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Space–Time Decoding With Imperfect
Channel Estimation
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Abstract—Under the assumption of a frequency-flat slow
Rayleigh fading channel with multiple transmit and receive anten-
nas, we examine the effects of imperfect estimation of the channel
parameters on error probability when known pilot symbols are
transmitted among information data. Three different receivers are
considered. The first one derives an estimate of the channel [by
using either a maximum-likelihood (ML) or a minimum mean
square error (MMSE) criterion], and then uses this estimate in
the same metric that would be applied if the channel were per-
fectly known. The second receiver derives again an estimate of
the channel, but uses the ML metric conditioned on the channel
estimate. Our last receiver simultaneously processes the pilot and
data symbols received. Simulation results are exhibited, showing
that only a relatively small percentage of the transmitted frame
need be allocated to pilot symbols in order to experience an ac-
ceptable degradation of error probability due to imperfect channel
knowledge. Algorithms for the recursive calculation of the decision
metric of the last two receivers are also developed for application
to sequential decoding of trellis space–time codes.

Index Terms—Channel estimation, fading channels, MIMO sys-
tems, space–time codes, wireless communications.

I. INTRODUCTION AND MOTIVATION OF THE WORK

A typical scenario for multiple-input multiple-output
(MIMO) radio communication systems assumes a chan-

nel changing so slowly that an entire frame can be transmitted
without any appreciable variation in channel characteristics [7].
If this assumption (also known as block or quasistatic fading
channel) is valid, the system performance can be enhanced
if the receiver is made aware of the so-called channel state
information (CSI), i.e., the realization of the random fading
gains affecting the transmission paths from each transmit to
each receive antenna. To this purpose, a portion of the trans-
mitted frame may consist of pilot symbols, whose composition
is known to the receiver and is used by the latter to estimate
the channel parameters. Due to noise and to the finite number
of pilot symbols in a frame, the channel estimate is not perfect:
The main purpose of this paper is to investigate the effects that
this imperfect estimation has on system performance.

A similar investigation was carried out in [4] for scalar
channels. An information-theoretic analysis of the capacity of
the MIMO channel with imperfect side information generated
by the estimation procedure can be found in [11] and [26].
There, the effect of capacity reduction due to the transmission
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of training symbols carrying no information is accounted for.
MIMO channels with a BLAST receiver interface and orthogo-
nal training signals were examined in [18]; it was shown that
the training sequence length required to control the estimation-
error-induced outage probability is approximately proportional
to the number of transmit antennas, and is independent of
the number of receive antennas. Tarokh et al. [22] examine
space–time codes and their design criteria in the presence
of channel estimation errors, but their analysis is partially
invalidated by a flaw in the derivation of their (2) (see below
and [23]). If the channel fades so rapidly that reliable channel
estimation is impossible, one may choose a reception scheme
that assumes a known probabilistic model for the channel, but
no knowledge of the actual channel state [12].

Recent work in this area can be classified in two main
streams: OFDM and narrowband techniques. A rich literature
exists in the former area, basically addressing the problem of es-
timating the channel matrices with different goodness criteria.
As an example, [17] derives the condition required for optimal
training sequences, while [24] addresses the specific case of
OFDM and carrier frequency offset. Reference [20] presents a
training-based MIMO channel estimation scheme operating in
wideband frequency-selective fading with layered space–time
coding and using a pilot matrix to resolve both intersymbol
and intercarrier interference. Narrowband studies include [25],
where an uncoded V-BLAST system is considered, and [14],
where a semiblind channel estimation technique aims at mini-
mizing the mean square error. Reference [8] exhibits results
[in terms of error rate versus signal-to-noise ratio (SNR)] with
the Alamouti code and a mismatched receiver with minimum
mean square error (MMSE) CSI estimation. Recently, Larsson
[16] (see also [15, Sec. 4.2.3]) showed independently that the
diversity gain attained by pilot-aided channel estimation based
on a MMSE procedure and minimum distance detection is the
same as that of a maximum-likelihood (ML) receiver with ideal
channel estimation.

Our work addresses the case of narrowband MIMO systems,
with the aim of finding the error probability degradation of three
receiver architectures using standard space–time codes.

This paper is organized as follows. Section II describes
the MIMO channel model. Section III illustrates three types
of detection schemes for MIMO channels. They are the mis-
matched receiver, the ML receiver, and the optimum receiver.
The first two are based on a channel matrix estimate obtained
by ML or MMSE criteria. Section IV studies the ML receiver
in detail: We exhibit the receiver metric, an algorithm for its
sequential computation, and show that the receiver output does
not depend on the type of channel matrix estimation considered.
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Limiting cases are considered and compared with known results
from the literature. Section V studies the optimum receiver in
detail, providing the receiver metric and an algorithm for its
sequential computation. This receiver is not based on an explicit
estimation of the channel matrix, but bases its decisions directly
on the pilot signals and the receiver data signal. Section VI
studies the asymptotic (in the SNR) error performance and
the diversity gain of the receivers considered with orthogonal
pilot matrices. Section VII includes numerical results: Specifi-
cally, Section VII-A considers a simple space–time block code;
Section VII-B considers more elaborate trellis space–time
codes; and Section VII-C compares the results obtained in
this paper with information-theoretical results adapted from
[10], [11]. Finally, Section VIII summarizes our findings.

II. MIMO CHANNEL MODEL

We consider a radio system with t transmit and r receive
antennas, r ≥ t. Assume that a space–time code X is used
with block length N . Specifically, the transmitted signal is rep-

resented by a t × N matrix X ∆= (x1, . . . ,xN ). The received
signal is modeled by an r × N matrix

Y = HX + Z. (1)

Here, the channel is described by the r × t complex random
matrix H (referred to in the following as channel matrix or
CSI) whose entries are independent identically distributed
(i.i.d.) zero-mean circularly symmetric complex Gaussian
(ZMCSCG) random variables (i.e., each random variable has
independent real and imaginary parts with zero mean and same
variance) with unit variance (i.e., twice the variance of the real
or imaginary parts). The noise matrix Z consists of ZMCSCG
random variables with variance N0 so that the noise affecting
the received signal is spatially and temporally white, with
E[ZZ†] = NN0Ir, where Ir denotes the r × r identity matrix
and (·)† denotes Hermitian transposition. The average energy
of the entries of the transmitted signal is

Es
∆=

1
tN

E
[
‖X‖2

]
=

1
tN

E
[
tr(XX†)

]
(2)

where the expectation is taken over the a priori distribution of
the transmitted signal code words, and where tr(A) denotes

the matrix trace, i.e., tr(A) ∆=
∑

i Aii, and ‖A‖ the Frobenius

norm, i.e., ‖A‖ ∆= (
∑

i,j |Aij |2)1/2. The channel matrix H is
independent of both X and Z, and remains constant during the
transmission of an entire code word.

III. PILOT-BASED DETECTION SCHEMES

In a large number of studies, it is assumed that the receiver
has perfect knowledge of the channel matrix H and code design
criteria are derived using this assumption (see, e.g., [22]). How-
ever, in a real communication environment, the receiver has no
a priori knowledge of the realization of H and has to estimate it
using the available received data samples. A standard technique

to allow the receiver to estimate H consists of transmitting pilot
symbols among the data, i.e., a set of symbols whose location
and values are known to the receiver. Without loss of generality
(after possibly rearranging the order of transmitted symbols),
we assume that the transmitter sends a pilot matrix Xp and a
data matrix X, both affected by the same channel matrix H, so
that the receiver separately observes the matrices

Yp = HXp + Zp (3)

and

Y = HX + Z (4)

where Zp and Z are the noise matrices affecting the transmis-
sion of data and pilot symbols, respectively. Z and Zp have the
same distribution. We also assume that Xp and X are t × P
and t × N matrices, respectively, and the average pilot symbol
energy is

Ep
∆=

1
tP

‖Xp‖2 =
1
tP

tr
(
XpX†

p

)
. (5)

Since to estimate the r × t matrix H, we need at least rt
independent measurements, and each symbol time yields r
measurements at the receiver, we must have P ≥ t. Moreover,
the matrix Xp must have full rank t, since otherwise t lin-
early independent columns would not be available to yield rt
independent measurements. As a consequence of the above, the
matrix XpX†

p must be nonsingular.
Among the receiver structures that can be envisaged we focus

on the following:

1) The receiver estimates the channel matrix H from Yp

and Xp and uses the result Ĥ in the same metric that
would be applied if the channel were perfectly known.
The output is

X̂ ∆= arg min
X

µ̃(X) (6)

where

µ̃(X) ∆= ‖Y − ĤX‖2. (7)

Since (7) is sometimes referred to as mismatched metric,
we call this a mismatched receiver. There are several
possible mismatched receivers, depending on the type of
CSI estimation criterion.

2) The receiver estimates the channel matrix H from Yp and
Xp and uses the result Ĥ to detect the transmitted signal
X according to an ML criterion. The output is

X̂ ∆= arg max
X

p(Y|X, Ĥ). (8)

With a slight abuse of terminology, we call this an ML
receiver. There are several possible ML receivers, de-
pending on the type of CSI estimation criterion. However,
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we will show in Section IV that ML and MMSE CSI
estimation yield the same ML receiver.

3) The receiver detects the transmitted signal X by jointly
processing Y, Yp, and Xp (as suggested, e.g., in [11])
without explicit estimation of H. In this case, the detec-
tion problem can be written as

X̂ ∆= arg max
X

p(Y,Yp|X,Xp). (9)

We refer to this detection scheme as the optimum
receiver.

The mismatched and ML receivers are more common in the
literature [see [4] for single-input single-output (SISO) ML
receiver]. They share the need of recovering CSI in order to
detect the transmitted signal. The optimum receiver skips the
CSI recovery step, and focuses instead on the detection of
the transmitted signal. The performances of these receivers are
studied and compared in the following.

A. CSI Estimation

Here, we focus on ML and MMSE estimation of H from the
pilot signals Xp and Yp.

1) The ML estimate of H is obtained by maximizing
p(Yp|H,Xp) or, equivalently, by minimizing ‖Yp −
HXp‖2 with respect to H. This yields

ĤML = YpX†
p

(
XpX†

p

)−1
= H + E (10)

where

E ∆= ZpX†
p

(
XpX†

p

)−1
(11)

denotes the CSI estimation error matrix. Here, we assume
that (XpX†

p)−1 exists, consistently with remarks above.
2) An MMSE estimate of H can be obtained by the linear

transformation YpF, with F the P × t matrix that mini-
mizes the mean square error E‖YpF − H‖2. This yields

ĤMMSE =YpX†
p

(
N0It + XpX†

p

)−1

=HXpX†
p

(
N0It + XpX†

p

)−1

+ ZpX†
p

(
N0It + XpX†

p

)−1
(12)

where It denotes the t × t identity matrix.

We notice that

ĤMMSE = ĤMLBMMSE (13)

where BMMSE
∆= XpX†

p(N0It + XpX†
p)−1. Since ĤML is

plainly an unbiased estimator of H, we will call BMMSE

biasing matrix. This leads us to consider the general class of
CSI estimators

Ĥ = ĤMLB (14)

characterized by an invertible biasing matrix B. In Section IV,
we show that the ML receiver output does not depend on B
so that ML and MMSE estimation of the CSI lead to the same
result in that case.

Analysis of the ML receiver (see Section IV) requires the
statistics of the error matrix E defined in (11). First, it is plain
to see that H and E are independent. Next, denoting by (·)i the
ith row of a matrix (·), we can write

Ei = (Zp)iX
†
p

(
XpX†

p

)−1
. (15)

Then, the rows of E are independent vectors of ZMCSCG
random variables with covariance matrix

Σe
∆= E

[
E†

iEi

]
= N0

(
XpX†

p

)−1
. (16)

This suggests the use of an orthogonal pilot matrix1 yielding a
white error matrix (the entries of E are i.i.d. ZMCSCG random
variables with variance N0/(PEp) and Σe = N0It/(PEp)).
For example, in [26], orthogonality is achieved by a diagonal
Xp, which corresponds to having only one transmit antenna
active at a time.2

IV. ML RECEIVER

The solution of the maximization problem (8) requires an
explicit expression of the conditional probability density func-
tion (pdf) p(Y|X, Ĥ), where we assume Ĥ to be given in its
general form (14). This can be obtained since both Y and Ĥ
are ZMCSCG random matrices and we can apply known results
such as Theorem 1 of the Appendix I.

In this section, we derive the receiver metric for the detection
of the transmitted signal, we show that this metric is indepen-
dent of the type of CSI estimation assumed (ML or MMSE),
and we provide a sequential algorithm for its computation.

A. Receiver Metric

The pdf required to calculate the receiver metric is derived
in Appendix II for general pilot matrices. In particular, with
orthogonal pilot matrices, we obtain3

p(Y|X, Ĥ)

=
etr
{
−(Y−ρĤX)

[
N0IN + (1−ρ)X†X

]−1(Y−ρĤX)†
}

det{π [N0IN + (1−ρ)X†X]}r ,

(17)

1Hereafter, we refer to a pilot matrix Xp with orthogonal rows (i.e., such

that XpX
†
p = PEpIt) by the name orthogonal pilot matrix.

2Orthogonality, albeit attractive, may be incompatible with standard signal
constellations such as PSK. In fact, it is desirable that the rows of Xp have good
autocorrelation and cross correlation properties. This is achieved by perfect root
of unity sequences only in some special cases (see [6] and references therein).

3We define etr(A)
∆
= exp[tr(A)].
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where ρ is defined as

ρ
∆=

PEp

N0 + PEp
. (18)

Taking logarithms and dropping constant terms yields the ML
estimate

X̂ = arg min
X

µML(X) (19)

where

µML(X) ∆= rN0 ln det
(
IN +

(1 − ρ)X†X
N0

)

+ tr

[
(Y − ρĤX)

(
IN +

(1 − ρ)X†X
N0

)−1

(Y − ρĤX)†
]

(20)

is the metric of X. Specializing this result to extremal cases
we get:

1) with perfect CSI (i.e., PEp/N0 → ∞ and consequently
ρ → 1)

µML(X) = ‖Y − ĤX‖2 (21)

2) without CSI (i.e., PEp/N0 →0 and consequently ρ → 0)

µML(X) = rN0 ln det
(
IN +

X†X
N0

)

+ tr

[
Y
(
IN +

X†X
N0

)−1

Y†

]
(22)

consistently with [12].4 It is worth noting that the metric
expression does not contain the CSI estimate Ĥ in this
case, consistently with the fact that there is no avail-
able CSI.

B. Iterative Metric Computation

Here, we consider the problem of calculating the metric (20)
for implementation of a sequential decoding algorithm such
as the Viterbi decoder. For simplicity, we restrict ourselves to
consider the case of orthogonal pilot matrices. Assuming the
transmitted and received signal matrices to be split as X =

4An erroneous result is obtained if we set µ = 1 (corresponding to ρ = 0
in our notation) in [22, eq. (3)]. This is caused by the invalid conditional
independence assumption on the received vector components implicitly made
in (2) therein (see also [23]).

(X−,x) and Y = (Y−,y) (where x and y are column vectors),
we obtain the following result (see Appendix III):

∆µML(x;X−)
∆= µML(X) − µML(X−)

= ‖y − ρĤx‖2 − rN0 ln
(

1 +
(1 − ρ)x†Λ(X−)x

N0

)
− 1−ρ

N0
tr
[
Ξ(X)†Λ(X)Ξ(X)−Ξ(X−)†Λ(X−)Ξ(X−)

]
(23)

where

µ̂(X) ∆= ‖Y − ρĤX‖2

= µ̂(X−) + ‖y − ρĤx‖2

Ξ(X) ∆=X(Y − ρĤX)†

=Ξ(X−) + x(y − ρĤx)†

Λ(X) ∆=
(
It +

(1 − ρ)XX†

N0

)−1

=Λ(X−) − 1 − ρ

N0 + (1 − ρ)x†Λ(X−)x

· Λ(X−)xx†Λ(X−).

(24)

This equation can be applied to a sequential decoding algorithm
and, in particular, used to calculate the branch metrics for a
Viterbi decoder. Notice that the computational load involved in
evaluating the branch metric is independent of the code word
length N , and O(t2), i.e., it grows asymptotically with the
square of t as t → ∞. This is fundamental to the sequential
implementation of the decoding algorithm for space–time
trellis codes.

V. OPTIMUM RECEIVER

Here, we consider the problem of detecting the transmitted
word X maximizing the pdf p(Y,Yp|X,Xp) without any prior
estimate of the channel matrix H (though we assume that the
joint pdf of the channel matrix H and the noise Z is known).

Applying Theorem 3 of Appendix I, we obtain (25), (shown
at the bottom of the next page).

The logarithm of this expression yields the corresponding
metric to be minimized by the optimum receiver

µopt(X) = r ln det

[
It +

XX† + XpX†
p

N0

]

− tr

(YX† + YpX†
p

)[
It +

XX† + XpX†
p

N0

]−1

·
XX† + XpX†

p

N2
0

}
. (26)
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If the pilot matrix Xp is orthogonal, we have the surpris-
ing result that the metrics (20) and (26) are equivalent (see
Appendix IV).

Caveat: The assumptions used in the derivation of metric (26)
are that H and Z have i.i.d. entries distributed as Nc(0, 1) and
Nc(0, N0), respectively. Whenever the channel fails to meet
these assumptions, the metric is not optimum.

A. Iterative Metric Computation

Under the same assumptions of Section IV-B, we set X =
(X−,x) and Y = (Y−,y). Then, we define

Ξ(X) ∆=
XY† + XpY†

p

N0

Λ(X) ∆=

[
It +

XX† + XpX†
p

N0

]−1 (27)

so that the metric can be written as

µopt(X) = −r ln detΛ(X) − tr
[
Ξ(X)†Λ(X)Ξ(X)

]
. (28)

After some algebra (similar to Section IV-B), we obtain

Ξ(X) =Ξ(X−) +
xy†

N0

Λ(X) =Λ(X−) − Λ(X−)xx†Λ(X−)
N0 + x†Λ(X−)x

ln detΛ(X) = ln detΛ(X−) − ln
(

1 +
x†Λ(X−)x

N0

)
(29)

and the metric increment is

∆µopt(x;X−) ∆=µopt(X) − µopt(X−)

= r ln
(

1 +
x†Λ(X−)x

N0

)
+ tr

[
Ξ(X−)†Λ(X−)Ξ(X−)

− Ξ(X)†Λ(X)Ξ(X)
]
. (30)

VI. DIVERSITY GAIN

In this section, we investigate the asymptotic performance
of the receivers considered as the SNR grows to infinity, and
prove that the diversity gain achievable with perfect CSI is still
attainable by using a pilot-aided scheme. A similar result was
asserted in [22] for the ML receiver, but their proof is affected
by an erroneous assumption of conditional independence of the
received vector components [22, eq. (2)].

In our setting, the diversity gain can be defined as the limit

γ
∆= lim

N0→0

log P(e)
log N0

where P(e) is the symbol error probability, which can be
approximated by the asymptotically tight “union bound”

P(e) ≤ 1
|X |

∑
X∈X

∑
X̂�=X

P(X → X̂). (31)

It is known [21] that if the pairwise error probability (PEP)
[1, p. 190] is given by P(X → X̂) = E[Q(‖H∆‖/(2N0)1/2)]
for a code word difference ∆ ∆= X − X̂, and consequently

γ = r · min
∆

rank(∆). (32)

To simplify the calculations that follow, we assume orthog-
onal pilot matrices and define the r × N and r × t matrices
Z̃ and Ẽ with i.i.d. ZMCSCG random variables with unit
variance.

A. Mismatched Receiver

The received signal corresponding to the transmission of
code word X can be written as

Y = HX +
√

N0Z̃.

The estimated CSI is Ĥ = H + (N0/(PEp))1/2Ẽ for the ML
estimator and Ĥ = ρ(H + (N0/(PEp))1/2Ẽ) for the MMSE
estimator. However, since ρ = 1 + O(N0) as N0 → 0, we can

p(Y,Yp|X,Xp) = EH

[
exp

(
−
(
‖Y − HX‖2 + ‖Yp − HXp‖2

)
/N0

)
(πN0)(P+N)r

]

= EH

[
etr
(
−
(
H†H

(
XX†+XpX†

p

)
−H

(
XY†+XpY†

p

)
−
(
YX†+YpX†

p

)
H†+

(
YY† + YpY†

p

))
/N0

)
(πN0)(P+N)r

]

=
1

(πN0)(P+N)r
det

[
It +

XX† + XpX†
p

N0

]−r

· etr

(YX† + YpX†
p

) [
It +

XX† + XpX†
p

N0

]−1
XY† + XpY†

p

N2
0

−
YY† + YpY†

p

N0

 (25)
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write in both cases

Ĥ = H +

√
N0

PEp
Ẽ + O(N0).

Then, the mismatched metric is given by

µ̃(X̂) = ‖Y − ĤX̂‖2

=

∥∥∥∥∥HX +
√

N0Z̃ −
(

H +

√
N0

PEp
Ẽ

)
X̂ + O(N0)

∥∥∥∥∥
2

=

∥∥∥∥∥H∆ +
√

N0Z̃ −
√

N0

PEp
ẼX̂ + O(N0)

∥∥∥∥∥
2

= ‖H∆‖2 + 2
√

N0Re
[
tr(H∆Z̃†)

]
− 2

√
N0

PEp
Re

[
tr(H∆X̂†Ẽ†)

]
+ O(N0). (33)

After some algebra, we get the following asymptotic result:

P(X → X̂)

= E

Q


√√√√‖H∆‖2

2N0

(
1 +

‖H∆X̂†‖2

PEp‖H∆‖2

)−1

+ O(1)


 .

(34)

From the Cauchy–Schwarz inequality applied to Frobenius
norms [13, p. 291], we have the inequalities

1 ≤ 1 +
‖H∆X̂†‖2

PEp‖H∆‖2
≤ 1 +

‖X̂‖2

PEp

and, hence, we obtain the following upper and lower bounds to
the PEP:

E

Q

√‖H∆‖2

2N0
+ O(1)

 ≤ P(X → X̂)

≤ E

Q


√√√√‖H∆‖2

2N0

(
1 +

‖X̂‖2

PEp

)−1

+ O(1)


 .

Then, using (32), we see that the diversity gain achieved by
the mismatched receiver is the same as for the ML receiver with
perfect CSI, consistently with a claim in [22].

B. ML/Optimum Receiver

The same result holds for the ML and optimum receivers
(which are equivalent in the case considered of orthogonal pilot
matrices, as shown in Appendix IV, and do not depend on the
type of CSI estimation as shown in Section IV). In this case, we
can write the ML metric as in (35) (shown at the bottom of the
page).

After some algebra, we obtain

P(X → X̂)

=E

Q
√ tr{H∆[IN + X̂†X̂/(PEp)]−1∆†H†}

2N0
+O(1)

.

From positive semidefinite ordering theory (see [13, Sec-
tion 7.7]), we can easily see that

IN �
(

IN +
X̂†X̂
PEp

)−1

�
(

1 +
‖X̂‖2

PEp

)−1

IN

and, hence

E

Q

√‖H∆‖2

2N0
+ O(1)

 ≤ P(X → X̂)

≤ E

Q


√√√√‖H∆‖2

2N0

(
1 +

‖X̂‖2

PEp

)−1

+ O(1)


 .

Again, we have from (32) that the diversity gain achieved by
the ML receiver with imperfect CSI estimation is the same as
for the ML receiver with perfect CSI.

VII. NUMERICAL RESULTS

We now provide numerical results based on space–time
codes obtained from a simple short block code [the (8,4,4)
binary Hamming code] and certain binary convolutional codes
[5]. Throughout this section, we assume that the pilot matrix

µML(X̂) = tr


[
HX +

√
N0Z̃ −

(
H +

√
N0

PEp
Ẽ

)
X̂

](
IN +

X̂†X̂
N0 + PEp

)−1

·
[
HX +

√
N0Z̃ −

(
H +

√
N0

PEp
Ẽ

)
X̂

]†+ rN0 ln det

(
IN +

X̂†X̂
N0 + PEp

)

= tr

H∆

(
IN +

X̂†X̂
PEp

)−1

∆†H†

+ 2
√

N0Re tr

H∆

(
IN +

X̂†X̂
PEp

)−1(
Z̃ − ẼX̂√

PEp

)†
+ O(N0) (35)
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Fig. 1. Word error rate of a 2 × 2 (t = 2, r = 2) independent Rayleigh fading MIMO channel with a space–time code obtained by mapping the (8,4,4) binary
Hamming code to 2 × 4 BPSK code words. Solid curves show the performance with the ML metric (20). Dashed curves show the performance with the mismatched
metric (7).

Fig. 2. Same as Fig. 1 for a 2 × 4 MIMO channel.

Xp is orthogonal and that the same power is allocated to pilot
and data, i.e., Ep = Es. An upside of this choice is that it
prevents fluctuations in the interference level in a multiuser
setting.

A. Simple Block Space–Time Codes

We consider first a simple space–time block code obtained
by mapping the (8,4,4) binary Hamming code to 2 × 4 binary

phase-shift keying (BPSK) code words.5 The 8-bit ci (i =
1, . . . , 8) are mapped to the BPSK symbols xi = (−1)ci , which
are used to produce the matrix code words filling the 2 × 4
matrices by rows. Figs. 1 and 2 illustrate the results obtained.
The channel is assumed to be independent block Rayleigh
fading. The figures show the word error rate versus Eb/N0 for

5The rationale behind this choice is discussed in [2].
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Fig. 3. Word error rate of a 2 × 2 (t = 2, r = 2) independent Rayleigh fading MIMO channel with the trellis space–time code STC-1 versus Eb/N0 for several
values of pilot intervals P = 2, 4, 8, and 16 and frame length N = 130. Solid curves with markers (labeled MM) show the performance with the mismatched
metric (7). Dashed curves with markers (labeled ML) show the performance with the ML metric (20). The lowest solid curve shows the performance with perfect
CSI.

different values of (S/N)p
∆= PEp/N0 with the mismatched

metric (7) and the ML metric (20).
It is worth saying that Eb denotes the average received energy

per information bit accounting for the rate loss due to pilot
symbols, i.e.,

Eb =
N + P

N

tEs

µb

where µb denotes the number of information bits per symbol
interval conveyed by the space–time code. This definition re-
flects the fact that an increase of the number of pilot symbols
P increases the quality of the channel estimate, but lowers the
transmission rate.

It can be noticed that: 1) the performance loss with respect
to ideal coherent detection is negligible with (S/N)p ≥ 20 dB

(recall that (S/N)p
∆= PEp/N0); and 2) the performance loss

of the mismatched receiver with respect to the ML receiver is
significant when (S/N)p ≤ 10 dB. These results depend on the
code used, so it makes sense to investigate the influence of the
code selection on the accuracy of the channel estimate required
for a marginal performance loss.

B. Trellis Space–Time Codes

The simulation examples below show the performance degra-
dation of space–time codes due to imperfect channel estima-
tion with the mismatched metric (7) and with the ML metric
(20). We show in Appendix IV that the optimum receiver is
equivalent to the ML receiver in this case. Simulations have
been performed by implementing the sequential algorithm

derived in Section IV-B leading to the branch metrics (23).
Performance results relevant to an ML receiver with perfect
CSI (provided by a genie without rate loss) are also reported
for comparison.

Two trellis space–time codes are considered. They are ob-
tained by mapping the rate-2/4 binary convolutional codes with
4 and 16 states, whose generator matrices are [5]

G1 =
(

0 3 1 2
3 1 2 1

)
and

G2 =
(

3 7 1 6
4 7 6 3

)
to QPSK so that the four encoded bits are mapped to QPSK
symbol pairs sent to the t = 2 transmit antennas. Hereafter, we
refer to these codes by the names STC-1 and STC-2.

Fig. 3 shows the frame error rate (FER) versus Eb/N0 of
a 2 × 2 MIMO block Rayleigh fading channel with the trellis
space–time code STC-1 with the mismatched and ML metrics
(7) and (20) labeled MM and ML, respectively. The frame
length is N = 130 including trellis termination. Moreover, it
is assumed that the average pilot symbol energy is equal to the
average data symbol energy (i.e., Ep = Es) and P (number of
pilot intervals per frame) takes on the values 2, 4, 8, 16, and 32.

Similarly, Fig. 4 shows the performance of a 2 × 4 MIMO
channel with the trellis space–time code STC-1. Fig. 5 shows
the performance of a 2 × 2 MIMO channel with the trellis
space–time code STC-2.
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Fig. 4. Same as Fig. 3 for a 2 × 4 MIMO channel.

Fig. 5. Same as Fig. 3 for the code STC-2.

It can be noticed that the improvement achieved by in-
creasing the number of pilot symbols used with the ML metric
is always limited, and there is a gap to the lower bound
performance of the genie ML receiver, which has perfect CSI
available at no expense. The gap depends on t and r—the
code and the receiver considered. When t = r = 2, it is about
0.3 dB (STC-1 at FER = 10−2 with P = 4, ML receiver)
or 1.0 dB (STC-1 at FER = 10−2 with P = 16, mismatched
receiver). When t = 2 and r = 4, it is about 0.6 dB (STC-1

at FER = 10−2 with P = 4, ML receiver) or 1.3 dB (STC-1
at FER = 10−2 with P = 16, mismatched receiver). Finally,
when t = r = 2, it is about 0.45 dB (STC-2 at FER = 10−2

with P = 4, ML receiver) or 1.1 dB (STC-2 at FER = 10−2

with P = 16, mismatched receiver).
Notice that the mismatched receiver attains its optimum

performance when the number of pilot symbols per frame P
is equal to 16 (about 11% of the overall frame of pilot and
data symbols), while the ML receiver performance attains its
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Fig. 6. Word error rate of a 2 × 2 (t = 2, r = 2) independent Rayleigh fading MIMO channel with the trellis space–time code STC-1 versus the number of pilot
symbols at Eb/N0 = 10 dB. Solid curves with � (labeled MM) show the performance with the mismatched metric (7). Solid curves with ◦ (labeled ML) show
the performance with the ML metric (20). The lowest straight line shows the performance with perfect CSI.

Fig. 7. Same as Fig. 6 for a 2 × 4 MIMO channel at Eb/N0 = 4 dB.

optimum performance when the number of pilot symbols per
frame P is equal to 4 (about 3% of the overall frame of pilot
and data symbols).

Figs. 6–8 show the FER performance versus the number
of pilot symbols P at fixed Eb/N0. They refer to 2 × 2 and
2 × 4 MIMO systems with trellis space–time codes STC-1 and
STC-2. The ML receiver performs very close to the genie
receiver and the optimum number of pilot symbols is about 4
for the ML receiver and 16 for the mismatched receiver.

To summarize, we can say that the complexity increase
entailed by the ML receiver buys in the cases considered about
0.7 dB of Eb/N0.

C. Comparison With [11]

It was shown in [11], under our assumption of equal signal
and pilot energies, i.e., Es = Ep, that the achievable rate of
a MIMO system based on orthogonal pilot matrices is lower
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Fig. 8. Same as Fig. 6 for the code STC-2 at Eb/N0 = 8 dB.

Fig. 9. Plot of the minimum achievable rate for 2 × 2, 2 × 4, and 2 × 8 independent Rayleigh MIMO channels versus Eb/N0.

bounded by Rmin, a quantity obtained by solving the implicit
equation

Rmin =
N

N + P
E log det

(
Ir +

ρ/t

1 + (t/P )(1 + 1/ρ)
HH†

)
(36)

bit/dimension pair, where

ρ
∆=

Eb

N0
Rmin. (37)

Fig. 9 plots the maximum (over the number of pilot symbols per
frame, P ) Rmin versus Eb/N0 assuming a frame length N =
130 for a 2 × 2, 2 × 4, and 2 × 8 independent Rayleigh MIMO
channel. Fig. 10 plots the corresponding optimum number of
pilot symbols per frame P versus Eb/N0. As expected, when
Eb/N0 is low, a large number of pilot symbols per frame is
required, reflecting the fact that the channel is more difficult
to estimate. On the contrary, when Eb/N0 is large, fewer pilot
symbols are needed. The optimum P depends also on the
number of receive antennas: If more antennas are available at
the receiver at a fixed Eb/N0, fewer pilot symbols are sufficient



TARICCO AND BIGLIERI: SPACE–TIME DECODING WITH IMPERFECT CHANNEL ESTIMATION 1885

Fig. 10. Plot of the optimum number of pilot symbols corresponding to the minimum achievable rate plotted in Fig. 9 versus Eb/N0.

to obtain the optimum performance. Nevertheless, the variation
of the optimum fraction of pilot symbols required, P/(P + N),
is quite limited.

Moreover, using the fact that log det(I + αX) ≈ αtr(X) as
α → 0 and [9, Lemma A.2], the asymptotic behavior of Rmin

versus ρ is given as

Rmin≈


NP

t(N + P )
ρ2 log e, (ρ→0)

N

N+P

{
t log

Pρ

(t+P )t
+

t−1∑
i=0

Ψ(r−i)

}
, (ρ→∞)

(38)

where Γ(x) ∆=
∫∞
0 ux−1e−udu and Ψ(x) ∆= Γ′(x)/Γ(x) are,

respectively, Euler’s Gamma and Digamma functions. Hence,
it is straightforward to see that the optimum P approaches N
as ρ → 0, and t (the minimum value allowed according to
the inequality P ≥ t justified in Section III) as ρ → ∞. The
former case is also addressed by [18, Section 6] and by [11,
Section II-C]. These results are in fair agreement with Figs. 6
and 8, which show the optimum value of P to be 4 in both
cases. The difference is due to the fact that those results refer
to finite space–time codes with finite signal constellations.

VIII. CONCLUSION

In this work, we studied the optimum receiver for a coded
MIMO channel with CSI obtained by transmitting pilot sym-
bols among the data. We derived some basic conditions on the
pilot matrix Xp and the statistics of the channel estimation
error matrix. We obtained the optimum metric for a receiver
that estimates the channel matrix with ML and for a receiver
that does not form the channel matrix explicitly, but jointly
processes all the available signals. We showed that when the

pilot matrix is orthogonal, the receivers are equivalent. We
provided numerical results showing that an optimum alloca-
tion of pilot space exists, and this amounts to an overhead
of about 3% for the cases considered. This is in contrast
with information-theoretic studies showing that for a BLAST
receiver, an overhead of 100% is optimal to maximize the
theoretical throughput [18]. However, we showed that this is
in fair agreement with the lower bound to the information rate
computed in [11].

APPENDIX I
RESULTS ON CIRCULARLY SYMMETRIC COMPLEX

GAUSSIAN RANDOM VECTORS

The following result is derived in [3].
Theorem 1: Let z1 and z2 be circularly symmetric com-

plex Gaussian random vectors with zero means and full-rank

covariance matrices Σij
∆= E[ziz

†
j ]. Then, conditionally on

z2, the random vector z1 is circularly symmetric complex
Gaussian with mean Σ12Σ−1

22 z2 and covariance matrix Σ11 −
Σ12Σ−1

22 Σ21.
The following result is derived in [19].
Theorem 2: For a circularly symmetric complex Gaussian

random vector z ∼ Nc(µ,Σ) with mean µ = E[z] and covari-
ance matrix Σ = E[zz†] − µµ†, and a Hermitian matrix A
such that I + ΣA > 0, we have

E
[
exp(−z†Az)

]
= det(I+ΣA)−1 exp

[
−µ†A(I+ΣA)−1µ

]
.

(39)

Using Theorem 2 and some algebra, we have the following.
Theorem 3: Given a Hermitian n × n matrix A such that

In + A > 0, an m × n complex matrix B, and an m × n
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matrix Z of i.i.d. ZMCSCG random variables with unit vari-
ance, the following identity holds:

E
[
etr(−ZAZ† − ZB† − BZ†)

]
= det(In + A)−m etr

[
B(In + A)−1B†] .

APPENDIX II
DETAILS ON THE DERIVATION OF (17)

To compute the pdf p(Y|X, Ĥ), we notice that it can be
written as

p(Y|X, Ĥ) =
r∏

i=1

p(Yi|X, Ĥi) (40)

since conditionally on X, Yi depends only on Hi and Zi. Then,
we apply Theorem 1 of Appendix I to each factor p(Yi|X, Ĥi).
Letting

z1 = Y†
i = X†H†

i + Z†
i and z2 = Ĥ†

i = B†
(
H†

i + E†
i

)
in Theorem 1, we have

Σ11 =N0IN + X†X

Σ12 =X†B

Σ22 =B†
[
It + N0

(
XpX†

p

)−1
]
B.

Then, the conditional pdf of Y†
i , given X and Ĥi, is a circularly

symmetric complex Gaussian distribution, with

mean =Σ12Σ−1
22 z2

=X†BB−1
[
It+N0

(
XpX†

p

)−1
]−1

(B†)
−1

B†
(
H†

i+E†
i

)
=X†

[
It + N0

(
XpX†

p

)−1
]−1 (

H†
i + E†

i

)
(41)

and

covariance matrix =Σ11 − Σ12Σ−1
22 Σ†

12

= N0IN + X†X − X†BB−1

×
[
It + N0

(
XpX†

p

)−1
]−1

(B†)
−1

B†X

= N0IN + X†X − X†

×
[
It + N0

(
XpX†

p

)−1
]−1

X. (42)

Therefore, the biasing matrix B does not affect the detection of
the transmitted signal X since it does not affect p(Y|X, Ĥ).

For simplicity, we restrict to the case of orthogonal pilot
matrices. The previous expressions simplify to

mean = ρX†Ĥ†
i (43)

covariance matrix =N0IN + (1 − ρ)X†X (44)

where we define ρ
∆= PEp/(N0 + PEp). As a result, with

orthogonal pilot matrices, we have (17).

APPENDIX III
DERIVATION OF THE BRANCH METRIC (23)

We want to obtain µML(X) from µML(X−) by a smaller
number of calculations than required by using the method of
direct evaluation of (20). Thus, we resort to two well-known
results from linear algebra (available, e.g., from [13]) recalled
here for easy reference.

1) For any m × n matrix A and n × m matrix B, we have
the following determinant identity:

det(Im + AB) = det(In + BA). (45)

2) For a given invertible m × m matrix A, an m × n matrix
X, and an n × m matrix Y, we have the following matrix
inversion lemma:

(A + XY)−1 = A−1 − A−1X(I + YA−1X)−1YA−1.
(46)

From (46), we have(
IN +

(1 − ρ)X†X
N0

)−1

= IN − 1 − ρ

N0
X†

(
It +

(1 − ρ)XX†

N0

)−1

X.

Applying this result and identity (45), we can write the ML
metric (20) as

µML(X) =‖Y − ρĤX‖2 − 1 − ρ

N0

× tr

[
(Y − ρĤX) · X†

(
It +

(1 − ρ)XX†

N0

)−1

×X(Y − ρĤX)†
]

+ rN0 ln det
(
It +

(1 − ρ)XX†

N0

)
. (47)

Now, since X = (X−,x) and Y = (Y−,y), we have the fol-
lowing recursions:

µ̂(X) ∆= ‖Y − ρĤX‖2

= µ̂(X−) + ‖y − ρĤx‖2 (48)

Ξ(X) ∆=X(Y − ρĤX)†

=Ξ(X−) + x(y − ρĤx)† (49)

Λ(X) ∆=
(
It +

(1 − ρ)XX†

N0

)−1

=
[
Λ(X−)−1 +

(1 − ρ)xx†

N0

]−1

=Λ(X−) − 1 − ρ

N0 + (1 − ρ)x†Λ(X−)x

· Λ(X−)xx†Λ(X−) (50)
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and the ML metric can be written as

µML(X) = µ̂(X)

− 1 − ρ

N0
tr
[
Ξ(X)†Λ(X)Ξ(X)

]
+ rN0 ln detΛ(X).

Finally, the corresponding metric increment is given by (23).

APPENDIX IV
EQUIVALENCE OF THE METRICS (20) AND (26)

We prove the equivalence of the metrics (20) and (26) under
the assumption XpX†

p = PEpIt. First, recall that from (18)

XpX†
p = PEpIt =

ρ

1 − ρ
N0It

YpX†
p = PEpĤ =

ρ

1 − ρ
N0Ĥ.

Then, we obtain

µML(X) = rN0 ln det
(
IN +

(1 − ρ)X†X
N0

)

+ tr

[
(Y − ρĤX)

(
IN +

(1 − ρ)X†X
N0

)−1

×(Y − ρĤX)†
]

= rN0 ln det
(
IN +

(1 − ρ)X†X
N0

)

+ tr

{(
Y− 1−ρ

N0
YpX†

pX
)(

IN +
1−ρ

N0
X†X

)−1

×
(
Y − 1 − ρ

N0
YpX†

pX
)†
}

(51)

and µopt(X) is defined in (52) at the bottom of the page.
Comparing (51) and (52), we obtain

µML(X) = N0µopt(X) + rtN0 ln(1 − ρ)

+ tr(YY†) +
1 − ρ

N0
tr
(
YpX†

pXpY†
p

)
which shows that the two metrics are equivalent.

µopt(X) = r ln det

[
It +

XX† + XpX†
p

N0

]
− tr

(YX† + YpX†
p

) [
It +

XX† + XpX†
p

N0

]−1
XY† + XpY†

p

N2
0


= r ln det

(
1

1 − ρ
It +

XX†

N0

)
− 1

N2
0

tr

{(
YX† + YpX†

p

)( 1
1 − ρ

It +
XX†

N0

)−1 (
XY† + XpY†

p

)}

= − rt ln(1 − ρ) + r ln det
[
IN +

(1 − ρ)X†X
N0

]

− 1 − ρ

N2
0

tr

{(
YX† + YpX†

p

) [
It +

(1 − ρ)XX†

N0

]−1 (
XY† + XpY†

p

)}

= − rt ln(1 − ρ) + r ln det
[
IN +

(1 − ρ)X†X
N0

]

− 1 − ρ

N2
0

tr

{(
YX† + YpX†

p

) [
It −

1 − ρ

N0
X
(
IN +

1 − ρ

N0
X†X

)−1

X†

] (
XY† + XpY†

p

)}

= − rt ln(1 − ρ) + r ln det
[
IN +

(1 − ρ)X†X
N0

]

− 1 − ρ

N2
0

tr

{
YX†X

(
IN +

1 − ρ

N0
X†X

)−1

Y† + YpX†
pX

(
IN +

1 − ρ

N0
X†X

)−1

Y†

+ Y
(
IN +

1 − ρ

N0
X†X

)−1

X†XpY†
p + YpX†

p

×
[
It −

1 − ρ

N0
X
(
IN +

1 − ρ

N0
X†X

)−1

X†

]
XpY†

p

}
(52)
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