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Abstract— This paper studies the potential impact of using 

space-time information in the mitigation of the Non-Line-Of-

Sight condition in mobile subscriber's positioning systems. First 

of all, this work discusses the positioning problem based on 

measures of Time Differences Of Arrival departing from a more 

exact characterization of the signal statistics and including some 

geometrical restrictions to achieve an improved  accurate. 

Furthermore, a novel approach that integrates signal 

propagation characteristics to information provided by a suitable  

timing estimation model based on Cramer Rao Bound for a 

Rayleigh-fading channel, when antenna arrays are used at the 

receiver and when a set of channel vector estimates are available, 

has been introduced to study the positive benefits of space-time 

diversity. These approaches are evaluated within a realistic 

simulation scenario. 

Keywords—NLOS mitigation, TDOA based positioning systems; 

WLLS; geometrical restrictions; wireless sensor network, Cramer 

Rao Bounds (CRB), Antenna Arrays. 

I.  INTRODUCTION 

Positioning of a mobile subscriber is a complex task that 
adds value to services and applications and strongly impacts to 
our society. Subscriber positioning provides new possibilities 
of relation among users, between users and service providers, 
and also between providers and third parties. Therefore a close 
relationship and dynamism are associated to wireless 
communications that provide user ubiquity, positioning 
technologies that brings the location, and Location Based 
Services (LBS) that take advantage of these virtuosities. Being 
this the case, it is not strange that all these systems’ elements 
are object of permanent research and revision [1]-[4]. 

Despite mobile subscriber positioning is mainly computed 
on mobile terminals nowadays, network based positioning is 
also important, for example in the use of minimization of drive 
test (MDT) [1] for network self-organization. This paper 
precisely focuses in network based positioning technologies 
and particularly in the mitigation of Non Line Of Sight (NLOS) 
propagating conditions, which strongly degrades the accuracy 
of position estimation, based on Time Differences Of Arrival 
(TDOA) measures in a realistic simulation environment. 

Furthermore, and since current and future communication 
systems are equipped with antenna arrays, providing Multiple 
Input - Multiple Output (MIMO) capabilities, this work 

integrates a Cramer Rao Bound (CRB) model for timing, to a 
link level propagation simulator to gain insight to the 
possibilities of using a collection of space-time data as a mean 
to improve the timing estimation, and therefore achieve a better 
NLOS mitigation in subscriber positioning. 

II. THE POSITIONING PROBLEM 

In a passive location system, the measurements vector m, 
may be viewed as a function of the position vector x, plus 
additive noise n, as in (1): 

  f m x n  (1) 

The actual nature of f(x) depends of the type of the 
measurements’ set used for computing the positioning, and in 
the case of range-based methods such as TOA, TDOA and 
RSSI, it is a nonlinear function related to the range among the 
subscriber position and those BS’s participating in the 
positioning.  The expression for TDOA is exhibited in (2):  

   1 ; 2,3,
iTDOA i

f i L     x x r x r    (2) 

Where L refers to the number of BSs, x=(x,y) to the true 
coordinates of the subscriber position, ri=(x i,yi) denotes to the 
position of BSi involved in the measure, r1=(x1,y1) notes to 
the central site BS1 used as a common reference for each 
TDOA measure, and ||.|| to the Euclidean norm. 

General nonlinear solutions are Maximum Likelihood 
(ML), Nonlinear Least Squares (NLS) or the Weighted 
Nonlinear Squares (WNLS) approach [5].  The WNLS solution 
requires minimization of a cost function, and performing ML 
estimation requires noise statistics. When the measurement 
noise n in (1) is zero-mean and Gaussian distributed with 
covariance matrix Cn, ML scheme reduces to the WNLS 
solution. The ML approach requires a high complexity when 
grid search is performed, and therefore global solution may not 
be guaranteed, but in general its accuracy is the highest, 
especially when Cn is also a function of subscriber position [6]. 
However, having a perfect error statistical characterization is 
difficult and others approaches are preferred. On the other 
hand, NLS does not require noise statistics but also involves 
the same issues as ML. 

The vector function f(x) in (1) may be linearized through a 
Taylor series expansion around an arbitrary point x0 located 

       
 



near the subscriber position.  This procedure requires the 
Jacobian matrix for f(x) evaluated in x0, for the set of  
measurements and the two coordinates in this case [6][7]. 

Assuming a zero mean Gaussian distribution for the noise 
vector n, Torrieri solution [7] uses the iterative algorithm 
known as Gauss-Newton method for reaching the cost function 
minimum, but others methods such as Newton-Raphson or 
Steepest Descent may be used instead [6]. It is also possible to 
convert the nonlinear formulation in (1) into a set of linear 
equations as in (3) under the assumption that measurement 
errors are small enough.   

 Ax b   (3) 

Expressions (4) and (5) exhibit the corresponding structures 
for the elements in these matrices in case of TDOA based 
positioning systems when the controlling BS is assumed to be 
at the origin, and where c refers to the light speed.  

   1 ; 1, 2, , 1
i i
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Linear procedures include to Linear Least Squares (LLS), 
Weighted LLS (WLLS) and the subspace estimators [5][6]. 
Since LLS dismisses noise statistics, the WLLS approach 
emerges by including a weighting matrix W, within the cost 
function as it is shown in (6):  

     T

WLLS
J E  Ax b W Ax b   (6) 

This assessment matrix is precisely the inverse of the 
covariance noise matrix, and after cost function minimization 
in (6), the WLLS estimator is achieved as in (7):  

   1
ˆ T T


x A WA A Wb   (7) 

The particular weighting matrix W depends of the type of 
measurements, and it is usually dependent of the distances 
between subscriber and BSs due to transformations performed 
during formulation of the linear system. In (5), the term b i 
includes squared measures and therefore introduce a cross term 
of the range measure error with its own range. Furthermore, 
expression in (8) exhibits this matrix for the case of TDOA 
based positioning [5]:  

 

 
   

1

1

2 3 , 2 34 , , , , , ,

with ; 2,3, ,

T

L TDOA L

i i

E

diag d d d diag d d d

d i L





    
    

   

n

W ee

C

x r

 




  (8) 

But it says nothing about the nature of the noise covariance 
matrix Cn,TDOA. In the case of TOA measures, the set of 
required distances d i in (8) may be replaced by the set of 
measurements mi to solve the problem, but in case of using 
TDOA or AOA, a LLS procedure is usually firstly performed 
to estimate subscriber position to properly figure out the 

distances required within W, and a second step is also required 
to achieve the refined WLLS position estimation. Our approach 
prefers however the use of WLLS even for initialization, as it 
will be explained later.   Furthermore, an iterative process may 
be performed in order to minimize the function cost in (6) and 
achieve the maximum accuracy, and consequently the Best 
Linear Unbiased Estimator (BLUE) algorithm, but in general a 
two-step LS algorithm is adequate. Alternative formulations for 
the positioning problem are possible, but improvement in terms 
of accuracy is not important [8]. 

Whichever would be the positioning technique employed, it 
should be kept in mind that every set of measurements 
performed by a sensor reduces the positioning to a region 
shaped in a way related to the nature of the measurements, a 
feasible region. A TOA based positioning corresponds to a 
circular-circular system, whilst a hyperbolic-hyperbolic system 
is characteristic of a TDOA based positioning. Furthermore, it 
must be noted that hybrid techniques exhibit a better behavior 
than homogeneous ones since it is a well-known principle that 
errors achieved from a particular positioning technique may be 
overcome with the application of another one. Positioning 
accuracy may also take advantage of spatial diversity and 
mobile system’s dynamic [9]. In fact, Kalman Filter and its 
variants have their efficacy by using the mobility dynamics. 

III. SIGNAL MODEL AND THE NLOS ISSUE IN THE POSITIONING 

PROBLEM 

Due to the presence of obstacles in the scenario, received 
signal is scattered in space and time, and the LOS component 
may be strongly degraded or even completely shadowed.  
However, receiver generally uses the most powerful arriving 
components and therefore, in case of shadowing, LOS 
component is eventually discarded, and measures are achieved 
under a NLOS condition. This NLOS multipath signal travels a 
longer distance than the LOS component to reach the receiver 
and consequently the measures are biased as it is shown in (9): 

 
( )

[ ]1 2, , ,
T

L

f

with q q q

m x n q

q

= + +

= 
 (9) 

 Where, q is precisely the vector which contains biases due 
to NLOS. These biases are positive random variables for TOA 
measures, but it is not necessarily the case for TDOA. When 
q i=0, it refers to a LOS condition, and when |q i|>>|n i |, it refers 
to a strong NLOS condition, being the latter the case 
commented along this paper. Bias nature is associated to 
propagation conditions, and in case of timing based systems, it 
may be related directly to the Excess Delay through the Power 
Delay Profile (PDP). Furthermore, the Greenstein model [3] 
has been considered to perform this characterization, since it 
adjusts to several measurement-based models and incorporates 
their information into a small number of parameters to 
characterize the path-gain/delay spread propagation channel, 
and even this model has been incorporated to COST-231 and 
eventually to the more complex COST-259 Directional 
Channel Model [4]. 

NLOS environments are modeled using an exponential 
distribution for the excess delay as it is shown in (10):  



    1
exp

rms rms

f u


 
 

      
τ   (10) 

And the Greenstein model characterizes the required RMS 
Delay Spread τrms as a random variable and also as a function 
of the distance between emitter and receiver, as in (11): 

 1rms
T d

τ ξ  (11)  

Where, ξ is a lognormal random variable. Hence, 
Ξ=10log(ξ), is a zero mean Gaussian variable over the terrain, 
with a standard deviation σξ that lies between 2 and 6 (dB). 
Furthermore, T1 corresponds to the median value of τrms at d=1 
(km), and ε is an exponent that lies between 0.5-1.0. It has been 
set to 0.5 for the simulations exhibited in this document. 

The Greenstein model also includes the path gain g. This 
gain is related with the shadowing, changes stochastically and 
it is also distance dependent due to propagation conditions. 
This gain is computed as in (12): 

 1G

d
g x   (12) 

Where, d is the distance in kilometers, G1 is the median 
value of g at d=1 (km), β is the loss path propagation factor 
which lies between 3 and 4 in urban areas, and x is a lognormal 
random variable. Therefore, X=10log(x) is a zero mean 
Gaussian with a standard deviation σx between 6 and 12 (dB). 
Finally, the correlation factor between X and Ξ has been set as 
ρ=-0.7 [3]. Therefore E{X}=ρ.σx.σξ. These path gains have 
also been incorporated in our simulations, where the path-
gain/delay spread information has been related to the problem 
geometry to compute SNR at the receivers for each subscriber 
position at the cell. These realizations for SNR and delay 
spread have been provided to the CRB model for the timing 
estimation, commented in the next section, as a mean to study 
the potential impact of using antenna arrays in subscriber 
positioning. 

The mean and the standard deviation for the RMS Delay 
Spread are presented as a function of distance in (13) and (14) 
respectively: 

  
2 2

1
z zm

rms
E T d e

 τ   (13) 

    
2

1var 1z

rms rms rms
E e kT d

 
    τ   (14) 

Being, mz and σz the mean and standard deviation of the 
scaled random variable Z=Ξ.ln(10)/10. These expressions were 
derived in [10] and they will help us to construct the noise 
correlation matrix Cn in (8), and the weighting matrix required 
in (7) to achieve the positioning. 

Reminding that both the independent vector in (5) and also 
the weighting matrix in (8) require the knowledge of the 
subscriber’s position, this information is initially regarded.  
Therefore, r in (5) is set to zero, and the weighting matrix W in 
(8) discards its dependence with the distance, and becomes Wo, 
as it is shown in (15): 

 
1

o o
    nW C  (15) 

Setting r to zero at initialization is implicitly telling that 
subscriber is near the central site, whilst the use of the 
weighting matrix in (15) informs that there is not a priori 
preferred position over a radial basis around this site. 
Furthermore, since signal fades independently for each link 
between the subscriber and the base stations, and in the absence 
of a priori information, timing offsets may be considered as 
independent and identically distributed random variables; and 
since TDOA measures share a common reference to the central 
site, these measures keep some cross correlation. Therefore, the 
noise covariance matrix takes the form in (16) where off-
diagonal elements are the half of the terms in the diagonal.  

 2; 1;o o

ii ij
i j            n nC C   (16) 

The resulting position xo from the use of (15) and (16), and 
r=0 is used to estimate the set of distances di required in (8), 
and for the computation of the error covariance matrix Cn that 
is also distance dependent as it is easily verifiable from  (13) 
and (14). Therefore Cn takes the form in (17) by discriminating 
the error contribution associated to each independent link. 

  2 2 2 2 2
1 1 1 1; ;

iii ij
T d d T d i j

               n nC C   (17) 

 Certainly, a more exact characterization of Cn is possible, 
but such solution does not just require the knowledge of σz, but 
also has a more complex form that includes cross products of 
distances, and since estimates are being used instead of the true 
lengths, the additional burden is not justified by the final 
resultant marginal improvement.  

Due to xo is a poor estimate, r is set to 0 again, and (17) is 
now used to construct W as in (8), and hence a better solution 
x

1 is achieved. This estimation is then used to compute r, as 
r=||x1||. Finally, the displacement vector is computed from (5) 
and (7), and it is added to the solution to get the positioning. 

When studying the results, some degradation was observed 
near the cell boundaries, so a geometrical restriction was 
introduced to ensure that positioning is achieved within the 
control site. The performance of this proposal is evaluated in 
section VI. 

IV. MODEL FOR THE FIRST ARRIVAL BASED ON THE CRAMER 

RAO BOUND 

The Greenstein model mentioned in the section above 
characterizes the signal time dispersion by an exponential 
distribution defined by a random delay spread. At the receiver, 
the most powerful arrival is chosen to attain reliable 
communications, and this path does not correspond in general 
to the first arrival. Therefore, this timing is usually biased and 
follows an exponential distribution. However, it is possible to 
look for the first arrival by performing a hypothesis test and by 
using high resolution spectral techniques for example, and 
consequently improve timing estimation. This is conceivable 
since in a very short time, multiple channel vector estimates 
may be collected whilst subscriber positioning practically 
remains invariant. 



The quality of these first-arrival estimates improves with 
diversity, and it can be studied with the Cramer Rao Bound 
(CRB) [9], the Barakin Bound (BB) [11] or the Ziv-Zakai 
Bound (ZZB). However CRB is adequate to model Gaussian 
processes in case of having a large record of estimates [11]. 
CRB is an inferior bound of the variance in the estimation of a 
parameter, in this case the estimation of the first arrival timing. 
Therefore, it is an optimistic model that shows the quality of 
the best possible estimation; however CRB does not tell the 
way to achieve such optimal estimator. 

Our CRB model has been better explained in [9] but their 
main characteristics are commented below.  This model has 
been preferred over other similar in the literature since it takes 
account for both the spatial and temporal diversity of the 
channel estimates. It assumes the use of Direct Sequence 
Spread Spectrum (DS-SS) for the Data Aided timing 
estimation. It could be the case of W-CDMA for example, 
where a reference pseudo-random sequence known at the 
receiver is used for dispreading, and when the receiver is 
equipped with an antenna linear array. Therefore, the resultant 
signal ys

(j)
(k) is a channel estimate described in (18). 

( ) ( ) ( ) ( ) ( ) ( )2( )

1

paths

i

N

jj f kj

s ij i s i s

i

y k b k k e g w k
πγ τ τ

=

= − +∑   (18) 

Where, “s” subscript refers to the lag within the observed 
window, “j” superscript denotes the sensor within the array, 
and “k” identifies the time slot when the estimate was 
performed. Furthermore, “i” identifies the multipath 
component, b ij refers to the spatial signature, γ i to the power 
path gain, fi to the Doppler component, g() denotes the pulse 
shape, and τ i the timing for the path; whilst ws

(j)
(k) denotes the 

estimation noise. 

Arranging lag estimates in a vector, (18) turns into (19):  

 ( ) ( ) ( ) ( ) ( ) ( )j j j

s
k k ky G b w= +   (19) 

Where, Gs is the pulse shape matrix described in [9], b(j) is 
the spatial signature vector and w

(j) is the estimation noise 
vector. Furthermore, when a collection of these channel 
estimates for each sensor are re-arranged in a new vector y, as 
it is shown in (20), this new vector may be modeled as circular 
Gaussian with a mean associated to the first arrival µy, and a 
correlation matrix Ry.  
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 

 
  (20) 

Analogously, the re-arranged error vector w will also be 
circular Gaussian, but with zero mean and with independent 
and identically distributed elements of variance σ2

w, as it is 
stated in (21). 

 ( ) ( )2, , ,w y yCN CNw 0 I y μ Rσ∼ ∼  (21)  

The correlation matrix Ry in (22), after some cumbersome 
work [9] can be expressed as in (23), due to space and time 
scattering processes may be decoupled: 

 { }H

y
ER yy=   (22) 

 ( ) ( ) 2( ) ( ) ( ) H

s s n s w
Py τR R ρ T G Λ G Iφ α β λ β σ= ⊗ ⊗ +  (23) 

Where, Rϕ is the spatial correlation matrix among sensors, 
T is the temporal correlation matrix among channel estimates 
achieved at different time slots, and Λτ is a diagonal matrix 
that models the power of arrivals with exponential decaying 
and parameter λn, being Ps the power of the first arrival for a 
dispersive Rayleigh propagation model, as it is shown in (24). 

 { } ( ) ( )0 0,
exp ni i

i k u i kΛτ λ = − − −    (24) 

   Since Rϕ is Toeplitz, it is characterized just by the first 
row, the vector ρ. Temporal correlation depends of signal 
Doppler, and it has been modeled as a first order 
Autoregressive (AR) process where α is the temporal 
correlation between two consecutive slots. The particular form 
of the pulse shape matrix depends of the pulse shape g(t). In 
our case, it is a raised cosine with roll off factor β. 
Furthermore, λn is closely related to the coherence bandwidth 
and therefore to the signal delay spread. For the computation of 
the spatial correlation matrix Rϕ, a spatially scattered signal 
around the Line Of Sight (LOS) bearing with a Gaussian 
distribution was considered. 

With this model at hand, a vector of parameters Ψ is 
defined in (25): 

 
2

0 , , , , , ,
T

T

n s wk PΨ ρλ β σ α =    (25)  

And, since y in (20) is a zero mean circular Gaussian 
vector, the Fisher Information Matrix (FIM) FΨ for these 
parameters is formulated as in (26).  

 1 1tr
pq

p q

y y

Ψ y y

R R
F R R

Ψ Ψ
− −

 ∂ ∂
  =     ∂ ∂ 

  (26) 

Therefore, the Cramer Rao Bound for the timing estimation 
is extracted from the inverse of the FIM as is (27) [9]. 

    1
0 0

11

ˆvarCRB k k
    ΨF   (27) 

V. INCORPORATING FIRST ARRIVAL TIMING CRB  

Since the CRB for timing is sensitive to the SNR at the 
receiver and hence to the signal delay spread, the Greenstein 
model provides these parameters to the CRB model for each 
point within the simulation platform, to compute the lowest 
possible value for the timing variance in terms of representative 
parameters of the simulated environment, such as the Root 
Mean Square (RMS) angular spread, the channel temporal 
correlation, among others; and also of the network equipment 
configurations, such as the number of antennas and the number 
of available channel vector estimates used to improve timing 
estimation. However, it is well known that the CRB often fails 
at low SNRs due to the modeling usually doesn’t include some 
a priori information [12]. Therefore, to avoid artificially 
creating a too optimistic scenario, especially for weak measures 
related to distant BSs, assuming erroneously that first arrival 



identification and its timing estimation is always possible,  the 
square root of the CRB is compared with a threshold set to 
50% of the chip time before deciding if the simulation  accepts 
the new variance value. So when the CRB predicts a better 
behavior compared to the threshold, our model assumes a 
successful case where the predicted variance corresponds just 
to a Gaussian measurement error. On the contrary, when the 
quality of the estimate is not sufficient, the measure is possibly 
biased, and therefore, it follows an exponential distribution 
where error is computed as it was explained in section III.  In 
addition, and to reduce excessive computational burden during 
simulations, reduced expressions for CRB in terms of SNR and 
DS were derived using a two-exponentials interpolation. These 
expressions introduce errors within 5% respect the originals. 

VI. ALGORITHMS’ PERFORMANCE EVALUATION 

This section includes some simulations. The simulation 
platform is built upon a seven hexagonal cell cluster. The 
control site is located at the coordinate system origin, and a 
rectangular grid has been constructed within the control cell to 
evaluate subscriber positioning algorithms’ behavior for each 
point within the cell. 1000 realizations for each position at the 
grid have been used to get the results. A realistic scenario 
where NLOS is present in the seven BS’s, has been considered. 
The required parameters for the Greenstein model take the 
following values suitable for the urban case [3]: T1=0.4 (us), 
ε=0.5, β=3.7, σx=8.0 (dB), σξ =4.0 (dB), and ρ=-0.75. 
Particularly, T1 has been set in agreement to the GTU COST 
259 model [4] and it may be considered a moderate dispersive 
environment. 

Fig. 1 exhibits the average positioning errors for 
subscribers within a cell of radius R=1000 (m) when WLLS 
algorithm is performed over UL-TDOA measures, and 
geometrical restrictions are applied. Average errors are lower 
than 250 (m) in most of the cases. This figure illustrates that 
the positioning accuracy improves near the central site and 
degrades near the cell boundaries in spite of the application of a 
geometrical restriction as a mean to reduce errors at the 
boundaries. In fact, when the algorithm notes that “r” required 
in (4) takes a value higher than the cell radius, it sets r=R, and 
compels the solution to be within the central site. Fig. 2 shows 
however as this refinement improves the positioning in at least 
40 (m) for 70% of the cases and much more for the remainder, 
when measures are taken at the uplink (UL).  For measures 
taken at the downlink (DL), improvement associated to 
geometrical restrictions is something lower, around 30 (m) for 
70% of the cases.  Fig. 2 also shows that positioning is 
systematically better for measures taken at the uplink (UL) due 
to in this case the whole set of TDOA measures uses the same 
timing reference for the central site. It does not occur at the 
DL, since Idle Period in Down Link (IPDL) is used in this case 
to perform the measure at the subscriber. Average positioning 
error reduces from 241 (m) for DL, to 211 (m) for UL for the 
70% of the cases for our refined algorithm. However, it is 
important to keep in mind that SNR at DL is better than the 
corresponding at the UL due to power limitations at the mobile, 
previously to judge about these methods. 

Fig. 3 shows the subscriber’s average positioning error 
resulting from TDOA measures when the timing reference to 

the central site differs at each measure, when 16 sensors are 
available at the uniform linear array (ULA) in the receiver, and 
50 channel vector estimates are used to improve the timing 
estimation. It could be the case of positioning based on DL-
TDOA. However, it is not probable to have so large array at the 
downlink. Nevertheless, this result is useful to show how 
positioning degrades near the central site, whilst remains 
uniformly well at the boundaries. This behavior is related with 
the fact that SNR keeps constant at the subscriber for the signal 
coming from the control site due the power control, whilst 
SNR degrades for signals coming from the surrounding BSs, 
and it is the so called near-far effect. 

Fig. 4 shows the benefit of using space and temporal 
diversity. Note for example that positioning error reduces from 
241 (m) at the original scenario to 153 (m) in the new one for 
the 70% of the cases, and from 287 (m) to 205 (m) for 95% of 
the cases.  

 

Fig. 1. Subscriber Average Positioning Error for a dispersive NLOS 
environment – UL-TDOA WLLS algorithm with 7 BSs and geometrical 
restrictions. 

 

 
Fig. 2. Cumulative Distribution Function (CDF) for the Subscriber Positioning 
Error for a dispersive NLOS environment when WLLS algorithm is applied 
on TDOA measures taken at the uplink (UL- solid) or at the downlink (DL- 
dashed) at different stages of the algorithm. 



Furthermore, when K=50 channel vector estimates, and 
four sensors are used, average positioning improves in 20 (m) 
respect to the initial case for 70% of the cases, and improves 
another 30(m) when the number of sensors doubles. When the 
number of sensors reaches sixteen a new improvement of 38 
(m) is achieved.  Therefore an average positioning error below 
116 (m) is achieve with 32 sensors for 70% of the cases, and 
below 181 (m) for the 95% of the cases. For positioning based 
on UL-TDOA, these errors reduce even more for the same 
configuration: to 76 (m) and 103 (m) respectively. When a 
larger number of channel vector estimates are available, great 
improvements can also be achieved. For example, with four 
sensors and K=250, positioning error reduces to 114 (m) for 
95% of the cases for UL-TDOA. When just two sensors at the 
subscriber, for a higher SNR of 15 (dB), and K=250, the 
positioning error is below to 126 (m) for 70% of the cases. 

 

Fig. 3. Subscriber Average Positioning Error for a dispersive NLOS 
environment. The WLLS algorithm uses TDOA measures from 7 BSs, and 
adds geometrical restrictions for refinement. Timing for the central site differs 
for each measure. Receivers are equipped with 16 sensors – Uniform Linear 
Array (ULA), and 50 channel vector estimates are used to achieve the timing. 
   

 
Fig. 4. Distribution Function (CDF) for the Subscriber Positioning Error in a 
dispersive NLOS environment when WLLS algorithm is applied on TDOA 
measures. Various scenarios are compared in terms of SNR, the number of 
sensors in the ULA at the receiver, and the way the measures are performed. 

VII. SUMMARY 

NLOS condition strongly degrades the performance of 
subscriber positioning in wireless communication systems, and 
even robust algorithms, originally developed for LOS signal, 
fail. However, a better use of signal statistics to properly weigh 
the measures and imposing certain geometrical restrictions help 
to mitigate this problematic condition and therefore to improve 
positioning. Furthermore, a novel approach that integrates the 
simple but reliable link level Greenstein propagation model to 
a Rayleigh-fading model based on the CRB, that takes account 
of spatial and temporal diversity, has been provided to study 
the possibility of improving timing estimation to achieve a 
much better positioning. Our results show that important 
improvement is always possible for architectures that take 
advantage of temporal and spatial diversity, especially for 
positioning based on UL-TDOA. 
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