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Abstract

This paper establishes explicit solutions for fractional diffusion problems on bounded

domains. It also gives stochastic solutions, in terms of Markov processes time-changed

by an inverse stable subordinator whose index equals the order of the fractional time

derivative. Some applications are given, to demonstrate how to specify a well-posed

Dirichlet problem for space-time fractional diffusions in one or several variables. This

solves an open problem in numerical analysis.
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1 INTRODUCTION

Fractional derivatives were invented by Leibnitz in 1695 [37]. Recently they have found new applications in many areas of

science and engineering, see for example these books [27,33,36,37,43,45,46,48]. In particular, partial differential equations

that employ fractional derivatives in time are used to model sticking and trapping, a kind of memory effect [12,39,40,44,56].

For practical applications, it is often necessary to employ numerical methods to solve these time-fractional partial differential

equations. A variety of effective numerical schemes have been developed to solve fractional partial differential equations on

a bounded domain, along with proofs of stability and convergence, see for example [18,21–23,34,35,57]. An important open

problem in this area is to show that these problems are well-posed, see discussion in Defterli et al. [20].

In this paper, we take a step in that direction, by establishing explicit solutions to a broad class of time-fractional Cauchy

problems [3] 𝜕
𝛽
𝑡 𝑢(𝑥, 𝑡) = 𝐿𝑢(𝑥, 𝑡); 𝑢(𝑥, 0) = 𝑓 (𝑥) on a regular bounded domain Ω in 𝑑-dimensional Euclidean space, where 𝜕

𝛽
𝑡

is the Caputo fractional derivative of order 0 < 𝛽 < 1 [37,43], and 𝐿 is the semigroup generator of some Markov process on ℝ
𝑑

[2,13,47]. In particular, we allow the operator 𝐿 to be nonlocal in space. This includes the cases where 𝐿 is a space-fractional

derivative in one dimension [10], a tempered fractional derivative [6], the fractional Laplacian in 𝑑 ≥ 1 dimensions [15], or a

multiscaling fractional derivative in 𝑑 > 1 dimensions [55]. One important outcome of this research is to describe the appropriate

version of these nonlocal operators on a bounded domain.

Our method of proof uses a fundamental result [3, Theorem 3.1] from the theory of semigroups, along with some ideas

from the theory of Markov processes. This probabilistic method also establishes stochastic solutions for these equations, i.e., we

describe a stochastic process whose probability density functions solve the time-fractional and space-nonlocal diffusion problem

on the bounded domain. This extends the recent work of Chen et al. [16] where 𝐿 is the (nonlocal) fractional Laplacian, and
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Meerschaert et al. [42] where 𝐿 is a (local) diffusion operator. However, since we do not assume that 𝐿 is self-adjoint in this

paper, standard spectral theory does not apply, and hence our approach is quite different.

2 THE GENERATOR OF A KILLED FELLER PROCESS

We denote by 𝐶0
(
ℝ
𝑑
)

the Banach space of continuous functions 𝑓 ∶ ℝ
𝑑 → ℝ vanishing at infinity and endowed with the

supremum norm ‖𝑓‖ ∶= sup
{|𝑓 (𝑥)| ∶ 𝑥 ∈ ℝ

𝑑
}

. Let 𝑋 ∶= {𝑋𝑡}𝑡≥0 be a Feller process on ℝ
𝑑 . That is, for any 𝑥 ∈ ℝ

𝑑 , we

assume that the linear operators defined by 𝑃𝑡𝑓 (𝑥) ∶= 𝔼
𝑥[𝑓 (𝑋𝑡)] for all 𝑡 ≥ 0 form a strongly continuous, contraction semigroup

on 𝐶0
(
ℝ
𝑑
)
, such that 𝑃𝑡𝑓 ∈ 𝐶0

(
ℝ
𝑑
)

for all 𝑓 ∈ 𝐶0
(
ℝ
𝑑
)
. By strongly continuous we mean that ‖𝑃𝑡𝑓 − 𝑓‖ → 0 as 𝑡 ↘ 0 for all

𝑓 ∈ 𝐶0
(
ℝ
𝑑
)
, and by contraction we mean that ‖𝑓‖ ≤ 1 implies ‖𝑃𝑡𝑓‖ ≤ 1 for all 𝑓 ∈ 𝐶0

(
ℝ
𝑑
)
. Then the infinitesimal generator

of 𝑋 is defined by

𝐿𝑓 ∶= lim
𝑡↘0

𝑃𝑡𝑓 − 𝑓

𝑡
in 𝐶0

(
ℝ
𝑑
)
. (2.1)

We denote by (𝐿) the domain of 𝐿 in 𝐶0
(
ℝ
𝑑
)
. Since 𝑓 is a function of 𝑥 ∈ ℝ

𝑑 , we can also write the pointwise formula

𝐿♯𝑓 (𝑥) ∶= lim
𝑡↘0

𝔼
𝑥[𝑓 (𝑋𝑡)] − 𝑓 (𝑥)

𝑡
in ℝ

𝑑 . (2.2)

Since convergence in 𝐶0
(
ℝ
𝑑
)

implies pointwise convergence in ℝ
𝑑 , we have 𝐿𝑓 (𝑥) = 𝐿♯𝑓 (𝑥) for all 𝑓 ∈ (𝐿) and 𝑥 ∈ ℝ

𝑑 .

Conversely, an application of the Maximum Principle [13, Lemma 1.28] shows that, for any Feller semigroup, if (2.2) holds for

each 𝑥 ∈ ℝ
𝑑 , and if the limit 𝐿♯𝑓 ∈ 𝐶0

(
ℝ
𝑑
)
, then (2.1) also holds [13, Theorem 1.33].

This leads to an explicit pointwise formula for the generator: Let 𝐶𝑘
0

(
ℝ
𝑑
)

denote the set of 𝑓 ∈ 𝐶0
(
ℝ
𝑑
)

whose derivatives up

to order 𝑘 also belong to 𝐶0
(
ℝ
𝑑
)
, and write 𝐶∞

𝑐

(
ℝ
𝑑
)

for the functions in 𝐶∞
0

(
ℝ
𝑑
)

that vanish off a compact set. If 𝐶∞
𝑐

(
ℝ
𝑑
)
⊂

(𝐿), then [13, Theorem 2.37] shows that for any 𝑓 ∈ 𝐶2
0

(
ℝ
𝑑
)

we have 𝐿𝑓 (𝑥) = 𝐿♯𝑓 (𝑥) = 𝐿𝑝𝑓 (𝑥) for every 𝑥 ∈ ℝ
𝑑 , where

the pseudodifferential operator 𝐿𝑝 is given by

𝐿𝑝𝑓 (𝑥) ∶= −𝑐(𝑥)𝑓 (𝑥) + 𝑙(𝑥) ⋅ ∇𝑓 (𝑥) + ∇ ⋅𝑄(𝑥)∇𝑓 (𝑥)

+∫
ℝ𝑑⧵{0}

(
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − ∇𝑓 (𝑥) ⋅ 𝑦𝐼𝐵1 (𝑦)

)
𝑁(𝑥, 𝑑𝑦) (2.3)

for some 𝑐(𝑥) ≥ 0, 𝑙(𝑥) ∈ ℝ
𝑑 , 𝑄(𝑥) ∈ ℝ

𝑑×𝑑 symmetric and positive definite, 𝑁(𝑥, ⋅) a positive measure satisfying

∫
ℝ𝑑⧵{0}

min
(|𝑦|2, 1)𝑁(𝑥, 𝑑𝑦) < ∞, and 𝐵1 the unit ball. The goal of this section is to apply this same procedure to killed Feller

processes on a bounded domain.

Remark 2.1. In applications, there are no generally useful sufficient conditions that guarantee 𝐶∞
𝑐

(
ℝ
𝑑
)
⊂ (𝐿), so one has to

check this on a case-by-case basis, see for example [13, Chapter 3]. In the special case of a Lévy process 𝑋𝑡, where 𝑐 = 0 and

𝑙, 𝑄,𝑁 do not depend on 𝑥 ∈ ℝ
𝑑 , it follows from Sato [52, Theorem 31.5] that 𝐶∞

𝑐

(
ℝ
𝑑
)
⊂ 𝐶2

0

(
ℝ
𝑑
)
⊂ (𝐿). Hence we always

have 𝐿𝑓 (𝑥) = 𝐿♯𝑓 (𝑥) = 𝐿𝑝𝑓 (𝑥) for all 𝑓 ∈ 𝐶2
0

(
ℝ
𝑑
)

and all 𝑥 ∈ ℝ
𝑑 in this case.

From now on we let Ω ⊂ ℝ
𝑑 be a bounded domain (connected open set) and let𝐶0(Ω) denote the set of continuous real-valued

functions on Ω that tend to zero as 𝑥 ∈ Ω approaches the boundary. Then 𝐶0(Ω) is a Banach space with the supremum norm, as

it can be identified with the closed subspace of 𝐶0
(
ℝ
𝑑
)

consisting of zero extensions of functions in 𝐶0(Ω). For a Feller process

𝑋𝑡 on ℝ
𝑑 we define the first exit time from Ω for 𝑋𝑡 by

𝜏Ω = inf
{
𝑡 > 0 ∶ 𝑋𝑡 ∉ Ω

}
. (2.4)

Let 𝑋Ω
𝑡 denote the killed process on Ω, i.e.,

𝑋Ω
𝑡 =

{
𝑋𝑡, 𝑡 < 𝜏Ω,

𝜕, 𝑡 ≥ 𝜏Ω, (2.5)

where 𝜕 denotes a cemetery point. We naturally extend any 𝑓 ∈ 𝐶0(Ω) to Ω ∪ {𝜕} by setting 𝑓 (𝜕) = 0. A boundary point 𝑥 of Ω

is said to be regular for Ω if ℙ𝑥(𝜏Ω = 0) = 1. We say that Ω is regular if every boundary point of Ω is regular for Ω. We say that
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a Markov process 𝑋𝑡 on ℝ
𝑑 or its semigroup 𝑃𝑡𝑓 (𝑥) = 𝔼𝑥[𝑓 (𝑋𝑡)] is strong Feller if for any bounded measurable real-valued

function 𝑓 with compact support on ℝ
𝑑 , 𝑃𝑡𝑓 (𝑥) is bounded and continuous on ℝ

𝑑 . We say that a Feller process (resp, semigroup)

is doubly Feller if it also has the strong Feller property (e.g., see [53]).

Lemma 2.2. Suppose that 𝑋𝑡 is a doubly Feller process on ℝ
𝑑 and that Ω is regular. Then

𝑃Ω
𝑡 𝑓 (𝑥) ∶= 𝔼

𝑥
[
𝑓
(
𝑋Ω
𝑡

)]
, 𝑥 ∈ Ω, 𝑡 ≥ 0, (2.6)

defines a Feller semigroup on 𝐶0(Ω).

Proof. Since 𝑋𝑡 is doubly Feller and Ω is regular, the theorem on page 68 of Chung [19] implies that 𝑋Ω
𝑡 is also doubly Feller.

In particular, we have that 𝑃Ω
𝑡 is a Feller semigroup on 𝐶0(Ω). □

We will say that an open set 𝑈 is compactly contained in Ω, and write 𝑈 ⊂⊂ Ω, if 𝑈̄ , the closure of 𝑈 , defined as the

intersection of all closed sets containing𝑈 , satisfies 𝑈̄ ⊂ Ω. Since Ω is bounded, 𝑈̄ is compact for any𝑈 ⊂⊂ Ω. If 𝑓𝑛(𝑥) → 𝑓 (𝑥)

for all 𝑥 ∈ Ω, and uniformly on 𝑥 ∈ 𝑈 for any 𝑈 ⊂⊂ Ω, we say that 𝑓𝑛 → 𝑓 uniformly on compacta in Ω. If 𝑃Ω
𝑡 is a Feller

semigroup on 𝐶0(Ω), then it has a generator

𝐿Ω𝑓 ∶= lim
𝑡↘0

𝑃Ω
𝑡 𝑓 − 𝑓

𝑡
in 𝐶0(Ω), (2.7)

with domain (𝐿Ω) ⊂ 𝐶0(Ω). The next result shows that this generator 𝐿Ω can be computed using the pointwise formula (2.2)

for the original Feller generator on 𝐶0
(
ℝ
𝑑
)
. Given a function 𝑓 ∈ 𝐶0(Ω), we apply the formula (2.2) to the zero extension of

𝑓 , i.e., we set 𝑓 (𝑥) = 0 for all 𝑥 ∉ Ω, to get an element of 𝐶0
(
ℝ
𝑑
)
. Then we will write 𝐿♯𝑓 ∈ 𝐶0(Ω) to mean that the function

defined by (2.2) exists for all 𝑥 ∈ Ω, is continuous on Ω, and tends to zero as 𝑥 ∈ Ω approaches the boundary. This does not

require the limit in (2.2) to exist for any 𝑥 ∉ Ω.

Theorem 2.3. Assume that𝑋𝑡 is a doubly Feller process on ℝ
𝑑 with 𝐶∞

𝑐

(
ℝ
𝑑
)

contained in the domain of its generator, and let

Ω ⊂ ℝ
𝑑 be a regular bounded domain. Then the domain of the killed generator (2.7) is given by

(𝐿Ω) =
{
𝑓 ∈ 𝐶0(Ω) ∶ 𝐿

♯𝑓 ∈ 𝐶0(Ω)
}
. (2.8)

Also 𝐿Ω𝑓 (𝑥) = 𝐿
♯𝑓 (𝑥) for all 𝑥 ∈ Ω, and (2.2) holds uniformly on compacta in Ω.

Proof. Since𝑋𝑡 is a doubly Feller, it follows from Lemma 2.2 that𝑋Ω
𝑡 is a Feller process, whose semigroup (2.6) has a generator

(2.7) on 𝐶0(Ω). Let 𝑓 ∈ (𝐿Ω). Then there exists 𝑔 ∈ 𝐶0(Ω) such that

𝑔(𝑥) = lim
𝑡→0

𝑃Ω
𝑡 𝑓 (𝑥) − 𝑓 (𝑥)

𝑡

for all 𝑥 ∈ Ω. Set 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω, and recall that 𝑓 (𝜕) = 0. We have

𝑃Ω
𝑡 𝑓 (𝑥) − 𝑃𝑡𝑓 (𝑥)

= 𝔼
𝑥𝑓

(
𝑋Ω
𝑡

)
− 𝔼

𝑥𝑓 (𝑋𝑡)

= 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝑡

)
𝐼
{
𝜏Ω > 𝑡

}]
+ 𝔼

𝑥
[
𝑓
(
𝑋Ω
𝑡

)
𝐼
{
𝜏Ω ≤ 𝑡}] − 𝔼

𝑥[𝑓 (𝑋𝑡)𝐼{𝜏Ω > 𝑡}] − 𝔼
𝑥[𝑓 (𝑋𝑡)𝐼{𝜏Ω ≤ 𝑡}] (2.9)

= −𝔼𝑥[𝑓 (𝑋𝑡)𝐼{𝜏Ω ≤ 𝑡}].
Indeed, the first and third terms cancel because 𝑋Ω

𝑡 = 𝑋𝑡 for 𝑡 < 𝜏Ω, and the second term vanishes because 𝑋Ω
𝑡 = 𝜕 for 𝑡 ≥ 𝜏Ω.

Furthermore, since 𝑋𝑡 has a.s. right-continuous sample paths, we have 𝑓 (𝑋𝜏Ω ) = 0 a.s. Therefore

𝑃Ω
𝑡 𝑓 (𝑥) − 𝑓 (𝑥)

𝑡
−
𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)

𝑡
=

𝔼
𝑥
[(
𝑓
(
𝑋𝜏Ω

)
− 𝑓 (𝑋𝑡)

)
𝐼{𝜏Ω ≤ 𝑡}]

𝑡
. (2.10)

By the Strong Markov Property [31, Proposition 7.9] we have

𝔼
𝑥[𝑓 (𝑋𝑡)𝐼{𝜏Ω ≤ 𝑡}] = 𝔼

𝑥
[
𝑃𝑡−𝜏Ω𝑓

(
𝑋𝜏Ω

)
𝐼{𝜏Ω ≤ 𝑡}], (2.11)
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since 𝐼{𝜏Ω ≤ 𝑡} is measurable with respect to 𝜏Ω . Recall that 𝑃𝑡𝑓 → 𝑓 in the sup norm as 𝑡 → 0. Hence for any 𝜀 > 0, for some

𝛿 > 0 we have |𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)| < 𝜀 for all 0 < 𝑡 < 𝛿 and all 𝑥 ∈ ℝ
𝑑 . Note that for 0 < 𝑡 < 𝛿, if 𝜏Ω ≤ 𝑡, then 0 < 𝑡 − 𝜏Ω < 𝛿 as

well, and otherwise 𝐼{𝜏Ω ≤ 𝑡} = 0. Then using (2.11), it follows that in (2.10) we have

||||𝔼
𝑥
[(
𝑓
(
𝑋𝜏Ω

)
− 𝑓 (𝑋𝑡)

)
𝐼{𝜏Ω ≤ 𝑡}]|||| =

||||𝔼
𝑥
[(
𝑓
(
𝑋𝜏Ω

)
− 𝑃𝑡−𝜏Ω𝑓 (𝑋𝜏Ω )

)
𝐼{𝜏Ω ≤ 𝑡}]||||

≤ 𝜀ℙ𝑥[𝜏Ω ≤ 𝑡] (2.12)

for 0 < 𝑡 < 𝛿. Given 𝑈 ⊂⊂ Ω, choose 𝑟 > 0 so that 𝐵(𝑥, 𝑟) ∶=
{
𝑦 ∈ ℝ

𝑑 ∶ |𝑥 − 𝑦| < 𝑟} ⊂ Ω for all 𝑥 ∈ 𝑈 . Let 𝜏𝑥𝑟 ∶=

inf
{
𝑡 ≥ 0 ∶ |𝑋𝑡 − 𝑥| ≥ 𝑟} for the process started at 𝑋0 = 𝑥 ∈ 𝑈 . Then ℙ

𝑥[𝜏Ω ≤ 𝑡] ≤ ℙ
𝑥[𝜏𝑥𝑟 ≤ 𝑡], and by [13, Theorem 5.1

and Proposition 2.27(d)] there exists some𝑀 > 0 such that

ℙ
𝑥[𝜏𝑥𝑟 ≤ 𝑡]
𝑡

< 𝑀, for all 𝑥 ∈ 𝑈 and 𝑡 > 0. (2.13)

Then

|||𝑃Ω
𝑡 𝑓 (𝑥) − 𝑃𝑡𝑓 (𝑥)

|||
𝑡

≤ 𝜀ℙ
𝑥[𝜏𝑥𝑟 ≤ 𝑡]
𝑡

< 𝜀𝑀

for all 𝑥 ∈ 𝑈 and 0 < 𝑡 < 𝛿. Hence we have

𝑃Ω
𝑡 𝑓 (𝑥) − 𝑃𝑡𝑓 (𝑥)

𝑡
→ 0 uniformly on compacta in Ω, (2.14)

as 𝑡 → 0. Therefore any 𝑓 ∈ (𝐿Ω) is also contained in the set on the right-hand side of Equation (2.8), and in addition, (2.14)

holds.

Conversely, suppose 𝑓 ∈ 𝐶0(Ω) and that (𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥))∕𝑡→ 𝑔(𝑥) as 𝑡→ 0 for some 𝑔 ∈ 𝐶0(Ω), for all 𝑥 ∈ Ω. As 𝐿Ω is

the generator of a contraction semigroup on 𝐶0(Ω), its resolvent (𝜆𝐼 − 𝐿Ω)
−1 exists for all 𝜆 > 0, and maps 𝐶0(Ω) onto (𝐿Ω)

[49, Chapter VII, Proposition (1.4)]. Then there exists some ℎ ∈ (𝐿Ω) such that (𝐼 − 𝐿Ω)ℎ = 𝑓 − 𝑔. By (2.14) applied to ℎ,

𝐿Ωℎ(𝑥) − 𝑔(𝑥) = lim
𝑡→0

𝑃𝑡ℎ(𝑥) − ℎ(𝑥) − (𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥))

𝑡
, 𝑥 ∈ Ω.

Hence, for 𝑢 = ℎ − 𝑓 we get

𝑢(𝑥) = lim
𝑡→0

𝑃𝑡𝑢(𝑥) − 𝑢(𝑥)

𝑡
, 𝑥 ∈ Ω.

Without loss of generality let 𝑥0 ∈ Ω be such that ‖𝑢‖ = sup𝑥∈Ω |𝑢(𝑥)| = 𝑢(𝑥0) > 0 (otherwise consider −𝑢). Since 𝑃𝑡 is a

contraction, 𝑃𝑡𝑢(𝑥0) ≤ ‖𝑃𝑡𝑢‖ ≤ ‖𝑢‖ = 𝑢(𝑥0) and therefore

0 ≥ (
𝑃𝑡𝑢(𝑥0) − 𝑢(𝑥0)

)
∕𝑡 → 𝑢(𝑥0) > 0

as 𝑡→ 0, which is a contradiction. Hence sup𝑥∈Ω |𝑢(𝑥)| = 0 and therefore ℎ = 𝑓 . Thus any 𝑓 in the set on the right-hand side

of Equation (2.8) is also an element of (𝐿Ω). □

Remark 2.4. An important consequence of Theorem 2.3 is that 𝐶∞
𝑐 (Ω) is not contained in (𝐿Ω) for a large class of pure-

jump doubly Feller processes, including all the examples in Section 4 of this paper. Let 𝑋𝑡 be a doubly Feller process on

ℝ
𝑑 with 𝐶∞

𝑐

(
ℝ
𝑑
)
⊂ (𝐿), so that 𝐿 is given by (2.3) for 𝑓 ∈ 𝐶2

0

(
ℝ
𝑑
)
. Suppose that the local parts 𝑐, 𝑙, 𝑄 are zero and that

𝑁(𝑥, 𝑑𝑦) = 𝑛(𝑥, 𝑦)𝑑𝑦, where 𝑛(𝑥, 𝑦) is strictly positive for all 𝑥 and 𝑦. Let Ω be regular and choose 𝑓 ∈ 𝐶∞
𝑐 (Ω), 𝑓 ≥ 0 and not

identically zero. Set 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω. Then 𝑓 ∈ 𝐶2
0

(
ℝ
𝑑
)

and for any 𝑥 ∈ 𝜕Ω we have

𝐿♯𝑓 (𝑥) = ∫
ℝ𝑑⧵{0}

𝑓 (𝑥 + 𝑦)𝑛(𝑥, 𝑦) 𝑑𝑦 > 0.

Hence 𝑓 ∉ (𝐿Ω) in view of (2.8).

Next we show that functions in (𝐿Ω) can be characterized as functions in 𝐶0(Ω) that are locally in the domain of 𝐿. This

will be used for explicitly computing the killed generator.
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Theorem 2.5. Assume that𝑋𝑡 is a doubly Feller process on ℝ
𝑑 with 𝐶∞

𝑐

(
ℝ
𝑑
)

contained in the domain of its generator, and let

Ω ⊂ ℝ
𝑑 be a regular bounded domain. Then

(𝐿Ω) =
{
𝑓 ∈ 𝐶0(Ω)∶∃𝑔 ∈ 𝐶0(Ω), (𝑓𝑛) ⊂ (𝐿) such that 𝑓𝑛 → 𝑓 in 𝐶0

(
ℝ
𝑑
)

and 𝐿𝑓𝑛 → 𝑔 unif. on compacta in Ω
}
,

(2.15)

and for 𝑓, 𝑔 as in (2.15) we have 𝐿Ω𝑓 = 𝑔.

Proof. First we show that the limit 𝑔 in (2.15) is unique for any given 𝑓 . Assume that for some 𝑓𝑛 ∈ (𝐿) we have 𝑓𝑛 → 0

uniformly on ℝ
𝑑 and 𝐿𝑓𝑛(𝑥) → 𝑔(𝑥) for all 𝑥 ∈ Ω, uniformly on compacta in Ω. We claim that 𝑔(𝑥) = 0 for all 𝑥 ∈ Ω. Assume

𝑔(𝑥) > 𝛿 for all 𝑥 ∈ 𝐵(𝑥0; 𝑟) ⊂ Ω for some 𝑥0 ∈ Ω and 𝛿, 𝑟 > 0. Choose ℎ ∈ 𝐶∞
𝑐 such that ℎ(𝑥0) > 0 is the only local maximum.

Let 𝜖 > 0 be small enough that 𝑈 = {𝑥 ∶ ℎ(𝑥0) − ℎ(𝑥) < 𝜖} ⊂ 𝐵(𝑥0, 𝑟) and let 𝑦 = sup𝑥∈Ω |𝐿ℎ(𝑥)|. Consider

ℎ𝑛 = ℎ + 4
𝑦

𝛿
𝑓𝑛.

Let 𝑛 be large enough such that |4 𝑦
𝛿
𝑓𝑛(𝑥)| < 𝜖∕2 for all 𝑥 ∈ Ω and 𝐿𝑓𝑛(𝑥) > 𝛿∕2 for all 𝑥 ∈ 𝑈 . Then

4
𝑦

𝛿
𝐿𝑓𝑛(𝑥) > 4

𝑦

𝛿

𝛿

2
= 2𝑦 for all 𝑥 ∈ Ω,

and since 𝐿ℎ(𝑥) ≤ 𝑦 for all 𝑥 ∈ Ω, it follows that 𝐿ℎ𝑛(𝑥) > 𝑦 for all 𝑥 ∈ Ω. For all 𝑥 ∉ 𝑈 we have ℎ(𝑥) ≤ ℎ(𝑥0) − 𝜀, and hence

ℎ𝑛(𝑥) ≤ ℎ(𝑥0) − 𝜀∕2 for all 𝑥 ∉ 𝑈 . Since ℎ𝑛(𝑥0) > ℎ(𝑥0) − 𝜀∕2, it follows that ℎ𝑛 attains its maximum at some point 𝑥𝑛 ∈ 𝑈 .

Then the positive maximum principle [31, Theorem 17.11 (iii)] implies that 𝐿ℎ𝑛(𝑥𝑛) ≤ 0, and this contradicts the fact that

𝐿ℎ𝑛(𝑥) > 0 for all 𝑥 ∈ Ω. Hence 𝑔 ≤ 0. Considering the sequence −𝑓𝑛, we obtain that −𝑔 ≤ 0 and hence 𝑔 = 0. Given two

sequences 𝑓𝑛 and 𝑓 ′𝑛 in (𝐿) that both converge to 𝑓 in 𝐶0
(
ℝ
𝑑
)
, and such that 𝐿𝑓𝑛 → 𝑔 and 𝐿𝑓 ′𝑛 → 𝑔

′ in 𝐶0
(
ℝ
𝑑
)
, it follows

that 𝑓𝑛 − 𝑓
′
𝑛 → 0 in 𝐶0

(
ℝ
𝑑
)
, and hence 𝐿(𝑓𝑛 − 𝑓

′
𝑛) → 𝑔 − 𝑔

′ = 0, which proves uniqueness.

Next we show that functions 𝑓 ∈ (𝐿Ω) can be approximated locally in the graph norm by functions in the domain of 𝐿,

namely by the functions

𝑓𝜆 = (𝜆 − 𝐿)−1𝜆𝑓 .

As 𝑃𝑡𝑓 is continuous in 𝑡 and ‖𝑃𝑡𝑓‖ ≤ ‖𝑓‖, it is not hard to check that 𝑓𝜆 = 𝜆 ∫ ∞

0
𝑒−𝜆𝑡𝑃𝑡𝑓 𝑑𝑡 and

lim
𝜆→∞
𝑓𝜆 = 𝑃0𝑓 = 𝑓

in 𝐶0
(
ℝ
𝑑
)
. Furthermore, 𝑓𝜆 ∈ (𝐿) and by definition,

𝐿𝑓𝜆 = 𝜆𝑓𝜆 − 𝜆𝑓 .

Theorem 2.3 implies that
𝑃𝑡𝑓 (𝑥)−𝑓 (𝑥)

𝑡
→ 𝐿Ω𝑓 (𝑥) uniformly in 𝑥 ∈ 𝑈 ⊂⊂ Ω, and then it is not hard to check that, using a substi-

tution 𝑢 = 𝜆𝑡,

lim
𝜆→∞
𝐿𝑓𝜆(𝑥) = lim

𝜆→∞
𝜆2 ∫

∞

0

𝑒−𝜆𝑡𝑃𝑡𝑓 (𝑥) 𝑑𝑡 − 𝜆𝑓 (𝑥)

= lim
𝜆→∞
𝜆2 ∫

∞

0

𝑒−𝜆𝑡(𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)) 𝑑𝑡

= lim
𝜆→∞
𝜆2 ∫

∞

0

𝑡𝑒−𝜆𝑡
𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)

𝑡
𝑑𝑡

= lim
𝜆→∞∫

∞

0

𝑢𝑒−𝑢
𝑃(𝑢∕𝜆)𝑓 (𝑥) − 𝑓 (𝑥)

(𝑢∕𝜆)
𝑑𝑢

= 𝐿Ω𝑓 (𝑥) (2.16)

uniformly in 𝑥 ∈ 𝑈 . Hence (𝐿Ω) is contained in the set on the right-hand side of (2.15).
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To prove the reverse set inclusion, suppose that 𝑓 ∈ 𝐶0(Ω) and for some 𝑓𝑛 ∈ (𝐿) we have 𝑓𝑛 → 𝑓 in 𝐶0
(
ℝ
𝑑
)

and

𝐿𝑓𝑛(𝑥)→ 𝑔(𝑥) uniformly in 𝑥 ∈ 𝑈 ⊂⊂ Ω for some 𝑔 ∈ 𝐶0(Ω). Let ℎ = (𝐼 − 𝐿Ω)
−1(𝑓 − 𝑔) so that

ℎ − 𝑓 = 𝐿Ωℎ − 𝑔.

Since the resolvent maps 𝐶0(Ω) onto (𝐿Ω), the function ℎ lies in the set on the right-hand side of (2.15) by what we have

already proven. Hence there exist ℎ𝑛 ∈ (𝐿) such that ℎ𝑛 → ℎ in 𝐶0
(
ℝ
𝑑
)

and 𝐿ℎ𝑛(𝑥) → 𝐿Ωℎ(𝑥) for all 𝑥 ∈ Ω, uniformly on

compacta. Let 𝑢 = ℎ − 𝑓 and assume (without loss of generality) that 𝑢(𝑥0) = ‖𝑢‖ > 𝜖 for some 𝜖 > 0. Let 𝑢𝑛 = ℎ𝑛 − 𝑓𝑛 so that

𝐿𝑢𝑛(𝑥) → 𝐿Ωℎ(𝑥) − 𝑔(𝑥) = 𝑢(𝑥) uniformly in 𝑥 ∈ 𝑈 ⊂⊂ Ω. However, as 𝑢𝑛 converges uniformly to 𝑢 there exists 𝑁 > 0 and

𝑈 ⊂⊂ Ω such that {𝑥𝑛 ∶ 𝑢𝑛(𝑥𝑛) = ‖𝑢𝑛‖} ⊂ 𝑈 for all 𝑛 > 𝑁 . As 𝑢𝑛(𝑥𝑛) > 𝜖∕2 for large 𝑛 and 𝐿𝑢𝑛(𝑥𝑛) ≤ 0 by the maximum

principle [31, Theorem 17.11 (iii)], 𝑢𝑛(𝑥) − 𝐿𝑢𝑛(𝑥) cannot converge uniformly on 𝑈 to 0. This is a contradiction, and hence

𝑢 ≡ 0. Then ℎ = 𝑓 ∈ (𝐿Ω), which completes the proof. □

Even if 𝑓 ∉ 𝐶2
0

(
ℝ
𝑑
)
, the pointwise limit (2.2) might still exist for some 𝑥 ∈ ℝ

𝑑 . The next result shows that we still have

𝐿♯𝑓 (𝑥) = 𝐿𝑝𝑓 (𝑥) for functions that are locally twice differentiable.

Lemma 2.6. Assume that𝑋𝑡 is a Feller process on ℝ
𝑑 with 𝐶∞

𝑐

(
ℝ
𝑑
)

contained in the domain of its generator. Let 𝑓 ∈ 𝐶0
(
ℝ
𝑑
)

with 𝑓 twice continuously differentiable in an open neighborhood 𝑈 of 𝑥. Then 𝐿♯𝑓 (𝑥) = 𝐿𝑝𝑓 (𝑥), where 𝐿𝑝 is given by (2.3).

Proof. Let 𝑟 be such that 𝐵(𝑥, 2𝑟) ⊂ 𝑈 and pick 𝑓𝑛 ∈ 𝐶
2
0

(
ℝ
𝑑
)

with the property that 𝑓𝑛 → 𝑓 uniformly and 𝑓𝑛(𝑦) = 𝑓 (𝑦) for

all 𝑦 ∈ 𝐵(𝑥, 𝑟). Then

|||𝐿
♯𝑓 (𝑥) − 𝐿𝑝𝑓 (𝑥)

||| =
|||𝐿
♯𝑓 (𝑥) − 𝐿𝑓𝑛(𝑥) + 𝐿𝑓𝑛(𝑥) − 𝐿

𝑝𝑓 (𝑥)
|||

=
|||||
lim
𝑡↘0

𝔼
𝑥[𝑓 (𝑋𝑡) − 𝑓𝑛(𝑋𝑡)]

𝑡
+ ∫

ℝ𝑑⧵{0}

(
𝑓 (𝑥 + 𝑦) − 𝑓𝑛(𝑥 + 𝑦)

)
𝑁(𝑥, 𝑑𝑦)

|||||

≤ lim
𝑡↘0

ℙ
𝑥{𝜏𝑥𝑟 < 𝑡}

𝑡
‖𝑓 − 𝑓𝑛‖ +

|||||∫|𝑦|>𝑟
(
𝑓 (𝑥 + 𝑦) − 𝑓𝑛(𝑥 + 𝑦)

)
𝑁(𝑥, 𝑑𝑦)

|||||
≤𝑀𝑟‖𝑓 − 𝑓𝑛‖ → 0, (2.17)

where𝑀𝑟 = 𝐶𝑟 +𝑁𝑟 with 𝐶𝑟 as in [13, Theorem 5.1] given by

ℙ
𝑥
{
𝜏𝑥𝑟 < 𝑡

} ≤ 𝑡𝐶𝑟
and𝑁𝑟 = 𝐶∕𝑟

2 with 𝐶 given as in [13, Theorem 2.31b] by

∫
ℝ𝑑⧵{0}

min
(|𝑦|2, 1)𝑁(𝑥, 𝑑𝑦) < 𝐶.

This concludes the proof. □

The following theorem is the main result of this section. It shows that we can evaluate the generator 𝐿Ω𝑓 (𝑥) of the

killed Markov process pointwise for 𝑥 ∈ Ω using the explicit formula (2.3) for 𝐿𝑓 (𝑥). In what follows, for a function

𝑓 ∈𝐶0(Ω) ∩𝐶
2(Ω) we mean by 𝐿𝑝𝑓 the operator (2.3) applied to the zero extension of 𝑓 .

Theorem 2.7. Assume that 𝑋𝑡 is a doubly Feller process on ℝ
𝑑 , and let Ω ⊂ ℝ

𝑑 be a regular bounded domain. Suppose that

𝐶2
0

(
ℝ
𝑑
)

is a core for 𝐿, so that 𝐿𝑓 (𝑥) = 𝐿♯𝑓 (𝑥) = 𝐿𝑝𝑓 (𝑥) for every 𝑥 ∈ ℝ
𝑑 and 𝑓 ∈ 𝐶2

0

(
ℝ
𝑑
)
. Then:

(1) for every 𝑓 ∈ (𝐿Ω) there exists 𝑓𝑛 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) such that 𝑓𝑛 → 𝑓 uniformly and 𝐿𝑝𝑓𝑛 converges uniformly on com-

pact subsets of Ω to 𝐿Ω𝑓 ;

(2) if 𝑓𝑛 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) is such that 𝑓𝑛 → 𝑓 ∈ 𝐶0(Ω) uniformly and 𝐿𝑝𝑓𝑛 → 𝑔 ∈ 𝐶0(Ω) converges uniformly on compact

subsets of Ω, then 𝑓 ∈ (𝐿Ω) and 𝐿Ω𝑓 = 𝑔.

In particular, if 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) and 𝐿𝑝𝑓 ∈ 𝐶0(Ω), then 𝑓 ∈ (𝐿Ω) and 𝐿Ω𝑓 (𝑥) = 𝐿

𝑝𝑓 (𝑥) is given by (2.3) for every

𝑥 ∈ Ω.

Proof. Consider a sequence of open sets Ω𝑛 ⊂⊂ Ω𝑛+1 for 𝑛 ≥ 1 with
⋃

Ω𝑛 = Ω. Take 𝜓𝑛 ∈ 𝐶
∞
𝑐

(
ℝ
𝑑
)

with 𝐼Ω𝑛 ≤ 𝜓𝑛 ≤ 𝐼Ω𝑛+1 .
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To prove (1), by Theorem 2.5 and the definition of a core there exists 𝑓∞𝑛 ∈ 𝐶2
0

(
ℝ
𝑑
)

such that 𝑓∞𝑛 → 𝑓 uniformly and

𝐿𝑓∞𝑛 (𝑥) = 𝐿𝑝𝑓∞𝑛 (𝑥) → 𝐿Ω𝑓 (𝑥) uniformly on compact subsets of Ω. To see this, suppose that 𝑓 ∈ (𝐿Ω), and extend 𝑓 to an

element of 𝐶0
(
ℝ
𝑑
)

by setting 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω. Apply Theorem 2.5 to obtain a sequence (𝑓𝑛) ⊂ (𝐿) such that 𝑓𝑛 → 𝑓 in

𝐶0
(
ℝ
𝑑
)
, and 𝐿𝑓𝑛(𝑥) → 𝐿Ω𝑓 (𝑥) uniformly on compacta in Ω. Then for any compact set 𝑈 ⊂ Ω and any integer 𝑘 > 0, for some

𝑛0, we have ‖𝑓𝑛 − 𝑓‖ < 1∕𝑘 for all 𝑛 ≥ 𝑛0, and |𝐿𝑓𝑛(𝑥) − 𝐿Ω𝑓 (𝑥)| < 1∕𝑘 for all 𝑥 ∈ 𝑈 and all 𝑛 ≥ 𝑛0. Since 𝐶2
0

(
ℝ
𝑑
)

is a core,

for each 𝑓𝑛 there exists a sequence 𝑓∞𝑛𝑚 ∈ 𝐶2
0

(
ℝ
𝑑
)

such that ‖𝑓𝑛 − 𝑓∞𝑛𝑚‖ + ‖𝐿𝑓𝑛 − 𝐿𝑓∞𝑛𝑚‖ → 0 as 𝑚 → ∞. Hence for any 𝑛 > 0

there is an 𝑚0 such that ‖𝑓𝑛 − 𝑓∞𝑛𝑚‖ + ‖𝐿𝑓𝑛 − 𝐿𝑓∞𝑛𝑚‖ < 1∕𝑛 for all 𝑚 ≥ 𝑚0. Define 𝑓∞𝑛 = 𝑓∞𝑛𝑚0
. Then for 𝑛 ≥ 𝑛1 ∶= max(𝑛0, 𝑘)

we have for all 𝑛 ≥ 𝑛1 that, by the triangle inequality, ‖𝑓 − 𝑓∞𝑛 ‖ < 2∕𝑘 for all 𝑛 ≥ 𝑛1 and |𝐿Ω𝑓 (𝑥) − 𝐿𝑝𝑓∞𝑛 (𝑥)| < 2∕𝑘 for all

𝑥 ∈ 𝑈 and all 𝑛 ≥ 𝑛1. Let 𝑓𝑛 = 𝜓𝑛𝑓
∞
𝑛 . Then 𝑓𝑛 ∈ 𝐶0(Ω) ∩ 𝐶

2(Ω) and by Lemma 2.6

||𝐿𝑝𝑓𝑛(𝑥) − 𝐿𝑝𝑓∞𝑛 (𝑥)|| =
|||||∫𝑥+𝑦∉Ω𝑛

(
𝑓𝑛(𝑥 + 𝑦) − 𝑓

∞
𝑛 (𝑥 + 𝑦)

)
𝑁(𝑥, 𝑑𝑦)

|||||
.

Let 𝑈 be a compact subset of Ω. Then there exists 𝑛0 such that 𝑈 ⊂ Ω𝑛0 and since the closure of Ω𝑛0 is compact, it is not hard

to check that for any 𝑛 > 𝑛0, there exists some 𝜖 > 0 such that 𝑧 ∉ Ω𝑛 implies that |𝑧 − 𝑥| > 𝜖 for all 𝑥 ∈ Ω𝑛0 .

To see this, write 𝐵(𝑥, 𝑟) = {𝑤 ∶ |𝑤 − 𝑥| < 𝑟} and note that, since Ω̄𝑛0 ⊂ Ω𝑛 open, for each 𝑥 ∈ Ω̄𝑛0 there exists some 𝑟 > 0

such that 𝐵(𝑥, 2𝑟) ⊂ Ω𝑛. The collection of sets
{
𝐵(𝑥, 𝑟) ∶ 𝑥 ∈ Ω̄𝑛0

}
covers the compact set Ω̄𝑛0 , hence there exists a finite sub-

cover 𝐵(𝑥𝑗 , 𝑟𝑗) for 𝑗 = 1,… , 𝐽 such that Ω̄𝑛0 ⊂
⋃𝐽
𝑗=1 𝐵

(
𝑥𝑗 , 𝑟𝑗

)
. For any 𝑥 ∈ Ω̄𝑛0 we have |𝑥 − 𝑥𝑗| < 𝑟𝑗 for some 𝑗 = 1,… , 𝐽

and |𝑥𝑗 − 𝑧|> 2𝑟𝑗 for all 𝑧∉Ω𝑛, so that |𝑥− 𝑧|≥ |𝑥𝑗 − 𝑧|− |𝑥− 𝑥𝑗|> 𝑟𝑗 . Then the claim holds with 𝜀 = min
{
𝑟𝑗 ∶ 1 ≤ 𝑗 ≤ 𝐽}.

By [13, Proposition 2.27 (d)],

∫𝑥+𝑦∉Ω𝑛
||𝑓𝑛(𝑥 + 𝑦) − 𝑓∞𝑛 (𝑥 + 𝑦)||𝑁(𝑥, 𝑑𝑦) ≤ ‖𝑓𝑛 − 𝑓∞𝑛 ‖∫|𝑦|>𝜖 𝑁(𝑥, 𝑑𝑦) → 0

uniformly on 𝑈 , and hence 𝐿𝑝𝑓𝑛 converges uniformly on 𝑈 to 𝐿Ω𝑓 .

To prove (2), let 𝑓∞𝑛 = 𝜓𝑛𝑓𝑛. Then 𝑓∞𝑛 ∈ 𝐶2
0

(
ℝ
𝑑
)

and, with the same argument as above, 𝐿𝑝𝑓∞𝑛 → 𝑔 uniformly on compact

subsets of Ω. By Theorem 2.5, 𝑓 ∈ (𝐿Ω) and 𝐿Ω𝑓 = 𝑔. □

Remark 2.8. In general, we do not know whether 𝐿Ω𝑓 (𝑥) can be computed by the pointwise formula (2.3) for every 𝑓 ∈

(𝐿Ω). However, Theorem 2.7 shows that we can always write 𝐿Ω𝑓 (𝑥) = lim𝑛→∞ 𝐿
𝑝𝑓𝑛(𝑥) for some 𝑓𝑛 ∈ 𝐶0(Ω) ∩ 𝐶

2(Ω), so

that the pointwise formula (2.3) applies to 𝐿𝑝𝑓𝑛(𝑥). Hence 𝐿Ω is the unique closed extension to (𝐿Ω) of the formula (2.3)

on 𝐶0(Ω) ∩ 𝐶
2(Ω), compare [13, Theorem 2.37 (a)]. This is similar to the manner in which the Fourier transform is defined as

an isometry on 𝐿2
(
ℝ
𝑑
)
: the pointwise definition is valid on a dense subset 𝐿1

(
ℝ
𝑑
)
∩ 𝐿2

(
ℝ
𝑑
)
, and the isometry is the unique

continuous extension to 𝐿2
(
ℝ
𝑑
)
.

Remark 2.9. In the case 𝑐 ≡ 0, 𝑙(𝑥) ≡ 𝑙,𝑄(𝑥) ≡ 𝑄, and𝑁(𝑥, 𝑑𝑦) ≡ 𝑁(𝑑𝑦), (2.3) is the generator of a Lévy process on ℝ
𝑑 . Then

Hawkes [26, Lemma 2.1] shows that 𝑋𝑡 is doubly Feller if and only if𝑋𝑡 has a Lebesgue density for each 𝑡 > 0. It follows from

Sato [52, Theorem 31.5] that 𝐶∞
𝑐

(
ℝ
𝑑
)
⊂ 𝐶2

0

(
ℝ
𝑑
)
⊂ (𝐿) in this case. Hence the conditions of Theorem 2.7 are satisfied for

any Lévy process with a density.

Remark 2.10. Note that the equality 𝐿Ω𝑓 = 𝐿𝑝𝑓 for suitable functions 𝑓 is proved in [54, Corollary 3.8] under the assumption

𝐶∞
𝑐 (Ω) ⊆ (𝐿Ω), which do not apply in our case, see Remark 2.4.

Remark 2.11. For Markov processes on ℝ
𝑑 , it is typical to first write a pointwise formula (2.3) for the generator, and then prove

that there exists a Markov process with this generator (e.g., solve the martingale problem). See for example Ethier and Kurtz

[25] or Taira [58]. Our problem is the reverse: Given a Markov process on a bounded domain, we want to compute the generator.

The existence of a Feller process on ℝ
𝑑 with generator (2.3) can be established by several different methods, see Böttcher,

Schilling and Wang [13, Chapter 3] for a nice review. Theorem 2.3 is the analogue of [13, Theorem 1.33] on bounded domains.

In the special case where 𝐿 = −(−Δ)𝛼∕2 is the fractional Laplacian, Chen, Meerschaert, and Nane [16, Lemma 4.1] give the

pointwise formula for the killed generator. Theorem 2.7 extends that result to a more general Feller process. Theorem 9.4.1 in

Taira [58] establishes a pointwise formula similar to (2.3) for Feller processes on Ω̄, assuming that 𝑓 ∈ 𝐶2
(
Ω̄
)
. However, this

is insufficient for our purposes, since (𝐿Ω) typically contains functions that are not 𝐶2 at the boundary, e.g., see Example 4.1.

Imkeller and Pavlyukevich [28,29] use probabilistic arguments to study the first exit time of stable-driven stochastic processes,

and the analogous processes driven by a Lévy process where the tail of the Lévy measure is regularly varying. They compute the

mean and tail bounds of 𝜏Ω, and show that the first exit time for these jump processes is determined by the large jumps. Dybiec,
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Gudowska–Nowak, and Hänggi [24] compute the mean and distribution of 𝜏Ω by solving a fractional boundary value problem

derived from the Fokker–Planck equation of the underlying stable-driven process.

3 FRACTIONAL CAUCHY PROBLEMS

In this section, we recall some results on (fractional) Cauchy problems that will be useful in Section 4. If 𝑋𝑡 is a doubly Feller

process on ℝ
𝑑 and Ω is a regular bounded domain, then Lemma 2.2 implies that the semigroup 𝑃Ω

𝑡 associated with the killed

process, defined by (2.6), is a Feller semigroup on 𝐶0(Ω). The generator 𝐿Ω of this semigroup and its domain (𝐿Ω) are given

in Theorem 2.3. If 𝐶∞
𝑐

(
ℝ
𝑑
)
⊂ (𝐿), then Theorem 2.7 gives an explicit pointwise formula (2.3) for 𝐿Ω, valid for all 𝑥 ∈ Ω and

all 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) with 𝐿𝑝𝑓 ∈ 𝐶0(Ω). Remark 2.8 explains that 𝐿Ω is the unique extension of (2.3) to (𝐿Ω). Since 𝑃Ω

𝑡

is a Feller semigroup, the function 𝑢(𝑡) = 𝑃Ω
𝑡 𝑓 solves the abstract Cauchy problem

𝜕𝑡𝑢(𝑥, 𝑡) = 𝐿Ω𝑢(𝑥, 𝑡), 𝑢(𝑥, 0) = 𝑓 (𝑥) (3.1)

for any 𝑓 ∈ (𝐿Ω), e.g., see [2, Proposition 3.1.9 (h)]. Furthermore 𝑃Ω
𝑡 𝑓 is a mild solution to the Cauchy problem (3.1) for any

𝑓 ∈ 𝐶0(Ω) [2, Proposition 3.1.9 (b)]. That is, 𝑢(𝑥, 𝑡) = 𝑃Ω
𝑡 𝑓 (𝑥) is the unique solution in 𝐶0(Ω) to the corresponding integral

equation

𝑢(𝑡) = 𝑓 + 𝐿Ω ∫
𝑡

0

𝑢(𝑠) 𝑑𝑠 (3.2)

for all 𝑡 ≥ 0.

The function

𝑢(𝑥, 𝑡) = 𝑃Ω
𝑡 𝑓 (𝑥) + ∫

𝑡

0

𝑃Ω
𝑠 𝑔(𝑥, 𝑡 − 𝑠) 𝑑𝑠 (3.3)

is the unique solution to the inhomogeneous Cauchy problem

𝜕𝑡𝑢(𝑥, 𝑡) = 𝐿Ω𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡); 𝑢(𝑥, 0) = 𝑓 (𝑥) (3.4)

for any 𝑔(𝑥, 𝑡) = 𝑔0(𝑥) + ∫ 𝑡
0
𝜕𝑠𝑔(𝑥, 𝑠) 𝑑𝑠 ∈ 𝐶0(Ω) such that 𝜕𝑡𝑔(𝑥, 𝑡) ∈ 𝐿

1
loc

(
ℝ
+, 𝐶0(Ω)

)
[2, Corollary 3.1.17]. The same formula

(3.3) gives the unique mild solution to (3.4) for any 𝑓 ∈ 𝐶0(Ω) and any 𝑔 ∈ 𝐿1([0, 𝑇 ), 𝐶0(Ω)), see [2, Theorem 3.1.16]. That

is, it solves the integral equation

𝑢(𝑡) = 𝑓 + 𝐿Ω ∫
𝑡

0

𝑢(𝑠) 𝑑𝑠 + ∫
𝑡

0

𝑔(𝑠) 𝑑𝑠. (3.5)

In practice, the condition 𝑓 ∈ (𝐿Ω) can be hard to check. In numerical analysis theory, it is therefore common to prove results

like the Lax Equivalence Theorem for mild solutions, which can then be approximated by strong solutions, see for example [30,

Chapter 10].

The positive and negative Riemann–Liouville fractional integrals of a suitable function 𝑓 ∶ ℝ → ℝ are defined by

𝕀
𝛼
[𝐿,𝑥]
𝑓 (𝑥) =

1

Γ(𝛼) ∫
𝑥

𝐿

𝑓 (𝑦)(𝑥 − 𝑦)𝛼−1 𝑑𝑦,

𝕀
𝛼
[𝑥,𝑅]
𝑓 (𝑥) =

1

Γ(𝛼) ∫
𝑅

𝑥

𝑓 (𝑦)(𝑦 − 𝑥)𝛼−1 𝑑𝑦 (3.6)

for any 𝛼 > 0 and any −∞ ≤ 𝐿 < 𝑥 < 𝑅 ≤ ∞, see for example [50, Definition 2.1]. The positive and negative Riemann–

Liouville fractional derivatives are defined by

𝔻
𝛼
[𝐿,𝑥]
𝑓 (𝑥) =

(
𝑑

𝑑𝑥

)𝑛
𝕀
𝑛−𝛼
[𝐿,𝑥]
𝑓 (𝑥) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑥

𝐿

𝑓 (𝑦)(𝑥 − 𝑦)𝑛−𝛼−1𝑑𝑦,

𝔻
𝛼
[𝑥,𝑅]
𝑓 (𝑥) =

(
−
𝑑

𝑑𝑥

)𝑛
𝕀
𝑛−𝛼
[𝑥,𝑅]
𝑓 (𝑥) =

(−1)𝑛

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑅

𝑥

𝑓 (𝑦)(𝑦 − 𝑥)𝑛−𝛼−1𝑑𝑦 (3.7)
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for any non-integer 𝛼 > 0 and any −∞ ≤ 𝐿 < 𝑥 < 𝑅 ≤ ∞, where 𝑛 − 1 < 𝛼 < 𝑛, see for example [50, p. 31]. The positive and

negative Caputo fractional derivatives are defined by

𝜕𝛼
[𝐿,𝑥]
𝑓 (𝑥) = 𝕀

𝑛−𝛼
[𝐿,𝑥]

(
𝑑

𝑑𝑥

)𝑛
𝑓 (𝑥) =

1

Γ(𝑛 − 𝛼) ∫
𝑥

𝐿

𝑓 (𝑛)(𝑦)(𝑥 − 𝑦)𝑛−𝛼−1𝑑𝑦,

𝜕𝛼
[𝑥,𝑅]
𝑓 (𝑥) = 𝕀

𝑛−𝛼
[𝑥,𝑅]

(
−
𝑑

𝑑𝑥

)𝑛
𝑓 (𝑥) =

(−1)𝑛

Γ(𝑛 − 𝛼) ∫
𝑅

𝑥

𝑓 (𝑛)(𝑦)(𝑦 − 𝑥)𝑛−𝛼−1𝑑𝑦, (3.8)

see for example [43, Eq. (2.16)]. If 0 < 𝛽 < 1, then for a function 𝑓 ∶ ℝ
+ → ℝ with Laplace transform

𝑓 (𝑠) ∶= ∫
∞

0

𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 (3.9)

it is not hard to show that 𝜕
𝛽

[0,𝑡]
𝑓 (𝑡) has Laplace transform 𝑠𝛽𝑓 (𝑠) − 𝑠𝛽−1𝑓 (0), extending the well-known formula for integer order

derivatives. Since 𝔻
𝛽

[0,𝑡]
𝑓 (𝑡) has Laplace transform 𝑠𝛽𝑓 (𝑠), and since 𝑠𝛽−1 is the Laplace transform of the function 𝑡−𝛽∕Γ(1 − 𝛽),

it follows by the uniqueness of the Laplace transform that

𝜕
𝛽

[0,𝑡]
𝑓 (𝑡) = 𝔻

𝛽

[0,𝑡]
𝑓 (𝑡) −

𝑡−𝛽

Γ(1 − 𝛽)
𝑓 (0), (3.10)

see [43, p. 39] for more details.

Let 𝑔𝛽(𝑢) denote the probability density function of the standard stable subordinator, with Laplace transform

∫
∞

0

𝑒−𝑠𝑢𝑔𝛽(𝑢) 𝑑𝑢 = 𝑒
−𝑠𝛽 (3.11)

for some 0 < 𝛽 < 1. Suppose that 𝐷𝑡 is a Lévy process such that 𝑔𝛽(𝑢) is the probability density of 𝐷1, and define the inverse

stable subordinator (first passage time)

𝐸𝑡 = inf{𝑢 > 0 ∶ 𝐷𝑢 > 𝑡}. (3.12)

A general result from the theory of semigroups [3, Theorem 3.1] (see also Remark 3.1) implies that the function

𝑣(𝑥, 𝑡) ∶= ∫
∞

0

𝑔𝛽(𝑟)𝑃
Ω
(𝑡∕𝑟)𝛽
𝑓 (𝑥) 𝑑𝑟 (3.13)

is the unique solution to the time-fractional Cauchy problem

𝔻
𝛽
𝑡 𝑣(𝑥, 𝑡) = 𝐿Ω𝑣(𝑥, 𝑡) +

𝑡−𝛽

Γ(1 − 𝛽)
𝑓 (0); 𝑣(𝑥, 0) = 𝑓 (𝑥) (3.14)

for any 𝑓 ∈ (𝐿Ω). Using (3.10), it follows that the same function also solves

𝜕
𝛽
𝑡 𝑣 = 𝐿Ω𝑣; 𝑣(0) = 𝑓 (3.15)

for any 𝑓 ∈ (𝐿Ω). Since

ℎ(𝑤, 𝑡) =
𝑡

𝛽
𝑤−1−1∕𝛽𝑔𝛽

(
𝑡𝑤−1∕𝛽

)
(3.16)

is the probability density function of the inverse stable subordinator 𝐸𝑡 [40, Corollary 3.1], it follows by a simple change of

variables that

𝑣(𝑥, 𝑡) = ∫
∞

0

𝑢(𝑥,𝑤)ℎ(𝑤, 𝑡) 𝑑𝑤 = 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
, (3.17)

where 𝑢(𝑥,𝑤) = 𝑃Ω
𝑤 𝑓 (𝑥).

Remark 3.1. The proof in [3, Theorem 3.1] uses Laplace transforms, and although it is not explicitly stated, this also leads

to a simple proof of uniqueness: If 𝑣(𝑥, 𝑡) solves the fractional Cauchy problem (3.14), then its Laplace transform satisfies
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𝑣̃ =
(
𝑠𝛽 − 𝐿

)−1
𝑠𝛽−1𝑓 . As 𝐿 generates a semigroup,

(
𝑠𝛽 − 𝐿

)−1
is a bounded operator for all 𝑠𝛽 in the right half plane. In

particular
(
𝑠𝛽 − 𝐿

)−1
0 = 0 and hence by the uniqueness of the Laplace transform, we have 𝑣 = 0 for initial data 𝑓 = 0. Then,

given two solutions 𝑣1, 𝑣2 to (3.14), their difference 𝑣 = 𝑣1 − 𝑣2 solves (3.14) with 𝑓 = 0, and hence 𝑣1 = 𝑣2. Therefore, (3.13)

is the unique solution to the fractional Cauchy problem (3.14). The uniqueness of solutions is well known, and was used, for

example, in [5].

Baeumer et al. [4] consider the inhomogeneous fractional Cauchy problem

𝜕
𝛽
𝑡 𝑣(𝑥, 𝑡) = 𝐿Ω𝑣(𝑥, 𝑡) + 𝑟(𝑥, 𝑡); 𝑣(𝑥, 0) = 𝑓 (𝑥) (3.18)

with 0 < 𝛽 < 1. Assuming that 𝑡 → 𝑣(𝑥, 𝑡) is differentiable and 𝑟(𝑥, 0) ≡ 0, they show that (3.18) can also be written in Volterra

integral form

𝑣(𝑥, 𝑡) = 𝐿Ω 𝕀
𝛽

[0,𝑡]
𝑣(𝑥, 𝑡) + 𝑓 (𝑥) + ∫

𝑡

0

𝑅(𝑥, 𝑠) 𝑑𝑠 (3.19)

with 𝑅(𝑥, 𝑡) = 𝜕
1−𝛽
𝑡 𝑟(𝑥, 𝑡) (and then 𝑅(𝑥, 𝑡) = 𝔻

1−𝛽
𝑡 𝑟(𝑥, 𝑡) as well). Note that the forcing function 𝑅(𝑥, 𝑡) has the traditional

meaning, and the units of 𝑥∕𝑡, unlike the function 𝑟(𝑥, 𝑡). Any solution to the integral equation (3.19) will be called a mild

solution to the inhomogeneous fractional Cauchy problem (3.18). Then the inhomogeneous fractional Cauchy problem (3.18)

with 𝑟(𝑥, 0) ≡ 0, and 𝑅(𝑡) ∈ 𝐿1
loc

(
ℝ
+;𝐶0(Ω)

)
has a unique mild solution

𝑣(𝑥, 𝑡) = ∫
∞

0

𝑃Ω
𝑠 𝑓 (𝑥)ℎ(𝑠, 𝑡) 𝑑𝑠 + ∫

𝑡

0 ∫
∞

0

𝑃Ω
𝑢 𝑅(𝑥, 𝑠)ℎ(𝑢, 𝑡 − 𝑠) 𝑑𝑢 𝑑𝑠, (3.20)

where ℎ is given by (3.16), see Baeumer et al. [4, Theorem 1].

4 APPLICATIONS

In many applications, including numerical analysis, it is necessary to consider fractional partial differential equations on a

bounded domain with Dirichlet boundary conditions. However, the theoretical foundations have been lacking. Using the results

of Section 2 on the generator of the killed process, along with the results from Section 3 on fractional Cauchy problems, we

can establish existence and uniqueness of solutions to many fractional partial differential equations on a bounded domain with

Dirichlet boundary conditions. The main technical condition is that the underlying Markov process is doubly Feller (defined just

before Lemma 2.2). In this section, we provide some example applications to illustrate the power of our method.

Example 4.1. This example clarifies that the solution to the Cauchy problem (3.1) on the bounded domain need not solve the

corresponding Cauchy problem 𝜕𝑡𝑢(𝑥, 𝑡) = 𝐿𝑢(𝑥, 𝑡) on 𝐶0
(
ℝ
𝑑
)
. Suppose that 𝑓 ≥ 0 is a smooth function with compact support

in Ω = (0,𝑀) ⊂ ℝ, and that 𝐿 = Δ = 𝜕2𝑥, the generator of a Brownian motion 𝑋𝑡 on ℝ. The Cauchy problem

𝜕𝑡𝑈 (𝑥, 𝑡) = Δ𝑈 (𝑥, 𝑡); 𝑈 (𝑥, 0) = 𝑓 (𝑥) (4.1)

has a unique solution

𝑈 (𝑥, 𝑡) = ∫𝑦∈ℝ𝑑 𝑓 (𝑦)𝑝(𝑥 − 𝑦, 𝑡) 𝑑𝑦

on 𝐶0(ℝ), where 𝑝(𝑥, 𝑡) = (4𝜋𝑡)−1∕2𝑒−𝑥
2∕(4𝑡) is the Gaussian density with mean zero and variance 2𝑡. Then 𝑈 (𝑥, 𝑡) > 0 for all

𝑡 > 0 and all 𝑥 ∈ ℝ, so 𝑈 (𝑥, 𝑡) does not vanish off Ω, and hence is not a solution to (3.1). In this case, the solution to (3.1) can

be written explicitly in the form

𝑢(𝑥, 𝑡) =

∞∑
𝑛=1

𝑓𝑛𝑒
−𝜆𝑛𝑡𝜓𝑛(𝑥)

where 𝜆𝑛 = (𝑛𝜋∕𝑀)2, 𝑛 = 1, 2, 3,… are the eigenvalues and 𝜓𝑛(𝑥) = sin(𝑛𝜋𝑥∕𝑀) are the corresponding eigenfunctions of the

generator 𝐿Ω of the killed semigroup, and 𝑓𝑛 = (2∕𝑀) ∫ 𝜓𝑛(𝑥)𝑓 (𝑥) 𝑑𝑥, see for example [1, Eq. (8) with 𝛼 = 1]. This solution
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belongs to 𝐶0(Ω) ∩ 𝐶
2(Ω) for each 𝑡 ≥ 0, and hence we have𝐿Ω𝑢(𝑥, 𝑡) = Δ𝑢(𝑥, 𝑡) for all 𝑥 ∈ Ω and all 𝑡 > 0. Hence the function

𝑢(𝑥, 𝑡) also solves the differential equation 𝜕𝑡𝑢(𝑥, 𝑡) = Δ𝑢(𝑥, 𝑡), with the same initial condition 𝑢(𝑥, 0) = 𝑓 (𝑥), at every point

(𝑥, 𝑡) ∈ Ω × (0,∞). Let 𝑣(𝑥, 𝑡) ∶= 𝑓𝑛𝑒
−𝜆𝑛𝑡𝜓𝑛(𝑥) for some 𝑛 ∈ ℕ and (𝑥, 𝑡) ∈ Ω × (0,∞), and set 𝑣(𝑥, 𝑡) = 0 for 𝑥 ∉ Ω, so that

𝑣(⋅, 𝑡) ∈ 𝐶0(ℝ) for all 𝑡 > 0. Then 𝜕𝑥𝑣(𝑥, 𝑡) does not exist at 𝑥 = 0 or 𝑥 =𝑀 , and hence 𝑣(⋅, 𝑡) ∉ (𝐿). Furthermore, the zero

extension of 𝑢(𝑥, 𝑡) to ℝ × (0,∞) cannot be twice differentiable in 𝑥 at the boundary points 𝑥 = 0,𝑀 , otherwise 𝑢(𝑥, 𝑡) would

be another solution to (4.1) on 𝐶0(ℝ), which would violate uniqueness. This example shows, in particular, that an element of

(𝐿Ω) need not be extendable to an element of (𝐿).

Example 4.2. Here we compute the generator of a killed stable process 𝑋𝑡 on ℝ with index 1 < 𝛼 < 2 in terms of fractional

derivatives, see Theorem 4.3. Given a suitable function 𝑓 ∶ ℝ → ℝ, the generator form of the positive fractional derivative is

defined by

𝐃
𝛼
(−∞,𝑥]

𝑓 (𝑥) ∶=
𝛼(𝛼 − 1)

Γ(2 − 𝛼)∫
∞

0

[
𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)

]
𝑦−1−𝛼 𝑑𝑦 (4.2)

for 1 < 𝛼 < 2 [43, Eq. (2.18)]. The generator form of the negative fractional derivative is defined by

𝐃
𝛼
[𝑥,∞)
𝑓 (𝑥) ∶=

𝛼(𝛼 − 1)

Γ(2 − 𝛼)∫
∞

0

[
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑦𝑓 ′(𝑥)

]
𝑦−1−𝛼 𝑑𝑦 (4.3)

for 1 < 𝛼 < 2 [43, Eq. (3.33)]. After a change of variables 𝑦 → −𝑦, it is not hard to see that these are special cases of the formula

(2.3). The generator of any 𝛼-stable semigroup on ℝ with index 1 < 𝛼 < 2 can be written as

𝐿𝑓 (𝑥) = −𝑎𝑓 ′(𝑥) + ∫𝑦≠0
[
𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)

]
𝜙(𝑑𝑦) (4.4)

with

𝜙(𝑑𝑦) =

⎧
⎪⎪⎨⎪⎪⎩

𝑏
𝛼(𝛼 − 1)

Γ(2 − 𝛼)
𝑦−𝛼−1𝑑𝑦 for 𝑦 > 0, and

𝑐
𝛼(𝛼 − 1)

Γ(2 − 𝛼)
|𝑦|−𝛼−1𝑑𝑦 for 𝑦 < 0.

(4.5)

and a computation [43, Example 3.24] shows that

𝐿𝑓 (𝑥) = −𝑎𝜕𝑥𝑓 (𝑥) + 𝑏𝐃
𝛼
(−∞,𝑥]

𝑓 (𝑥) + 𝑐𝐃𝛼
[𝑥,∞)
𝑓 (𝑥). (4.6)

The fractional partial differential equation 𝜕𝑡𝑢 = 𝐿𝑢 with generator (4.6) is useful for modeling anomalous diffusion, where a

cloud of particles spreads at a faster rate than the Brownian motion (the special case 𝛼 = 2), see Benson et al. [11].

An important open problem for fractional diffusion modeling is to identify the appropriate governing equation and boundary

conditions on a bounded domain Ω = (𝐿,𝑅), see Defterli et al. [20] for additional discussion. The next result solves this problem

in the case of zero Dirichlet boundary conditions.

Theorem 4.3. Assume that𝑋𝑡 is a stable Lévy process on ℝ
1 with generator (4.4) and Lévy measure (4.5) for some 1 < 𝛼 < 2.

Let Ω = (𝐿,𝑅). Then the killed generator (2.7) is given by 𝐿Ω𝑓 (𝑥) = 𝐿
𝑝𝑓 (𝑥) for all 𝑥 ∈ Ω, for any 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶

2(Ω) such

that 𝐿𝑝𝑓 (𝑥) ∈ 𝐶0(Ω), where

𝐿𝑝𝑓 (𝑥) = −𝑎𝜕𝑥𝑓 (𝑥) + ∫
∞

−∞

[
𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)

]
𝜙(𝑑𝑦)

= −𝑎𝜕𝑥𝑓 (𝑥) + 𝑏𝔻
𝛼
[𝐿,𝑥]
𝑓 (𝑥) + 𝑐𝔻𝛼

[𝑥,𝑅]
𝑓 (𝑥), (4.7)

using the Riemann–Liouville fractional derivatives (3.7). The integral formula in (4.7) is applied to the zero extension of 𝑓 ∈

𝐶0(Ω) ∩ 𝐶
2(Ω), a function 𝑓 ∈ 𝐶0(ℝ) defined by setting 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω.

Proof. In order to apply the results of Section 2, we need to show that Ω is regular. For 𝑥 ∈ ℝ, define the first hitting time of

𝑥 by 𝑇𝑥 = inf
{
𝑡 > 0 ∶ 𝑋𝑡 = 𝑥

}
. Since 1 < 𝛼 < 2, we have ℙ

𝑥(𝑇𝑥 = 0) = 1 for all 𝑥 ∈ ℝ, see for example Sato [52, Example

43.22, p. 325]. This implies that the boundary points 𝐿 and 𝑅 are both regular for Ω. Since 𝑋𝑡 has a smooth density for any
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𝑡 > 0 [38, Theorem 7.2.7], Remark 2.9 shows that Theorem 2.7 applies, and hence the killed generator is given by the formula

(4.4) applied to the zero extension of a function 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω). For any such function, use (4.4) to write

𝐿𝑝𝑓 (𝑥) = −𝑎𝑓 ′(𝑥) + 𝑏𝐼1 + 𝑐𝐼2 (4.8)

where

𝐼1 = ∫
∞

0

[𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)]
𝑦−𝛼−1

Γ(−𝛼)
𝑑𝑦

and

𝐼2 = ∫
0

−∞

[𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)]
|𝑦|−𝛼−1
Γ(−𝛼)

𝑑𝑦.

Write

𝐼1 = ∫
∞

𝑥−𝐿

[
0 − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)

] 𝑦−𝛼−1
Γ(−𝛼)

𝑑𝑦 + ∫
𝑥−𝐿

0

[
𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥)

] 𝑦−𝛼−1
Γ(−𝛼)

𝑑𝑦

and integrate by parts, noting that 𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦𝑓 ′(𝑥) = 𝑂
(
𝑦2
)

as 𝑦 → 0. The remaining boundary terms from the two

integrals cancel, and then a change of variable 𝑦 → 𝑥 − 𝑦 yields

𝐼1 = 𝑓
′(𝑥)

(𝑥 − 𝐿)1−𝛼

Γ(2 − 𝛼)
+ ∫

𝑥

𝐿

[
𝑓 ′(𝑦) − 𝑓 ′(𝑥)

] (𝑥 − 𝑦)−𝛼
Γ(1 − 𝛼)

𝑑𝑦. (4.9)

Write 𝐷 = 𝑑∕𝑑𝑥 and use (3.8) to see that

𝔻
𝛼
[𝐿,𝑥]
𝑓 (𝑥) = 𝐷2

𝕀
2−𝛼
[𝐿,𝑥]
𝑓 (𝑥) = 𝐷

[
𝐷𝕀

1−(𝛼−1)

[𝐿,𝑥]
𝑓 (𝑥)

]
= 𝐷𝔻𝛼−1

[𝐿,𝑥]
𝑓 (𝑥).

The Caputo and Riemann–Liouville fractional derivatives are related by

𝔻
𝛼−1
[𝐿,𝑥]
𝑓 (𝑥) = 𝜕𝛼

[𝐿,𝑥]
𝑓 (𝑥) + 𝑓 (𝐿)

(𝑥 − 𝐿)1−𝛼

Γ(2 − 𝛼)
,

see for example [32, Eq. (2.4.6)]. Since 𝑓 (𝐿) = 0, this implies that

𝔻
𝛼
[𝐿,𝑥]
𝑓 (𝑥) = 𝐷𝜕𝛼−1

[𝐿,𝑥]
𝑓 (𝑥)

=
𝑑

𝑑𝑥

[
∫
𝑥

𝐿

𝑓 ′(𝑦)
(𝑥 − 𝑦)1−𝛼

Γ(2 − 𝛼)
𝑑𝑦

]

=
𝑑

𝑑𝑥

[
∫
𝑥

𝐿

[
𝑓 ′(𝑦) − 𝑓 ′(𝑥)

] (𝑥 − 𝑦)1−𝛼
Γ(2 − 𝛼)

𝑑𝑦

]
+
𝑑

𝑑𝑥

[
𝑓 ′(𝑥)∫

𝑥

𝐿

(𝑥 − 𝑦)1−𝛼

Γ(2 − 𝛼)
𝑑𝑦

]

= ∫
𝑥

𝐿

[
𝑓 ′(𝑦) − 𝑓 ′(𝑥)

] (𝑥 − 𝑦)−𝛼
Γ(1 − 𝛼)

𝑑𝑦 + 𝑓 ′(𝑥)
𝑑

𝑑𝑥∫
𝑥

𝐿

(𝑥 − 𝑦)1−𝛼

Γ(2 − 𝛼)
𝑑𝑦,

which reduces to (4.9). Similarly, 𝐼2 = 𝔻
𝛼
[𝑥,𝑅]
𝑓 (𝑥). □

Now the results stated in Section 3 can be applied. Suppose that𝑋𝑡 is any stable Lévy process with index 1 < 𝛼 < 2, specified

by its generator (4.6). Recall from Remark 2.8 that 𝐿Ω is the unique extension of (4.7). In what follows, we will also denote this

extension by 𝐿Ω𝑓 (𝑥) = −𝑎𝜕𝑥 + 𝑏𝔻
𝛼
[𝐿,𝑥]
𝑓 (𝑥) + 𝑐𝔻𝛼

[𝑥,𝑅]
𝑓 (𝑥). Then the function 𝑢(𝑥, 𝑡) = 𝔼

𝑥[𝑓 (𝑋𝑡)𝐼{𝜏Ω < 𝑡}] for Ω = (𝐿,𝑅) is

the unique solution to the space-fractional Dirichlet problem

𝜕𝑡𝑢(𝑥, 𝑡) = −𝑎𝜕𝑥𝑢(𝑥, 𝑡) + 𝑏𝔻
𝛼
[𝐿,𝑥]
𝑢(𝑥, 𝑡) + 𝑐𝔻𝛼

[𝑥,𝑅]
𝑢(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0

𝑢(𝑥, 0) = 𝑓 (𝑥), for all 𝑥 ∈ Ω; (4.10)

𝑢(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0,
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for any 𝑓 ∈ (𝐿Ω), and the unique mild solution to (4.10) for any 𝑓 ∈ 𝐶0(Ω). If 𝑢1, 𝑢2 are the corresponding solutions to (4.10)

for initial functions 𝑓1, 𝑓2, then ‖𝑢2(𝑡) − 𝑢1(𝑡)‖ =
‖‖‖𝑃Ω
𝑡 (𝑓2 − 𝑓1)

‖‖‖ ≤ ‖𝑓2 − 𝑓1‖ in the supremum norm, so the solution depends

continuously on the initial condition. Hence the Dirichlet problem (4.10) is well posed.

Also, for any 0 < 𝛽 < 1 the function 𝑣(𝑥, 𝑡) = 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
is the unique solution to the space-time fractional Dirichlet

problem

𝜕
𝛽
𝑡 𝑣(𝑥, 𝑡) = −𝑎𝜕𝑥𝑣(𝑥, 𝑡) + 𝑏𝔻

𝛼
[𝑙,𝑥]
𝑣(𝑥, 𝑡) + 𝑐𝔻𝛼

[𝑥,𝑟]
𝑣(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓 (𝑥), for all 𝑥 ∈ Ω;

𝑣(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0, (4.11)

for any 𝑓 ∈ (𝐿Ω), and the unique mild solution to (4.10) for any 𝑓 ∈ 𝐶0(Ω). Note that the process𝑋Ω
𝐸𝑡

is not Markov, and the

family of operators 𝑇𝑡𝑓 (𝑥) = 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
is not a semigroup. Write 𝑣(𝑥, 𝑡) in terms of 𝑢(𝑥, 𝑡) using (3.17), where ℎ is given by

(3.16). Since 𝑤 → ℎ(𝑤, 𝑡) is the probability density function of the nonnegative random variable 𝐸𝑡, we have

‖𝑣(𝑡)‖ = sup
𝑥∈Ω

||||∫
∞

0

𝑃Ω
𝑤 𝑓 (𝑥)ℎ(𝑤, 𝑡) 𝑑𝑤

|||| ≤ ∫
∞

0

‖‖‖𝑃
Ω
𝑤 𝑓

‖‖‖ℎ(𝑤, 𝑡) 𝑑𝑤 ≤ ‖𝑓‖∫
∞

0

ℎ(𝑤, 𝑡) 𝑑𝑤 = ‖𝑓‖ (4.12)

using the fact that
‖‖‖𝑃Ω
𝑡 𝑓

‖‖‖ ≤ ‖𝑓‖ in the supremum norm on 𝐶0(Ω). It follows that the space-time fractional diffusion equation

(4.11) is also well-posed.

Example 4.4. The following is a typical example from numerical analysis, see for example [41,57]. Consider the inhomogeneous

fractional partial differential equation

𝜕𝑡𝑢(𝑥, 𝑡) = 𝑏𝔻
𝛼
[0,𝑥]
𝑢(𝑥, 𝑡) + 𝑐𝔻𝛼

[𝑥,1]
𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡) (4.13)

on a finite domain Ω = (0, 1) with 1 < 𝛼 < 2, positive coefficients 𝑏 ≠ 𝑐, initial condition 𝑢(𝑥, 0) = 0 for all 𝑥 ∈ Ω, Dirichlet

boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 for all 𝑡 ≥ 0, and forcing function

𝑔(𝑥, 𝑡) = 𝑥2(1 − 𝑥)2 − 𝑡

[
Γ(3)

Γ(3 − 𝛼)
𝑔2−𝛼(𝑥) − 2

Γ(4)

Γ(4 − 𝛼)
𝑔3−𝛼(𝑥) +

Γ(5)

Γ(5 − 𝛼)
𝑔4−𝛼(𝑥)

]

where 𝑔𝑝(𝑥) = 𝑎𝑥
𝑝 + 𝑏(1 − 𝑥)𝑝. Using the well-known formulae [43, Example 2.7]

𝔻
𝛼
[𝐿,𝑥]

(𝑥 − 𝐿)𝑝 =
Γ(𝑝 + 1)

Γ(𝑝 + 1 − 𝛼)
(𝑥 − 𝐿)𝑝−𝛼 ,

𝔻
𝛼
[𝑥,𝑅]

(𝑅 − 𝑥)𝑝 =
Γ(𝑝 + 1)

Γ(𝑝 + 1 − 𝛼)
(𝑅 − 𝑥)𝑝−𝛼 (4.14)

for 𝑝 > 𝛼, it is easy to check that the exact solution is 𝑢(𝑥, 𝑡) = 𝑡𝑥2(1 − 𝑥)2. However, up to now, it was not known whether this

solution was well-posed, or even unique, see [20, Section 3] for further details.

Since both 𝑔(𝑥, 𝑡) ∈ 𝐶0(Ω) and 𝜕𝑡𝑔(𝑥, 𝑡) ∈ 𝐶0(Ω) for all 𝑡 ≥ 0, it follows from Example 4.2 and (3.4) that this is the unique

solution to the inhomogeneous Cauchy problem

𝜕𝑡𝑢(𝑥, 𝑡) = 𝑏𝔻
𝛼
[0,𝑥]
𝑢(𝑥, 𝑡) + 𝑐𝔻𝛼

[𝑥,1]
𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 0, for all 𝑥 ∈ Ω; (4.15)

𝑢(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0.

Furthermore, uniqueness and (3.3) imply that 𝑢(𝑥, 𝑡) = ∫ 𝑡
0
𝔼
𝑥
[
𝑔
(
𝑋Ω
𝑡 , 𝑡 − 𝑠

)]
𝑑𝑠. Since the initial function 𝑓 (𝑥) ≡ 0, we certainly

have 𝑃Ω
𝑡 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶

2(Ω) for all 𝑡 ≥ 0. Hence 𝑢(𝑥, 𝑡) is the unique solution to (4.15) in the classical sense, i.e., the generator

can be explicitly computed by the pointwise formulae (3.7) for the Riemann–Liouville fractional derivatives.

Remark 4.5. An important question in the theory of fractional partial differential equations is how to write appropriate boundary

conditions. From the point of view of killed Markov processes, it is natural to impose the condition that 𝑢(𝑥, 𝑡) = 0 for all 𝑥 ∉ Ω

and all 𝑡 ≥ 0. On the other hand, the problem (4.13) only assumes 𝑢(𝑥, 𝑡) = 0 for 𝑥 on the boundary of Ω. However, the problem
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(4.13) as stated is indeed well-posed, because the definition of the Riemann–Liouville fractional derivative (3.7) implicitly

incorporates the zero exterior condition.

Remark 4.6. In some applications, the Caputo fractional derivatives (3.8) in the spatial variable 𝑥 are used instead of the

Riemann–Liouville. For the problem (4.13), these two forms are equivalent, because both 𝑢(𝑥, 𝑡) and 𝜕𝑥𝑢(𝑥, 𝑡) vanish at the

boundary, see for example Podlubny [48, Eq. (2.165)].

Remark 4.7. The generator of an 𝛼-stable Lévy process 𝑋𝑡 on ℝ with index 0 < 𝛼 < 1 can be written in the form

𝐿𝑓 (𝑥) = −𝑎𝑓 ′(𝑥) + ∫𝑦≠0 [𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥)]𝜙(𝑑𝑦) (4.16)

where

𝜙(𝑑𝑦) =

⎧
⎪⎨⎪⎩

𝑏
𝛼

Γ(1 − 𝛼)
𝑦−𝛼−1𝑑𝑦 for 𝑦 > 0, and

𝑐
𝛼

Γ(1 − 𝛼)
|𝑦|−𝛼−1𝑑𝑦 for 𝑦 < 0.

(4.17)

Using the generator form of the positive fractional derivative [43, Eq. (2.15)]

𝐃
𝛼
[−∞,𝑥]

𝑓 (𝑥) ∶=
𝛼

Γ(1 − 𝛼)∫
∞

0

[𝑓 (𝑥) − 𝑓 (𝑥 − 𝑦)] 𝑦−1−𝛼𝑑𝑦 (4.18)

and the negative fractional derivative [43, Eq. (3.31)]

𝐃
𝛼
[𝑥,∞]
𝑓 (𝑥) ∶=

𝛼

Γ(1 − 𝛼)∫
∞

0

[𝑓 (𝑥) − 𝑓 (𝑥 + 𝑦)] 𝑦−1−𝛼𝑑𝑦 (4.19)

for 0 < 𝛼 < 1, we can also write

𝐿𝑓 (𝑥) = −𝑎𝜕𝑥𝑓 (𝑥) − 𝑏𝐃
𝛼
[−∞,𝑥]

𝑓 (𝑥) − 𝑐𝐃𝛼
[𝑥,∞]
𝑓 (𝑥), (4.20)

see [43, Example 3.24] for details. The question whether Ω = (𝐿,𝑅) ⊂ ℝ is regular can be answered in terms of the first passage

time of 𝑋𝑡, which is defined by

𝑇(𝑥,∞) = inf
{
𝑡 > 0 ∶ 𝑋𝑡 > 𝑥

}
, 𝑥 ∈ ℝ.

Since 𝑋𝑡 is continuous in probability, it follows that 𝑅 is regular for Ω if and only if ℙ𝑅
(
𝑇(𝑅,∞) = 0

)
= 1, and the regularity of

𝐿 can be described analogously in terms of 𝑇(−∞,𝐿). It follows using [52, Theorem 47.6] that Ω is regular if and only if 𝑏 > 0,

𝑐 > 0 and 𝑎 = 0. Then an argument similar to Theorem 4.3 shows that the generator of the killed stable Lévy process is given by

𝐿Ω𝑓 (𝑥) = −𝑏𝐃𝛼
[𝐿,𝑥]
𝑓 (𝑥) − 𝑐𝐃𝛼

[𝑥,𝑅]
𝑓 (𝑥) (4.21)

for all 𝑥 ∈ Ω, for any 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) such that the right-hand side of (4.21) belongs to 𝐶0(Ω). It also follows from [52,

Theorem 47.6] that Ω is always regular for 𝑋𝑡 when 𝛼 = 1. One can also compute the generator of the corresponding killed

process on Ω, but the formula is more complicated, because the centering term 𝑓 ′(𝑥)𝑦𝐼𝐵1(𝑦) in (2.3) cannot be simplified.

Remark 4.8. Suppose that 𝑐 = 0 and 1 < 𝛼 < 2 in (4.7). Then Theorem 3.4.4 and Theorem 4.3.3 in the recent PhD thesis of

Sankaranarayanan [51] show that the domain of the killed generator 𝐿Ω for Ω = (0, 1) can be characterized completely as

(𝐿Ω) =
{
𝑓 ∈ 𝐶0(Ω) ∶ 𝑓 = 𝕀

𝛼
[0,𝑥]
𝑔 − 𝑥𝛼−1𝕀𝛼

[0,𝑥]
𝑔(1) ∃ 𝑔 ∈ 𝐶0(Ω)

}
.

The second term 𝑥𝛼−1𝕀𝛼
[0,𝑥]
𝑔(1) ensures that 𝑓 (1) = 0. Then 𝐿Ω𝑓 = 𝑏𝔻𝛼

[0,𝑥]
𝑓 = 𝑏𝑔, since 𝔻

𝛼
[0,𝑥]

𝕀
𝛼
[0,𝑥]
𝑓 = 𝑓 for all 𝑓 ∈ 𝐶0(Ω)

[48, Eq. (2.106)], and

𝐿Ω
[
𝑥𝛼−1

]
= 𝑏𝐷2

𝕀
2−𝛼
[0,𝑥]
𝑥𝛼−1 = 𝑏𝐷2 [Γ(𝛼)𝑥] = 0
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for all 𝑥 ∈ (0, 1), where𝐷 = 𝑑∕𝑑𝑥. Hence the pointwise formula (4.7) for 𝐿Ω𝑓 (𝑥) is valid for all 𝑓 ∈ (𝐿Ω) in this case. Write

any 𝑓 ∈ (𝐿Ω) as 𝑓 = 𝕀
𝛼
[0,𝑥]
𝑔 − 𝑎𝑥𝛼−1, where 𝑎 = 𝕀

𝛼
[0,𝑥]
𝑔(1). Note that 𝐿Ω𝑓 = 𝔻

𝛼
[0,𝑥]
𝑓 = 𝐷𝔻𝛼−1

[0,𝑥]
𝑓 and write 𝔻𝛼−1

[0,𝑥]
𝑓 = 𝐴 + 𝐵,

where

𝐴 = 𝔻
𝛼−1
[0,𝑥]

𝕀
𝛼
[0,𝑥]
𝑔 = 𝐷𝕀2−𝛼

[0,𝑥]
𝕀
𝛼
[0,𝑥]
𝑔 = 𝐷𝕀2

[0,𝑥]
𝑔 = 𝕀[0,𝑥]𝑔 = ∫

𝑥

0

𝑔(𝑦) 𝑑𝑦

tends to zero as 𝑥 → 0, and

𝐵 = 𝔻
𝛼−1
[0,𝑥]

[
𝑎𝑥𝛼−1

]
= 𝐷𝕀2−𝛼

[0,𝑥]

[
𝑎𝑥𝛼−1

]
= 𝐷[𝑏𝑥] = 𝑏,

where 𝑏 = 𝑎Γ(𝛼). Hence 𝔻
𝛼−1
[0,𝑥]
𝑓 (0+) = 𝑏 > 0. Set 𝑓 (𝑥) = 0 for 𝑥 ∉ (0, 1). Then we have 𝔻

𝛼−1
[0,𝑥]
𝑓 (𝑥) = 0 for all 𝑥 < 0. Hence

𝔻
𝛼−1
[0,𝑥]
𝑓 is not continuous at 𝑥 = 0, and so 𝔻

𝛼
[0,𝑥]
𝑓 (𝑥) = 𝐷𝔻𝛼−1

[0,𝑥]
𝑓 (𝑥) does not exist at 𝑥 = 0. This shows that the zero extension

of 𝑓 is not in (𝐿).

Example 4.9. Meerschaert and Tadjeran [41] consider

𝜕𝑡𝑢(𝑥, 𝑡) = 𝑎(𝑥)𝔻
1.8
[0,𝑥]
𝑢(𝑥, 𝑡) + 𝑏(𝑥)𝔻1.8

[𝑥,2]
𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡) (4.22)

on a finite domain 0 < 𝑥 < 2 and 𝑡 > 0 with the coefficient functions

𝑎(𝑥) = Γ(1.2)𝑥1.8 and 𝑏(𝑥) = Γ(1.2)(2 − 𝑥)1.8,

the forcing function

𝑔(𝑥, 𝑡) = −32𝑒−𝑡
[
𝑥2 + (2 − 𝑥)2 − 2.5

(
𝑥3 + (2 − 𝑥)3

)
+

25

22

(
𝑥4 + (2 − 𝑥)4

)]
,

initial condition 𝑢(𝑥, 0) = 4𝑥2(2 − 𝑥)2, and Dirichlet boundary conditions 𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0. Using (4.14), is easy to check

that 𝑢(𝑥, 𝑡) = 4𝑒−𝑡𝑥2(2 − 𝑥)2 is the exact solution. This test problem is used in [41] to demonstrate the effectiveness of an

implicit Euler solution method. The method is proven to be unconditionally stable and consistent, and hence convergent, but

whether the problem is well-posed is an open question, see Defterli et al. [20] for additional discussion. The operator 𝐿 =

𝑎(𝑥, 𝑡)𝔻1.8
[−∞,𝑥]

+ 𝑏(𝑥, 𝑡)𝔻1.8
[𝑥,∞]

can be computed from (2.3) with 𝑐, 𝑙, 𝑄 equal to zero and

𝑁(𝑥, 𝑑𝑦) = 𝑐(𝑥, 𝑦)
𝛼(𝛼 − 1)

Γ(2 − 𝛼)
|𝑦|−𝛼−1𝑑𝑦, 𝑐(𝑥, 𝑦) = 𝑏(𝑥)𝐼(𝑦 > 0) + 𝑎(𝑥)𝐼(𝑦 < 0). (4.23)

However, it is not known whether this stable-like operator generates a Markov process on ℝ. In particular, the coefficients do

not satisfy the usual growth conditions for a stochastic differential equation, see [14, Theorem A.1]. We can, however, prove

uniqueness using the following well-known result.

Proposition 4.10. Suppose that Ω is a bounded domain in ℝ
𝑑 , and 𝐹 (𝑟) ≥ 𝐹 (𝑠) for 𝑟 ≤ 𝑠. Define the operator 𝐼𝑓 (𝑥) =

𝐹 (𝐿𝑓 (𝑥)) where 𝐿𝑓 (𝑥) is given by (2.3). If 𝑢, 𝑣 are two solutions to

𝜕𝑡𝑢(𝑥, 𝑡) + 𝐼𝑢(𝑥, 𝑡) = 0; 𝑥 ∈ Ω, 0 < 𝑡 < 𝑇 ,

𝑢(𝑥, 𝑡) = ℎ(𝑡, 𝑥), 𝑥 ∉ Ω, 0 < 𝑡 < 𝑇 , (4.24)

𝑢(𝑥, 0) = 𝑓 (𝑥), 𝑥 ∈ Ω,

for some 𝑇 > 0, then 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) for all 𝑥 ∈ ℝ
𝑑 and all 𝑡 ≥ 0.

Proof. [Thanks to Andrzej Swiech] Suppose that 𝑢(𝑦, 𝑠) > 𝑣(𝑦, 𝑠) at some point 𝑦 ∈ Ω and 0 < 𝑠 < 𝑇 . For 𝛿 > 0, define

𝑢𝛿(𝑥, 𝑡) ∶= 𝑢(𝑥, 𝑡) −
𝛿

𝑇 − 𝑡
.

If 𝛿 > 0 is sufficiently small, then 𝑢𝛿(𝑦, 𝑠) − 𝑣(𝑦, 𝑠) > 0, and hence the function 𝑢𝛿(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) attains its positive maximum

at some point (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ). Then at this point we have 𝜕𝑡𝑢
𝛿(𝑥, 𝑡) = 𝜕𝑡𝑣(𝑥, 𝑡), and ∇𝑢𝛿(𝑥, 𝑡) = ∇𝑣(𝑥, 𝑡). Since 𝑢𝛿(𝑥 + 𝑧, 𝑡) −

𝑣(𝑥 + 𝑧, 𝑡) ≤ 𝑢𝛿(𝑥, 𝑡) − 𝑣(𝑥, 𝑡), we also have 𝑢𝛿(𝑥 + 𝑧, 𝑡) − 𝑢𝛿(𝑥, 𝑡) ≤ 𝑣(𝑥 + 𝑧, 𝑡) − 𝑣(𝑥, 𝑡), and it follows that𝐿𝑢𝛿(𝑥, 𝑡) ≤ 𝐿𝑣(𝑥, 𝑡).
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Hence 𝐼𝑢𝛿(𝑥, 𝑡) ≥ 𝐼𝑣(𝑥, 𝑡). Thus we obtain

0 = 𝜕𝑡𝑣(𝑥, 𝑡) + 𝐼𝑣(𝑥, 𝑡) ≤ 𝜕𝑡𝑢𝛿(𝑥, 𝑡) + 𝐼𝑢𝛿(𝑥, 𝑡) = −𝛿

(𝑇 − 𝑡)2

which is a contradiction. □

Since we know that 𝑢(𝑥, 𝑡) = 4𝑒−𝑡𝑥2(2 − 𝑥)2 solves the Dirichlet problem (4.22), we can apply Proposition 4.10 with

𝐹 (𝑢) =−𝑢 to show that this solution is unique. Hence the numerical method in [41] indeed converges to the unique solution,

which resolves an open question in that paper.

Example 4.11. The generator of any 𝛼-stable semigroup on ℝ
𝑑 with index 1 < 𝛼 < 2 can be written in the form

𝐿𝑓 (𝑥) = −𝑎∇𝑓 (𝑥) + ∫𝑦≠0 [𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) + 𝑦 ⋅ ∇𝑓 (𝑥)]𝜙(𝑑𝑦) (4.25)

where

𝜙(𝑑𝑦) = 𝑏
𝛼(𝛼 − 1)

Γ(2 − 𝛼)
𝑟−𝛼−1𝑑𝑟𝑀(𝑑𝜃) (4.26)

in polar coordinates 𝑟 = |𝑦| and 𝜃 = 𝑦∕|𝑦|, where the spectral measure𝑀(𝑑𝜃) is any probability measure on the unit sphere. A

calculation shows that

𝐿𝑓 (𝑥) = −𝑎∇𝑓 (𝑥) + 𝑏∇𝛼
𝑀
𝑓 (𝑥), (4.27)

where the vector fractional derivative is defined by

∇𝛼
𝑀
𝑓 (𝑥) = ∫|𝜃|=1𝐃

𝛼
𝜃
𝑓 (𝑥)𝑀(𝑑𝜃)

and 𝐃
𝛼
𝜃

the fractional directional derivative, i.e., the one dimensional fractional derivative 𝐃
𝛼
𝑟 𝑔(𝑟) (in generator form) of the

projection 𝑔(𝑟) = 𝑓 (𝑥 + 𝑟𝜃) for 𝑟 ∈ ℝ. See [43, Example 6.29] for complete details.

If𝑀 is uniform over the sphere, it follows that ∇𝛼
𝑀
𝑓 (𝑥) = −𝑐𝑑,𝛼(−Δ)

𝛼∕2𝑓 (𝑥), where the fractional Laplacian −(−Δ)𝛼∕2𝑓 (𝑥)

has Fourier transform −‖𝑘‖𝛼𝑓 (𝑘), and

𝑐𝑑,𝛼 = | cos(𝜋𝛼∕2)|∫‖𝜃‖=1 |𝜃1|
𝛼𝑀(𝑑𝜃)

where 𝜃 = (𝜃1,… , 𝜃𝑑), see [43, Example 6.24].

For any stable Lévy process with index 1 < 𝛼 < 2, Remark 2.9 shows that Theorem 2.7 applies for any regular bounded

domain Ω ⊂ ℝ
𝑑 , and hence the killed generator is given by the same formula (4.25) applied to the zero extension a function 𝑓 ∈

𝐶0(Ω) ∩ 𝐶
2(Ω). Now suppose thatΩ is a convex domain, so that for every 𝑥 ∈ Ω and |𝜃| = 1 there exists a unique𝑅=𝑅(𝑥, 𝜃)> 0

such that 𝑥 − 𝑟𝜃 ∈ Ω for 0 < 𝑟 < 𝑅, and 𝑥 − 𝑟𝜃 ∉ Ω for 𝑟 > 𝑅. Let 𝐶 = 𝑏𝛼(𝛼 − 1)∕Γ(2 − 𝛼). A change of variable 𝑦 = 𝑟𝜃 in

polar coordinates yields

𝐿Ω𝑓 (𝑥) = −𝑎∇𝑓 (𝑥) + ∫|𝜃|=1 ∫
∞

0

[𝑓 (𝑥 − 𝑟𝜃) − 𝑓 (𝑥) + 𝑟𝜃 ⋅ ∇𝑓 (𝑥)]𝐶𝑟−𝛼−1𝑑𝑟𝑀(𝑑𝜃)

for any 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) such that the right-hand side belongs to 𝐶0(Ω). Then the same one dimensional calculation on the

inner integral as in Example 4.2 leads to

𝐿Ω𝑓 (𝑥) = −𝑎∇𝑓 (𝑥) + 𝑏∇𝛼
𝑀,Ω
𝑓 (𝑥) (4.28)

where

∇𝛼
𝑀,Ω
𝑓 (𝑥) = ∫|𝜃|=1𝔻

𝛼
[𝑥−𝑅(𝑥,𝜃),𝑥],𝜃

𝑓 (𝑥)𝑀(𝑑𝜃), (4.29)

and𝔻𝛼
[𝑥−𝑅,𝑥],𝜃

𝑓 (𝑥) is the Riemann–Liouville fractional directional derivative, defined as the one dimensional Riemann–Liouville

derivative 𝜕𝛼
[𝑥−𝑅,𝑥]

𝑔(𝑟) of the projection 𝑔(𝑟) = 𝑓 (𝑥 + 𝑟𝜃). Note that 𝑔′(𝑟) = 𝜃 ⋅ ∇𝑓 (𝑥 + 𝑟𝜃).
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Then for any 0 < 𝛽 < 1 the function 𝑣(𝑥, 𝑡) = 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
is the unique solution to the Dirichlet problem

𝜕
𝛽
𝑡 𝑣(𝑥, 𝑡) = −𝑎𝜕𝑥𝑣(𝑥, 𝑡) + 𝑏∇

𝛼
𝑀,Ω
𝑣(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓 (𝑥), for all 𝑥 ∈ Ω; (4.30)

𝑣(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0,

for any 𝑓 ∈ (𝐿Ω), and the unique mild solution to (4.10) for any 𝑓 ∈ 𝐶0(Ω). Then the same argument as in Example 4.2 shows

that the space-time fractional diffusion equation (4.30) is well-posed. As in the previous examples, we understand that (4.28)

represents the unique extension to (𝐿Ω).

Remark 4.12. Example 4.11 includes the fractional Laplacian as a special case. Chen et al. [16, Theorem 5.1] established strong

solutions to the space-time fractional diffusion equation with Dirichlet boundary conditions (4.30) in the special case where

𝑀(𝑑𝜃) is uniform over the sphere, i.e., the fractional Laplacian. Here the function 𝑢(𝑥, 𝑡) is said to be a strong solution if for

every 𝑡 > 0, 𝑢(𝑥, 𝑡) ∈ 𝐶0(Ω), (−Δ)
𝛼∕2𝑢(𝑥, 𝑡) exists pointwise for every 𝑥 ∈ Ω, the Caputo fractional derivative 𝜕

𝛽
𝑡 𝑢(𝑥, 𝑡) exists

pointwise for every 𝑡 > 0 and 𝑥 ∈ Ω, 𝜕
𝛽
𝑡 𝑢(𝑥, 𝑡) = −(−Δ)𝛼∕2𝑢(𝑥, 𝑡) pointwise in (0,∞) × Ω, and lim𝑡↓0 𝑢(𝑥, 𝑡) = 𝑓 (𝑥) for every

𝑥 ∈ Ω. The theorem assumes that the initial condition 𝑓 ∈ (
𝐿𝑘
Ω

)
for some 𝑘 > −1 + (3𝑑 + 4)∕(2𝛼). The proof of [16, Theorem

5.1] involves symmetric Dirichlet forms, and an eigenfunction expansion of the fractional Laplacian. It seems difficult to extend

that argument to the more general setting of Example 4.11, since the generator 𝐿 of a stable process need not be self-adjoint, so

that standard spectral theory does not apply.

Example 4.13. Bass [7] introduced stable-like processes, where the order 𝛼(𝑥) of the fractional derivative varies in space. If

𝛼 ∶ Ω → [𝛼1, 𝛼2] is a smooth bounded function for some 0 < 𝛼1 < 𝛼2 < 2, then Schilling and Wang [53, Theorem 3.3] prove

that the stable-like process𝑋𝑡 on ℝ
𝑑 with generator −(−Δ)𝛼(𝑥)∕2 is doubly Feller. If Ω is a regular bounded domain in ℝ

𝑑 , then

Bass [8, Theorem 2.1 and Remark 7.1] shows that 𝑋𝑡 solves the martingale problem, i.e.,

𝑓 (𝑋𝑡) − 𝑓 (𝑋0) − ∫
𝑡

0

𝐿𝑓 (𝑋𝑠) 𝑑𝑠

is a 𝜎{𝑋𝑠 ∶ 0 ≤ 𝑠 ≤ 𝑡}-martingale for any 𝑓 ∈ 𝐶2
𝑏

(
ℝ
𝑑
)
, the family of real-valued functions on ℝ

𝑑 such that 𝑓 and all its deriva-

tives of order 1 or 2 are continuous and bounded. Then it is easy to check, using the definition of the generator, that any function

𝑓 ∈ 𝐶2
0

(
ℝ
𝑑
)

is in (𝐿), where𝐿 is given by (2.3) with 𝑐 = 𝑙 = 𝑄 = 0 and𝑁(𝑥, 𝑑𝑦) = 𝑐𝑑,𝛼(𝑥)|𝑦|−𝑑−𝛼(𝑥)𝑑𝑦 for any 𝑓 ∈ 𝐶2
0

(
ℝ
𝑑
)
.

Then Theorem 2.7 shows that the generator of the killed process is given by the same pointwise formula applied to the zero

extension of a function 𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω). Then for any 0 < 𝛽 < 1 the function 𝑣(𝑥, 𝑡) = 𝔼

𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
is the unique solution

to the Dirichlet problem

𝜕
𝛽
𝑡 𝑣(𝑥, 𝑡) = −(−Δ)𝛼(𝑥)∕2𝑣(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓 (𝑥), for all 𝑥 ∈ Ω; (4.31)

𝑣(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0,

for any 𝑓 ∈ (𝐿Ω), and the unique mild solution to (4.31) for any 𝑓 ∈ 𝐶0(Ω). The same argument as in Example 4.2 shows

that the Dirichlet problem (4.31) is well-posed. Here again, we define −(−Δ)𝛼(𝑥)∕2𝑓 (𝑥) using the zero extension of a function

𝑓 ∈ 𝐶0(Ω), and we have 𝑓 ∈ (𝐿Ω) if the pointwise formula for −(−Δ)𝛼(𝑥)∕2𝑓 (𝑥) belongs to 𝐶0(Ω).

Example 4.14. Bass and Levin [9] consider a different class of stable-like processes on ℝ
𝑑 with generator (2.3) where

𝑐 = 𝑙=𝑄=0 and 𝑁(𝑥, 𝑑𝑦) = 𝜅(𝑥, 𝑦)|𝑦|−𝑑−𝛼𝑑𝑦, 0 < 𝛼 < 2, 𝜅(𝑥, 𝑦) = 𝜅(𝑥,−𝑦), and 0 < 𝜅1 < 𝜅(𝑥, 𝑦) < 𝜅2 < ∞. Here we

assume that 𝜅(𝑥, 𝑦) = 𝑎(𝑥)𝑐𝑑,𝛼 where |𝑎(𝑥) − 𝑎(𝑦)| ≤ 𝑎0|𝑥 − 𝑦|𝜆 for some 0 < 𝜆 < 1 and 𝑎0 > 0. Theorem 3.19 in Böttcher et al.

[13] establishes the existence of a time-homogeneous Feller process𝑋𝑡 with this generator𝐿 = −𝑎(𝑥)(−Δ)𝛼∕2. Chen and Zhang

[17, Eq. (1.18)] observe that𝑋𝑡 solves the stochastic differential equation 𝑑𝑋𝑡 = 𝑎
(
𝑋𝑡−

)1∕𝛼
𝑑𝑌𝑡 where 𝑌𝑡 is the standard symmet-

ric stable Lévy process with generator𝐿𝑌 = −(−Δ)𝛼∕2 for some 0 < 𝛼 < 2. It follows from [17, Corollary 1.3] that the transition

density 𝑝𝑡(𝑥, 𝑦) of 𝑋𝑡 (i.e., the Lebesgue probability density of 𝑦 = 𝑋𝑡+𝑠 given 𝑋𝑠 = 𝑥) is locally bounded in (𝑥, 𝑦) ∈ℝ
𝑑 ×ℝ

𝑑

for any 𝑡 > 0. It is easy to check that 𝑇𝑡 is a 𝐶𝑏
(
ℝ
𝑑
)

semigroup (e.g., see discussion after [53, Theorem 2.1]) and then it follows

from Schilling and Wang [53, Corollary 2.2] that 𝑋𝑡 is doubly Feller. Then for any regular bounded domain Ω ⊂ ℝ
𝑑 , Theo-

rem 2.7 shows that the generator of the killed process 𝑋Ω
𝑡 is given by the same formula: 𝐿Ω𝑓 (𝑥) = −𝑎(𝑥)(−Δ)𝛼∕2𝑓 (𝑥) for all
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𝑓 ∈ 𝐶0(Ω) ∩ 𝐶
2(Ω) such that −𝑎(𝑥)(−Δ)𝛼∕2𝑓 (𝑥) ∈ 𝐶0(Ω), where we define 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω. Hence for any 0 < 𝛽 < 1 the

function 𝑣(𝑥, 𝑡) = 𝔼
𝑥
[
𝑓
(
𝑋Ω
𝐸𝑡

)]
is the unique solution to the Dirichlet problem

𝜕
𝛽
𝑡 𝑣(𝑥, 𝑡) = −𝑎(𝑥)(−Δ)𝛼∕2𝑣(𝑥, 𝑡), for all 𝑥 ∈ Ω, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓 (𝑥), for all 𝑥 ∈ Ω; (4.32)

𝑣(𝑥, 𝑡) = 0, for all 𝑥 ∉ Ω, 𝑡 ≥ 0,

for any 𝑓 ∈ (𝐿Ω), and the unique mild solution to (4.32) for any 𝑓 ∈ 𝐶0(Ω). The same argument as in Example 4.2 shows that

the Dirichlet problem (4.32) is well-posed. Again, −𝑎(𝑥)(−Δ)𝛼∕2 represents the unique extension to (𝐿Ω), and 𝑓 ∈ (𝐿Ω) if

the pointwise formula for −𝑎(𝑥)(−Δ)𝛼∕2𝑓 (𝑥) belongs to 𝐶0(Ω).
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