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Dual Particule Image Velocimetry (dual-PIV) measurements have been performed to
investigate the space-time correlations in two subsonic isothermal round jets at Mach num-
bers 0.6 and 0.9. Measurements are obtained along the centerline and the shear-layer region
which are closely connected with the noise generation. Integral scales have been calculated
with as much as 2000 samples which provides high-quality data. The correlation scales
are given in function of appropriate references, namely the local momentum thickness (re-
spectively the jet diameter) for the shear-layer (respectively the jet axis) and the mean or
rms local velocity. Far enough downstream in the shear-layer, some of the ratios between
the space scales and between the time scales are relatively close to the values expected
in isotropic an homogeneous turbulence. Furthermore, the relation between the time and
space scales follows well the Taylor’s assumption in the shear-layer.

Nomenclature

xi, yi Positions. The origin is located at the center of the nozzle, in the exit plane
t Time
Ui Mean velocity field
u′

i Velocity fluctuation field

ui Root mean square value of u′

i: ui =

√

u′

i
2. The overline operator stands for ensemble averaging.

c0 Ambiant sound speed
ρ0 Ambiant density
M Jet Mach number: U1(x1 = 0, x2 = 0)/c0

ǫ Viscous dissipation rate
D Jet diameter
δθ Momentum quantity
τ Correlation time lag
ξi Displacement
ξci Displacement of the convected frame

Uc Convection velocity: ‖d~ξc/dτ‖
Ua Mean velocity on the jet axis: U1(x1, x2 = 0)
Mc Convection Mach number: Uc/c0

Ri(~x, ~ξ, τ) Correlation function: u′

i(~x, t)u′

i(~x + ~ξ, t + τ) ×
[

ui(~x)ui(~x + ~ξ)
]

−1

ξ+
0i, ξ−0i, τ0 Space and time locations of the annulation of Ri, the closest ones to the origin. ξ+

0i > 0 and ξ−0i < 0

L
(j)
i (~x) Length scale: (1/2)

∫ ξ+
0i

ξ−

0i

Ri(~x, ξj , τ = 0)dξj
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REi(~x, τ) Eulerian time correlation function: Ri(~x, ~ξ = ~0, τ)
τEi(~x) Eulerian time scale:

∫ τ0i

0
REi(~x, τ)dτ

ΘEi Eulerian reference time: L
(1)
i /U1

Rci(~x, τ) Time correlation function in the convected frame: Ri[~x, ~ξ = ~ξc(τ), τ ]
τci(~x) Time scale in the convected frame:

∫ τ0i

0
Rci(~x, τ)dτ

Θci Reference time in the convected frame: L
(1)
i /ui

Subscript and superscript

1 Component in the axial direction
2 Component in the radial direction

I. Introduction

The concept of correlation is well adapted to characterize the space-time statistical properties of turbu-
lence. The first application to aerodynamic noise has been made by Proudman1 from the theory developed
by Lighthill2,3 to link the radiated acoustic pressure and the aeroacoustic fluctuations. To introduce the
correlations of the turbulent fluctuations, Proudman estimates the acoustic intensity I(~x) and relates this
feature to the integral over the flow domain of the fourth-order time derivative of the two-point two-time
correlation of the Lighthill tensor. For isentropic, low Mach number and high Reynolds number flows, this
reduces to:

I(~x) =
1

16π2ρ0c5
0

xixjxkxl

x4

∫

V

∫

∂4

∂τ4
(u′

iu
′

j)~y,t(u
′

ku′

l)~y+~ξ,t+τdξ3dy3

In this formulation, the time lag τ is connected with the displacement ~ξ by the relation τ = x−|~x−~ξ|/c0.
The problem then reduces to the evaluation of the integration of the fourth-order velocity correlations over
the flow domain. Ribner4 tackled this problem by considering isotropic turbulence superimposed on a mean
shear axisymmetric flow. The derivation of the model is not reproduced but a classical closure is to express
the integrand as a function of second-order velocity correlations. In order to develop an engineering tool,
a first reasonable idea is then to introduce some data provided by a k − ǫ turbulence closure in statistical
models. Béchara5

et al., Bailly6
et al. or Khavaran7 among others developed such applications to subsonic

and supersonic jet noise. Note that a connected and interesting discussion has recently been proposed by
Morris & Farassat.8 The expression of the space-time second-order velocity correlations takes the classical
form:

Ri(~x, ξj , τ) = f

[

ξj

L
(j)
i (~x)

]

g

[

τ

τEi(~x)

]

or:

Ri(~x, ξj , τ) = f

[

ξj

L
(j)
i (~x)

]

g

[

τ

τci(~x)

]

in a convected frame. The functions f and g and the space-time correlation scales are usually issued from
experiments or semi-empirical relations, see Ribner,9 Goldstein10 or Morris & Farassat8 for instance.

Many experiments have been devoted to the measurement of the correlation scales of velocity in un-
strained, homogeneous and isotropic turbulence.11 A detailed bibliography of the pioneering investigations
can be found in Comte-Bellot & Corsin.12 In such flows, the turbulence decreases due to viscous dissipation
effects only. From a dimensional analysis, Batchelor13 and Townsend14 have estimated the integral scales
according to ǫ and u1 as follows:

L
(1)
1 ≈ α

u3
1

ǫ
τc1 ≈ α

u2
1

ǫ

where the constant α has no dimension. This was confirmed experimentally by Comte-Bellot & Corsin,15

who obtained a value of α close to one. In presence of a mean shear flow, turbulence decaying is mainly due
to the intensity of shear. The measurements of Davies et al.16 actually have shown that the integral scales

L
(1)
1 and τE1 in the mixing-layer of a jet depend on the local shear strain:

L
(1)
1 ≈ 5u1

(

dU1

dx2

)

−1

τE1 ≈ 3

(

dU1

dx2

)

−1
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or equivalently:

L
(1)
1 ≈ 0.8δθ τE1 ≈ 3

δθ

Ua
≈ 5.8

δθ

Uc

with dU1/dx2 ≈ Ua/δθ, u1/Ua ≈ 0.16 and Uc/Ua ≈ 0.65. The scaling of a characteristic time associated
with the correlation function according to Uc and δθ is in agreement with the results found by Dimotakis
& Brown17 in a planar turbulent mixing-layer. In these pioneering investigations, the velocity fluctuations
have been measured with two single hot-wires and only the correlation of the axial velocity could thus be
characterized. With the development of new measurement techniques, the dataset on the correlations of
velocity in jets has filled out. Hence, Lau18 and Kerherve et al.19 take advantage of the development of
the Laser Doppler Anemometry (LDA) to investigate the correlation of the radial and axial components
of velocity. The use of the Particle Image Velocimetry (PIV) has also allowed a global measurement of
the correlations. With two coupled conventional PIV systems (dual-PIV), Bridges & Wernet20 provides a
thorough characterization of the space-time correlations of the axial and radial components of velocity in
the shear-layer of subsonic jets. Ukeiley21 explores the space correlation functions of the three components
of velocity through stereoscopic single-PIV. A combined use of LDA and PIV techniques is also proposed by
Chatelier & Fitzpatrick.22

However, in spite of the increase of amount of correlation data in jets, a fine description of the correlation
scales is still needed. In the most recent studies, the evolution of the correlation scales in the shear-layer
is usually given in function of the axial distance x1. Owing to the earliest studies of Davies et al.16 and
Dimotakis & Brown,17 these results thus depend on the specific expansion rate of the shear-layer in these
experiments. Furthermore, to the authors’ knowledge the characterization of the correlations of velocity on
the jet axis, especially just downstream of the potential core, is still unknown.

The aim of the present work is to measure the space-time correlation scales of the axial and radial velocity
components in subsonic isotherm round jets and to provide the results in function of appropriate reference
features. The ratios between the space scales and between the time scales is also analysed in the light of the
values expected in homogeneous and isentropic turbulence, see Batchelor13 and Townsend.14 The Taylor’s
assumption connecting the space and time scales is also discussed. A dual-PIV technique is used to explore
in detail the shear-layer and the jet axis at two Mach numbers M = 0.6 and M = 0.9. The facility and the
instrumentation are described in section II. The section III is devoted to the description of the one-point
statistics of turbulence. The correlation length scales are provided in section IV and the correlation time
scales in section V.

II. Experimental set-up

II.A. Facility

The experiments were performed in a facility of the Ecole Centrale de Lyon designed for acoustic testing
of transonic single-stream hot jets. This facility is composed of a centrifugal compressor (maximal power
of 350kW, mass-flow rate up to 1 kg.s−1), an air drier system (power of 12kW) and of a set of controllable
electric resistances (power 64kW, stagnation temperature < 500◦ K). A nozzle of conical shape, of inlet
diameter 90 mm, of exit diameter D = 38 mm, of inside face angle 18◦ and of lip thickness 2 mm is used. In
this installation, Mach numbers up to 1.6 can be investigated and the static temperature can be maintained
equal to the ambient temperature for M < 1.1. The measurement of the near-field and far-field acoustic
spectra over the whole Mach number range M < 1.6 are found in Bogeyet al.23

In the present article, the aerodynamic characterization of the jet alone is concerned. Two Mach numbers
are prescribed, M = 0.6 and M = 0.9, and the temperature is controlled to get isothermal conditions. At
the nozzle exit, M and the static temperature are respectively maintained with less than 3% variation and
2◦C according to the ambient throughout the experiments.

For the use of PIV, the jet is seeded with droplets of olive oil. Eight injectors are located in the settling
portion of the wind tunnel, at 3 m upstream of the nozzle exit and spread out regularly over the circumference
of the round tunnel. The injection of olive oil sprays is made through flush-wall annular slots in order to
reduce flow distortion. The olive-oil droplets are produced by an home-made generator. The droplet size has
been estimated by Particle Dynamics Analysis (PDA) in nearly standard thermodynamic conditions and in
absence of flow and has been found to be less than 1 µm in these conditions. To measure the velocity of
the ambient flow entrained and mixed in the jet core, the experimentation room is seeded with mineral oil
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droplets produced by a commercial smoke generator.

II.B. Instrumentation

The dual-PIV system consists of two coupled conventional PIV systems. Each system is composed of a
pulsed double-cavity Nd:Yag laser (NewWave Solo PIV III laser or Quantel Brillant laser, wavelength of 532
nm, energy of 50 mJ/pulse, pulse length of 5 ns and operating frequency of 4 Hz) and a double-frame CCD
camera (PCO SensiCam, 12 bits, 1280 × 1024 pixels). The laser beams are combined by an house-made
optical system and then refracted by a cylindrical lens to form a light sheet (2 mm of thickness) propagating
across the jet axis. The two cameras are mounted side by side and can be traversed in the axial direction
over more than 15D. A passive beamsplitter allows to visualize the same region of the jet with the two
cameras. With a working distance of nearly 600mm between light sheets and cameras, and using objectives
with a focal length of 60mm, a field of view of 2.2D × 1.8D is obtained. The calibration is performed before
operating the jet by recording simultaneously with both cameras the image of the same calibration plate.
Due to the long exposure time of the second frame of CCD cameras (120 ms), a fast optical shutter is used
with the first camera. Owing to the small closure delay of the shutter, the firing of both cavities of the second
laser is triggered when the shutter is closed, and the second frame of the first camera is not contaminated
by spurious diffused light during operation of the second PIV system. With this device, the time lag τ has
been decreased down to 20 µs.

The synchronization of the two PIV systems is carried out by a commercial PIV software (Davies v7.1).
The basic acquisition cycle breaks down as follows. Two conventional single-PIV acquisitions are operated
successively at a time interval of τ . This time lag τ is controlled by the software and has been varied from
20µs (minimal polarization time of the shutter) to 250 µs at M = 0.9 and 330 µs at M = 0.6. To obtain
τ = 0, the data from one single PIV system are used. The time interval between the two images required for
each of the two conventional single PIV acquisitions is of 2.5 µs for M = 0.6 and of 1.6 µs for M = 0.9. After
post-processing two instantaneous velocity fields time-lagged of τ are then obtained. This basic acquisition
cycle is repeated at a frequency of 4Hz in order to obtain 2000 velocity field pairs.

The post-processing of the velocity maps is operated by the Davies v7.1 software after the acquisition is
completed. A multipass algorithm is used, with three steps from the initial window size of 128×128 pixels to
the final size of 32×32 pixels (0.052D×0.052D). Owing to a 50% overlapping of the interrogation windows,
around 38 velocity vectors are measured over a distance of 1D.

III. Single point results

The validation of the PIV acquisition was checked in detail by comparison to other experimental tech-
niques, see Fleury24 for more details. The radial profiles of mean velocity and velocity fluctuations (the
two components) are conform to results obtained by Laser Doppler Anemometry (LDA) and Pitot tube.
The measurements are also in satisfying agreement with data found in the literature on similar high-speed
jets.25,26

The radial profiles of mean velocity display a classical hyperbolic tangent distribution and the maximal
turbulent rate of the axial and radial velocity components is of 16% and 11% respectively. The potential
core length Lc is of 6.5D for M = 0.6 and of 7D for M = 0.6, where Lc is such that U1(x1 = Lc, x2 = 0) =
0.95U1(x1 = 0, x2 = 0). The maximum of fluctuations on the jet axis is reached between 2.5D and 3.5D
downstream of Lc, with u1/U1(x1 = 0, x2 = 0) ≈ 14.5% and u2/U1(x1 = 0, x2 = 0) ≈ 10.5% for the two jet
velocities.

IV. Space scales

The space correlation functions Ri(~x, ~ξ, τ = 0) have been estimated at points ~x over the first eleven
diameters from the nozzle exit, x1 < 11D, in the shear-layer center (x2 = 0.5D) and on the jet axis (x2 = 0).

From this dataset, the integral length scales L
(j)
i (~x) have been calculated. The results are presented in the

following two sections.
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IV.A. Shear-layer

An example of the space correlation functions R1 and R2 obtained in the shear-layer is shown in Figure 1.
This figure illustrates the quality of the PIV acquisition and of the statistical convergence of data. The
complex pattern of the correlation functions R1 and R2 is also noticed. The contour plots of R1 presents
two directions along which the low-level positive correlation curves stretch out. These principal directions
are distinct from the axial and radial directions and delimit four quadrants of negative correlation level,
R1 < 0. For R2, the positive-level contours stretch out only in the radial direction and two areas of negative
correlation are observed upstream and downstream of the reference point, rather on the high-speed side of
the shear-layer. Further downstream x1 > 2D, the contour plot of R1 and R2 stretch around the reference
point ~x but the pattern is roughly similar. Other correlation patterns are available in Fleury.24

To illustrate the calculation of the length scales L
(1)
i , the axial distribution of the correlation functions

Ri at x1 = 2D is plotted in figure 2 for i = 1 and 2. The integration of Ri is made by a classical trapezoidal
method using only the experimental data and over the domain of positive Ri values around the origine
ξ1 = 0. If Ri vanishes outside of the measurement domain, the location of ξ−01 and ξ+

01 is extrapolated
linearly from the values taken at the neighborhood of the boundary. Note that no extrapolation function is

used to calculate the length scales. A similar data analysis is carried out for the radial length scales L
(2)
i .

The evolution of the correlation length scales L
(j)
i in the shear-layer is shown in Figure 3. Several results

found in the literature are superimposed for comparison. A rather poor agreement with the pioneering

results of Laurence27 and Davies et al.16 is noticed for L
(1)
1 , while a satisfying agreement is found with the

data of Liepmann28 concerning L
(2)
1 . The more recent data of Lau,18 Jordan & Gervais29 and Kerherve et

al.19 collapse quite better, except however for the scales L
(j)
2 based on the radial velocity.

The inspection of these results shows the linear evolution of the length scales L
(j)
i according to the position

along the shear-layer. This suggests a linear relation between L
(j)
i and the local momentum thickness of the

shear-layer δθ, as supported by the results displayed in Figure 4. Far enough downstream, one actually gets
the remarkable relations:

L
(1)
1 ≈ 2δθ, L

(2)
1 ≈ δθ and L

(1)
2 ≈ δθ (1)

Such a simple relation cannot however be provided for L
(2)
2 . In the case of isotropic turbulence, the

axial length scale of the axial velocity, L
(1)
1 , is equal to the radial length scale of the radial velocity, L

(2)
2 .

In the same way, one expects the relation L
(2)
1 = L

(1)
2 to be verified. These isotropic ratios of the integral

length scales are plotted in Figure 5. We roughly found L
(2)
1 ≃ L

(1)
2 , and more scattered values for the ratio

L
(2)
1 /L

(1)
2 . Furthermore the relations (1) imply:

L
(1)
1 /L

(2)
1 = 2 (2)

which also is a requirement for isotropic turbulence, see Batchelor13 and Townsend.14

ξ1/D

ξ2

D
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ξ1/D

ξ2

D

-1.0 -0.5 0.0 0.5 1.0
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-0.25

0.00
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Figure 1. Contour plot of the space correlation functions R1(~x, ~ξ, τ = 0) (left) and R2(~x, ~ξ, τ = 0) (right) in the shear-layer,
at x1 = 2D, x2 = 0.5D and M = 0.9. The R1-correlation levels are 0.8, 0.6, 0.4, 0.2, 0.05 in black and -0.05, -0.1 in grey.
The R2-correlation levels are 0.8, 0.6, 0.4, 0.2, 0.1 in black and -0.1, -0.2 in grey.
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ξ1/D

R1

R2

-1.0 -0.5 0.0 0.5 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
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Figure 2. Axial distribution (ξ2 = 0) of the space correlation functions R1 (�) and R2 (�) in the shear-layer, at x1 = 2D,
x2 = 0.5D and M = 0.9.
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L
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Figure 3. Correlation length scales in the shear-layer center (x2 = 0.5D) at M = 0.6 (▽, H) and M = 0.9 (�, �).

· · · Laurence27 and Davies et al.
16 (L

(1)
1 = 0.13x1); −− Liepmann28 (L

(2)
1 = 0.028x1); + Jordan29 (M = 0.75); ◦, • Lau18

(M = 0.5 and M = 0.9); ∗ Kerherve19 (perfectly expanded jet at M = 1.2). The black symbols concern the axial direction,

L
(1)
i

. The open ones the radial direction, L
(2)
i

.

x1/D

L
(1)
1

δθ

L
(2)
1

δθ

0 1 2 3 4 5 6 7
0.0

0.5
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L
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2
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Figure 4. Ratio between the correlation length scales in the shear-layer and the local momentum thickness δθ for
M = 0.6 and M = 0.9. The legend is the same as in figure 3.
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x1/D

L
(1)
1

L
(2)
2

L
(2)
1

L
(1)
2

0 1 2 3 4 5 6 7 8 9 10 11
0.0

0.5

1.0
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2.0
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Figure 5. Isotropic ratios between the correlation length scales in the shear-layer for M = 0.6 (▽, H) and M = 0.9 (�,

�). The black symbols concern L
(2)
1 /L

(1)
2 . The open ones L

(1)
1 /L

(2)
2 .

IV.B. Jet axis

An example of space correlation functions R1 and R2 obtained on the jet axis is shown in Figure 6. The
contour plots of R1 and R2 stretch out along orthogonal directions, in the axial direction for R1 and in
the radial direction for R2. Negative correlation areas are also noticed on the two sides of the stretching
directions, i.e. ξ2 > 0 and ξ2 < 0 for R1 and on the ξ1 < 0 and ξ1 > 0 sides for R2. This type of correlation
pattern has been observed all over the jet axis, far enough downstream of the potential core. At the end of
the potential core, x1 = Lc, the negative correlation areas of R1 are turned of 90◦ with regard to the present
illustration and are thus on the ξ1 < 0 and ξ1 > 0 sides, see Fleury.24

The integral length scales associated with R1 and R2 have been calculated as explained previously in
IV.A. The result is plotted in figure 7. The influence of the Mach number M seems negligible. Moreover the

integral lengths L
(2)
1 , L

(1)
2 and L

(2)
2 do not grow significantly as the reference point is moved downstream.

One actually gets the following approximations:

L
(2)
1 ≈ 0.15D, L

(1)
2 ≈ 0.17D and L

(2)
2 ≈ 0.23D (3)

The isotropic character of the integral length scales is investigated in figure 8. Although the isotropic
ratios are not constant, they do not indicate a strong anisotropy of the integral length scales. In particular,

L
(1)
1 /L

(2)
2 is very close to unity for x1 > 8D.
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0.0

0.4

0.8

Figure 6. Contour plots of the space correlation functions R1(~x, ~ξ, τ = 0) (left) and R2(~x, ~ξ, τ = 0) (right) on the jet axis
(x2 = 0) at x1 = 10D and for M = 0.9. The correlation levels are 0.8, 0.6, 0.4, 0.2, 0.1 in black and -0.05, -0.1 in grey.
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Figure 7. Correlation length scales on the jet axis (x2 = 0), for M = 0.6 and M = 0.9. The legend is the same as in
figure 3.
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Figure 8. Isotropic ratios between the correlation length scales on the jet axis, for M = 0.6 and M = 0.9. The legend is
the same as in firgure 5.

8 of 13

American Institute of Aeronautics and Astronautics



V. Time scales

Due to the large amount of data required for the analysis of the time correlation functions, the space-
time measurements have been limited to three areas in the shear-layer, around x1 = 4.5D, x1 = 6.5D and
x1 = 10.5D.

As illustration, the contour plots of R1 and R2 in the shear-layer at x1 = 6.5D and M = 0.9 are displayed
for different time-lags τ in Figure 9. The convection and the attenuation of the correlation patterns are clearly
displayed. These effects are analysed quantitatively below.

For the same reference point and condition, (x1, x2) = (6.5D, 0.5D) and M = 0.9, the location of the

maximum correlation ~ξc has been followed with respect to the time-lag τ . Both R1 and R2 have been
considered. The displacement ~ξc is along the axial direction mainly. The result for ξc1 is provided in figure
10. As expected, the location of the maximum correlation ξc1 is identical for R1 and R2 and moves linearly
according to τ . From this curve, a convection velocity of the correlation pattern Uc is derived. The result
is provided in Table 1 for the different reference points and for the two Mach numbers. In all the cases,
a convection velocity between 0.6Ua(x1) and 0.7Ua(x1) is found, as classically expected in the shear-layer
center.

Two integral time scales are usually associated with the time-attenuation of the correlation functions.
The first one, τci, is the reference time of the correlation function in the convected frame Rci(τ), i.e. of
the attenuation of the maximum correlation. The second one, the Eulerian correlation time τEi, is the
characteristic time of the correlation function at the reference point REi(τ). By definition Rci(τ) ≥ REi(τ),
whence τEi ≥ τci. To illustrate the calculation of these time scales, the example of the correlation functions
Rci(τ) and REi(τ) measured in the shear-layer at (x1, x2) = (6.5D, 0.5D) and M = 0.9 is plotted in Figure 11.
Due to the weak levels of the correlation Rci, below 0.5, the time-scales τci is estimated by use of a model
function of classical exponential form:

Rci ≈ exp

(

−
τ

τci

)

This function is actually a good approximation of the data and τci is associated with the best least-mean-
square approximation. The evaluation of the time-scale τEi is obtained by the integration of the data over
the positive correlation range REi > 0, with linear extrapolation of the zero-correlation time eventually, as
for the length scales.

The results are provided in Table 2 according to the reference times Θci and ΘEi. Following the Taylor’s
assumption, Θci and ΘEi are respectively based on the local mean velocity U1 and the local rms velocity ui.

The reference length is the correlation length L
(1)
i . From these results, one notices the remarkable relations:

τci ≈ Θci τEi ≈ ΘEi (4)

The relationships between the Eulerian time-scales and the time-scales in the convected frame is in-
vestigated in Table 3. Owing to the expression (4) and the results provided in section III, one actually
expects:

τE1

τc1
=

u1

U1
=

u1

Ua

Ua

U1
= 0.16 × 2 = 0.32

and:
τE2

τc2
=

u2

U1
=

u2

Ua

Ua

U1
≈ 0.11 × 2 = 0.22

which is in reasonable agreement with the experimental results.
Moreover in the case of isentropic turbulence, the expression (4) implies the following relationship between

the time scales associated with the radial and axial velocity components:

τc2

τc1
=

u1

u2

L
(1)
2

L
(1)
1

=
L

(1)
2

L
(1)
1

=
1

2
(5)

and:
τE2

τE1
=

L
(1)
2

L
(1)
1

=
1

2
(6)

The experimental value of these ratios is given in table 3 as well. As noticed, the integral time-scales also
follow closely well the requirement of isotropy, or, at least do not present a strong anisotropy.
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Figure 9. Space-time correlation functions R1(ξ1, ξ2, τ) (left) and R2(ξ1, ξ2, τ) (right) in the shear-layer center (x2 = 0.5D),
at x1 = 6.5D and for M = 0.9. The correlation levels are 0.8, 0.6, 0.4, 0.2, 0.05 in black and -0.05, -0.1 in grey for R1

and 0.8, 0.6, 0.4, 0.2, 0.1 in black and -0.1, -0.2 in grey for R2.
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Figure 10. Displacement of the maximum of R1 (�) and R2 (×) according to the delay τ . The reference point (x1, x2)
is located in the shear-layer center (6.5D, 0.5D) and M = 0.9.

Table 1. Convection velocity Uc in the shear-layer center (x2 = 0.5D).

M = 0.6 M = 0.9

x1 UC
Uc

Ua

4.5D - -

6.5D 55 m.s−1 0.6

10.5D 49 m.s−1 0.7

x1 UC
Uc

Ua

4.5D 87 m.s−1 0.6

6.5D 85 m.s−1 0.6

10.5D 76 m.s−1 0.7
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Figure 11. Attenuation of the correlation in the shear-layer center (x2 = 0.5D), for x1 = 6.5D and M = 0.9. The black
symbols concern the axial velocity Rc1 and RE1. The open ones, the radial velocity Rc2 and RE2.
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Table 2. Time-scales in the shear-layer.

M = 0.6

x1 τc1
τc1

Θc1
τc2

τc2

Θc2
τE1

τE1

Θc1
τE2

τE2

ΘE2

4.5D - - - - - - - -

6.5D 511 µs 1.2 260 µs 0.90 121 µs 1.1 56.0 µs 1.1

10.5D 712 µs 1.1 396 µs 1.1 172 µs 0.9 80.4 µs 1.1

M = 0.9

x1 τc1
τc1

Θc1
τc2

τc2

Θc2
τE1

τE1

Θc1
τE2

τE2

ΘE2

4.5D 249 µs 1.4 148 µs 1.1 57.0 µs 1.4 28.8 1.4

6.5D 329 µs 1.3 168 µs 0.99 77.2 µs 1.2 33.6 1.1

10.5D 451 µs 1.2 235 µs 1.0 117 µs 1.1 51.2 1.1

Table 3. Ratio between the time-scales in the shear-layer.

M = 0.6 M = 0.9

x1
τc2

τc1

τE2

τE1

τE1

τc1

τE2

τc2

4.5D - - - -

6.5D 0.51 0.46 0.24 0.21

10.5D 0.56 0.47 0.24 0.20

x1
τc2

τc1

τE2

τE1

τE1

τc1

τE2

τc2

4.5D 0.59 0.51 0.23 0.19

6.5D 0.51 0.43 0.23 0.20

10.5D 0.52 0.44 0.26 0.22

VI. Conclusion

Dual-PIV measurements have been carried out in Mach 0.6 and Mach 0.9 isotherm single-stream jets in
order to characterize the space-time (auto-)correlation scales of the radial and axial velocity components.
The shear-layer center and the jet axis have been explored in detail. For providing results of general use, the
integral scales are given in function of appropriate references. In the shear-layer, the length scales depend

on the local momentum thickness according to the very simple relations provided in (1), except for L
(2)
2

which follows a more subtle evolution. These relations are however valid far enough downstream only, where
turbulence to be well established. On the jet axis, the diameter D is the appropriate reference length and
the relationships found are given by the expression (3). In the shear-layer, the appropriate reference time is
based on the momentum thickness and the mean or rms local velocity depending on the time scale, whether
the Eulerian time scale or the time scale in the convected frame, see the expression (4). Several ratios
between the radial and axial velocity correlation scales in the shear-layer have also been found in agreement
with typical values obtained in isotropic and homogeneous turbulence, see the expression (2) for the length
scales and the relations (5) and (6) for the time scales.
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