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Abstract

Zolotarev (1961) proved a duality result that relates stable densities with different indices.
In this paper we show how Zolotarev’s duality leads to some interesting results on
fractional diffusion. Fractional diffusion equations employ fractional derivatives in place
of the usual integer-order derivatives. They govern scaling limits of random walk models,
with power-law jumps leading to fractional derivatives in space, and power-law waiting
times between the jumps leading to fractional derivatives in time. The limit process is a
stable Lévy motion that models the jumps, subordinated to an inverse stable process that
models the waiting times. Using duality, we relate the density of a spectrally negative
stable process with index 1 < α < 2 to the density of the hitting time of a stable
subordinator with index 1/α, and thereby unify some recent results in the literature. These
results provide a concrete interpretation of Zolotarev’s duality in terms of the fractional
diffusion model. They also illuminate a current controversy in hydrology, regarding the
appropriate use of space- and time-fractional derivatives to model contaminant transport
in river flows.
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1. Introduction

A classical result of Zolotarev [51] (see also [25, Theorem 3.3]) equates stable densities with
different indices. The proof of this result is purely analytical. In this paper we apply Zolotarev’s
duality to prove some interesting results on fractional diffusion. Fractional derivatives are
natural extensions of their integer-order analogues [35], [43]. Partial differential equations of
fractional order are important in applications in physics [34], finance [45], and hydrology [6],
[47]. In some cases, the solutions of the fractional equations govern the probability densities of
certain heavy-tailed stochastic processes [27], [33], [39], [40]. This connection, a generalization
of the link between Brownian motion and the diffusion equation [18], is very useful in both
theoretical and applied work [8], [50]. Perhaps the simplest version of the fractional diffusion
equation is ∂γ u/∂tγ = ∂2u/∂x2 in one dimension, where the usual first derivative in time is
replaced by the Caputo fractional derivative of order 0 < γ < 1. Meerschaert et al. [27],
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[33] showed that the point source solution u(x, t) to this equation gives the density of the
stochastic process B(Et), where B(x) is a Brownian motion and Et is the inverse or hitting
time of a stable subordinator with index γ . Orsingher and Beghin [39], [40] showed that the
same solution can be written in terms of the normal density of B(x) subordinated to a stable
density with index α = 1/γ . In this paper we reconcile these two results using Zolotarev’s
duality. As a consequence, we reveal a concrete interpretation of the duality in terms of stable
processes and their inverses. We also illustrate the modeling implications of our results, and
clarify some recent empirical observations in river flow hydrology.

2. Duality

Stable laws are important because they represent the most general distributional limit for
centered and normalized sums of independent and identically distributed (i.i.d.) random vari-
ables [20, Section XVII.5], [26, p. 321]. Since most stable densities cannot be written in closed
form, it is common to use characteristic functions (Fourier transforms). A stable density p(x)

has characteristic function p̂(λ) = ∫ ∞
−∞ eiλxp(x) dx and p(x) = (1/2π)

∫ ∞
−∞ e−iλxp̂(λ) dλ.

Several different parameterizations of the family of stable densities are commonly used in
the literature. One commonly used representation of the centered stable density is (see [25,
Theorem 2.3])

pα(x; θ, c) = 1

2π

∫ ∞

−∞
e−iλx exp

{
−c|λ|α

[
1 + iθ

λ

|λ| tan

(
πα

2

)]}
dλ, (2.1)

where c > 0, |θ | ≤ 1, 0 < α ≤ 2, and α �= 1.
A second parametrization is (see [20, p. 581] and [25])

pα(x; η, b) = 1

2π

∫ ∞

−∞
e−iλx exp

{
−b|λ|α exp

{
− iπη

2

λ

|λ|
}}

dλ, α �= 1, (2.2)

where b > 0 and η is real. The connection between (2.1) and (2.2) is as follows:

c = b cos

(
πη

2

)
and θ = − cot

(
πα

2

)
tan

(
πη

2

)
.

From the relation |θ | ≤ 1 we can conclude that |η| ≤ α if 0 < α < 1, but |η| ≤ 2 − α if
1 < α ≤ 2.

Finally, the commonly used parametrization of Samorodnitsky and Taqqu [44, Defini-
tion 1.1.6] is

pα(x; β, σ ) = 1

2π

∫ ∞

−∞
e−iλx exp

{
−σα|λ|α

[
1 − iβ

λ

|λ| tan

(
πα

2

)]}
dλ, α �= 1, (2.3)

which is very similar to (2.1) except for a sign change. The scale parameter σ > 0 satisfies
c = σα and the parameter β = −θ is called the skewness.

A duality result for stable densities was proved by Zolotarev [51] (see also [25]) using
parametrization (2.2). The proof follows directly from the series representation for stable
densities [25, Theorem 3.1].

Theorem 2.1. If 1 < α ≤ 2 then, for all u > 0, we have

pα(u; η, 1) = u−(1+α)pα∗(u−α; η∗, 1), (2.4)

where α∗ = 1/α and η∗ = (η − 1)/α + 1.
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We will be interested in the case where the α-stable density on the left-hand side of (2.4) is
totally negatively skewed (β = −1), which corresponds to θ = +1 or, equivalently, η = 2−α.
In this case, η∗ = α∗ and so the stable density on the right-hand side has θ∗ = −1, or in other
words, its skewness is β∗ = +1 (totally positively skewed). Then the right-hand side of (2.4)
involves the density of a stable subordinator whose index γ = α∗ = 1/α satisfies 1

2 ≤ γ < 1.
After substituting back into (2.2), a little algebra shows that the characteristic function of the
subordinator density is exp{−(−iλ)γ }.

3. Fractional diffusion

In applications to differential equations, the following parametrization of stable densities is
useful (see [26, Remark 11.1.13]):

pα(x; q, a) = 1

2π

∫ ∞

−∞
e−iλx exp{qa(iλ)α + (1 − q)a(−iλ)α} dλ, α �= 1,

which is related to (2.3) by β = 1 − 2q and σα = −a cos(πα/2). Note that 0 ≤ q ≤ 1, and
a > 0 for 1 < α < 2, while a < 0 for 0 < α < 1. Let A(t) be a stable Lévy process such
that A(t + s)−A(s) has density pα(x; q, at), and is independent of A(s). Define dαp(x)/dxα

to be the function with Fourier transform (−iλ)αp̂(λ), which extends the familiar formula
for integer-order derivatives. Similarly, let dαp(x)/d(−x)α be the function with Fourier
transform (iλ)αp̂(λ). These are called the (positive and negative) Riemann–Liouville fractional
derivatives. They can also be defined by

dαp(x)

dxα
= 1


(n − α)

dn

dxn

∫ x

−∞
p(ξ)

(x − ξ)α+1−n
dξ (3.1)

and
dαp(x)

d(−x)α
= (−1)n


(n − α)

dn

dxn

∫ ∞

x

p(ξ)

(ξ − x)α+1−n
dξ,

where n is an integer such that n − 1 < α ≤ n; see, for example [43]. Since

p̂(λ, t) = exp{qat (iλ)α + (1 − q)at (−iλ)α}
is evidently the solution to the ordinary differential equation

d

dt
p̂(λ, t) = {qa(iλ)α + (1 − q)a(−iλ)α}p̂(λ, t)

with the point source initial condition p̂(λ, 0) ≡ 1, we can invert the Fourier transform to see
that the governing equation of the process A(t) is

∂p(x, t)

∂t
= qa

∂αp(x, t)

∂(−x)α
+ (1 − q)a

∂αp(x, t)

∂xα
, (3.2)

the space-fractional diffusion equation. Equation (3.2) originated in the work of Marcel
Riesz [42] in the symmetric case, and was extended by Feller [19] to skewed stable laws,
although fractional derivatives were not explicitly mentioned.

Let D(t) be another stable Lévy process with index 0 < γ < 1 and positive skewness
(i.e. β = 1 in parameterization (2.3)). The governing equation for the density f (x, t) of D(t)

is
∂f (x, t)

∂t
= −b

∂γ f (x, t)

∂xγ
,
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where b > 0, and only the positive fractional derivative appears. Note that f (x, t) =
pγ (x; γ, bt) in parametrization (2.2). Write gγ (x) = f (x, 1), and note that D(ct) = c1/γ D(t)

in law (self-similarity). Define the inverse or hitting time process

Et = inf{x > 0 : D(x) > t}, (3.3)

and note that {D(x) > t} = {Et < x}. Using the fact that D(t) is self-similar, continuous in
probability, and has a density, we see that Et has cumulative distribution function

P(Et ≤ x) = P(D(x) ≥ t) = P(x1/γ D ≥ t) = P

((
D

t

)−γ

≤ x

)
.

Then it follows easily, by differentiating and using f (x, t) = t−1/γ gγ (t−1/γ x), that Et has the
density

h(x, t) = t

γ
x−1−1/γ gγ (tx−1/γ ) (3.4)

on x > 0 for all t > 0 (see [27, Corollary 3.1]).
The Laplace transform h̃(x, s) = ∫ ∞

0 e−sth(x, t) dt exists for all x > 0; see [28]. The
Riemann–Liouville fractional derivative in time, ∂γ h(x, t)/∂tγ , can be defined as the inverse
Laplace transform of sγ h̃(x, s), or by the formula

∂γ h(x, t)

∂tγ
= 1


(1 − γ )

∂

∂t

∫ t

0

h(x, ξ)

(t − ξ)γ
dξ,

which agrees with definition (3.1) since h(x, t) = 0 for t < 0. Then a Laplace transform
argument [28, Theorem 4.1] shows that

∂h(x, t)

∂x
= −b

∂γ h(x, t)

∂tγ
+ bδ(x)

t−γ


(1 − γ )
. (3.5)

To briefly summarize the argument, note that P(D(x) ≤ t) has Laplace transform s−1e−xbsγ
,

so that h(x, t) = d[1 − P(D(x) ≤ t)]/dx has Laplace transform bsγ−1e−xbsγ
. Take Laplace

transforms in the other variable x to see that

h̄(λ, s) =
∫ ∞

0

∫ ∞

0
e−λxe−sth(x, t) dt dx = bsγ−1

λ + bsγ
,

and rearrange to obtain λh̄(λ, s) = −bsγ h̄(λ, s)+bsγ−1, which is the double Laplace transform
of (3.5), since sγ−1 is the Laplace transform of t−γ /
(1 − γ ).

A simple conditioning argument shows that A(Et) has density

m(x, t) =
∫ ∞

0
p(x, u)h(u, t) du. (3.6)

Similar to (3.5), an argument with Fourier and Laplace transforms [28, Theorem 4.1] shows
that the overall governing equation is

b
∂γ m(x, t)

∂tγ
= qa

∂αm(x, t)

∂(−x)α
+ (1 − q)a

∂αm(x, t)

∂xα
+ bδ(x)

t−γ


(1 − γ )
, (3.7)

using the appropriate Riemann–Liouville fractional derivatives on both sides.
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Remark 3.1. The Caputo fractional derivative

(
∂

∂t

)γ

F (t) = 1


(1 − γ )

∫ t

0

dF(ξ)/dξ

(t − ξ)γ
dξ (3.8)

for 0 < γ ≤ 1 is the inverse Laplace transform of sγ F̃ (s) − sγ−1F(0); see, for example, [13]
and [41, pp. 79–80]. This extends the usual integer-order formula, and is useful in differential
equations, since it includes the initial value. Then we can write (3.7) more compactly in the
form

b

(
∂

∂t

)γ

m(x, t) = qa
∂αm(x, t)

∂(−x)α
+ (1 − q)a

∂αm(x, t)

∂xα
. (3.9)

Similarly, we can rewrite (3.5) in the form

b

(
∂

∂t

)γ

h(x, t) = −∂h(x, t)

∂x
, (3.10)

which can be considered a degenerate case of (3.9) with A(u) = u. See [28] for more details
and complete proofs.

Remark 3.2. Chaves [15] pioneered the use of (3.2) to model anomalous diffusion in physics.
Anomalous diffusion occurs when the long-time limit of diffusing particles deviates from
Brownian motion. The random walk S(n) = Y1 + · · · + Yn represents a particle location
after n jumps. Suppose that Yn belongs to the domain of attraction of some stable random
variable A with index 0 < α ≤ 2, and assume for simplicity that n−1/αSn ⇒ A. (In the
general case, we can replace the norming constants n−1/α by a regularly varying sequence
with index −1/α; see, for example, [20, XVII.5].) Then the random walk scaling limit
is c−1/αS[ct] ⇒ A(t), a stable Lévy process with index α. The limit is self-similar with
A(ct) = c1/αA(t) in distribution, so that, for α < 2, the spreading rate is faster than Brownian
motion (the special case α = 2). In physics, this is called anomalous super-diffusion. Then A(t)

satisfies a tail condition P(|A(t)| > x) ∼ Ctx−α , where C = −a/
(1 − α) for 0 < α < 1
and C = a(α − 1)/
(2 − α) for 1 < α < 2 [44, Proposition 1.2.15]. Thus, the order
of the fractional derivative in (3.2) equals the tail index of the stable law. In addition, the
weak convergence n−1/αSn ⇒ A requires P(|Yn| > x) ∼ Cx−α for large x, so the order
of the fractional derivative also reflects the tail behavior of particle jumps. Finally, note that
P(Yn < −x)/ P(|Yn| > x) → q as x → ∞, so that the positive and negative fractional
derivatives in the governing equation (3.2) reflect the positive and negative tails of particle
jumps.

Space–time fractional diffusion equations are the governing equations of certain stochastic
processes that occur as scaling limits of continuous-time random walks [27], [33]. A continuous-
time random walk (CTRW) is simply a random walk in which the i.i.d. jumps (Yn) are separated
by i.i.d. random waiting times (Jn). The CTRW was developed as a model in statistical
physics [36], [46]. A random particle jump Yn follows a random waiting time Jn > 0. The
random walk S(n) = Y1 + · · · + Yn gives the particle location after n jumps. Another random
walk T (n) = J1 +· · ·+Jn gives the time of the nth jump. The number of jumps by time t > 0
is given by the renewal process Nt = max{n ≥ 0 : T (n) ≤ t}. The location of a particle at
time t > 0 is S(Nt ), a random walk subordinated to a renewal process. The long-time behavior
of particles is described by a limit theorem [27]. Suppose that P(Jn > t) = t−γ L1(t) for
some 0 < γ < 1, where L1 is slowly varying. Then Tn belongs to the domain of attraction
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of some stable law with index γ . To simplify the exposition, consider the special case where
L1(t) → C > 0 is asymptotically constant as t → ∞. Then n−1/γ Tn ⇒ D as n → ∞, where
D is a stable random variable with index γ . Suppose also that Yn belongs to the domain of
attraction of some stable random variable A with index 0 < α ≤ 2 and that n−1/αSn ⇒ A.
Restricting to the uncoupled case where Yn and Jn are independent (see [5] for the coupled case)
we can extend to process convergence, c−1/γ T[ct] ⇒ D(t) and c−1/αS[ct] ⇒ A(t), where A(t)

and D(t) are independent Lévy stable processes with A(1) = A and D(1) = D in distribution,
and the convergence is in terms of all finite-dimensional distributions (or the appropriate
Skorokhod topology; see [27]). Continuous mapping arguments [27] lead to c−γ N[ct] ⇒ Et ,
and then c−γ /αS(N[ct]) ⇒ A(Et).

4. Space–time duality

Here we apply Zolotarev’s duality from Section 2 to the space–time fractional diffusion
equation from Section 3. The following result uses parametrization (2.2). Recall that a stable
subordinator is a stable Lévy process with nondecreasing sample paths. This requires index
α < 1 and positive skewness; see, for example, [7, p. 71]. In the following, when we say that
Et is identically distributed with Y (t) | Y (t) > 0, we mean that the distribution of E(t) is the
same as the conditional distribution of Y (t) given Y (t) > 0.

Theorem 4.1. Let D(t) be a stable subordinator with density pγ (x; γ, bt) for some 1
2 ≤ γ < 1.

Let Et be the hitting time (3.3) with density (3.4), where gγ (x) = pγ (x; γ, b) is the density
of D(1), and let Y (t) denote a stable Lévy motion with density pα(x; 2 − α, b−αt), where
α = 1/γ . Then

(i) P(Y (t) > 0) = 1/α for all t > 0,

(ii) Et is identically distributed with Y (t) | Y (t) > 0 for each t > 0.

Proof. Using the self-similarity property pα(u; η, b) = b−1/αpα(b−1/αu; η, 1) for stable
densities, the density of Y (t) for t > 0 is

P(x, t) = bt−1/αpα(bt−1/αx; η, 1).

Apply (2.4) with u = bt−1/αx and η = 2 − α to see that

P(x, t) = bt−1/αu−1−αpα∗(u−α; η∗, 1)

for x > 0, where α∗ = 1/α = γ and η∗ = α−1(η − 1) + 1 = γ . Simplify to obtain

P(x, t) = tx−1−1/γ b−1/γ pγ (b−1/γ tx−1/γ ; γ, 1)

and recall that gγ (x) = pγ (x; γ, b) = b−1/γ pγ (b−1/γ x; γ, 1) is the density of D(1). Then

P(x, t) = tx−1−1/γ gγ (tx−1/γ ) for x > 0.

Compare with (3.4) to conclude that

P(x, t) = γ h(x, t) (4.1)

for t > 0 and x > 0. Since
∫ ∞

0 h(x, t) dx = 1 for all t > 0, we have P(Y (t) > 0) = γ = 1/α

for all t > 0. Thus, the density of Et equals the conditional density of Y (t) given Y (t) > 0 for
all t > 0.
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Remark 4.1. As the scaling limit of a random walk with positive jumps, the stable subordinator
D(t) is totally positively skewed with β = 1 in (2.3). The process Y (t) has skewness β = −1, so
it is the scaling limit of a random walk with only negative jumps. This is also called a spectrally
negative process, since the Lévy measure assigns no mass to the positive real line. Bingham
[10] pointed out that the hitting time D(t) = inf{u : Y (u) > t} is a stable subordinator with
index 1/α and that there is a version of Y (t) for which Y (D(t)) ≡ t . Hence, D(t) is the process
inverse of Y (t), but Et is the process inverse of D(t). Thus, the inverse of the inverse of Y (t) is
the process Et , whose one-dimensional distributions are the same as those of Y (t) | Y (t) > 0.
Note that D(Et) > t almost surely since D(t) is a pure-jump process [7, p. 77]. If α = 2 then
Y (t) is a Brownian motion, and the skewness is irrelevant.

Remark 4.2. Using the series representation for stable densities [25, Theorem 3.1], it is not
hard to prove Theorem 4.1 directly. For convenience, we consider b = t = 1; the remaining
cases follow easily by self-similarity. Then the density of Y (1) for x > 0 is

pα(x; η, 1) = 1

π

∞∑
k=1

(−1)k+1 
(1 + k/α)

k! xk−1 sin

(
πk(η + α)

2α

)
,

where η = 2 − α. The density of stable subordinator D is

gγ (x) = 1

π

∞∑
k=1

(−1)k+1 
(γ k + 1)

k! x−γ k−1 sin(πkγ ).

Then the density of E1 is

x−1−αgγ (x−α) = α
x−1−α

π

∞∑
k=1

(−1)k+1 
(1 + k/α)

k! x(−k/α−1)(−α) sin

(
πk

α

)

= α
1

π

∞∑
k=1

(−1)k+1 
(1 + k/α)

k! xk−1 sin

(
πk

α

)

= αpα(x; (2 − α), 1).

Theorem 4.1 has some immediate consequences for space–time diffusion equations. The
discussion in Section 3 explains how space-fractional derivatives model heavy-tailed power-law
particle jumps, and time-fractional derivatives model power-law waiting times. The duality
theorem, Theorem 4.1, connects heavy-tailed jumps with fractional time derivatives, and
conversely, it relates heavy-tailed waiting times to fractional derivatives in space.

The Caputo fractional derivative (3.8) was used in the governing equation (3.10). Then the
next result follows immediately from (4.1).

Corollary 4.1. Let Y (t) denote a stable Lévy motion with index 1 < α ≤ 2 and density
P(x, t) = pα(x; 2 − α, b−αt) in parametrization (2.2). Then

b

(
∂

∂t

)γ

P (x, t) = −∂P (x, t)

∂x

holds for all t > 0 and x > 0.
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The process Y (t) is totally negatively skewed, so its density P(x, t) solves a space-fractional
equation similar to (3.2) with q = 1, using a negative Riemann–Liouville fractional derivative

∂αP (x, t)

∂(−x)α
= 1


(2 − α)

d2

dx2

∫ ∞

x

P (y, t)

(y − x)α−1 dy (4.2)

with 1 < α < 2. In general, the α-order negative Riemann–Liouville fractional derivative is
defined as the nth derivative of a fractional integral of order n − α, where n − 1 < α < n [43].

Corollary 4.2. Let D(1) be a stable subordinator with density gγ (x) = pγ (x; γ, b) in
parametrization (2.2). Let Et denote the hitting time process defined by (3.3). Then the density
h(x, t) of Et solves

∂h(x, t)

∂t
= b−α ∂αh(x, t)

∂(−x)α
(4.3)

for all t > 0 and x > 0.

Proof. A comparison with (3.2) shows that the density P(x, t) of Y (t) solves the space-
fractional diffusion equation

∂P (x, t)

∂t
= b−α ∂αP (x, t)

∂(−x)α
, (4.4)

where we note that c = σα = −a cos(πα/2) = b−α cos(π(2 − α)/2). Then (4.3) follows
using (4.1) and the fact that the negative fractional derivative in (4.4) depends only on P(y, t)

for y > x.

Remark 4.3. The characteristic function (Fourier transform) of P(x, t) is

P̂ (λ, t) = exp(tb−α(iλ)α).

It is common to analyze partial differential equations like (4.4) using transforms. Note, however,
that the Fourier transform of P(x, t) 1(x > 0) is not equal to P̂ (λ, t) since P(x, t) is supported
on the entire real line. Since we restrict to the positive reals, it is convenient to use Laplace
transforms. Bingham [9] and Bondesson et al. [11] showed that

∫ ∞

0
e−zxh(x, t) dx = Eγ (−zb−1tγ )

in terms of the Mittag–Leffler function

Eβ(z) =
∞∑

k=0

zk


(1 + βk)
.

Then it follows from (4.1) that

∫ ∞

−∞
e−zxP (x, t) 1(x > 0) dx = γEγ (−zb−1tγ ),

which shows that the conditional distribution of Y (t) | Y (t) > 0 is Mittag–Leffler.
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For an R
d -valued Markov process X(t), the family of linear operators

T (t)r(x) = Ex[r(X(t))] = E[r(X(t)) | X(0) = x]
forms a bounded continuous semigroup on the Banach space L1(Rd), and the generator
Lxr(x) = limh↓0 h−1(T (h)r(x) − r(x)) is defined on a dense subset of that space [2, p. 110],
[21, p. 648]. Then p(x, t) = T (t)r(x) solves the abstract Cauchy problem defined as

∂

∂t
p(x, t) = Lxp(x, t), p(x, 0) = r(x), (4.5)

for t > 0 and x ∈ R
d . Nigmatullin [37] considered an abstract time-fractional Cauchy problem:

(
∂

∂t

)γ

m(x, t) = Lxm(x, t), m(0, x) = r(x), (4.6)

which reduces to (3.9) in the special case where X(t) is a stable Lévy process started at x = 0.
Zaslavsky [48] used (4.6) to model Hamiltonian chaos. Baeumer and Meerschaert [3] and
Meerschaert and Scheffler [27] showed that the solution to (4.6) can be written in the form (3.6),
where h(x, t) is the density of Et , the hitting time (3.3) of a standard stable subordinator
D(t), and gγ (x) = pγ (x; γ, 1) is the density of D(1). It follows easily that m(x, t) =
Ex[r(X(E(t)))]. Then the next result follows immediately using (4.1).

Lemma 4.1. Let Y (t) denote a totally negatively skewed stable Lévy motion with index 1 <

α ≤ 2 and density pα(x; 2−α, t) in parametrization (2.2). Then the abstract fractional Cauchy
problem (4.6) with γ = 1/α can be solved by taking m(x, t) = Ex[r(X(Y (t))) | Y (t) > 0].

Next we come to the problem that motivated this paper. For 1
2 ≤ γ < 1, Orsingher and

Beghin [40, Equation (5.23)] showed that the fractional Cauchy problem (4.5) in dimension
d = 1 with Lx = ∂2/∂x2 has solution

m(x, t) = 1

γ

∫ ∞

0
p(x, u)p1/γ

(
u,

1

γ
(2γ − 1), t

)
du, (4.7)

using parametrization (2.2), where

p(x, u) = T (u)r(x) =
∫

R

e−(x−y)2/4u

√
4πu

r(y) dy

is the heat semigroup corresponding to Brownian motion in R. Note that (4.7) involves a stable
density, while the equivalent solution, (3.6), replaces this by an inverse stable density. The next
result shows how to equate these two forms. It also extends the result of [40] to an abstract
fractional Cauchy problem on R

d .

Theorem 4.2. For 1
2 ≤ γ < 1, the abstract fractional Cauchy problem (4.6) associated with

the Markov process X(t) has two equivalent solutions:

m(x, t) = Ex[r(X(Et ))]
= t

γ

∫ ∞

0
p(x, u)gγ

(
t

u1/γ

)
u−1/γ−1 du

= Ex[r(X(Y (t))) | Y (t) > 0]
= 1

γ

∫ ∞

0
p(x, u)p1/γ

(
u,

1

γ
(2γ − 1), t

)
du, (4.8)

where p(x, t) = Ex[r(X(t))] solves the abstract Cauchy problem (4.5), Et is the hitting time



Space–time duality for fractional diffusion 1109

(3.3) of a standard stable subordinator D(t), gγ (x) = pγ (x; γ, 1) is the density of D(1),
and Y (t) is a totally negatively skewed stable Lévy motion with index α = 1/γ and density
pα(x; 2 − α, t) in parametrization (2.2).

Proof. The integral solution on the second line of (4.8) was proven in [27, Theorem 5.1],
and then the representation Ex[r(X(Et ))] follows from (3.4). This also shows that the integral
on the second line of (4.8) reduces to (3.6). Now the last line of (4.8) follows from Lemma 4.1
together with Theorem 4.1.

Remark 4.4. The skewed stable density in the fractional Cauchy problem solution (4.7) is
supported on the entire real line, but the integral is over the positive reals. Orsingher and
Beghin [40] commented that the solution, in dimension d = 1 with Lx = ∂2/∂x2, can be
expressed as Ex[r(B(|Y (t)|))], where B(t) is a standard Brownian motion and Y (t) is the
stable process from Theorem 4.2, so that u = |Y (t)| has the density

Q(u, t) = 1

γ
p1/γ

(
|u|, 1

γ
(2γ − 1), t

)
.

This statement is correct in the case γ = 1
2 ; see also [4]. However, for 1

2 < γ < 1, the restriction
of the skewed stable density to the positive reals is not equivalent to a simple folding. Hence,
the comment in that paper requires a small adjustment.

Meerschaert et al. [32] showed that, under some technical conditions, the abstract fractional
Cauchy problem (4.6) with 0 < γ < 1 in a bounded domain D ⊂ R

d with Dirichlet boundary
conditions m(x, 0) = r(x) for x ∈ D and m(x, t) = 0 for x ∈ ∂D and t > 0 is solved by
taking

m(x, t) = Ex[r(X(Et )) 1(τ (X) > Et)] =
∫ ∞

0
p(x, u)h(u, t) du, (4.9)

where τ(X) = inf{t ≥ 0 : Xt /∈ D} is the first exit time, the generator Lx of the semigroup
T (t)f (x) = Ex[f (Xt ) 1(τ (X)) > t)] is a uniformly elliptic operator of divergence form,
p(x, t) = T (t)r(x), Et is the hitting time (3.3) of the standard stable subordinator, and h(x, t)

is the density of Et as given by (3.4). Then the next result, which extends Theorem 4.2 to
bounded domains, follows immediately from (4.1).

Theorem 4.3. Under the technical conditions of [32, Theorem 3.6], the abstract fractional
Cauchy problem (4.6) with 1

2 ≤ γ < 1 in a bounded domain D ⊂ R
d with Dirichlet boundary

conditions m(x, 0) = r(x) for x ∈ D and m(x, t) = 0 for x ∈ ∂D and t > 0 has a unique
classical solution

m(x, t) = Ex[r(X(Y (t))) 1(τ (X) > Y(t)) | Y (t) > 0]
= α

∫ ∞

0
p(x, u)pα(u, (2 − α), t) du (4.10)

with τ(X), Lx , and p(x, t) as in the preceding paragraph, Et is the hitting time (3.3) of a
standard stable subordinator D(t), gγ (x) = pγ (x; γ, 1) is the density of D(1), and Y (t) is a
totally negatively skewed stable Lévy motion with index α = 1/γ and density pα(x; 2 − α, t)

in parametrization (2.2).

Remark 4.5. The space–time duality results in this paper help to clarify a current controversy
in river flow hydrology. As explained in Remark 3.2, space-fractional derivatives model long
jumps, and time-fractional derivatives model long waiting times, due to the underlying random
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walk model. In applications to water pollution, the movement of contaminated particles is
represented by this random walk. Long jumps occur when the particle enters a zone of high
water velocity. Long waiting times between jumps occur when a particle is stuck in an eddy,
or buried in a stream bed. Recently, it has been observed that the movement of contaminated
particles in a river flow can be accurately modeled using a stable Lévy motion with negative
skewness and tail index 1 < α < 2; see [17], [22], and [23]. Kim and Kavvas [24] contended
that the negative skewness is due to particle waiting times. Zhang et al. [49] argued that, since
a negative fractional derivative in space derives from large negative (upstream) jumps in the
underlying random walk model, a negatively skewed model for transport in river flows is not
physically meaningful. They argued that particle waiting times should be modeled using a
fractional derivative in time, consistent with the random walk limit in Remark 3.2. The results
of this paper suggest one possible reason why a negatively skewed stable could fit experimental
data so well, even though a river cannot transport particles large distances upstream. Since the
density of a negatively skewed stable with index α > 1, restricted to the positive real line, equals
the density of the inverse stable with index 1/α < 1, the time-fractional model in [49] and the
space-fractional model in [17], [22], [23], and [24] are mathematically equivalent, under some
conditions. Physically, we can understand that whether a particle jumps upstream, or whether
it remains motionless while the bulk of the plume moves downstream, it ends up behind the
center of mass. Hence, while the physical meaning of the time-fractional model is more natural,
the space-fractional model is also reasonable. For additional details, see [14].

5. Remarks on simulation

Recall that the probability density h(x, t) of the inverse stable subordinator Et defined by
(3.3) solves a time-fractional diffusion equation (3.10). A simple numerical solution method
for (3.10) is to simulate a large number of replications of the process Et and histogram the
results. This method is known as particle tracking [50], also called the Lagrangian method.
An alternative Eulerian method is based on a finite difference approximation of the fractional
derivative [29]. In this section we will examine the implications of space–time duality for
both Lagrangian and Eulerian simulations. Corollary 4.2 shows that h(x, t) also solves the
space-fractional partial differential equation (4.3) for all t > 0 and x > 0. Generally,
space-fractional equations are simpler to simulate. Lack of memory in time permits efficient
Lagrangian simulation based on the underlying Markov process. The same lack of memory
allows Eulerian methods to efficiently step through time. Since a wide variety of time-fractional
partial differential equations can be solved via subordination to the Et process, the results
discussed here have broad applicability.

The space-fractional diffusion equation (4.3) is under-specified, since we desire solutions on
x > 0, and the equivalent equation, (4.4), has another solution P(x, t) supported on the entire
real line. To obtain a unique solution, we impose a suitable boundary condition. Let D(1) be a
stable subordinator with density gγ (x) = pγ (x; γ, b) in parametrization (2.2). Let Et denote
the hitting time process defined by (3.3). Then the density h(x, t) of Et solves the boundary
value problem

∂h(x, t)

∂t
= b−α ∂αh(x, t)

∂(−x)α
,

∂α−1

∂(−x)α−1 h(0, t) = 0. (5.1)

To see this, note first that Theorem 4.1(i) shows that the total mass assigned to the positive real
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line is
∫ ∞

0 P(x, t) dx = 1/α, which remains fixed for all t > 0. Hence,

0 = ∂

∂t

∫ ∞

0
P(x, t) dx =

∫ ∞

0

∂α

∂(−x)α
P (x, t) dx = ∂α−1

∂(−x)α−1 P(0, t) (5.2)

for all t > 0. Recall from (4.2) that the fractional derivative ∂α/∂(−x)αP (x, t) is defined for
1 < α < 2 as the second derivative of the fractional integral of order 2−α. Then the last equality
in (5.2) follows from the fundamental theorem of calculus and the fact that ∂α/∂(−x)αP (x, t)

is defined as the first derivative of that same fractional integral, up to a change of sign. Then
(5.1) follows from (4.1).

Now the hitting time density h(x, t) can be computed as the point source solution to the space-
fractional boundary value problem (5.1). Discretize in space xi = i�x and time tj = j�t

using the shifted Grünwald finite difference approximation [30]:

∂αh(x, t)

∂(−x)α
= lim

�x→0
(�x)−α

∞∑
n=0

(−1)n
(

α

n

)
h(x + (n − 1)�x, t),

where the fractional Binomial coefficients are defined by
(

α

n

)
= 
(α + 1)


(α − n + 1)
(n + 1)
.

Then we approximate hij = h(xi, tj ) using an explicit Euler scheme:

hij − hi,j−1

�t
= (b�x)−α

∞∑
n=0

(−1)n
(

α

n

)
hi+n−1,j−1,

which reduces to a stable recursive equation for hij , except at the boundary i = 0 where we
apply the boundary condition

h0j = −
∞∑

n=1

(−1)n
(

α − 1

n

)
hi+n−1,j ,

using the shifted Grünwald approximation once more. The effect of the boundary condition
is to capture the mass that would have exited to the left, into the negative real line, and keep
it at x = 0 to preserve mass. Figure 1 shows the results of solving boundary value problem
(5.1) in the case b = 1 via this explicit Euler method. Figure 1 also shows a semi-analytical
solution using (3.4), where the stable density gγ was approximated using the algorithm of
Nolan [38]. Richardson extrapolation is based on the fact that the error in the explicit Euler
method is approximately proportional to the step size �x. Therefore, a useful estimate of the
error at step size �x is h2�x

ij −h�x
ij , and the extrapolated curve is simply the numerical solution

at �x = 0.2 minus this approximate error.
An alternative Lagrangian approach is to simulate the Markov process ti = D(xi) at times

xi = i�x as a sum of i.i.d. stable random variables with density gγ (t) = pγ (t; γ, b�x). Then
we can approximate the inverse process xi = E(ti) (at unequally spaced points) and linearly
interpolate in t . A histogram of E(t) values from a large number of iterations can be used to
approximate the density h(x, t), and more generally, to solve time-fractional diffusion equations
via subordination [50]. An alternative Lagrangian method that requires no interpolation uses the
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Figure 1: Extrapolated Eulerian solution to the boundary value problem (5.1) matches the inverse stable
density h(x, t) from (3.4).

space–time duality from Theorem 4.1. Since E(t) is identically distributed with Y (t) | Y (t) >

0, we need only simulate the Markov process Y (t) and approximate the conditional density
via the histogram. Note that the proportion of sample paths with Y (t) > 0 will remain
approximately constant since P(Y (t) > 0) = 1/α for all t > 0. Hence, this Lagrangian
approach is reasonably efficient.

Remark 5.1. It is also interesting to find a stochastic process Z(t) whose one-dimensional
distributions are the same as the conditional distributions of Y (t) | Y (t) > 0, since the process
Z(t) could be used directly as a subordinator to solve time-fractional diffusion equations. For
α = 2, we can certainly take Z(t) = |Y (t)| by the reflection principle. This fact is used,
for example, to show that iterated Brownian motion B(Y (t)) [12] and Brownian motion in
Brownian time B(|Y (t)|) [1], [16] have the same one-dimensional distributions, and, hence,
the same governing equation. For 1 < α < 2, the process Y (t) is not symmetric, and the
reflection principle does not apply. One possible alternative is to define Z(t) = Y (u), where
u = u(t) is the process inverse of

t = t (u) =
∫ u

0
1(Y (s) > 0) ds,

so that t (u) is the length of time Y (s) spends being positive during 0 < s < u. Note that,
generally, t ≤ u, so that u = u(t) ≥ t . In other words, take a sample path of Y (t), snip out
the parts where Y (t) ≤ 0, and glue the remaining parts back together without any gaps in time.
Figure 2 compares the results of a particle tracking simulation for this process with the density
h(x, t), computed semi-analytically using (3.4), as in Figure 1. In this figure, b = 1, α = 1.1,
n = 2 × 105 particles were simulated, and a time step of �t = 0.05 was used in the random
walk approximation of Y (t). The excellent agreement is encouraging.

The process Z(t) is related to local times [7, p. 104]. The occupation measure

µt(B) =
∫ t

0
1(Y (s) ∈ B) ds

MCubed
Sticky Note
Recall from Remark 4.2 that D(x)=inf{t>0:Y(t)>x} is a stable subordinator.  Then it is not hard to show that E(t)=sup{Y(u):0<=u<=t} is one such process.  See for example Bertoin [7] Theorem VII.1 p.189.  This means that the process E(t) can be simulated as the supremum of a stable process.  
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Figure 2: Particle tracking simulation of Z(t) matches the conditional density of Y (t) | Y (t) > 0.

is well defined for the stable process Y (t), and µt(dx) has a Radon–Nikodym derivative
�(x, t) = dµt/dx with respect to Lebesgue measure dx on the real line. The local time
�(x, t) measures how much time Y (s) spends at the point x during 0 < s < t . Now the
occupation density formula implies that t = t (u) = ∫ ∞

0 �(x, u) dx, which can be understood
as adding up the time Y (s) spends at all points x > 0. The local time has a scaling property
c1−1/α�(c−1/αx, c−1t) = �(x, t) in distribution [31], and it follows that t (cu) = ct (u) in
distribution. Then Z(ct) = c1/αZ(t), so that Z(t) has the same scaling as Y (t). It is known
that the inverse local time is a nondecreasing Lévy process [7, p. 130]. However, it seems that
the integral t (u) is no longer Markovian. Hence, it seems difficult to prove that the probability
distribution of Z(t) is the same as Y (t) | Y (t) > 0.
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