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Space-Time-Frequency Processing of Acoustic Wave
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Abstract—Consider a nonparametric representation of acoustic
wave fields that consists of observing the sound pressure along a
straight line or a smooth contour defined in space. The observed
data contains implicit information of the surrounding acoustic
scene, both in terms of spatial arrangement of the sources and
their respective temporal evolution. We show that such data
can be effectively analyzed and processed in what we call the
space-time-frequency representation space, consisting of a Gabor
representation across the spatio-temporal manifold defined by
the spatial axis and the temporal axis . In the presence of a
source, the spectral patterns generated at have a characteristic
triangular shape that changes according to certain parameters,
such as the source distance and direction, the number of sources,
the concavity of , and the analysis window size. Yet, in general,
the wave fronts can be expressed as a function of elementary
directional components—most notably, plane waves and far-field
components. Furthermore, we address the problem of processing
the wave field in discrete space and time, i.e., sampled along
and , where a Gabor representation implies that the wave fronts
are processed in a block-wise fashion. The key challenge is how
to chose and customize a spatio-temporal filter bank such that it
exploits the physical properties of the wave field while satisfying
strict requirements such as perfect reconstruction, critical sam-
pling, and computational efficiency. We discuss the architecture of
such filter banks, and demonstrate their applicability in the con-
text of real applications, such as spatial filtering, deconvolution,
and wave field coding.

Index Terms—Array signal processing, beamforming, direc-
tional filter banks, source localization, space-time-frequency
analysis, spatial filtering, wave field coding.

I. INTRODUCTION

A. Historical Perspective

S
IGNAL processing has been used throughout history as
a means to describe, manipulate, and reproduce physical

phenomena occurring in nature. Many of these phenomena are
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governed by well known mathematical laws, as well as statis-
tical properties that make it possible to predict the structure of
the signals. The challenge is often how to find a suitable repre-
sentation space where the signals are expressed in a more effi-
cient and manageable way.

During the early ninenteenth century, Fourier suggested that
the solution to the heat equation in a solid medium could be ex-
pressed as a linear combination of harmonic solutions, which
simplified the problem in a notorious way [2]. This concept was
reinforced by Dirichlet, who demonstrated that a similar trans-
form could be obtained for a general class of signals [3], and
hence be applied to many other fields of science. However, in the
mid-twentieth century, Gabor realized that the Fourier transform
was unable to represent the frequency variations along time that
characterize nonstationary signals such as speech and music.
To solve this limitation, Gabor modified the concept of fre-
quency by representing it as a parametric function defined over
a time-frequency representation space [4]. This new concept led
to the development of the widely used short-time Fourier trans-
form, and eventually to the wavelet transform [5] and the mod-
ulated lapped transform [6], along with the many practical ap-
plications in the areas of audio, speech, and image processing.

In this paper, we propose a generalization of Gabor’s time-
frequency representation such that it represents not only the fre-
quency variations of sound along time but also the variations of
the acoustic wave field across space. This consists of including
a spatial dimension in the signal in order to identify the coor-
dinates of multiple observation points, and extending the local
Fourier analysis to this new dimension. This results in what we
call the space-time-frequency representation space.

The proposed method allows to efficiently represent acoustic
scenes composed of wideband point sources in the far-field, as
well as more complex scenes that can be expressed as a function
of known elementary solutions. The method finds applications
in the areas of spatial audio and wave field processing in general.

B. Related Work and Contributions

A point source is typically defined as a singularity in space
characterized by a source signal and a spatial position

. In free field, each point source contributes to the
wave field with a sound pressure given by [7]

(1)

where is the point of observation, is the speed
of sound, and is the usual vector 2-norm. In the case of a
closed field, the result can be generalized to account for reflec-
tions and distortion. For instance, a general filter rep-
resenting the acoustic path from position to all other can
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Fig. 1. Basic formulation a wave field processing problem: (a) the sound pres-
sure is taken along an arbitrary contour�, possibly enclosing a source-free area
�; (b) the resulting spatio-temporal signal ��� � �� goes through a digital signal
processor operating in the spatio-temporal domain. Examples of output data in-
clude the source locations �� , the source signals �����, and the reconstructed
sound pressure ���� � ��.

be defined such that , where
yields the result in (1). The

source signal itself can be represented by a suitable para-
metric model, in case it has an efficient parametric form. In
effect, many different parameters can be used to describe the
acoustic scene depending on the amount of prior knowledge
available and the desired accuracy when computing . This
is called a parametric description of the wave field.

In a different scenario—the one we are interested in—it is
assumed that no prior knowledge of the acoustic scene is avail-
able, or simply that no parametric description is desired. In this
case, the wave field is characterized by itself, and the de-
scription is said to be blind or nonparametric.

To describe the entire wave field using a nonparametric de-
scription for all would require a massive amount of
data, impossible to handle in practice. However, in many situ-
ations of interest, it is possible to retain significant information
about the wave field solely by considering along an arbi-
trary contour defined in space. The resulting signal
can be used, for example, to localize the various sources in the
acoustic scene [8], to filter the sources by generating directivity
patterns (beamforming) [9], or to reconstruct the wave field in an
enclosed area using wave field synthesis [10]. We formulate this
as a digital signal processing (DSP) problem, where the system
takes as input and returns a reconstructed or processed
version of the input, , or any other data related to the
wave field, as illustrated in Fig. 1.

A typical DSP system is composed of three stages: sampling,
processing, and interpolation. In the case of Fig. 1, the system
takes as input a spatio-temporal function , representing
the entire wave field outside . This means that the three stages
have to operate not only in the time domain but also in the spatial
domain.

The topic of sampling in the spatial domain is addressed in the
work of Ajdler et al. [11] on the plenacoustic function (PAF).
The authors show that the spatio-temporal representation of the
wave field is essentially band-limited and can be reduced to a
closed-form solution in many cases of interest, such as multiple
near-field sources in a reverberant room. Moreover, the Nyquist
sampling theory can be used to sample the acoustic wave field
across space using different sampling patterns, while allowing
subsequent reconstruction with minimum or no spatial aliasing.

The topic of interpolation in the spatial domain is addressed
in the work of Berkhout et al. [10], [12] on wave field syn-
thesis (WFS). The authors show how the spatial samples can
be used to actually resynthesize the “analog” wave fronts such

TABLE I
REFERENCE TABLE OF MATHEMATICAL NOTATION

that the resulting wave field is physically equivalent to (or a pro-
cessed version of) the original wave field. The theory of WFS
is based on a combination of the Huygens–Fresnel principle
and the divergence theorem [10] that implies that the wave field
within a source-free area is completely defined by the field
values observed at the boundary [see Fig. 1(a)] and can be
replicated by driving a line source—coincident with —with
the observed field values. For this reason, WFS is used as a
technique for spatial audio playback, where a large loudspeaker
array acts as the line source.

The purpose of this paper is to address the topic of processing

the wave field in discrete space and time. We take advantage of
a powerful consequence of the work on the PAF and WFS: the
fact that these allow the wave field to be processed using mul-
tidimensional signal processing theory—in particular, Fourier
theory. In Section II, we review the spectral representation of

when the Fourier transform is taken over space and
time, and how it is affected by the characteristics of the acoustic
scene, based on known results of acoustics theory. We also de-
rive new results that establish a more comprehensive link be-
tween acoustics theory and signal processing, in particular by
providing a definition of “frequency” on a space-time-frequency
representation space. In Section III, we address the problem
of processing the wave field in discrete space and time, based
on Nyquist sampling theory and multidimensional filter banks
theory. In particular, we discuss examples of orthogonal filter
banks that effectively represent in terms of its elemen-
tary components while satisfying the requirements of critical
sampling and perfect reconstruction of the input. Finally, in
Section IV, we discuss potential applications of space-time-fre-
quency processing that make direct use of the concepts dis-
cussed in this paper, with special emphasis on i) spatial filtering,
ii) deconvolution, and iii) wave field coding.

II. SPACE-TIME ANALYSIS OF THE WAVE FIELD

We begin our analysis with the characterization of the sound
pressure generated by a point source over an infinite flat surface

and an infinite straight line , and show how relates to
. First, we consider that the point source is located in the

far-field, where , and then in the near-field, where
. In both cases, the acoustic scene is assumed to

be in free field.
Further on, we show how can be expressed as a func-

tion of plane waves and far-field components, and how such rep-
resentations are influenced by the effects of windowing.

The main notation used in this paper is listed in Table I.
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A. Far-Field Spectrum

The point source being located in the far-field (FF) implies
that the wave front reaching has negligible curvature (i.e.,
is nearly plane). Under the far-field assumption,

where is a residual term dependent on the point
of observation . Thus, (1) is simplified to [7]

(2)

where and are fixed amplitude and phase
values that we discard for the remainder of this paper, and

is the residual phase term that depends on ,
and can not be discarded since it appears in the argument of

. In addition, consider that the wave front hits the infinite
surface (defined as the -plane) with angles of arrival
and , and the infinite straight line (defined as the -axis)
with angle of arrival , as shown in Fig. 2. The direction of
propagation is given by the wave front normal, , where

contains the directional components in each
axis and are the standard basis vectors , , and

. Without loss of generality, consider that . Since the
wave front is plane, the expression
defines a profile of constant phase in the three-dimensional
space. Thus [7]

(3)

The four-dimensional Fourier transform of can be ob-
tained with the regular multidimensional expression [13]

(4)

where are the spatial frequencies in rad/m
and is the temporal frequency in rad/s. Plugging (3) into (4)
and applying the transform over space and time, yields

(5)

where is nonzero for . The respec-
tive projections on and are given by

(6)
and

(7)

where, in polar coordinates, and .
Accordingly, for the -projection case, depicted in Fig. 3(a), the
spectrum is a Dirac function of partial derivatives

and , weighted by the Fourier
transform of the source signal . Given that , the
Dirac function is within a cone-shaped region defined by

. For the -projection case, depicted in Fig. 3(b),

Fig. 2. Wave front radiated by a wideband point source located in the far-field:
(a) in 3-D view and (b) in 2-D view. The wave front hits the plane � and
the straight line � with angles �� � � ��� ��, generating the pressure signals
��� � �� and ��� � ��. In both cases, the wave front leaves a trail of constant-
phase profiles (not to confuse with a sinusoidal wave front).

Fig. 3. Spectral representation of: (a) ��� � �� and (b) ��� � �� for a far-field
source. The bold line represents a Dirac function weighted by the spectrum of
the source signal ����. The slope of the line depends on the angle of arrival of
the wave front.

the result is again a weighted Dirac function, except that
and thus and . The delimited
region is then given by , representing a triangular-
shaped region. Note that, for the general case in (5), this region
is defined by .

To complete the intuition, consider two particular cases where
and . The respective Fourier trans-

forms are given by and . Plug-
ging into (6) and (7), it follows that a source signal with a
complex frequency translates into a single point in the spectrum,
whereas a source signal containing all the frequencies generates
a “flat” line. A complex frequency in the far-field is known as a
plane wave.1

We can conclude that the definition of “frequency” in the
spatio-temporal Fourier analysis of the wave field is a plane
wave, and that frequencies in the traditional context of signal
processing are particular cases of the plane wave—when is
one point in space.

B. Near-Field Spectrum

A point source is considered to be in the near-field (NF) when
its distance to the observation surface is very small compared to
the size of the surface—in this case, infinite. For simplicity, as
formulated in the introduction, we consider only the projection
on the straight line , where and .

To analyze the effects of near-field sources, it is important to
understand the physical meaning of the region outside the spec-
tral triangle shown in Fig. 3(b). For this purpose, let

1Note that any wideband signal ���� generates a flat wave-front as long as
�� � � ���, though historically a plane wave refers to a single complex fre-
quency [7].
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Fig. 4. Spectral representation of ��� � �� for a near-field source at a distance
of: (a) 1 m and (b) 1 cm relative to �. The proximity of the source causes the
energy to spread across � and intensify the evanescent-wave content.

be rewritten as , and as . The outside re-
gion is given by , or equivalently . This im-
plies that is complex, and thus

. Taking the Fourier transform of (3) over time, yields [7]

(8)

for , where the sign is chosen such that is
negative, thus providing a physical solution [7]. Notably, the
term represents an exponential decay that prevents
the wave front from propagating towards . This is called the
evanescent mode of wave propagation, as opposed to the prop-

agating mode analyzed in the previous section. In the special
case of , the decay term disappears due to
and the result is a wave traveling in parallel to .

As mentioned before, a far-field source can only be defined
inside the triangular region , since on the outside
the wave front would require a complex angle of arrival . How-
ever, this is not the case for sources in the near-field. When the
source is closer to , there is an increase in the curvature of the
wave front that spreads the spectral energy past the cut-off line

, entering the evanescent region. It can be shown
that, for a near-field source located at , the
Fourier transform over is given by [11]

(9)

where is the zeroth-order Hankel function of the first kind.
The result for , illustrated in Fig. 4, shows that the
near-field spectrum contains most of its energy inside the tri-
angular region, except for some residual energy on the outside.
For , the Hankel function is upper-bounded by

, and converges to the upper-bound for
[7], [11]. Thus, the farther away the source is from ,

the faster is the amplitude decay and the less evanescent waves
emerge. On the contrary, as the source moves closer to , the
balance between propagating and evanescent waves tips towards
the evanescent waves.

In general, the spatio-temporal spectrum over can be de-
fined as the spectrum of the sound source based on a sup-
port function such that

(10)

where, depending on whether the source is in the far-field (FF)
or the near-field (NF),

(11)

and

(12)

C. Decomposition Into Plane Waves and Far-Field

Components

Up to this point, we have considered the space-time represen-
tation of the wave field over a straight line , given some para-
metric specification of the acoustic scene. In the introduction,
however, we have stated the problem as being nonparametric.
Thus, the main challenge is how to identify and exploit the char-
acteristics of the acoustic scene given . For this purpose,
we introduce two theoretical tools of central importance to this
paper—i) the decomposition of the wave field into plane waves
and ii) the decomposition of the wave field into far-field com-
ponents—enunciated in the following two propositions. A third
proposition is also derived, with particular importance to the dis-
cussion of directional filter banks in Section III.

Definition 1: The directional spectrum is a function
such that

and

Proposition 1: An acoustic wave field generated by an ar-
bitrary number of sources with over a straight line

can be expressed as a function of plane waves traveling to-
wards with complex amplitude

within the interval , plus a residual evanes-
cent wave component , where

(13)

Proof: Take the inverse Fourier transform of over
keeping the propagation term in ,

where . The integration region can be split into the
propagating region and the evanescent region , depending
on whether is a real value or a complex
value ,
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The evanescent term is left unchanged, and denoted .
In the propagating term, the spatial frequency can be expressed
as , where and , and thus

The result in (13) is obtained by taking . Since
, the evanescent region has residual energy compared to the

propagating region, due to the exponential decay in (9) for
[see Fig. 4(a)].

Proposition 2: The propagating wave fronts of an acoustic
wave field observed on a straight line can be expressed as a
function of far-field components (virtual sources in the far-field)
with source spectrum and angle of arrival ,
where

(14)

Proof: The result can be obtained by taking the Fourier
transform over of the propagating term in (13),

The order of integration with respect to and can be ex-
changed under the Fubini theorem [14], given that is
absolutely integrable. Note that the far-field sources are char-
acterized by , and thus

can be interpreted as the source spectrum of a vir-
tual source in the far-field with direction . We use the term
“far-field components” to avoid confusion with the true sources
in the acoustic scene, which are not necessarily in the far-field.

Corollary 1: The directional spectrum for any
given is obtained by sampling across

and normalizing it with respect to and ,
such that

(15)

Proof: This follows directly from Definition 1 and the

definition of Dirac function, where

.
The result in Proposition 2 can be interpreted as the contin-

uous counterpart of a discrete superposition of far-field sources.
Equivalently, it can be seen as a projection of the directional
spectrum onto the “space” formed by Dirac support functions,
where and . This
results in another important property described next.

Proposition 3: Given such that
, the spectral energy within the interval

satisfies

(16)

Proof: Plugging (14) into the right term of (16), yields

where the exchange of integrals comes from the Fubini theorem
[14], and the last equality is due to

otherwise.

Proposition 3 essentially says that the energy of over
the interval is equivalent to the energy of

within the triangular region
. This is the theoretical motivation for the discus-

sion of directional filter banks in Section III.
The results presented in this section show how a blind (non-

parametric) description of the acoustic wave field can acquire
parametric characteristics when decomposed into elementary
wave fronts, such as plane waves and far-field components.
These wave fronts are not only sparse in the spatio-temporal
Fourier domain but often appear concentrated within a limited
region of the spectrum, which results in a potentially compact
description of the wave field based, for example, on a limited
number of far-field components and
the respective angles .

D. Space–Time-Frequency Analysis

Consider the case where is analyzed in smaller blocks
along the -axis, such that each block represents the wave field
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at a given region in space. If and are the spatial and
temporal window functions, a spectral block can be defined as

(17)

For , the result can be shown to be

(18)
where and are the Fourier transforms of
and , and denotes convolution over . To visualize the
behavior of (18), we consider the following cases:

(i) for a complex exponential defined by and
, (18) simplifies to

(19)

(ii) for a Dirac pulse defined by and ,
(18) is given by

(20)

The result in (20) can be further simplified if the right
term of the convolution is of type or

, such that
, in which case

(21)

Window functions of this type include the rectangular, the tri-
angular, and the cosine windows in general. An example with
rectangular windows is depicted in Fig. 5(a) and (b).

In the near-field case, the spectral pattern generated as a result
of windowing is difficult to express mathematically, since it is
given by a convolution between (9) and the Fourier transform of
a shifted window function. However, the result can be intuitively
understood as a combination of the results in Fig. 4 and Fig. 5(b),
and is well approximated by the empirical model illustrated in
Fig. 5(c). This model is parametric and given by

(22)
where is a triangular mask given by

(23)

with , and
point-symmetric for . As we show next, the parameters

, , and can be optimized for any given source.
Proposition 4: Define as the

angle of incidence at point , where is the
smallest angle and is the largest angle, such
that . The ripples within the region

are oriented towards , where de-
notes expectation over , and the triangular mask is delimited
by and .

Fig. 5. Effects of rectangular windowing on � ����� for: (a) ���� � �
in the far-field, (b) ���� � ���� in the far-field, and (c) ���� � ���� in the
near-field. The window functions are given by � ��� � ���	�� �	�

��
and � ��� � ���	�� �	�

��, where � � � 	� � 

� with � � �
being half the number of zeros in the sinc function. The angle of arrival is  �

	�. In the cases of (a) and (b), the theoretical results given by (7) are illustrated
on the left, whereas the windowing effects given by (19) and (21) are shown
on the right. In the case of (c), the theoretical result on the left represents the
parametric spectral model given by (22), where � is the region that resembles
the far-field spectral pattern, and the result on the right is a Matlab simulation
of a near-field source.

Proof: Divide the window function of length

into segments of length , such that

. For large enough,
the near-field wave fronts become increasingly far-field in the
range of each segment (by definition, ). Thus

where and

. Note also that, as increases, becomes increas-
ingly flat with magnitude . This simplifies
the result to

(24)
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Fig. 6. Space-time manifold generated on a smooth contour �, where ��� � ��
is locally approximated by several spatio-temporal blocks ���� ��. The resulting
spectral blocks � ����� have different plane-wave content depending on the
local properties of the wave field. In this example, the blocks on the left have
more near-field characteristics than the blocks on the right, where the energy is
more concentrated around the dominant direction.

The notches in occur when the sum in (24) is mini-
mized, i.e., when the exponential vectors are in max-
imum phase opposition. This requires a minimization of

for , which occurs
at ; hence the orientation to-
wards . When , , at least one
exponential vector in the sum equals 1. Since is a smooth
function, the other vectors are also concentrated in the
vicinity of 1. On the contrary, as increases,
the vectors become more dispersed in the complex plane, and
the sum decreases in magnitude. This places the optimal limits
at and .

Similarly to Gabor’s generalization of the concept of fre-
quency [4], the results in (19), (21), and (22) can be viewed
as generalizations of the concepts of plane wave, far-field com-
ponent, and near-field component in the space-time-frequency
representation space. The near-field component itself general-
izes the far-field component, obtained when . The
various parameters regulate the tradeoff between spatio-tem-
poral resolution and frequency resolution, thus allowing a se-
lective discrimination of the local properties of the wave field
across space and time (e.g., “directional versus diffuse” relative
to space and “harmonic versus noisy” relative to time).

Furthermore, the use of space-time-frequency representation
allows an extension of the Fourier analysis to the more general
case where is not a straight line but a curved contour, as in the
case of Fig. 1. If is smooth enough, the space-time manifold
defined by and can be locally approximated by
an Euclidean space where is dropped and represents the local
tangent to . This is illustrated in Fig. 6. Note, however, that the
approximation of the curved contour by a straight line reduces
the sharpness of the spectrum across . This can be compen-
sated, for example, by varying the window size according to the
local smoothness of .

III. SUBBAND ANALYSIS OF THE WAVE FIELD SPECTRA

In the previous section, we have introduced the theoretical
background of wave field processing in the continuous space-

time domain. The following step, enabling us to target real ap-
plications, is understanding how these theoretical concepts can
be translated into computational algorithms that operate in the
discrete space-time domain, i.e., with discretized versions of

and . For this purpose, we present three filter bank struc-
tures that achieve the desired subband partitions in the space-
time-frequency representation space. The first is a basic orthog-
onal transform filter bank that can be customized to perform
a plane-wave expansion of the input signal—for example, by
using a DFT basis function. The second is a variation of the
transform filter bank that performs plane-wave expansion with
block overlapping in space and time while preserving critical
sampling and perfect reconstruction, making the transform more
suitable for coding applications. Finally, we present a nonsepa-
rable filter bank that decomposes the input signal into far-field
components, based on a tree-structured implementation of the
quincunx filter bank.

A. Sampling and Reconstruction

From a signal processing perspective, the spatial axis is just
another dimension of the input signal, which must be sampled
in order to be processed. Similarly to the temporal axis, the sam-
pling pattern can be chosen freely according to the specifications
of the problem. Uniform sampling, compressed sensing, and fi-
nite rate of innovation are examples of sampling techniques that
can be applied to the spatial domain. In this paper, we assume
uniform sampling in both dimensions.

The Nyquist conditions in the space-time domain are given
by and , where and are
the spatial and temporal sampling frequencies, and is the
maximum temporal frequency. As a result of sampling, an infi-
nite number of spectral repetitions show up at multiples of
and . Aliasing effects can thus occur in either dimension if
the respective Nyquist conditions are not satisfied. Conversely,
if the two conditions are met, the signal can be perfectly recon-
structed in both dimensions.

For a more detailed analysis on spatio-temporal sampling,
the reader may refer to the work of Ajdler et al. [11] on the
plenacoustic function.

B. Orthogonal Transform Filter Banks

A spatio-temporal transform can be obtained through any
combination of orthogonal bases applied separately to the spa-
tial and temporal dimensions. Examples of transforms that can
be used to exploit the temporal evolution of the sound field in-
clude the discrete Fourier transform (DFT), the discrete cosine
transform (DCT), and the discrete wavelet transform (DWT). In
general, both the DFT and the DCT are better suited for audio
and speech sources, due to their harmonic nature, whereas the
DWT is better suited for impulsive and transient-like sources
(e.g., shot events).

In the spatial domain, the choice of basis takes into account
other factors, such as the position of the sources and the geom-
etry of the acoustic environment (which influence the diffuse-
ness of sound and the curvature of the wave field), as well as
the geometry of the observation contour . The Fourier trans-
form, as we have shown, provides an efficient representation of
the wave field on a straight line or a smoothly curved contour.
However, under some particular conditions, a different choice of
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Fig. 7. Space-time-frequency tiling that characterizes a Fourier-based uniform
filter bank, illustrated here as two separate 2-D tilings: (a) the space dimension is
mapped onto the spatial frequency dimension; (b) the time dimension is mapped
onto the temporal frequency dimension. The � axis is bent to emphasize that it
may be defined on a curved contour, and not necessarily on a straight line.

basis may prove to be more efficient. For instance, if is per-
fectly circular [11], a Fourier transform for circularly symmetric
functions, such as the Hankel transform, can be used instead. In
contrast, if is sharply curved, the wavelet transform is more
able to represent the sharp transitions across space in the wave
field representation. This is an interesting topic to be addressed
in future research.

Consider that represents the
uniformly sampled version of such that

, where
are the space and time sample indexes, and
the respective transform-domain coefficients with indexes

. A spatio-temporal transform filter bank is char-
acterized by a four-dimensional tiling that spans the variables

, , , and , representing the mapping of spatio-temporal
partitions onto the transform-domain subbands. In the case
of Fourier-based transforms, the mapping is separable and
uniform, as illustrated in the tiling of Fig. 7.

Consider two general orthogonal bases and such
that

(25)

and

(26)

In matrix notation, (25) and (26) can be written as

(27)

and

(28)

where , , , and are the matrix expansions of , ,
, and , respectively. The same matrix operations can

be expressed in the filter bank structure of Fig. 8, where the input
signal of size is decomposed into a transform
matrix of equal size.

To perform a spatio-temporal DFT, the basis functions are
defined as and ,
which implies that and are DFT matrices of size

Fig. 8. Spatio-temporal uniform filter bank that decomposes ���� into
� � � frequency subbands. The delay chain that generates a signal block
� is composed of a series of �-transform delay factors [15] defined by

� � � � , followed by a downsampling matrix � �
� �

� �
,

where � � are the coset vectors in the coset space � generated by

�. The polyphase blocks ������� and ��� ���� represent the separable matrix
operations of (27) and (28).

and respectively. The DFT filter bank performs a
plane-wave expansion in the discrete space-time domain.

C. Spatio-Temporal Lapped Orthogonal Transforms

In many applications, the usage of short-time Fourier anal-
ysis requires that consecutive blocks are overlapped in time in
order to avoid discontinuities in the reconstructed signal. The
same argument applies to the spatial dimension, where overlap-
ping helps to preserve the curvature of the wave field. Looking
at Fig. 8, it is clear that overlapping can be obtained by ap-
plying the resampling matrix instead of , where

and contains the number of over-

lapping samples and in each dimension. Without loss of
generality, we assume that , representing 50% of
overlapping in both dimensions.

An additional requirement, typically related to audio coding,
is that the output of a lapped transform is critically sampled and,
yet, perfectly reconstructible. In most cases, these two condi-
tions can not be met simultaneously, since making crit-
ically sampled implies subsampling the transform by a factor
of 2 in both dimensions. However, perfect reconstruction can
be achieved if the aliasing generated by the inverse transform
is canceled out in the overlap-and-add operation—a technique
known as time-domain aliasing cancelation [16]. This depends
on a proper choice of the basis functions and .

There are many examples in the literature of lapped orthog-
onal transforms that meet the above requirements, both in the
1-D case (e.g., Princen et al. [16], Malvar [17], and Schuller
et al. [18]) and the 2-D case (e.g., Kovacevic et al. [19] and
Johnson et al. [20]). In this work, we focus on the so-called
modified discrete cosine transform (MDCT) [16], used in cur-
rent state-of-art audio coders. In effect, it is possible to apply
an MDCT separably to the spatial and temporal dimensions by
defining the basis functions as

and (29)
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and

and (30)

where and are the window functions in space
and time, satisfying the conditions and

[6].
The decomposition of into overlapped blocks can

be written as

(31)

where is the block index and is the respective

set of block indexes. The notation
means that and

. The vector integers
are defined as , , and so on. Note also that,
in order to handle the blocks that go outside the boundaries of

, we consider the signal to be circular (or periodic) in both
dimensions. This presents an advantage over zero-padding, in
particular, when is closed.

Denoting , the direct and inverse
transforms for each block are given by

(32)

and

(33)

Finally, the reconstruction of through overlap-and-add is
given by

(34)

In matrix notation, the complete mechanism of the spatio-
temporal MDCT can be expressed as

...

...

. . .

. . .

...

...

. . .

. . .

and

...

...

. . .

. . .

...

...

. . .

. . .

Fig. 9. Decomposition of the space-time spectra into directional subbands
using a tree-structured directional filter bank (DFB). The subband partitioning
can be either: (a) uniform or (b) nonuniform. A partitioning similar to (b) is
more suitable for wave field spectral patterns, since it gathers all the evanescent
waves into a single subband and has variable directional resolution in the
plane-wave region.

where and are split into left and right halves in order to
enforce overlapping directly in the transformation matrix. The
resulting block-bidiagonal matrices are orthogonal.

D. Nonseparable Directional Filter Banks

An important property derived in Section II-C is the decom-
position of the wave field into far-field components. According
to Proposition 2 and 3, the far-field components can be obtained
from the spectrum by properly choosing the integration limits.
If the integration area is increased, covering a larger range of an-
gles, there is a loss of directional resolution. This also reduces
the sensitivity to proximity and movement of the source.

Conceptually, one can think of a filter bank that decomposes
the spectrum into directional subbands defined in the range

, for
(and point-symmetric for ), where is the central

direction and is the directional bandwidth, as illustrated in
Fig. 9(a). Due to Definition 1, this partitioning can also be
interpreted as a four-dimensional tiling that spans the variables

, , , and . If we assume that each pair of subbands is
obtained by slicing a larger band in half, the filter bank can be
designed as an iterated two-channel structure, providing more
flexibility to obtain nonuniform directional decompositions
such as the one in Fig. 9(b). This way, the biggest effort goes
into designing a two-channel filter bank that can be used in all
nodes of the tree.

Such a filter bank has been extensively studied [21]–[24], and
is known as quincunx filter bank (QFB). The QFB is a nonsepa-
rable perfect reconstruction filter bank, maximally decimated,
defined by two diamond-shaped half-band filters, and

, preceded by a parallelogram resampler and followed
by a quincunx resampler (see Do et al. [23]). The directional
filter bank (DFB) is then obtained with a tree-structure of mul-
tiple QFB, as illustrated in Fig. 10.

The intuition behind the iterated QFB structure is that, in-
stead of using different filters to obtain different subbands, we
use the resampling matrices to rotate and skew the subbands be-
fore slicing them with a fixed filter. The design of the half-band
filters and , and the respective synthesis filters, can
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Fig. 10. Three-level iterated quincunx filter bank that performs a uniform de-
composition of the input spectra into directional subbands. The matrices� and
� represent a parallelogram resampler followed by a quincunx resampler, and
the filters� ��� and� ��� represent two diamond-shaped half-band filters.

be done using two-dimensional filter design techniques. In the
simulations shown in this paper, we use a technique introduced
by Phoong et al. [22].

IV. APPLICATIONS OF SPACE–TIME-FREQUENCY PROCESSING

We briefly present some of the applications of space-time-
frequency processing that make use of the theory and algorithms
derived in this paper. In particular, we focus on three classes
of applications: spatial filtering, deconvolution, and wave field
coding.

A. Spatial Filtering

In digital signal processing, filtering is the cornerstone oper-
ation when it comes to manipulating signals, images, and ulti-
mately acoustic wave fields. The use of spatial filtering to sep-
arate sources from each other is not a new concept, and several
innovative techniques (commonly known as beamforming) have
been proposed in the past (e.g., Frost [25], Widrow et al. [26]
and Griffiths et al. [9]). However, from a conceptual point of
view, these techniques rely on a nonintuitive interpretation of
spatial filtering based on convolution—with a few exceptions
(e.g., Start et al. [27] explore the idea of frequency-domain spa-
tial filtering in the context of wave field synthesis).

One of the advantages of the Fourier transform is that it allows
the interpretation of convolutional filtering in terms of more in-
tuitive concepts. For instance, a filter can be sketched in the
Fourier domain such that it has a unitary response for a given
range of frequencies (pass-band) and a high attenuation for the
remaining frequencies (stop-bands), plus an equiripple magni-
tude response and a linear phase. Using existing algorithms [28],
the ideal filter can be translated into a realizable filter that opti-
mally obtains the desired response. In the context of space-time
analysis, we have seen that the Fourier transform provides a
sparse representation of the elementary components of the wave
field. Using the same reasoning, we can sketch a spatial filter in
the Fourier domain such that it has a unitary response for every
plane wave within a given range of directions (pass-band) and
a high attenuation for the remaining plane waves (stop-bands),
plus any additional magnitude and phase constraints. The ideal
magnitude response of such a filter is given by the spectral mask
defined in (23).

Example 1: Consider a sampling line defined between
and 1 m. The goal is to filter the wave fronts radiating from

0.75 m, 0.433 m . It can be easily verified that the

Fig. 11. Spatial filtering on a curved contour � (the same used in previous
figures) with 512 spatial samples satisfying Nyquist, in a scene with three Dirac
sources. The goal is to apply a bandpass filter to the shaded source, in order
to eliminate the other two. For each spatial block, the filter takes a different
shape according to the relative direction of the desired source. An example for a
random block is shown in (a), where the pass-band frequency range is given by
the shaded region. The signals at the input and output of the complete filtering
process are shown in (b) and (c), respectively. Note that the result in (c) would
not be possible to obtain by simply taking the Fourier transform along the entire
contour, which would result in a severely blurred spectrum. Instead, the spatial
filters are applied on the Gabor decomposition shown in (d), which provides a
sharper separation of the three sources in most of the blocks.

angle of incidence at point varies within the range
. Thus, from (23), the desired filter

has an ideal pass-band region defined by
for , and point-symmetric at .

In the general case where the wave field is sampled along
a curved contour , the tangential lines of are likely to be
facing the sources from many different angles. Thus, if the
Fourier transform is taken along the entire contour, the resulting
spectrum may be too blurred to allow any distinction between
sources. One solution is to perform a localized Gabor-style
analysis, as proposed in this paper, by windowing the signal
along the spatial dimension, filtering each block individually,
and reconstructing the signal back to its original size. An
example is shown in Fig. 11.

B. Deconvolution

Another operation that can be conveniently performed in
the space-time domain is signal deconvolution. The idea of
deconvolution is particularly useful in the parametrization of
the acoustic scene, where the goal is to estimate parameters
such as the position of the sources or the characteristics of the
room. In general, the problem consists of estimating a number
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Fig. 12. Estimation of the parameters� of� ����� in a wave field with two
far-field white noise sources at � � ��� and � � ����, using two spatial
samples separated by 8 times the Nyquist spacing (this adds more periods to
the support functions). In the three cases shown, the acoustic scene consists of
(a) a single source at ���, (b) a single source at ����, and (c) the two sources at
��� and ����. The result, as expected, is a perfect sinusoid in (a) and (b), and a
sum of distorted sinusoids in (c). The respective frequencies are estimated with
a spatio-temporal version of the MUSIC algorithm, from which the parameters
� can be directly obtained by peak detection and proper scaling.

of impulse responses affecting each source signal at the scene,
having only the knowledge of . Equivalently, it consists
of estimating a number of support functions such
that .

Assuming that the signal components carry
no useful information for this purpose, they can be
attenuated by filtering with , where

. An estimation of
is then given by

(35)
where is a frequency-dependent dis-
tortion function that equals one if and zero if

. This suggests that, for each frequency, the estima-
tion of is more accurate for the most dominant source.
In general, the support functions can be modeled as
parametric functions given by (22) and (23), where the angle
and the distance are the parameters to estimate (see, e.g.,
Pinto et al. [29]). In some cases, however, the problem can be
simplified.

Example 2: Suppose the sources are in the far-field,
and is weighted by a rectangular window of
length 2. If is discretized, as is the case in practice,
the support function for each source is given by a sinc
function repeated at integer multiples of , and hence

.
Using the properties of the cotangent function

and [30], it
can easily be shown that .
Thus, using only two spatial samples, (35) is a sum of distorted
sinusoids with one degree of freedom, , which can be esti-
mated efficiently using the annihilating filter method [31] or
the MUSIC algorithm [8]. An example is shown in Fig. 12.

C. Wave Field Coding

The third problem we address in this paper is related to the

amount of information that is contained in the spatio-temporal

representation of the wave field. We elaborate on a concept in-

troduced in previous work [32], [33] which consists of com-

pressing the wave field through plane-wave encoding, and ob-

taining a rate-distortion function at the output.

As discussed in previous sections, plane waves are the ele-

mentary components in the spatio-temporal analysis of the wave

field, the same way frequencies are the elementary components

in the temporal analysis of signals. In continuous space and

time, assuming to be the -axis, the spectral representation

of a given number of plane waves consists of an equal number

of Diracs points. The same is true in the directional represen-

tation of the wave field, as is simply a scaled version

of in polar coordinates. Thus, we can conclude that

having a spatial dimension in the signal does not increase the

amount of information in the spectrum, other than the position

of the Diracs across the or -axis.

In discrete space and time, however, if the spatial axis is win-

dowed, the plane waves are not based on ideal Diracs but on

smooth support functions. This means that, in order to recon-

struct the original signal with low distortion, the entire support

functions must be encoded, and the number of transform coef-

ficients to encode increases with the number of spatial points.

On the contrary, if a higher distortion is tolerated, we can take

advantage of the fact that most of the energy is concentrated in

the main lobe of the support functions, in which case the coarse

quantization will set to zero most of the side-lobe values. Thus,

we can expect that as the bit-rate decreases the amount of spec-

tral information to encode tends to a single point for each plane

wave, as in the continuous space-time case.

The example of Fig. 13 compares the rate-distortion func-

tions obtained by encoding a wideband source in the MDCT

and DFB domains, using the mean square error (MSE) distor-

tion metric. As the figure shows, the two filter banks have a sim-

ilar behavior in terms of coding gain. However, the use of these

filter banks in the context of a coding application has different

advantages. On the one hand, the MDCT is a critically sampled

Gabor-style transform that allows overlapping between blocks

in both space and time domains, as opposed to the DFB which

does not preserve critical sampling if overlapping is used. This

gives the MDCT an advantage in terms of coding gain. On the

other hand, in a perceptual audio coding application [34], the

DFB provides a more suitable representation of the wave field in

terms of directional sound, which simplifies the use of psychoa-

coustic models. For instance, one could combine a frequency

masking model on the axis (see Bosi et al. [34]) with a di-

rectional masking model on the axis (e.g., Blauert [35]). A

cascade of the two filter banks is also an interesting case to con-

sider (see, e.g., Pinto et al. [36] and Eslami et al. [37]).

Note in particular that, for a high number of spatial points,

assuming Nyquist is satisfied, it is likely that at least half of the

entire spectrum has very low energy values (see Fig. 4). This
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Fig. 13. Example of encoding of a far-field white noise source at � � ���,
in both the MDCT and uniform DFB domains. The input signal of (max-
imum) size 256 � 256 and the Fourier transform are shown in (a) and (b)
respectively. The MDCT with circular block overlapping is shown in (c). The
DFB decomposition levels are shown in (d), and the output level is shown in
(e) after a correct rearrangement of the subbands; the propagating and evanes-
cent regions are denoted by P and E in the direction axis. Finally, the rate-dis-
tortion curves obtained for a different number of spatial points � (using a
fixed codebook) are shown in (f) and (g) for the MDCT and DFB cases, re-
spectively. In both cases, the increase of � also increases the number of bits
required, but the curve eventually converges to an upper-bound. The reason is
that, even though doubling � also duplicates the number of transform coeffi-
cients, the support functions are narrowed to half the width, and the tradeoff
tends to balance itself out. Thus, increasing � pass a certain limit does
not increase the spectral information. It can also be observed that for lower
bit-rates—in the order of those used by perceptual audio coders [34]—the
difference between one channel and a large number of channels is low in
terms of MSE. Comparing the coding results in the MDCT and DFB do-
mains, the only difference is that the DFB has a slightly higher upper-bound,
mostly due to the smoothing effect of the half-band filters.

results in an effective low-MSE coding gain of 2 when trans-

forming the signal to the MDCT or DFB domains. In the case

of the DFB, this inherent gain can be exchanged by a 50% over-

lapping in one of the domains.

V. CONCLUSION

We have presented a signal processing framework that is
suitable for analyzing, processing, and encoding acoustic wave
fronts, based on a multidimensional spectral representation
of the wave field over a spatio-temporal manifold. Based on
previous works [10], [11] which show that the wave field can
be sampled and interpolated using Nyquist theory and wave
field synthesis, we derived new methods of expressing the
wave field in a way that is intuitive in the context of Fourier
theory and signal processing. In particular, we have shown
that the wave field can be expressed as a function of elemen-
tary “spatio-temporal frequencies” called plane waves and
elementary directional components called far-field compo-

nents. We generalized these into the windowed case, where
a local analysis of the wave field requires a parametrization
of the elementary components to account for space-time-fre-
quency resolution tradeoffs. In the discrete domain, where
real applications operate, a special emphasis was given to the
discussion of spatio-temporal orthogonal filter banks, which
are characterized by a four-dimensional space-time-frequency
mapping. In particular, we have shown that a plane-wave
expansion can be obtained with a separable uniform filter
bank (e.g., a DFT filter bank), whereas a decomposition into
directional far-field components requires a nonseparable 2-D
filter bank (e.g., an iterated quincunx filter bank). We also
presented a spatio-temporal lapped orthogonal transform that
obtains a form of plane-wave expansion while satisfying the re-
quirements of block overlapping, critical sampling, and perfect
reconstruction. Finally, we discussed applications that make use
of space-time-frequency processing, such as i) filtering a source
in a wave field sampled on a curved contour, ii) parametrizing
the acoustic scene through spatial deconvolution, and iii) com-
pressing the wave field through plane-wave encoding.
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