions. Owing to

the data on L�2�22 , it seems, however, thatD should be the appropriate
reference length, with

L�1�22 � 0:17D (10)

far enough downstream.
The self-similarity of the correlation functions on the jet axis is

analyzed in Fig. 14. The plots of the correlation functionR11 obtained
at x1 � 7:5D and 10:5D for the twoMach numbers do collapse when
D1=2 is used as the reference length. This is in agreement with the

scaling of L�j�11 according toD1=2. Unfortunately, a close insight into
the distribution of the correlation function R22 does not provide a
reliable indication as to the most appropriate reduced variable to use,
�i=D or �i=D1=2. The two locations of the reference point, x1 � 7:5D
and 10:5D, are too close to conclude and further measurements are
needed.

The isotropic ratios of the integral length scales are investigated in
Fig. 15. Although the isotropic ratios are not constant, they do not
indicate a strong anisotropy of the integral length scales. Far enough
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Fig. 8 Correlation length scales in the shear-layer center (x2 � 0:5D) for M � 0:6 (▽, ▼) and 0.9 (□, ■). The following measurements are also

superimposed: (. . .) Laurence [33] and Davies et al. [18] (L
�1�
11 � 0:13x1); (—) Liepmann and Laufer [34] (L

�2�
11 � 0:028x1); (�) Jordan and Gervais [35]

(M � 0:75); (○ �) Lau [21] (M � 0:5 and 0.9); (�) Kerhervé [22] (perfectly expanded jet atM � 1:2). The black symbols stand for the axial direction, L
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downstream, the following relations are obtained:

L�1�11 =L
�2�
22 � 0:9 and L�2�11 =L

�1�
22 � 1:5 (11)

L�1�11 =L
�2�
11 � 2:4 and L�2�22 =L

�1�
22 � 1:5 (12)

V. Time Scales

Because of the large amount of data required for the analysis of
time correlation functions, the space–time measurements are only
reported for three regions in the shear layer, around x1 � 4:5D, 6:5D,
and 10:5D, respectively.

As an illustration, the contour plots of R11 and R22 in the shear
layer at x1 � 6:5D and for the jet at Mach number M� 0:9 are
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displayed in Fig. 16 for different time lags �. The convection and the
attenuation of the correlation patterns are clearly visible.
Furthermore, the inclination angle � of the R11 correlation pattern
does not vary with �.

For the same reference point and condition, namely, �x1; x2� �
�6:5D; 0:5D� andM � 0:9, the location of the maximum correlation
�c has been followed with respect to the time lag �. BothR11 andR22

have been considered. This separation vector �c is taken along the
axial direction, and �c1 is provided in Fig. 17. As expected, the
location of the maximum correlation �c1 is identical for R11 and R22

and moves linearly according to �. From this curve, a convection
velocity Uc � �c1=� of the correlation pattern can be deduced. The
result is provided in Table 1 for the different reference points and for
the two Mach numbers. In all the cases, a convection velocity

between 0.6 and 0:7Ua�x1� is obtained, as is classically found in
axisymmetrical shear layers.

Two integral time scales are usually associated with the time
attenuation of the correlation functions. The first one, Tcii, is the
reference time of the correlation function in the convected frame
Rii�x; �� Uc�; ��, that is, of the attenuation of the maximum
correlation. The second one, Tii, is the characteristic time of the
correlation function at the reference point Rii�x; �� 0; ��. By
definition, it follows that Rii�x; �� Uc�; �� � Rii�x; �� 0; ��, and
thus Tcii � Tii. To illustrate the calculation of these time scales, an
example of correlation functions Rii�x; �� 0; �� and Rii�x; ��
Uc�; �� measured in the shear layer at �x1; x2� � �6:5D; 0:5D� and
forM � 0:9 is reported in Fig. 18. Because no data are available for
time delays larger than 300 	s corresponding roughly to a
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nondimensional time 2D=Uj, the integral time scales Tcii are
estimated by extrapolation using a classical exponential function:

Rii�x; �� Uc�; �� � exp

�
� �

Tcii

�
(13)

This function is actually a good approximation of the present
measurements as also shown in Fig. 18a, and Tcii is estimated from
the best least-mean-square approximation. The evaluation of the time
scale Tii is obtained by the integration of the data over the positive
correlation range Rii�x; �� 0; ��> 0, with possibly linear
extrapolation to the first zero crossing, as performed for length
scales in the previous section. The results are provided in Table 2. It is
found that Tcii and Tii are linked to the local reference times�cii and
�ii, respectively, according to the remarkable relations

Tcii ��cii Tii ��ii (14)

The first relation is in agreement with the dimensional analysis
yielding Eq. (3). Such a simple relation between Tcii and�cii, with a
scaling factor close to unity, also fits the results obtained for other
flows, such as the inner region of boundary layers and the circular
pipe flows (see Kovasznay et al. [36] and Sabot et al. [37],
respectively).

From the convection velocity Uc and the correlation time scale in
the convected frame Tcii, one can define a length Lcii �UcTcii. This
length scale may be interpreted as the interval over which the
fluctuation of velocity ui remains correlated during the convection of
turbulent structures. These data are reported in Table 3. Roughly,
Lc11 is between 1 and 2 diameters from x1 � 4:5 to 10:5D in the
shear-layer center, and Lc22 between 0.7 and 1:0D. Furthermore,

these scales grow in the downstream direction due to the decrease of

the shear intensity. Though only fairly constant, the ratio Lcii=L
�1�
ii is

between 4 and 5 for i� 1 and between 5 and 6 for i� 2.
The relationships between the time scales in thefixed frameTii and

the ones in the convected frame Tcii are finally investigated in
Table 4. Owing to Eq. (14) and the results provided in Sec. III, it is
expected that

T11
Tc11
� u1
U1

� u1
Ua

Ua
U1

� 0:16 � 2� 0:32

and

T22
Tc22
� u2
U1

� u2
Ua

Ua
U1

� 0:11 � 2� 0:22

which is in reasonable agreement with the experimental results. Our
data are also in fair agreementwith the results found inKerhervé et al.
[22] (see their Table 2), T11 � Tc11=4:7� 0:21Tc11.

Moreover, in the case of isotropic turbulence, Eq. (14) implies the
following relationships between the time scales associated with the
radial and axial velocity components:

Tc22
Tc11
� u1
u2

L�1�22

L�1�11
� L

�1�
22

L�1�11
� 1

2
(15)

and:

T22
T11
� L

�1�
22

L�1�11
� 1

2
(16)

The experimental value of these ratios is also provided in Table 4. As
noticed, the integral time scales closely satisfy the required relations
for isotropy or, at least, do not present a strong anisotropy.

VI. Conclusions

Dual PIVmeasurements have been carried out inMach 0.6 and 0.9
isotherm single-stream jets to characterize the space–time correlation
scales of the radial and axial velocity components. The shear-layer
center and the jet axis have been explored in detail. To provide robust
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Fig. 17 Separation corresponding to the maximum of R11 (□) and R22

(	) in the convected frame, according to the time delay �. The reference
point �x1; x2� is located in the shear-layer center �6:5D; 0:5D�, jet at
Mach number M � 0:9.

Table 1 Convection velocity Uc in the shear-layer center (x2 � 0:5D)

M � 0:6 M � 0:9

x1 Uc Uc=Ua x1 Uc Uc=Ua

4:5D —— —— 4:5D 175 m � s�1 0.6
6:5D 110 m � s�1 0.6 6:5D 170 m � s�1 0.6
10:5D 97 m � s�1 0.7 10:5D 152 m � s�1 0.7
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Fig. 18 Attenuation of the correlation in the shear-layer center (x2 � 0:5D) at x1 � 6:5D and forM � 0:9: a) in the convected frame Rii�x; �� Uc�; ��,
and b) in a fixed frame Rii�x; �� 0; ��. The black symbols stand for the axial velocity R11, the open ones for the radial velocity R22, and the solid lines for
the exponential extrapolation (13).
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results for a large range of flow conditions, the integral scales have
been provided as a function of appropriate quantities.

The length scales in the shear layer depend on the localmomentum

thickness �� according to simple linear relations, except for L�2�22 ,
which follows amore subtle evolution. These relations are, however,
valid far enough downstream only. On the jet axis, the half-velocity
diameter D1=2 is the suitable reference length to normalize the

integral length scales L�i�11 . For L
�i�
22 , neither D nor D1=2 are perfectly

suited for the scaling. The self-similarity of the correlation functions
in the shear layer and on the jet axis has been obtained by using the
reduced variables based on the appropriate reference lengths
obtained experimentally. The time scales in the shear layer depend on
the reference time defined from the momentum thickness and the
mean or rms local velocity regarding the time scale in the fixed frame
Tii or the time scale in the convected frame Tcii, respectively.
Surprisingly, isotropic ratios between these different length or time
integral scales have been recovered. The inclination of the
correlation pattern R11 in the shear layer was also observed.
Regarding these results, a possible expression of the correlation R11,
which is required in aeroacoustic statistical models for instance,
could be written in the following form:

R11�x; �; �� � f
�
P�

�1=L
�1�0
11

�2=L
�2�0
11

� ��
g

�
�

T11 or Tc11

�

where P� is the rotation operator by angle �� 18 deg, and L�j�
0

11 are
the correlation scales in the principal axes of the mean shear flow.
The influence of this inclination on the radiated acousticfield through
statistical models seems, however, unclear at the present time.
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6:5D 329 	s 1.3 168 	s 0.99 77:2 	s 1.2 33.6 1.1
10:5D 451 	s 1.2 235 	s 1.0 117 	s 1.1 51.2 1.1

Table 3 Integral time scales

M� 0:6 M� 0:9

x1 Lc11=D Lc22=D Lc11=L
�1�
11 Lc22=L

�1�
22

x1 Lc11=D Lc22=D Lc11=L
�1�
11 Lc22=L

�1�
22

4:5D —— —— —— —— 4:5D 1.1 0.68 5.0 6.1
6:5D 1.5 0.75 4.3 5.2 6:5D 1.5 0.75 4.5 5.4
10:5D 1.8 1.0 3.9 5.2 10:5D 1.8 0.94 4.0 4.9

Table 4 Ratios between the time scales in the shear layer

M� 0:6 M� 0:9

x1 Tc22=Tc11 T22=T11 T11=Tc11 T22=Tc22 x1 Tc22=Tc11 T22=T11 T11=Tc11 T22=Tc22

4:5D —— —— —— —— 4:5D 0.59 0.51 0.23 0.19
6:5D 0.51 0.46 0.24 0.21 6:5D 0.51 0.43 0.23 0.20
10:5D 0.56 0.47 0.24 0.20 10:5D 0.52 0.44 0.26 0.22
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