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Space-time finite element methods are presented to accurately solve elastodynamics problems that 

include sharp gradients due to propagating waves. The new methodology involves finite element 

discretization of the time domain as well as the usual finite element discretization of the spatial domain. 

Linear stabilizing mechanisms are included which do not degrade the accuracy of the space-time finite 

element formulation. Nonlinear discontinuity-capturing operators are used which result in more 

accurate capturing of steep fronts in transient solutions while maintaining the high-order accuracy of 

the underlying linear algorithm in smooth regions. The space-time finite element method possesses a 

firm mathematical foundation in that stability and convergence of the method have been proved. In 

addition, the formulation has been extended to structural dynamics problems and can be extended to 

higher-order hyperbolic systems. 

1. Introduction 

While finite element methods have been widely used to solve time-dependent problems, 

most procedures have been based upon semidiscretizations: the spatial domain is discretized 

using finite elements, producing a system of ordinary differential equations in time which in 

turn is discretized using finite difference methods for ordinary differential equations. These 

procedures have been particularly successful in solving structural dynamics problems. (Struc- 

tural dynamics problems typically generate a stiff system of ordinary differential equations; the 

low frequency response of the system is of principal interest.) One disadvantage of the 

semidiscrete approach is the difficulty in designing algorithms that accurately capture discon- 

tinuities or sharp gradients in the solution. To illustrate this difficulty, we consider the impact 

against a rigid wall of a one-dimensional, homogeneous elastic bar; see Fig. 1. Initially, the 

bar is moving with a uniform speed; the left end of the bar then impacts the rigid wall. This 

generates a compressive stress wave in the bar that starts at the impacted end and propagates 
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Fig. 1. one-dimensionai elastic bar impact problem. (Top: model problem; bottom: exact solution.) 

towards the free end. Attention is restricted to the time interval during which the stress wave 

remains compressive, that is, before the stress wave reaches the free end of the bar. The bar 

has a length of 4; the density, area and Young’s modulus have unit values; the uniform initial 

speed also has unit value. The bar was uniformly discretized using 200 quadratic rod elements. 

Figure 2 shows the stress distribution in the bar for time t = 2.81, calculated using the 

trapezoidal rule algorithm with time step At = 0.01; the dotted line denotes the exact solution. 

The oscillations in the trapezoidal rule solution induced by the discontinuity are clearly 

evident. These oscillations are not surprising as it is well-known that the trapezoidal rule 

algorithm possesses no numerical damping to localize or limit oscillations. 

Within the context of structural dynamics, many semidiscrete algorithms have been 

developed which possess numerical damping but still retain the accuracy characteristics of the 

trapezoidal rule algorithm for problems with smooth solutions. One of the more successful 

semidiscrete algorithms is the Hilber-Hughes-Taylor o method (HHT-cu method) [l-5]. The 

stress distribution in the bar is shown in Fig. 3 calculated using the HHT-cw algorithm with 

” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2, Bar impact problem. Stress dist~but~on calculated using trapezoidal r&e algorithm. 



G.M. Hulbert, T. J. R. Hughes, Space-time finite element methoak 329 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

HHT-n- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

Fig. 3. Bar impact problem. Stress distribution calculated using Hilber-Hughes-Taylor (Y algorithm. 

(Y = -0.3 and At = 0.01 (t = 2.81). Compared to the trapezoidal rule algorithm, the HHT-LX 

method significantly localizes oscillations although there is still a number of oscillations near 

the discontinuity. 

These results are indicative of the performance of structural dynamics algorithms when 

solving wave propagation problems. While these semidiscrete methods are effective for 

computing smooth responses (low frequency response) of interest in structural dynamics, their 

performance is less satisfactory when solving problems exhibiting discontinuities or sharp 

gradients in their solutions. 

Another disadvantage of semidiscrete methods may be seen using a second example 

problem. Consider a one-dimensional elastic bar consisting of two different materials; as 

shown in Fig. 4, the elastic wave speed in the first material is greater than that of the second 

material. At the initial time, non-uniform traction is applied to the bar near the material 

interface. Of interest in this problem is tracking the relatively sharp stress distribution as it 

propagates throughout the bar. Since, for semidiscrete methods, the spatial domain is 

discretized first and then the same temporal discretization is used for the resultant set of 

ordinary differential equations, the corresponding space-time discretization is structured. That 

Material 1 1 Material 2 2 

I I I 

c, = wave speed in material I 

Cl > c2 

Fig. 4. Two-material elastic bar problem. 
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is, as shown in Fig. 5, the space-time discretization arising from the semidiscrete approach 

consists of rectangular subdomains of the space-time domain. In contrast, space-time finite 

element methods, in which the spatial and temporal domains are simultaneously discretized, 

accomodate unstructured meshes in the space-time domain, such as the mesh shown in Fig. 6. 

This mesh may be considered to arise from an adaptive mesh refinement strategy in which 

both spatial and temporal refinement can occur to accurately capture the stress waves as they 

propagate throughout the bar. In regions where the solution is smooth, the mesh is relatively 

coarse while a finer mesh is employed near the stress wave fronts. Thus, an accurate solution 

may be obtained without resorting to a uniformly-refined (and computationally expensive) 

mesh. Adaptive mesh refinement strategies using space-time finite element methods recently 

have been developed by Johnson and co-workers for fluid dynamics problems [6]. 

The use of finite elements to discretize the temporal domain as well as the spatial domain 

was first proposed by Argyris and Scharpf [7], Fried [S] and Oden [9]. The underlying concept 

of their formulations is the application of Hamilton’s principle for dynamics. Numerous 

research efforts ensued based upon variants of Hamilton’s principle and Hamilton’s law for 

dynamics and elastodynamics, and a variational principle for heat conduction first presented 

by Gurtin [lo]. See, e.g., [ll-241. (This is not meant to be an exhaustive list; the interested 

reader is encouraged to study the reference lists of the above papers. Good compendia of 

space-time finite element formulations based on Hamilton’s principle and Hamilton’s law may 

be found in [13,25].) 

A second approach towards formulating space-time finite element methods is to work 

directly with the differential equations or variational formulation rather than from a variation- 

al principle. Numerous problems, including elastodynamics, heat conduction and advective- 

diffusive systems associated with fluid dynamics, have been solved using space-time finite 

element methods in which the unknown quantities were assumed to be continuous with 

respect to time. See [25-431 for examples of time-continuous Galerkin formulations. Also, 

t 1 
- 

- 

- 

- 

Fig. 5. Semidiscrete space-time mesh for the two- 

material elastic bar problem. 

tt 

Fig. 6. Space-time finite element mesh for the two- 

material elastic bar problem. 
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using continuous functions in time, the ordinary differential equations emanating from 

semidiscretizations were multiplied by weighting functions and integrated over time intervals; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
see [44-491. Many traditional ordinary differential equation algorithms were rederived in this 

manner. 

Another approach, working from the differential equation viewpoint, has evolved during 

the last fifteen years. The idea is to permit the unknown fields to be discontinuous with respect 

to time. The time-discontinuous Galerkin method was originally developed for first-order 

hyperbolic equations [50,51]. This method has been successfully applied to problems in 

incompressible and compressible fluid dynamics and heat conduction; see [52-641. 

The time-discontinuous Galerkin method leads to stable, higher-order accurate finite 

element methods. It was first shown in [51,53,65] that the time-discontinuous Galerkin 

method leads to A-stable, higher-order accurate ordinary diffential equation solvers. This is in 

contrast to the conditional stability of some time-continuous Galerkin methods observed by 

Bajer [26,27] and Howard and Penny [15]. Furthermore, the time-discontinuous framework 

seems conducive to the establishment of rigorous convergence proofs and error estimates 

[6,54,55,57,58,62,65-731. 

Based on the success of the time-discontinuous Galerkin method for first-order systems, it is 

desirable to extend the method to problems involving second-order hyperbolic equations, e.g., 

elastodynamics. Classical elastodynamics can be converted to first-order symmetric hyperbolic 

form, which has proved useful in theoretical studies [74]. Finite element methods for 

first-order symmetric hyperbolic systems are thus immediately applicable [54,55,57]. How- 

ever, there are disadvantages to this approach: in symmetric hyperbolic form the state vector 

consists of displacements, velocities and stresses, which is computationally uneconomical; and 

the generalization to nonlinear elastodynamics seems possible only in special circumstances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[W 
In [76], we developed space-time finite element methods for elastodynamics based on the 

natural framework of second-order hyperbolic equations. Independent interpolations were 

permitted for the displacement and velocity fields; error estimates were derived and numerical 

results demonstrated the good performance of the new methods. In this paper, a ‘single-field’ 

formulation is employed in which the displacement field is interpolated; nonlinear operators 

are then introduced to control the oscillations induced by discontinuous solutions. 

To date, we have concentrated on developing space-time finite element methods for 

elastodynamics and time finite element methods for the ordinary differential equations 

associated with structural dynamics. These equations are prototypes of general second-order 

hyperbolic systems; consequently, the methods developed have wider applicability than 

structural dynamics and elastodynamics. In this paper, attention is restricted to linear 

elastodynamics. 

An outline of the paper follows. A brief review of the equations of linear elastodynamics is 

given in Section 2. The space-time finite element method is presented in Section 3; the 

proposed formulation consists of several essential facets. Appended to the time-discontinuous 

Galerkin formulation are stabilizing operators that have least-squares form. (Similar stabiliza- 

tion ideas have been exploited for other problems by Hughes et al. [77-811, Franca and 

Hughes [82] and Loula et al. [83-851.) Nonlinear discontinuity-capturing operators are added 

to improve the performance of the algorithm in regions where the solution exhibits sharp 

gradients. (Within the context of finite element formulations for fluid mechanics, discon- 
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tinuity-capturing operators have been developed by Hughes et al. [%I, Hughes and Mallet 

1871, Johnson and Szepessy [70,71,88], Szepessy 1731, Galego and Dutra do Carmo [89,90] 

and Shakib [53].) The importance of each component of the formulation is emphasized by 

comparing numerical results obtained for the elastic bar impact problem; these results also 

demonstrate the improved performance of the space-time finite element method for wave 

propagation problems when compared to typical semidiscrete methods. In Section 4, results 

are presented from stability and convergence analyses of the space-time finite element 

methods. Finally, conclusions are drawn in Section 5. 

2. Classical linear elastodynamics 

Consider an elastic body occupying an open, bounded region 0 C Rd, where d is the 

number of space dimensions. The boundary of D is denoted by P: Let rg and r, denote 

non-overlapping subregions of r such that 

The displacement vector is denoted by u(x, t), where x E fi and 1 E [0, T], the time interval of 

length 7’ > 0. The stress is dete~ined by the generalized Hooke’s law: 

u(vu)=c~vu, (2) 

or, in components, 

(3) 

where 1~ i, j, k, 1 d d, uk,! = au,/&,, and summation over repeated indices is implied. The 

elastic coefficients cijkl = c,,,(x) are assumed to satisfy the following conditions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘ijkl = cjinr = C$k (minor symmetries) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, (4) 

‘ijkf = ‘kiii 
(major symmetry) , (5) 

c~i~~~ij~k~ > 0 Yeij = $+ # 0 (positive definiteness) . w 

By the minor symmetries, q is symmetric and depends only upon the symmetric part of Vu. 

The minor symmetries play no role in the formulation presented in subsequent sections; 

however, the major symmetry and positive definiteness are used in the stability and conver- 

gence proofs. 

The equations of the initial/boundary-value problem of elastodynamics are 

pii =V. @(Vu) t-f on Q = 0 X JO, T[ , (7) 

u=g on Y,ErgX]OT T[, (8) 
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n * a@) = h on Y, = r, x IO, T[ , (9) 

11(x, 0) = q)(x) for x E R , (10) 

ti(x, 0) = u,(x) for x E 0 , (11) 

where p = p(x) > 0 is the density, a superposed dot indicates partial differentiation with 

respect to t, f is the body force, g is the prescribed boundary displacement, h is the prescribed 

boundary traction, u0 is the initial displacement, u, is the initial velocity and n is the unit 

outward normal to r. In components, V * CT and n * CT are aii, j and aijltj, respectively. The 

objective is to find a u that satisfies (7)-(11) for given p, c, f, g, h, u. and u,. 

REMARK. The form of the generalized Hooke’s law, (2), was chosen as it enables a 

generalization of the proposed finite element formulation to the nonlinear elastodynamics case 

where the first Piola-Kirchhoff stress, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, replaces a; see [91]. 

3. A space-time Galerkinheast-squares finite element formulation 

3.1. Preliminaries 

Consider a partition of the time domain, I = IO, T[, having the form: 0 = t, < t, < . . - < 

t,= T. Let I,, =]t n _1, t, [ and At,, = t, - t,_, . Referring to Fig. 7, the following notations are 

employed: 

Fig. 7. Illustration of space-time finite element notation. 
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Q, = Q x Z,, , (12) 

Y, = r x z, , (13) 

(r,), = rg x 4 7 (14) 

(r,), = r, x 1, . (15) 

Q, is referred to as the nth space-time slab. 

Let (n,,), denote the number of space-time elements in Q,; QE C Q, denotes the interior of 

the eth element; Yz denotes its boundary. Let 

Q; = ‘;$’ Q; (element interiors) , W-9 

Y: = ‘r$’ YE - Y, (interior boundary) . (17) 

Frequently-used notations are 

(wh, u”)~ = (2 wh. uh dR , 
I 

u(wh, u”)fl = 
I 
R Vwh . a(Vuh) dR , 

( 18) 

(19) 

(wh, u”)~,= 
I 
Q wh.UhdQ, (20) 

n 

u(wh, u~)~, = 
I 
p Vwh - a(Vuh) dQ , (21) 

n 

(Wh, Uh)QZ = I QZ 
wh. uh dQ , 

(wh, u”)~: = ~I wh * uh dY , 
I n 

(Why Uh)(Yh), = I (y,), Wh . uh dY , 

where 

I, 
n 

. ..dQ=knI....dQdr, 

(22) 

(23) 

(24) 

(25) 

(26) I Q~ 

n 

. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdQ = ‘zn lQe . . - dQ , 

e=l n 
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. ..(jy= - - . dT dt (27) 

and a(. , o)~ is the strain-energy inner product. 

Consider a typical space-time element with domain Qe and boundary Y’. Let n denote the 

outward unit normal vector to Y’ n {t} in the spatial hyperplane Qe n {t}. If Qe equals the 

product of R’ and a time interval, then it is the usual spatial unit outward normal vector to P. 

Assuming the function w(t) to be discontinuous at time t,, the temporal jump operator is 

defined by 

where 
uw(t,)n = w(t,’ > - w(t, > > (28) 

w(t,‘) = &r$ w(t, + E) . (29) 

The argument x has been suppressed in (28), (29) to simplify the notation. 

Consider two adjacent space-time elements. Designate one element by + and the other by 

-; let n+ and IZ- denote the spatial unit outward normal vectors along the interface (see Fig. 

8). To simplify the notation, the argument t is suppressed. Assuming the function w(x) is 

discontinuous at point x, the spatial jump operator is defined by 

where 

[w(x)] = w(x+) - w(x_) ) (30) 

w(P) = eliy* w(x + En) ) (31) 

n=n+=-n-. (32) 
Then 

[a(Vw)(x)] * n = a(vw)(x+) * n - a(Vw)(x_) * n 

= a(Vw)(x’) * n+ + a(Vw)(Y) - n- ) (33) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

Fig. 8. Illustration of spatial outward normal vectors. 
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which demonstrates the invariance of [u(Vw)(x)] * n with respect to interchanging the + and - 

designators. 

The trial displacement space, yh, and the weighting function space, ?@, include /&h-order 

polynomials in both x and t. The functions are continuous on each space-time slab, but they 

may be discontinuous between slabs. Figure 9 depicts a space-time slab containing commonly- 

used finite elements: linear triangles (k = 1) and biquadratic quadrilaterals (9-noded quadrila- 

terals for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 2). The collections of finite element interpolation functions are given by 

Trial d~pl~cement~ 

~~placerne~~ weighting functions 

‘Vh = { wh 1 wh E ( %‘“(ncl Qn))‘, whla’, E (Pk(Qi))d, wh = 0 on Yg} , (35) 

where Pk denotes the space of kth-order polynomials and %‘O denotes the space of continuous 

functions. 

3.2. Time-discontinuous Galerkin formulation 

The first component of our space-time finite element method is called the time-discontinu- 

ous Galerkin formulation. The objective is to find uh E yh such that for all wh E 4y”, 

where 

B,,(W h, Uh)n = L,,(W h), , n = 1,2,. . . ) N ) (36) 

B,,(Wh, Uh)* = (BP, /I+& + a( @, Uh)Q, + (+h(C,), Pli”(C_,)), 

+ ~{w~(t~-~), ~~(t~-~))~ 9 (37) 

&,(wh)n = (+“, fjs, + Fh, h)(yhjn + Whttnf-A d%,N, 

+ 4whK-,), ~h(t,-l>)~ * (38) 

The three terms evaluated over Q, act to weakly enforce the equation of motion, (7), over 

the space-time slab; the term evaluated on (Y,), acts to weakly enforce the traction boundary 

condition, (9), while the remaining terms weakly enforce continuity of displacement and 

velocity between slabs yt and n - 1. This can be seen more clearly from the Euler-Lagrange 

form of the variational equation 

Fig. 9. Illustration of space-time slab discretization; k denotes the order of the interpolation functions. 
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0 = B,,(Wk, Uk)n - &JWk)?$ 
= (Gk, 2‘uk -J&;f (equation of motion) 

+ (W”, n * uwuh ml),~ (traction continuity in space) 

+ (W”, n * a(Vuh> - h),y& (traction boundary condition) 

+ ($~‘(f,f_~), p[ti”(t,_,)J), (velocity continuity in time) 

+ @(w”(Cr), ~~k(~~-,)n)~ (d’ Pl IS acement continuity in time) , 

where we have used the integration-by-parts formula 

a(ik, ““)Q, = -(Gk, v* a(vu’l))QI + (Ii”, n * [[u(VUk)(X)n)ym 
” n 

+ F;“? n * “(v’Lk)>(u,,n * 

(39) 

(40) 

There are several important consequences of using time-discontinuous functions and the 

temporal jump operators: 

(1) The equations to be solved for each slab are decoupled from those of the other slabs. The 

data from the end of the previous time slab are employed as initial conditions for the 

current slab. 

(2) The jump operators introduce numerical dissipation into the formulation. They may be 

considered as sophisticated ‘artificial viscosities’ but they do not inherit the deficiencies of 

the classical artificial viscosities. Since they are form-invariant with respect to the order of 

element interpolations, the resultant algorithms are higher-order accurate; see [76]. 

(3) Displacement continuity is weakly enforced via the strain-energy inner product, a(., +)n. 

This is the crucial element enabling generalization of the time-discontinuous space-time 

finite element methods successfully developed for first-order systems to second-order 

hyperbolic equations. 

From (39), it follows that a sufficiently smooth exact solution of the initial/boundary-value 

problem, u, satisfies 

for all ivh E Yk and it = 1, 2, . . . , N. In finite element terminology, this is an appropriate 

notion of consistency for the time-discontinuous Galerkin formulation; it implies that higher- 

order accurate algorithms can be developed by choosing higher-order finite element interpola- 

tions . 

Time-discontinuous Galerkin formulations lead to systems of equations of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Kd=F, (42) 

where d is the vector of unknown nodal displacements of a slab. For each space-time slab, one 

such system of equations needs to be solved; the algorithm proceeds by solving each successive 
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Fig. 10. Space-time finite element discretization for the bar impact problem using 200 9-noded quadrilateral 

elements. 

system. Thus, the space-time finite element formulation obviates the need for a separate 

time-integration algorithm as required in the semidiscrete approach. One disadvantage of the 

time-discontinuous space-time finite element method is that it leads to a larger system of 

equations than those produced by typical semidiscrete methods. We have developed predictor- 

multicorrector algorithms, based on the time-discontinuous Galerkin method, to reduce the 

computational costs associated with solving the larger system of equations, see [91] for details. 

To demonstrate the improved performance of the time-discontinuous Galerkin method 

when compared with standard semidiscrete algorithms, the one-dimensional bar impact 

problem was solved using 200 9-noded quadrilateral space-time elements per slab, as shown in 

Fig. 10. The 9-noded quadrilateral element permits quadratic variation of displacement in 

both space and time. This mesh was used for all the space-time finite element formulations. 

The stress distribution in the bar as shown in Fig. 11 was computed using the time- 

discontinuous Galerkin method. There are a few oscillations in front of the discontinuity and a 

small oscillation behind the discontinuity, but the computed response is substantially better 

than those computed using the trapezoidal and HHT-a semidiscrete methods. Note also that 

the discontinuity is captured quite well; that is, the slope of the computed solution is fairly 

steep and is not overly smeared. (The support of the computed discontinuity is 9 nodes.) 

3.3. Galerkinlleast-squares formulation 

It is desirable to further reduce or eliminate the oscillations in the computed response. In 

addition, it is useful to prove that the space-time finite element formulation converges for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b 

0 

Fig. 11. Bar impact problem. Stress distribution calculated using time-discontinuous Galerkin algorithm. 
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arbitrary space-time discretizations and higher-order element interpolations. To achieve these 

goals, additional stabilizing operators are added to the time-discontinuous Galerkin method. 

These stabilizing operators have least-squares form; the resultant formulation is called the 

Galerkin/least-squares space-time finite element method and is given by 

where 
&,,(d uhJn = a,,,, , n = 1,2, . . . , N , (43) 

B,,,(Wh, U”) = B,,(Wh, z& + (,Tewh, plTLQ)o; 

+ (n * [a(Vw”)(x)], p-h2 +r(Vu”)(x)])y; + (n * O(VWh), p-h * “(vuh))(yh,, ) 

(44) 

The matrices 7 and s have dimensions of time and slowness, respectively; both are d x d 

matrices. The corresponding least-squares terms add stability without degrading the accuracy 

of the underlying time-discontinuous Galerkin method. 

The stress distribution computed using the Galerkinileast-squares method is shown in Fig. 

12 for I = 2.81. Compared to the solution obtained using the time-discontinuous Galerkin 

method, the number of oscillations in front of the discontinuity has been reduced; there is still 

a small overshoot in front of and a small undershoot behind the discontinuity. The slope of the 

discontinuity is accurately captured; the discontinuity support is 14 nodes. 

3.4. Discontinuity-capturing formulation 

To completely eliminate oscillations in the computed solution requires using a nonlinear 

algorithm even for this linear problem. It is well-known that a monotone (non-oscillatory) 

response for discontinuous solutions cannot be computed using a high-order accurate (accura- 

cy greater than first-order) linear algorithm. Since the Galerkinileast-squares method with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b 

Fig. 12. Bar impact problem. Stress distribution calculated using Galerkin/least-squares algorithm. 
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9-noded quadrilateral elements is a higher-order accurate scheme, nonlinear discontinuity- 

capturing operators were designed to provide better stability in regions of sharp gradients. The 

discontinuity-captu~ng fo~ulation is given by 

where 

and 

B(Wh, ziyn = Jqw”), , n = 1,2, - . . ) N ) (46) 

B(Wh, uyn = B,,,(Wh, z4pn + I 
(Rh - &Rh) 

9; Ivph12 
V,z wh 4+uh dQ , (47) 

we, = kxs(wh), (48) 

Rh=%ih--f, (4% 

The discontinuity-capturing operator has several important features. For each element, it is 

proportional to the square of the residual, (Rh - pF17Rh). If the solution is smooth, the 

solution gradients and residual are small. Thus, the effect of the discontinuity-capturing term 

also is small and the formulation is essentially equivalent to the Galerkin/least-squares 

method. In regions where the solution gradients are large, the residual also is large and the 

effect of the additional operator becomes important. In these regions, the discontinuity- 

capturing operator adds stability by controlling the locsll second ~er~va~~ves of the solution, 

(Vzz Wh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-V&2 d); note that both spatial and temporal second derivatives are controlled. Since 

the discontinuity-capturing operator is dependent on the element residual, the resultant 

formulation is nonlinear even for the problem of linear elastodynamics. When solving 

nonlinear elastodynamics problems, the nonlinear discontinuity-capturing algorithm does not 

increase computational costs, when compared to the Galerkin/least-squares method, since the 

underlying equations are inherently nonlinear. 

Figure -13 shows the stress distribution in the elastic bar for t = 2.81 computed using the 

I” ” ” r-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 I 

DC- 

exact . . . . ..-.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.5 

b 

Fig. 13. Bar impact problem. Stress dist~bution calculated using discontinuity-capturing algo~t~m. 
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Fig. 14. Bar impact problem. Comparison of stress distribution calculated using Galerkin/least-squares (GLS) and 

discontinuity-capturing (DC) algorithms. 

discontinuity-capturing formulation. Note that the oscillations near the discontinuity have 

been eliminated. It is useful to compare the solutions obtained by the Galerkin/least-squares 

and discontinuity-capturing formulations; see Fig. 14. We again note that the discontinuity- 

capturing formulation has eliminated the few remaining oscillations. It may also be observed 

that the discontinuity-capturing operator does not ‘smear’ the discontinuity; that is, near the 

discontinuity, the solutions obtained by both methods are virtually identical. This result 

emphasizes that the proposed discontinuity-capturing operator acts like a higher-order accur- 

ate artificial viscosity. 

4. Stability and convergence analyses 

In this section, we shall present results from stability and convergence analyses of the 

space-time finite element formulations presented in the previous section. See [91] for details of 

the analyses. 

For linear elastodynamics, a natural measure of stability is the total energy, given by 

qw”) = ; (2, pi*), + ; u(d, w”)n ’ (51) 

In the absence of forcing terms, i.e., f= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = h = 0 in (7)-(9), we have proved that the 

following energy decay inequality holds for the three space-time finite element formulations 

presented in this paper: 

where %‘(u(O)) is the initial total energy. In other words, the space-time finite element 

formulations are unconditionally stable for linear elastodynamics. 

To study the convergence rates of the space-time finite element formulations, an appropri- 

ate space-time mesh parameter is given by 
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h = max {c At, AX} , (53) 

where c is the dilatational wave speed and Ax and At are maximum element diameters in space 

and time, respectively. To study the convergence properties of the formulations, the spatial 

and temporal domains simultaneously are refined. (The mesh parameter, h, is decreasing 

uniformly in Ax and At.) Assuming the exact solution to (7)-(11) is sufficiently smooth in the 

sense that 

u E Wk+l( Q))" , (54) 

then, for the Galerkin/ least-squares formulation, (43)) 

where k is the order of the finite element interpolation, 

e=uh-u (56) 

is the error, C(u) is independent of h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1114112 = %0-N + %G+>> + C  ~W4Jl> 
n=l 

is a norm that is stronger than the total energy norm, (51). 

As measured in the III - III -norm, the convergence rate proved for the Galerkin / least-squares 

method is sharp (in the sense that the interpolation error has the same rate of convergence, 

h 2k-1, when measured in the I I I * I I I -norm; see [92] for details of interpolation error theory for 

finite elements). 

For the discontinuity-capturing formulation, (46), optimal convergence, (55), has been 

proved assuming the solution is sufficiently smooth in the sense that 

max(Rh -  pp17Rh) s Ch2 , (58) 

where the maximum is taken over all space-time finite elements and C is independent of h. 

To numerically evaluate convergence rates, the response of a one-dimensional, homoge- 

neous elastic rod was calculated. Both ends of the rod were fixed; no external loads were 

applied; the initial velocity was zero; the initial displacement was proportional to the first 

harmonic. Unit values were specified for the length, area, density and elastic coefficient of the 

rod. The response was calculated for the time interval 0 s t c T = 1.2. Figure 15 shows the 

error computed using the Galerkin/least-squares and discontinuity-capturing formulations 
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Fig. 15. Calculation of numerical error using Galerkin/least-squares (GLS) and discontinuity-capturing (DC) 

formulations; h is the spatial distance between adjacent nodes. 

employing biquadratic elements. Both formulations achieve the cubic rate of convergence 

predicted by (55). Th ese results also emphasize that the discontinuity-capturing operators 

presented in Section 3.4 do not degrade the underlying accuracy of the time-discontinuous 

Galerkin formulation for problems with smooth solutions. 

5. Conclusions 

We have developed new space-time finite element formulations for elastodynamics which 

generate unconditionally stable, higher-order accurate algorithms. Included in the formula- 

tions is a nonlinear discontinuity-capturing operator which controls oscillations induced by 

sharp gradients or discontinuities in the solution without degrading the accuracy of the 

Galerkin/least-squares method in smooth regions of the solution. The additional stabilizing 

terms in the space-time formulations were derived from mathematical analyses; consequently, 

the resultant space-time finite element methods possess a firm mathematical foundation. 

Figure 16 summarizes the numerical results presented in this paper. Starting with the 

trapezoidal rule algorithm, which is known to have difficulties limiting oscillations due to high 

frequency response, researchers added numerical dissipation to control unwanted oscillations 

when solving structural dynamics problems, e.g., the HHT-a is an effective structural 

dynamics algorithm that provides numerical damping. Even with the added numerical 

damping, there still exists a number of oscillations in the solution; these results are indicative 

of the performance of structural dynamics algorithms when used to solve wave propagation 

problems. Using the time-discontinuous Galerkin method, the oscillations are greatly reduced. 

Adding least-squares operators to the formulation further reduces the number of oscillations. 

To eliminate the oscillations required adding a nonlinear discontinuity-capturing operator. 

The discontinuity-capturing formulation results in a monotone solution for the bar impact 

problem with excellent resolution of the stress discontinuity. 
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Fig. 16. Bar impact problem. Comparison of results. 

While the numerical results presented in this paper have been limited to one-dimensional 

problems, the formulations are applicable to multi-dimensional problems; research efforts are 

underway to address the implementational issues of the multi-dimensional formulation. One 

area of great potential for space-time finite element methods is the development of adaptive 

mesh refinement strategies in both space and time. Johnson and colleagues have recently 

developed very interesting adaptive mesh refinement strategies ‘for first-order hyperbolic and 

parabolic equations based on the space-time finite element method. Having laid the founda- 

tion for space-time finite element methods for second-order hyperbolic equations, we feel 

there is considerable potential for future applications in elastodynamics, structural dynamics 

and second-order hyperbolic systems in general. 
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