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Abstract

Local image features or interest points provide compact

and abstract representations of patterns in an image. In this

paper, we propose to extend the notion of spatial interest

points into the spatio-temporal domain and show how the

resulting features often reflect interesting events that can be

used for a compact representation of video data as well as

for its interpretation.

To detect spatio-temporal events, we build on the idea of

the Harris and Förstner interest point operators and detect

local structures in space-time where the image values have

significant local variations in both space and time. We then

estimate the spatio-temporal extents of the detected events

and compute their scale-invariant spatio-temporal descrip-

tors. Using such descriptors, we classify events and con-

struct video representation in terms of labeled space-time

points. For the problem of human motion analysis, we illus-

trate how the proposed method allows for detection of walk-

ing people in scenes with occlusions and dynamic back-

grounds.

1. Introduction

Analyzing and interpreting video is a growing topic in com-

puter vision and its applications. Video data contains infor-

mation about changes in the environment and is highly im-

portant for many visual tasks including navigation, surveil-

lance and video indexing.

Traditional approaches for motion analysis mainly in-

volve the computation of optic flow [1] or feature tracking

[28, 4]. Although very effective for many tasks, both of

these techniques have limitations. Optic flow approaches

mostly capture first-order motion and often fail when the

motion has sudden changes. Feature trackers often assume

a constant appearance of image patches over time and may

hence fail when this appearance changes, for example, in

situations when two objects in the image merge or split.

∗The support from the Swedish Research Council and from the Royal

Swedish Academy of Sciences as well as the Knut and Alice Wallenberg

Foundation is gratefully acknowledged.

Figure 1: Result of detecting the strongest spatio-temporal

interest point in a football sequence with a player heading

the ball. The detected event corresponds to the high spatio-

temporal variation of the image data or a “space-time cor-

ner” as illustrated by the spatio-temporal slice on the right.

Image structures in video are not restricted to constant

velocity and/or constant appearance over time. On the con-

trary, many interesting events in video are characterized by

strong variations of the data in both the spatial and the tem-

poral dimensions. As example, consider scenes with a per-

son entering a room, applauding hand gestures, a car crash

or a water splash; see also the illustration in figure 1.

More generally, points with non-constant motion corre-

spond to accelerating local image structures that might cor-

respond to the accelerating objects in the world. Hence,

such points might contain important information about the

forces that act in the environment and change its structure.

In the spatial domain, points with a significant local vari-

ation of image intensities have been extensively investigated

in the past [9, 11, 26]. Such image points are frequently de-

noted as “interest points” and are attractive due to their high

information contents. Highly successful applications of in-

terest point detectors have been presented for image index-

ing [25], stereo matching [30, 23, 29], optic flow estimation

and tracking [28], and recognition [20, 10].

In this paper we detect interest points in the spatio-

temporal domain and illustrate how the resulting space-

time features often correspond to interesting events in video

data. To detect spatio-temporal interest points, we build on

the idea of the Harris and Förstner interest point operators

[11, 9] and describe the detection method in section 2. To

capture events with different spatio-temporal extents [32],
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we compute interest points in spatio-temporal scale-space

and select scales that roughly correspond to the size of the

detected events in space and to their durations in time.

In section 3 we show how interesting events in video can

be learned and classified using k-means clustering and point

descriptors defined by local spatio-temporal image deriva-

tives. In section 4 we consider video representation in terms

of classified spatio-temporal interest points and demonstrate

how this representation can be efficient for the task of video

registration. In particular, we present an approach for de-

tecting walking people in complex scenes with occlusions

and dynamic background. Finally, section 5 concludes the

paper with the discussion of the method.

2. Interest point detection

2.1. Interest points in spatial domain

The idea of the Harris interest point detector is to detect

locations in a spatial image fsp where the image values

have significant variations in both directions. For a given

scale of observation σ2
l , such interest points can be found

from a windowed second moment matrix integrated at scale

σ2
i = sσ2

l

µsp = gsp(·; σ2
i ) ∗

(

(Lsp
x )2 Lsp

x Lsp
y

Lsp
x Lsp

y (Lsp
y )2

)

(1)

where Lsp
x and Lsp

y are Gaussian derivatives defined as

Lsp
x (·; σ2

l ) = ∂x(gsp(·; σ2
l ) ∗ fsp)

Lsp
y (·; σ2

l ) = ∂y(gsp(·; σ2
l ) ∗ fsp),

(2)

and where gsp is the spatial Gaussian kernel

gsp(x, y; σ2) =
1

2πσ2
exp(−(x2 + y2)/2σ2). (3)

As the eigenvalues λ1, λ2, (λ1 ≤ λ2) of µsp represent char-

acteristic variations of fsp in both image directions, two

significant values of λ1, λ2 indicate the presence of an in-

terest point. To detect such points, Harris and Stephens [11]

propose to detect positive maxima of the corner function

Hsp = det(µsp) − k trace2(µsp) = λ1λ2 − k(λ1 + λ2)
2.

(4)

2.2. Interest points in the space-time

The idea of interest points in the spatial domain can be ex-

tended into the spatio-temporal domain by requiring the im-

age values in space-time to have large variations in both the

spatial and the temporal dimensions. Points with such prop-

erties will be spatial interest points with a distinct location

in time corresponding to the moments with non-constant

motion of the image in a local spatio-temporal neighbor-

hood [15].

To model a spatio-temporal image sequence, we use a

function f : R
2×R → R and construct its linear scale-space

representation L : R
2 × R × R

2
+ �→ R by convolution of f

with an anisotropic Gaussian kernel1 with distinct spatial

variance σ2
l and temporal variance τ2

l

L(·; σ2
l , τ2

l ) = g(·; σ2
l , τ2

l ) ∗ f(·), (5)

where the spatio-temporal separable Gaussian kernel is de-

fined as

g(x, y, t; σ2
l , τ2

l ) =
exp(−(x2 + y2)/2σ2

l − t2/2τ2
l )

√

(2π)3σ4
l τ2

l

.

(6)

Similar to the spatial domain, we consider the spatio-

temporal second-moment matrix which is a 3-by-3 matrix

composed of first order spatial and temporal derivatives av-

eraged with a Gaussian weighting function g(·; σ2
i , τ2

i )

µ = g(·; σ2
i , τ2

i ) ∗





L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t



 , (7)

where the integration scales are σ2
i = sσ2

l and τ2
i =

sτ2
l , while the first-order derivatives are defined as

Lξ(·; σ2
l , τ2

l ) = ∂ξ(g ∗ f). The second-moment matrix µ
has been used previously by Nagel and Gehrke [24] in the

context of optic flow computation.

To detect interest points, we search for regions in f hav-

ing significant eigenvalues λ1, λ2, λ3 of µ. Among differ-

ent approaches to find such regions, we choose to extend

the Harris corner function (4) defined for the spatial domain

into the spatio-temporal domain by combining the determi-

nant and the trace of µ in the following way

H = det(µ)− k trace3(µ) = λ1λ2λ3 − k(λ1 +λ2 +λ3)
3.

(8)

To show that the positive local maxima of H correspond to

points with high values of λ1, λ2, λ3 (λ1 ≤ λ2 ≤ λ3), we

define the ratios α = λ2/λ1 and β = λ3/λ1 and rewrite

H = λ3
1(αβ − k(1 + α + β)3). Then, from the require-

ment H ≥ 0, we get k ≤ αβ/(1 + α + β)3 and it follows

that as k increases towards its maximal value k = 1/27,

both ratios α and β tend to one. For sufficiently large val-

ues of k, positive local maxima of H correspond to points

with high variation of the image gray-values in both the spa-

tial and the temporal dimensions. Thus, spatio-temporal in-

terest points of f can be found by detecting local positive

spatio-temporal maxima in H .

1In general, convolution with a Gaussian kernel in the temporal domain

violates causality constraints, since the temporal image data is available

only for the past. Whereas for real-time implementations this problem can

be solved using causal recursive filters [12, 19], in this paper we simplify

the investigation and assume that the data is available for a sufficiently long

period of time and that the image sequence can hence be convolved with a

truncated Gaussian in both space and time. However, the proposed interest

points can be computed using recursive filters in on-line mode.
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2.3. Experiments on synthetic sequences

To illustrate the detection of spatio-temporal interest points

on synthetic image sequences, we show the spatio-temporal

data as 3-D space-time plots where the original signal is

represented by a threshold surface while the detected inter-

est points are presented by ellipsoids with semi-axes pro-

portional to corresponding scale parameters σl and τl.

(a) (b)

(c) (d)

Figure 2: Results of detecting spatio-temporal interest

points on synthetic image sequences: (a) Moving corner;

(b) A merge of a ball and a wall; (c) Collision of two balls

with interest points detected at scales σ2
l = 8 and τ2

l = 8;

(d) the same as in (c) but with interest points detected at

scales σ2
l = 16 and τ2

l = 16.

Figure 2a illustrates a sequence with a moving corner.

The interest point is detected at the moment in time when

the motion of the corner changes direction. This type of

event occurs frequently in natural sequences such as se-

quences of articulated motion. Other typical types of events

detected by the proposed method are splits and mergers of

image structures. In figure 2b, the interest point is detected

at the moment and the position corresponding to the colli-

sion of a ball and a wall. Similarly, interest points are de-

tected at the moment of collision and bouncing of two balls

as shown in figure 2c-d. Note, that different types of events

are detected depending on the scale of observation.

In general, the result of interest point detector will de-

pend on the scale parameters. Hence, the correct estimation

of spatio-temporal extents of events is highly important for

their detection and further interpretation.

2.4. Scale selection in space-time

To estimate the spatio-temporal extent of an event in space-

time, we follow the idea of local scale selection proposed

in the spatial domain by Lindeberg [18] as well as in the

temporal domain [17]. As a prototype event we study a

spatio-temporal Gaussian blob f = g(x, y, t; σ2
0 , τ

2
0 ) with

spatial variance σ2
0 and temporal variance τ2

0 . Using the

semi-group property of the Gaussian kernel, it follows that

the scale-space representation of f is L(x, y, t; σ2, τ2) =
g(x, y, t; σ2

0 + σ2, τ2
0 + τ2).

To recover the spatio-temporal extent (σ0, τ0) of f we

consider the scale-normalized spatio-temporal Laplacian

operator defined by

∇2
normL = Lxx,norm + Lyy,norm + Ltt,norm, (9)

where Lxx,norm = σ2aτ2bLxx and Ltt,norm = σ2cτ2dLtt.

As shown in [15], given the appropriate normalization pa-

rameters a = 1, b = 1/4, c = 1/2 and d = 3/4, the size

of the blob f can be estimated from the scale values σ̃2 and

τ̃2 for which ∇2
normL assumes local extrema over scales,

space and time. Hence, the spatio-temporal extent of the

blob can be estimated by detecting local extrema of

∇2
normL = σ2τ1/2(Lxx + Lyy) + στ3/2Ltt. (10)

over both spatial and temporal scales.

2.5. Scale-adapted space-time interest points

Local scale estimation using the normalized Laplace opera-

tor has shown to be very useful in the spatial domain [18, 6].

In particularly, Mikolajczyk and Schmid [22] combined the

Harris interest point operator with the normalized Laplace

operator and derived the scale-invariant Harris-Laplace in-

terest point detector. The idea is to find points in scale-space

that are both maxima of the Harris function Hsp (4) in space

and extrema of the scale-normalized spatial Laplace opera-

tor over scale.

Here, we extend this idea and detect interest points

that are simultaneous maxima of the spatio-temporal cor-

ner function H (8) as well as extrema of the normalized

spatio-temporal Laplace operator ∇2
normL (9). Hence, we

detect interest points for a set of sparsely distributed scale

values and then track these points in spatio-temporal scale-

time-space towards the extrema of ∇2
normL. We do this by

iteratively updating the scale and the position of the inter-

est points by (i) selecting the neighboring spatio-temporal

scale that maximizes (∇2
normL)2 and (ii) re-detecting the

space-time location of the interest point at a new scale until

the position and the scale converge to the stable values [15].

To illustrate the performance of the scale-adapted spatio-

temporal interest point detector, let us consider a sequence

with a walking person and non-constant image velocities

due to the oscillating motion of the legs. As can be seen in

figure 3, the pattern gives rise to stable interest points. Note

that the detected points are well-localized both in space and

time and correspond to events such as the stopping and start-

ing feet. From the space-time plot in figure 3(a), we can also
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(a) (b)

Figure 3: Results of detecting spatio-temporal interest

points for the motion of the legs of a walking person: (a)

3-D plot with a threshold surface of a leg pattern (up side

down) and detected interest points; (b) interest points over-

laid on single frames in the sequence.

observe how the selected spatial and temporal scales of the

detected features roughly match the spatio-temporal extents

of the corresponding image structures.

Hand waves with high frequency

(a)

Hand waves with low frequency

(b)

Figure 4: Result of interest point detection for a sequence

with waving hand gestures: (a) Interest points for hand ges-

tures with high frequency; (b) Interest points for hand ges-

tures with low frequency.

The second example explicitly illustrates how the pro-

posed method is able to estimate the temporal extent of de-

tected events. Figure 4 shows a person making hand-waving

gestures with high frequency on the left and low frequency

on the right. The distinct interest points are detected at mo-

ments and at spatial positions where the hand changes its

direction of motion. Whereas the spatial scales of the de-

tected interest points remain roughly constant, the selected

temporal scales depend on the frequency of the wave pat-

tern.

3. Classification of events

The detected interest points have significant variations of

image values in the local spatio-temporal neighborhood. To

differentiate events from each other and from noise, one

approach is to compare their local neighborhoods and as-

sign points with similar neighborhoods to the same class

of events. Similar approach has proven to be successful in

the spatial domain for the task of image representation [21]

indexing [25] and recognition [10, 31, 16]. In the spatio-

temporal domain local descriptors have been used previ-

ously by [7] and others.

To describe a spatio-temporal neighborhood we consider

normalized spatio-temporal Gaussian derivatives defined as

Lxmyntk = σm+nτk(∂xmyntkg) ∗ f, (11)

computed at the scales used for detecting the correspond-

ing interest points. The normalization with respect to scale

parameters guarantees the invariance of the derivative re-

sponses with respect to image scalings in both the spatial

domain and the temporal domain. Using derivatives, we de-

fine event descriptors from the third order local jet2 [13]

j = (Lx, Ly, Lt, Lxx, ..., Lttt). (12)

To compare two events we compute the Mahalanobis dis-

tance between their descriptors as

d2(j1, j2) = (j1 − j2)Σ
−1(j1 − j2)

T , (13)

where Σ is a covariance matrix corresponding to the typical

distribution of interest points in the data.

To detect similar events in the data, we apply k-means

clustering [8] in the space of point descriptors and de-

tect groups of points with similar spatio-temporal neighbor-

hoods. The clustering of spatio-temporal neighborhoods is

similar to the idea of textons [21] used to describe image

texture as well as to detect object parts for spatial recog-

nition [31]. Given training sequences with periodic mo-

tion, we can expect repeating events to give rise to popu-

lated clusters. On the contrary, sporadic interest points can

be expected to be sparsely distributed over the descriptor

space giving rise to weakly populated clusters. To prove this

idea we applied k-means clustering with k = 15 to the se-

quence of a walking person in the upper row of figure 5. We

found out that four of the most densely populated clusters

c1, ..., c4 indeed corresponded to the stable interest points

of the gait pattern. Local spatio-temporal neighborhoods of

these points are shown in figure 6, where we can confirm the

similarity of patterns inside the clusters and their difference

between clusters.

2Note that our representation is currently not invariant with respect to

planar image rotations. Such invariance could be added if considering

steerable derivatives or rotationally invariant operators in space.
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c2 c4

c3

c4c2 c4c4c2

c3
c1c1

Classification of interest points

Figure 5: Interest points detected for sequences of walking persons. First row: result of clustering spatio-temporal interest

points. Labeled points correspond to the four most populated clusters; Second row: result of classification of interest points

with respect to the clusters found in the first sequence.
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TimeX
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TimeX
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TimeX

Y

TimeX

Y
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Figure 6: Local spatio-temporal neighborhoods of interest

points corresponding to the first four most populated clus-

ters.

To represent characteristic repetitive events in video, we

compute cluster means mi = 1
ni

∑ni

k=1 jk for each signif-

icant cluster ci consisting of ni points. Then, in order to

classify an event on an unseen sequence, we assign the de-

tected point to the cluster ci if it minimizes the distance

d(mi, j0) (13) between the jet of the interest point j0 and

the cluster mean mi. If the distance is above a threshold,

the point is classified as the background. Application of this

classification scheme is demonstrated in the second row of

figure 5. As can be seen, most of the points corresponding

to the gait pattern are correctly classified while the other

interest points are discarded. Observe that the person in

the second sequence of figure 5 undergoes significant size

changes in the image. Due to the scale-invariance of interest

points as well as the jet responses, size transformations do

not effect neither the result of event detection nor the result

of classification.

4. Application to video interpretation

In this section, we illustrate how the representation of video

sequences by classified spatio-temporal interest points can

be used for video interpretation. We consider the problem of

detecting walking people and estimating their poses when

viewed from the side in outdoor scenes. Such a task is

complicated, since the variations in appearance of people

together with the variations in the background may lead to

ambiguous interpretations. Human motion is a strong cue

that has been used to resolve this ambiguity in a number

of previous works. Some of the works rely on pure spatial

image features while using sophisticated body models and

tracking schemes to constrain the interpretation [2, 5, 27].

Other approaches use spatio-temporal image cues such as

optical flow [3] or motion templates [2].

The idea of this approach is to represent both the model

and the data using local and discriminative spatio-temporal

features and to match the model by matching its features
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data features

(a)

model features

(b)

model vs. data features

(c)

Figure 7: Matching of spatio-temporal data features with model features: (a) Features detected from the data sequence in

the time interval corresponding to three periods of the gait cycle; (b) Model features minimizing the distance to the features

in (a); (c) Model features and data features overlaid. The estimated silhouette overlayed on the current frame confirms the

correctness of the method.

to the correspondent features of the data inside a spatio-

temporal window (see figure 7).

4.1. Walking model

To obtain the model of a walking person, we consider

the upper sequence in figure 5 and manually select the

time interval (t0, t0 + T ) corresponding to the period

T of the gait pattern. Then, given n features fi =
(xm

i , ym
i , tmi , σm

i , τm
i , cm

i ), i = 1, ..., n defined by the

positions (xm
i , ym

i , tmi ), scales (σm
i , τm

i ) and classes cm
i

of interest points detected in the selected time interval,

i.e. tmi ∈ (t0, t0 + T ), we define the walking model by

the set of periodically repeating features M = {fi +
(0, 0, kT, 0, 0, 0, 0)|i = 1, ..., n, k ∈ Z}. Furthermore, to

account for variations of the position and the size of a per-

son in the image, we introduce the state of the model de-

termined by the vector X = (x, y, θ, s, vx, vy, vs). The

components of X describe the position of the person in the

image (x, y), his size s, the phase θ of the gait cycle at

the current time moment as well as the temporal variations

(vx, vy, vs) of (x, y, s). Given the state X , the parameters

of each model feature f ∈ M transform according to

x̃m = sxm + x + vx(tm + θ) + sxmvs(t
m + θ)

ỹm = sym + y + vy(tm + θ) + symvs(t
m + θ)

t̃m = tm + θ
σ̃m = sσm + vssσ

m(tm + θ))
τ̃m = τm

c̃m = cm

(14)

It follows that the current scheme does not allow for scal-

ings of the model in the temporal direction and enables only

the first-order variations of positions and sizes of the model

features over time. These restrictions have not caused prob-

lems in our experiments and can be easily removed by in-

troducing additional parameters in the state vector X and

corresponding rules for updating the model features.

To estimate the boundary of the person, we extract sil-

houettes S = {xs, ys, θs|θs = 1, ..., T} on the model se-

quence (see figure 5) one for each frame corresponding to

the discrete value of the phase parameter θ. The silhouettes

here are used only for the visualization purposes and enable

to approximate the boundary of the person for the current

frame and model state X by points {(xs, ys, θs) ∈ S|θs =
θ} transformed according to x̃s = sxs + x, ỹs = sys + y.

4.2. Model matching

Given the model state X , the current time t0, the length

of the time window tw, and the data features D = {fd =
(xd, yd, td, σd, τd, cd)|td ∈ (t0, t0− tw)} detected from the

the recent time window of the data sequence, the match be-

tween the model and the data is defined by the weighted

sum of distances h between the model and the data features

H(M̃(X), D, t0) =

n
∑

i

h(f̃m
i , fd

j )e−(t̃m

i
−t0)

2/ξ, (15)

where M̃(X) is a set of n model features in the time win-

dow (t0, t0 − tw) transformed according to (14), i.e. M̃ =
{f̃m|tm ∈ (t0, t0 − tw)}, fd

j ∈ D is a data feature mini-

mizing the distance h for a given fm
i and ξ is the variance

of the exponential weighting function that intends to give

more importance to recent features.

The distance h between two features of the same class

is defined as a Euclidean distance between two points in

space-time, where the spatial and the temporal dimensions

are weighted with respect to parameter ν as well as by ex-

tents of features in space-time

h2(fm, fd) =
(xm − xd)2 + (ym − yd)2

(1 − ν)(σm)2
+

(tm − td)2

ν(τm)2
.

(16)

The distance between features of different classes is re-

garded as infinite.
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Figure 8: The result of matching spatio-temporal walking model to the sequences of outdoor scenes.

To find the best match between the model and the data,

we search for the model state X̃ that minimizes H in (15)

X̃ = argminX H(M̃(X), D, t0) (17)

using a standard Gauss-Newton optimization method. The

result of such an optimization for a sequence with data

features in figure 7(a) is illustrated in figure 7(b). Here

the match between the model and the data features was

searched over a time window corresponding to three peri-

ods of the gait pattern or approximately 2 seconds of video.

As can be seen from figure 7(c), the overlaps between the

model features and the data features confirm the match be-

tween the model and the data. Moreover, the model silhou-

ette transformed according to X̃ matches with the contours

of the person in the current frame and confirms a reasonable

estimation of model parameters.

4.3. Results

Figure 8 presents results of the described approach applied

to two outdoor sequences. The first sequence illustrates the

invariance of the method with respect to size variations of

the person in the image plane. The second sequence shows

the successful detection and pose estimation of a person de-

spite the presence of a complex non-stationary background

and occlusions. Note that these results have been obtained

by re-initializing model parameters before optimization at

each frame. Hence, the approach is highly stable and could

be improved even more by tracking the model parameters

X̃ over time.

The need of careful initialization and/or simple back-

ground have been frequent obstacles in previous approaches

for human motion analysis. The success of our method is

due to the low ambiguity and simplicity of the matching

scheme originating from the distinct and stable nature of the

spatio-temporal features. In this respect, direct detection of

spatio-temporal events constitutes an interesting alternative

when representing and interpreting video data.

5. Summary

We have described an interest point detector that finds local

image features in space-time characterized by high variation

of the image values in space and non-constant motion in

time. From the presented examples, it follows that many of

the detected points indeed correspond to meaningful events.

Moreover, estimation of characteristic local scales provides

information about the spatio-temporal extents of events and

enables a computation of scale-invariant descriptors.

Using differential descriptors computed at interest points

we addressed the problem of event classification and illus-

trated how classified spatio-temporal interest points con-

stitute distinct and stable descriptors of events in video

that can be used for video representation and interpreta-

tion. In particular, we have shown how video representation

by spatio-temporal interest points enables the detection and

pose estimation of walking people in the presence of occlu-

sions and highly cluttered and dynamic background. Note

that this result was obtained using a standard optimization

method without careful manual initialization nor tracking.

In future work we plan to extend application of inter-

est points to the field of motion-based recognition. More-

over, as the current detection scheme is not invariant under

Galilean transformations, future work should investigate the

possibilities of including such an invariance and making the

approach independent of the relative camera motion [14].

Another extension should consider the invariance of spatio-

temporal descriptors with respect to the direction of motion,

changes in image contrast and rotations.
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