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Abstract
We are presenting high-resolution space–time (ST) isogeometric analysis of car and tire aerodynamics with near-actual
tire geometry, road contact, and tire deformation and rotation. The focus in the high-resolution computation is on the tire
aerodynamics. The high resolution is not only in space but also in time. The influence of the aerodynamics of the car body
comes, in the framework of the Multidomain Method (MDM), from the global computation with near-actual car body and tire
geometries, carried out earlier with a reasonable mesh resolution. The high-resolution local computation, carried out for the
left set of tires, takes place in a nested MDM sequence over three subdomains. The first subdomain contains the front tire. The
second subdomain, with the inflow velocity from the first subdomain, is for the front-tire wake flow. The third subdomain, with
the inflow velocity from the second subdomain, contains the rear tire. All other boundary conditions for the three subdomains
are extracted from the global computation. The full computational framework is made of the ST Variational Multiscale
(ST-VMS) method, ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods, ST Isogeometric Analysis (ST-
IGA), integrated combinations of these ST methods, element-based mesh relaxation (EBMR), methods for calculating the
stabilization parameters and related element lengths targeting IGA discretization, Complex-Geometry IGAMesh Generation
(CGIMG) method, MDM, and the “ST-C” data compression. Except for the last three, these methods were used also in the
global computation, and they are playing the same role in the local computation. The ST-TC, for example, as in the global
computation, is making the ST moving-mesh computation possible even with contact between the tire and the road, thus
enabling high-resolution flow representation near the tire. The CGIMG is making the IGA mesh generation for the complex
geometries less arduous. The MDM is reducing the computational cost by focusing the high-resolution locally to where it
is needed and also by breaking the local computation into its consecutive portions. The ST-C data compression is making
the storage of the data from the global computation less burdensome. The car and tire aerodynamics computation we present
shows the effectiveness of the high-resolution computational analysis framework we have built for this class of problems.
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1 Introduction

Space–time (ST) isogeometric analysis of car and tire aerody-
namics with near-actual tire geometry, road contact, and tire
deformation and rotation was presented in [1]. The computa-
tional framework was made of the ST Variational Multiscale
(ST-VMS) method [2–4], ST Slip Interface (ST-SI) [5,6] and
ST Topology Change (ST-TC) [7,8] methods, ST Isogeo-
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metric Analysis (ST-IGA) [2,9,10], integrated combinations
of these ST methods, such as the “ST-SI-TC-IGA” [11–13],
element-based mesh relaxation (EBMR) [14], methods for
calculating the stabilization parameters and related element
lengths targeting IGAdiscretization [15,16], and theNURBS
Surface-to-Volume Guided Mesh Generation (NSVGMG)
method, which was introduced in [1].

These methods were addressing in [1] various computa-
tional challenges encountered in the car and tire aerodynam-
ics. The ST context was bringing higher-order accuracy (see
[2,3]). The VMS feature of the ST-VMS was bringing better
representation of the multiscale, turbulent flow patterns. The
ST context was also bringing what comes with moving-mesh
methods, and that is the high-resolution flow computation
near the moving solid surfaces. The ST-SI was making the
moving-mesh computation possible with the tire rotating.
The inner mesh around the tire rotates with the tire. The SI
between the inner and outer meshes accurately connects the
inner and outer parts of the solution. The SI was also, in
some places, just connecting the solution parts represented
over mesh zones with nonmatching meshes at the interface
between the zones and the interface was being treated as an
SI. The ST-TC was making the moving-mesh computation
possible even with the TC created by the contact between the
tire and the road. The contact was being represented with-
out giving up on high-resolution flow representation near the
tire. The ST-SI-TC [12,17], which is the integrated combi-
nation of the ST-SI and ST-TC, was making it possible to
have high-resolution representation near the tire and road
surfaces even when some parts of the SI were coinciding
with those surfaces. It was also facilitating contact location
change as well as contact sliding. The ST-IGA was bringing
higher accuracy in representing the tire geometry and theflow
solution. The ST-SI-IGA [10] and ST-SI-TC-IGA, which are
the integrated combinations of the ST-IGA with the ST-SI
and ST-SI-TC, were bringing that accuracy even when the
ST-SI or ST-SI-TC was needed to be used. These integrated
combinations were also making it possible to have a reason-
able element density in the tire grooves and near the contact
areas and therefore the computational cost was being kept
at a reasonable level. The EBMR was improving the qual-
ity of the meshes generated, and the NSVGMG was making
the NURBS mesh generation for the complex car and tire
geometries less challenging.

The car and tire ST isogeometric analysis in [1] was car-
ried with a reasonable mesh resolution. In this article, we are
presenting a high-resolution ST isogeometric analysis. The
focus is on the tire aerodynamics. The high resolution is in
both space and time. The influence of the aerodynamics of
the car body comes, in the framework of the Multidomain
Method (MDM) [18], from the global computation in [1].
The high-resolution local computation, carried out for the
left set of tires, takes place in a nested MDM sequence over

Fig. 1 Car and tire high-resolution local computation. Top: the three
subdomains of the MDM sequence. Blue indicates the car body and red
indicates the tires, wheels, and disk rotors. Bottom: the NURBS mesh
around the tire, wheel, and disk rotor. The checkerboard pattern is for
differentiating between the elements and the colors are for differentiat-
ing between the patches

three subdomains (see Fig. 1). The first subdomain contains
the front tire. The second subdomain,with the inflowvelocity
from the first subdomain, is for the front-tire wake flow. The
third subdomain, with the inflow velocity from the second
subdomain, contains the rear tire. All other boundary condi-
tions for the three subdomains are extracted from the global
computation.

All the methods we listed in the first paragraph as the
components of the global computational framework, except
for the last one, are also in the local computational frame-
work. They are playing in the local computation the roles they
played in the global computation. Beyond that, the Complex-
Geometry IGAMesh Generation (CGIMG) method [19,20],
MDM, and the “ST-C” [21] data compression are in the local
computational framework. The CGIMG is making the IGA
mesh generation for the complex geometries less arduous.
The MDM is reducing the computational cost by focusing
the high-resolution locally to where it is needed and also by
breaking the local computation into its consecutive portions.
The ST-C data compression is making the storage of the data
from the global computation less burdensome.

1.1 ST-VMS

This subsection, included for completeness, is mostly from
[22,23]. The ST-VMS is the core method used in the local
computation. It serves as a moving-mesh method in compu-
tation of flow problems with fluid–structure interaction (FSI)
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and moving boundaries and interfaces (MBI). It originated
from and subsumes its precursor the Deforming-Spatial-
Domain/Stabilized ST (DSD/SST) method [24–26]. The
DSD/SST is mostly called “ST-SUPS,” with the abbrevia-
tion “SUPS” denoting the stabilization components SUPG
and PSPG, which stand for the Streamline-Upwind/Petrov-
Galerkin [27] andPressure-Stabilizing/Petrov-Galerkin [24].
The ST-SUPS, in broader interpretation of the terminology,
includes the stabilization component coming from Least-
Squares on the Incompressibility Constraint (LSIC), as the
DSD/SST in its form in [25] did. The VMS components of
the ST-VMS are from the residual-based VMS (RBVMS)
method [28–31]. The increased accuracy associated with the
ST framework (see [2,3,32]) makes the ST-SUPS and ST-
VMS appealing also in flow computations without MBI.
Furthermore, the framework, naturally, makes it possible to
use IGA basis functions also in time [32].

The arbitrary Lagrangian–Eulerian (ALE) moving-mesh
framework is older, though its use in 3D finite element flow
computations withmodern stabilizedmethods like the SUPG
is somewhat newer compared to the ST-SUPS. The ram-air
parachute FSI analysis in [33] was one of the earliest compu-
tations with the ALE-SUPS. In the category of moving-mesh
methods with the stabilization components coming from the
RBVMS, however, the ALE-VMSmethod [34–37] precedes
the ST-VMS. The ST-SUPS, ALE-SUPS, ALE-VMS, and
ST-VMS, as methods, have much in common, and so do the
classes of problems computed with them since their incep-
tion.

The classes of problems computed with the ALE-SUPS,
RBVMS, and ALE-VMS include wind turbines [38–59],
turbomachinery [60–66], stratified flows [67,68], bridges
[69–73], marine applications [74–76], free-surface flows
[77–81], two-phase flows [82–88], additive manufactur-
ing [89], aircraft applications [90,91], hypersonic flows
[92], parachutes [33], cardiovascular medicine [34,93–106],
mixed ALE-VMS immersogeometric analysis [103,107]
(ALE-VMS/IMGA) computations [102–104,108–116] in
the frameworkof theFluid–Solid Interface-Tracking/Interface-
Capturing Technique [117], and IMGAFSI and flow analysis
[107,118–121].

The classes of problems computed with the ST-SUPS
and ST-VMS include those summarized in [122] (all com-
puted in 1993–2018), wind turbines [5,36,52,54,55,123–
128], turbomachinery [10,20,54,55,129–131], ground vehi-
cles and tires [1,4,13,56,57,128,132–136], fluid films [134,
136,137], disk brakes [6], flapping-wing aerodynamics [7,
9,36,138–141], spacecraft [142,143], parachutes [14,36,56,
57,142,144–147], cardiovascular medicine [7,8,11,12,23,
105,106,148–157], Taylor–Couette flow [158,159], U-ducts
[160], higher-order temporal IGA discretization [32], and
boundary-layer mesh resolution studies [22].

The ST-SUPS, ALE-SUPS, ALE-VMS, and ST-VMS,
like all moving-mesh methods, need to be complemented
with mesh update methods in FSI and MBI computations.
The mesh update most of the time consists of moving the
mesh to accommodate themotion of the boundaries and inter-
faces and to control the mesh resolution near solid surfaces
that are moving, and remeshing if the element distortion
exceeds an acceptable level. We expect two things from a
goodmeshmovingmethod: to reduce the need for remeshing
and to give high priority to maintaining element quality near
solid surfaces where accurate representation of the bound-
ary layers matters. Since the inception of the ST-SUPS in
1990, a large number of special- and general-purpose mesh
moving methods have been developed for computations with
the ST-SUPS and ST-VMS. Some of them have also been
used in computations with the ALE-SUPS and ALE-VMS.
A recent article [141] on mesh moving methods provides an
overview. The general-purpose methods include, as the first
one, the linear-elasticity mesh moving method with mesh-
Jacobian-based stiffening [158,161] introduced in 1992, and,
as the most recent ones, the EBMR (see Sect. 1.7), where the
mesh motion is determined by using the large-deformation
mechanics equations and an element-based zero-stress state
(ZSS), mesh relaxation and mesh moving methods [162]
based on fiber-reinforced hyperelasticity and optimized ZSS,
and the linear-elasticity mesh moving method with no cycle-
to-cycle accumulated distortion [155,163].

1.2 ST-SI

This subsection, included for completeness, is mostly from
[22]. The “sliding interface” method was introduced in [164]
in the context of the ALE-VMS. We will call that “ALE-SI.”
The ST-SI is the ST version of that. The acronym “SI” is
implying both “sliding” and “slip,” because, independent of
the choice of the word, the SI serves the same purpose in both
theALE-SI and ST-SI, just in two different contexts.With the
ALE-SI and ST-SI, the ST-SUPS, ALE-SUPS, ALE-VMS,
and ST-VMS can be used even in the presence of a rotating
solid surface, such as a car tire, benefiting from what comes
with the moving-mesh methods. The mesh around the rotat-
ing solid surface and inside the SI, with higher refinement
near the solid surface, rotates with it, sustaining the high-
resolution boundary layer representation. The mesh outside
the SI does not rotate with the solid surface but could still
be moving for some other reason. Accurately connecting the
two sides of the solution is achieved by adding to the core for-
mulation (ST-SUPS, ALE-SUPS, ALE-VMS, or ST-VMS) a
set of integrals over the SI. The velocity and stress compati-
bility between the two sides of the SI is accounted for by the
added integrals. Both the ALE-SI and ST-SI were originally
formulated in the context of incompressible flows. Other ST-
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SI versions were introduced for purposes different than but
comparable to the original purpose.

Together with the ST-SI version with the “fluid–fluid SI,”
a version with “fluid–solid SI” was introduced in [5]. One
side of the SI becomes a solid surface. The integrals over the
SI facilitate the weak enforcement of the Dirichlet bound-
ary conditions for the fluid. This version is basically the ST
construction of the weak-Dirichlet-condition method [165].
The ST-SI version with the “porosity SI” was also introduced
in [5]. It has the SI between a thin porous structure and the
fluid on its two sides and makes how the porosity is handled
consistent with how the fluid–fluid and fluid–solid SIs are
handled. The versions for the coupled incompressible-flow
and thermal-transport equations,with both thefluid–fluid and
fluid–solid SIs, were introduced in [6]. With those versions,
thermo-fluid boundary layers near rotating solid surfaces
can also have high-resolution representation and the weak
enforcement of theDirichlet boundary conditions is extended
to thermo-fluid problems. The ST-SI versions introduced in
[146] are the compressible-flow counterparts of the fluid–
fluid, fluid–solid, and porosity SIs. They were connected
to the compressible-flow ST SUPG method [166] and the
compressible-flow porositymodels that were also introduced
in [146].

The classes of problems computed with the ST-SI include
wind turbines [5,52,54,55,124,128], turbomachinery [10,20,
54,55,129–131], ground vehicles and tires [1,13,128,132–
136], fluid films [134,136,137], disk brakes [6], parachutes
[56,57,145–147], cardiovascular medicine [11,12,23,105,
106,152,154–157],Taylor–Couetteflow[159],U-ducts [160],
and boundary-layer mesh resolution studies [22].

1.3 ST-TC

This subsection, included for completeness, is mostly from
[23]. In FSI and MBI problems, contact between moving
solid surfaces can be an actual contact or “near contact.” In
the near contact, there is still some little separation between
the solid surfaces and therefore there is no topology change
in the fluid mechanics domain. In such cases, the nearness is
close enough for obtaining physically reasonable solutions
from the flow computation; in other words, computing with
that little separation is basically good enough for solving
the problem. With a good mesh moving method, no element
needs to collapse and good boundary layer resolutions can
be retained. Several classes of flow problems were computed
with the ST-SUPS and ST-VMS under near-contact condi-
tions with sufficient accuracy. Examples can be found in the
references mentioned in [7].

In some classes of flow problems, however, it is essential
to represent the contact as an actual contact. For example,
in heart valve flow analysis, for obvious reasons, the con-
tact between the valve leaflets needs to be represented as

an actual contact, without any separation. As another exam-
ple, in wing clapping aerodynamics of insects, the contact
between the upper and lower wings needs to be an actual con-
tact. The ST-TC was introduced to make ST moving-mesh
computations possible even in flow problems that involve an
actual contact. With that, we can both represent an actual
contact and retain the good boundary layer resolution. Ele-
ments collapse as needed, which is viable in the ST context.
The connectivity of the “parent” mesh, however, does not
change during the process of element collapse or rebirth, and
therefore the computational efficiency is not harmed.

The classes of problems computedwith the ST-TC include
ground vehicles and tires [1,13,128,132–136], fluid films
[134,136,137], flapping-wing aerodynamics [7,140], and
cardiovascularmedicine [7,8,11,12,23,105,106,132,152,154–
157,167].

1.4 ST-SI-TC

This subsection, included for completeness, is mostly from
[128]. Some classes of problemswill need both the ST-SI and
ST-TC. In the ST-SI version with the fluid–fluid SI, we need
elements on both sides of the SI. The SI might be between
the solid surfaces coming into contact, or in a more gen-
eral context, might be merging with a fluid–solid interface.
The elements between the solid surface and the coinciding
SI segment collapse in the ST-TC process, and the SI seg-
ment switches from the fluid–fluid SI to the fluid–solid SI,
creating an SI that is a mixture of the two SI types. With the
ST-SI-TC, i) the element collapse and rebirth process gains
independence from the solid-surface nodes, ii) we can have
high-resolution boundary layer representation near the fluid–
solid interfaces even when an SI segment coincides with the
solid surface, and iii) we can manage, in an effective fashion,
contact location change and contact sliding.

The classes of problems computedwith the ST-TC include
ground vehicles and tires [1,13,128,132–136], fluid films
[134,136,137], and cardiovascular medicine [11,12,23,105,
106,152,154–157].

1.5 ST-IGA

This subsection, included for completeness, is mostly from
[22]. The IGA basis functions in space brought major accu-
racy increases in fluid and solid mechanics computations
[34,93,164,168]. That made IGA basis functions appealing
for the ST-SUPS and ST-VMS computations and led to the
introduction of the ST-IGA, at the same time the ST-VMS
was introduced. It is IGA discretization in the ST framework.
The terminology “ST-IGA” implies, depending on the con-
text, discretization with IGA basis functions in space or time
or both. The test computations reported in [2], which were in
2D, were for flow past an airfoil and for pure advection of a
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scalar. The flow computationwaswith IGAbasis functions in
space, and the advection computations with IGA basis func-
tions in both space and time, accompanied by a stability and
accuracy analysis for the pure advection equation. The advec-
tion computations and stability and accuracy analysis showed
what can naturally be expected, and that is, higher-order basis
functions in space will deliver more if they are used together
with higher-order basis functions in time. Keeping in mind
that the increased accuracy the ST-IGAwith IGA basis func-
tions in space brings is attained with fewer control points, the
effective element sizes will be larger. With that, larger time
steps can be taken while still keeping the Courant number at
or below the levels we target for good accuracy.

Using IGA basis functions in time is uniquely offered by
the ST framework, and partly because of that the effort was
focused on that track in the early years of the ST-IGA compu-
tations [2,3,9]. Taking advantage of that opportunity brings
higher accuracy in representing the motion of a solid surface,
ameshmotion consistent with that surfacemotion, and better
efficiency in representing the mesh motion and in remesh-
ing. The ST/NURBS Mesh Update Method (STNMUM)
[9,123] was built around these positive attributes of the ST-
IGA. Without loss of generality, the context of rotating solid
surfaces can be used for highlighting the advantages of the
STNMUM. Representation of the circular path is exact with
quadraticNURBSbasis functions, and that can achievedwith
as little as twopatches. To have speeds that are invariant along
the circular path, a constant angular speed can be prescribed
with the aid of a secondary mapping (see [2,3,9,36]). The
ST-C is another example of the good things that come out of
the ST-IGA with IGA basis functions in time. The letter “C”
in “ST-C” means “continuous.” This is a method for extract-
ing time-continuous data from the computed data, and it can
work as a data compressionmethod in dealingwith large data
volumes [4,6,21,54–57,125–127,129,130,132]. The classes
of problems computed by using the ST-IGA with IGA basis
functions in time include wind turbines [5,52,54,55,123,124,
128], turbomachinery [10,20,54,55,129–131], flapping-wing
aerodynamics [7,9,36,138–141], spacecraft cover separation
aerodynamics [142], and higher-order temporal IGA dis-
cretization [32].

The classes of problems computed by using the ST-IGA
with IGA basis functions in space include wind turbines
[54,55,124–128], turbomachinery [10,20,54,55,129–131],
ground vehicles and tires [1,13,128,133–136], fluid films
[134,136,137], parachutes [56,57,145,147], cardiovascular
medicine [11,12,23,105,106,152–157], Taylor–Couette flow
[159], U-ducts [159]. higher-order temporal IGA discretiza-
tion [32], and boundary-layer mesh resolution studies [22].
It was pointed out as early as in 2007 (see [169]) that the
image-based geometries used in patient-specific arterial FSI
computations are not for the ZSS of the artery and that a
ZSS estimation method is needed. The ZSS estimation meth-

ods introduced in and after 2016 [105,170–173] stand on the
IGA basis functions in space, and so does the related hyper-
elastic shell analysis [174,175]. The IGA basis functions in
space have also been a part of quite a few advanced com-
putational methods targeting design and structural analysis,
those reported in [176–185] are examples of that, and turbine
blades and heart valves are among the examples.

1.6 ST-SI-IGA and ST-SI-TC-IGA

This subsection, included for completeness, is mostly from
[23]. The ST-SI-IGA and ST-SI-TC-IGA are essentially the
IGA expansions of the ST-SI and ST-SI-TC discussed in
Sects. 1.2 and 1.4. We get ST-SI-IGA and ST-SI-TC-IGA
by building an integrated combination of the ST-SI and ST-
SI-TC with the ST-IGA.

The ST-SI-IGA retains the favorable moving-mesh fea-
tures of the ST-SUPS, ALE-SUPS, ALE-VMS, and ST-VMS
in IGA-based flow computations that have a rotating solid
surface, such as a turbine rotor. The ST-SI-IGA mechanism
and positive attributes include those that are basically the
same as what we described in Sect. 1.2 for the ST-SI. Beyond
that, the ST-SI-IGA addresses the mesh generation challenge
in IGA discretization. This is accomplished with an SI that
does not have a slip between the two sides. The SI just
connects the parts of the solution obtained over two IGA
mesh zones with nonmatching meshes at the SI between the
zones. Because we are no longer constrained by a matching
requirement, in computation of flow problems with complex
geometries, the IGA discretization becomes more practi-
cal. In IGA-based computations with a thin porous structure
embedded in the flow field, the ST-SI-IGA mechanism is
essentially the same as what we described in Sect. 1.2 for the
ST-SI. In some cases, the rotating solid surface has grooves
or creates narrow spaces or the thin porous structure has
gaps and slits. In computation of such flow problems, the
ST-SI-IGA makes it possible to keep the element density,
and consequently the computational cost, at an acceptable
level. That makes computations even with such geometric
complexities practical.

The ST-SI-TC-IGA, in flow computations with contact
between moving solid surfaces, makes it possible to keep
the element density in the narrow spaces close to the contact
region at an acceptable level. While the solid surfaces come
into contact, prior to the collapse of the elements between
a solid surface and SI, we may have curved and complex
boundaries and narrow spaces. These would need high-
aspect-ratio elements. The ST-SI-TC-IGA makes it possible
to compute under such adverse conditions with an accept-
able level of computational cost. With the enhancements
introduced in [137], the ST-SI-TC-IGA acquired a built-in
Reynolds-equation limit. With that, when the solid surfaces
coming into contact have fluid films between them, we do not

123



1262 Computational Mechanics (2022) 70:1257–1279

need to use separately a Reynolds-equation model in those
regions. The ST-SI-TC-IGA can handle that with comparable
solution quality and computational cost and also work in the
other parts of the flow domain where the Reynolds-equation
model would not work.

The classes of problems computed with the ST-SI-
IGA and ST-SI-TC-IGA include wind turbines [54,55,124,
128], turbomachinery [10,20,54,55,129–131], ground vehi-
cles and tires [1,13,128,133–136], fluid films [134,136,137],
parachutes [56,57,145,147], cardiovascularmedicine [11,12,
23,105,106,152,154–157], and boundary-layer mesh resolu-
tion studies [22].

1.7 EBMR, ZSS, and fiber-reinforced hyperelasticity

This subsection, included for completeness, is mostly from
[141,162]. It provides a short description of the EBMR, ZSS,
and fiber-reinforced hyperelasticity concepts mentioned in
Sect. 1.1.

1.7.1 EBMR

The EBMR restores the mesh integrity lost during the mesh
motion, but does that without remeshing. The loss of mesh
integrity in regions that we care more about does not happen
so often because of the advancedmeshmovingmethods used
with the ST-SUPS and ST-VMS, but could happen in compu-
tationswith a high level of complexity. The FSI computations
reported in [14,186–190] for spacecraft parachute clusters,
for example, had that type of complexity. As proposed in
[14], when faced with a loss of mesh integrity, the EMBR
can be used for relaxing the mesh without changing it at the
fluid–structure interface, and the mesh integrity is restored
to some extent. This is, as commented in [14], a less disrup-
tive and less time-consuming alternative to remeshing. The
EBMRdoes not change the number of elements or nodes, but
just moves slightly some of the nodes to improve the quality
of the elements in need. The motion is determined from the
nonlinear-elasticity equations of large-deformation mechan-
ics and an element-based ZSS (EBZSS). The EBZSS is
essentially a shape generated for each element, and by design,
the undeformed shape is made of “target elements” and is the
shape we want to obtain by solving the nonlinear-elasticity
equations. There are a number of options for building the tar-
get element shapes and they are given in [14]. TheEMBRwas
successfully used in FSI computation of spacecraft parachute
clusters (see [14]).

1.7.2 Locally-defined ZSS

The locally-defined ZSS started as an arterial ZSS estimation
[105,170–173,191,192]. It was formulated first as theEBZSS
in the context of finite element discretization [191,192],
next as the EBZSS in the context of isogeometric dis-

cretization [170,171], and next as the integration-point-based
ZSS (IPBZSS) in the context of isogeometric discretization
[172,173]. In the EBZSS the ZSS is defined for each ele-
ment by a set of positions. Nodes (or control points) from
different elements mapping to the same node in the mesh do
not have to have the same ZSS-defining positions. In the ref-
erence configuration, however, all elements are connected
by nodes and the displacements are measured from that
configuration. Formulating the structural mechanics prob-
lem in this fashion is referred to as “element-based total
Lagrangian” (EBTL) in [191]. The EBTL is a key part
of the EBMR [14]. In the IPBZSS, the way the EBZSS
is defined is extended to its integration-point counterpart,
with the ZSS represented in terms of the metric tensor. The
IPBZSS has more parameters than the EBZSS. Therefore,
while the conversion from the EBZSS representation to the
IPBZSS representation is straightforward and will be exact,
the reverse conversion, in general, will not be exact. For-
mulating the structural mechanics problem in this fashion
is referred to as “integration-point-based total Lagrangian”
(IPBTL) in [162].

1.7.3 Mesh relaxation andmeshmoving based on
fiber-reinforced hyperelasticity and optimized ZSS

The mesh relaxation and mesh moving methods based on
fiber-reinforced hyperelasticity and optimized ZSS were
introduced targeting IGA discretization. They of course also
suitable for use with finite element discretization as a spe-
cial case of IGA discretization. Element distortion during
the mesh deformation is reduced by stiffening the element
in multiple directions with the fibers placed in those direc-
tions. TheZSS is optimized by seeking,withmesh relaxation,
orthogonality of the parametric directions and by making the
ZSS time-dependent as needed.With themesh relaxation, we
improve the quality of the mesh after its initial creation and
have an equilibrium state with the optimized ZSS, bound-
ary conditions, and constitutive law. Preceding the use of the
mesh relaxation in the global car and tire aerodynamics com-
putation, the NURBS mesh used in the computational flow
analysis reported in [124] for a tsunami-shelter vertical-axis
wind turbine was obtained with the mesh relaxation method.

1.8 Stabilization parameters and local length scales
targeting IGA discretization

This subsection, included for completeness, is mostly from
[22,23]. The stabilization terms of the ST-SUPS,ALE-SUPS,
RBVMS,ALE-VMS, ST-VMS, andmost stabilizedmethods
have some factors called “stabilization parameters” [36] that
multiply the residuals. Some of the parameters have the units
of time, and some the units of kinematic viscosity. Thosewith
the units of time are called “τSUPG” and “τPSPG,” and the
one with the units of kinematic viscosity is called “νLSIC”
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[193] (see Sect.1.1 for the abbreviation “LSIC”). That is
the terminology used in the context of the ST-SUPS, ALE-
SUPS, RBVMS, ALE-VMS, and ST-VMS. The expressions
introduced in [194] for stabilization parameters were for sep-
arate τSUPG and τPSPG, and test computations with themwere
successful. Leaving that aside, a single parameter, “τSUPS”
[2,36], is used instead of two.

The expressions for the stabilization parameters involve,
among other constituents, local lengths scales, also called
“element lengths.” Precursors of the element lengths and sta-
bilization parameters used with the SUPG, PSPG, ST-SUPS,
ALE-SUPS, RBVMS, ALE-VMS, and ST-VMS today can
be found in [27,195–197]. The work on designing good ele-
ment lengths and stabilization parameters continued as a
significant part of the research on residual-based stabilized
methods. That generated a good number favorite expressions
for the element lengths and stabilization parameters (see, for
example, [4,9,25,26,123,194,198–203]), and until late 2017
they were all intended for finite element discretization. For
about a decade, the element length was a local length scale in
the flow direction, which is an advection length scale. A sec-
ond local length scale, in the solution-gradient direction, was
introduced in [200]) andwas identified as the diffusion length
scale in [25]. The element length also appears in some of the
integrals over theSI in theALE-SI andST-SI, and the relevant
direction in that case is the SI normal. Element lengths and
stabilization parameters in the ST context were introduced in
[25,200], those specific to the VMS stabilization in [4], and
those for coupled incompressible-flow and thermal-transport
equations in [4]. Direction-dependent element lengths that
have node-numbering invariance also for simplex elements
were introduced in [203]. All these local length scales and
stabilization parameters were, at their inception, intended for
finite element discretization, yet they have also been in use
in computations with IGA discretization.

Local length scales and stabilization parameters targeting
IGA discretization were introduced in 2017 in [15]. It goes
without saying that they would also be suitable for use in
computations with finite element discretization as a special
case of IGA discretization. The expression introduced in [15]
for the direction-dependent local length scale is from a con-
ceptually simple three-step derivation. In the first step, the
direction vector is mapped from the physical element to the
parent element; in the second step, the discretization spacing
along each of the parametric coordinates is accounted for;
in the third step, what has been obtained in the parent ele-
ment is mapped back to the physical element. Although the
derivation steps were in the ST framework, reducing them to
space only is straightforward. The stabilization parameters
given in [13], which are largely from [15], are the current
ones that have been in use in ST-VMS and ST-SUPS com-
putations. In deriving the expressions for the local length
scales, we do not need to use the standard integration para-

metric space. Instead, we can use a preferred parametric
space that more effectively serves the purpose, which is
obtaining good expressions. This idea was introduced and
shown to work well in [16,203,204]. The expressions for the
local local length scales include a transformation tensor that
relates the two parametric spaces. Based on this idea, expres-
sions for the direction-dependent local length scales targeting
complex-geometry B-spline meshes were introduced in [16].
We require the local length scales to be invariant with respect
to element splitting in B-spline meshes. Without that invari-
ance, the flow solutionwould be influenced by something that
it should not be influenced by. The expressions introduced in
[16] meet that requirement, and the proof was presented in
[204].

The local-length-scale expressions introduced in [15,16]
have been used in computing the following classes of
problems: wind turbines [124–128], turbomachinery [131],
ground vehicles and tires [1,13,128,134–136], fluid films
[134,136,137], parachutes [147], cardiovascular medicine
[23,154–157], Taylor–Couette flow [159], U-ducts [160],
higher-order temporal IGAdiscretization [32], andboundary-
layer mesh resolution studies [22]. They have also been used
in [65], following a gas turbine flow computation with IGA
discretization, to calculate the Courant number from the local
flow speed, time-step size, and mesh local length scale in the
flow direction.

1.9 Complex-geometry IGAmesh generation

This subsection, included for completeness, is mostly from
[23]. While the IGA offers superior accuracy, IGA mesh
generation for complex geometries is significantlymore chal-
lenging than finite element mesh generation. Widely avail-
able mesh generation software packages for finite element,
finite volume, and finite difference methods encourage the
usage of these methods. To make IGA-based flow computa-
tions more applicable to problems with complex geometries,
and consequently more practical in computational analysis
of real-world problems, the IGA mesh generation will have
to be less challenging and more encouraging. The CGIMG
and NSVGMG were introduced to that end. We will provide
a brief overview of the CGIMG here, and for the NSVGMG,
we refer the interested reader to [1].

The CGIMG consists of three steps. In the first step,
a block-structured mesh is generated using existing tech-
niques for such meshes. In the second step, that mesh is
projected to a NURBS mesh that is built from patches cor-
responding to the blocks of the block-structured mesh. In
the third step, the original model surfaces are recovered,
to the extent the nature of the recovered surfaces does not
impede the robustness or accuracy of the flow computations.
The CGIMG is normally expected to preserve the element
quality and refinement distribution of the block-structured
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mesh. Mesh generation and mesh quality tests were included
in [19,20]. The tests showed that the CGIMG is a practical
IGA mesh generation method with good performance. The
CGIMG has been used in computing the following classes
of problems: wind turbines [55,124,128], turbomachinery
[19,20,54,55,65,130,131], parachutes [20], and cardiovascu-
lar medicine [20,23,105,106,152,153,155–157].

1.10 MDM

This subsection, included for completeness, is mostly from
[125,128]. The purpose of the MDM, when it was first intro-
duced, was to compute the long-wake flow behind an object,
with the final objective being the wake computation or the
ultimate objective being the computation of the wake influ-
ence on a secondary object placed far downstream. The first
one of a sequence of overlapping subdomains covers the pri-
mary object, with the subsequent subdomains covering the
long wake and the last one covering the secondary object, if
there is one. For the first subdomain, the inflow velocity is
the free-stream velocity. For each subsequent subdomain, the
inflow velocity is extracted from the subdomain before it. In
some cases, the outflowboundary of a subsequent subdomain
might also be in the subdomain before it. When that is the
case, the outflow stress is also extracted from the preceding
subdomain.

A number of 3D problems were computed when and soon
after the MDM was introduced: wake influence on a wing
placed downstream of a larger wing [18], a cylinder wake
extending 300 diameters downstream [205], and aerodynam-
ics [206] and FSI [207] of a parachute crossing an aircraft
wake. The cylinder computation, carried out at Reynolds
number 140, was able to capture the second phase of the
Karman vortex street observed in laboratory experiments. In
the parachute computations, the parachute subdomain was
translating fully inside the subdomain before it.

The thermo-fluids computations reported in [4] for a truck
and its rear tires were based on a spatially multiscale MDM
version with global and local domains. The global domain,
containing the entire truck, was the primary domain, and
the local domain, containing the rear tires, the secondary.
The secondary domain was fully inside the primary domain,
with some of their boundaries coinciding. The thermo-fluid
computation over the primary domain was carried out with
a reasonable-resolution mesh. The inflow velocity and tem-
perature were the free-stream values, the outflow stress and
normal heat flux were zero, and the top and side computa-
tional boundaries had zero normal velocity, tangential stress,
and normal heat flux. The time-history data from the compu-
tation, large in volume, was stored with the ST-C. Following
that, the computation over the secondary domain was car-
ried out with a higher-resolutionmesh and consequently with
increased accuracy in the thermo-fluids analysis and the tire

heat transfer rates. In that computation, the velocity and tem-
perature specified at the inflow, top, and side computational
boundaries were extracted, at each time step, from the stored
primary-computation data at the corresponding time. This
was done by evaluating the temporal NURBS representation
of the primary-computation velocity and temperature at that
corresponding time. At the outflow boundary, the stress was
extracted from the primary-computation data, and the normal
heat flux was set to zero. Where the primary- and secondary-
domain boundaries coincided, the conditions specified there
for the secondary domain were from what was specified for
the primary domain. We note that, because in general the
nodal points of the secondary-domain boundaries were not
nodal points in the primary domain, the data extraction was
done with the least-squares projection.

In [51], the MDM was used in aerodynamic and FSI
analysis of two wind turbines placed back to back in an
atmospheric boundary layer flow. The two turbines acted as
the primary and secondary objects, in the way the MDM
first started. The velocity data from a plane located at 10 m
downstream of the primary turbine was used in [125–127]
as the inflow velocity in the IGA-based two-domain MDM
computations of the wind turbine wake. The computational
frameworkwas presented in [125], studies on spatial and tem-
poral resolution in [126], and studies on spatial-refinement
directional preference in [127]. In [68,128], the MDM was
used in computation of flow over a complex terrain.

1.11 Outline of the remaining sections

The computation settings are described in Sect. 2, the results
are presented in Sect. 3, and the concluding remarks are given
in Sect. 4.

2 Computation settings

2.1 Car and tire models

The car and tire models are the same as in [1]; we include
them here for completeness. The models are shown in Figs. 2
and3.The tiremodel is providedbyYOKOHAMARUBBER
CO., LTD.; the car body, wheel, and disk rotor are not from
an actual CAD data. The car is 4.65 m long, 1.81 m wide,
and 1.16 m high. The tire, wheel, and disk rotor dimensions
are given in Table 1. Figure 4 shows the tire model. It does
not have transverse grooves. The groove widths are different
between the two center and two side grooves. We carry out a
steady-state structural mechanics computation to obtain the
tire deformation, resulting in the shape shown in Fig. 3. All
four tires have the same deformation.
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Fig. 2 Car body model

Fig. 3 Tire (blue), wheel (green), and disk rotor (red) models

Table 1 Model data for the tire,
wheel, and disk rotor

mm

Tire diameter 632

Tire width 211

Groove depth 8.9

Groove (center) width 3.5

Groove (side) width 5.4

Wheel diameter 371

Disk rotor diameter 320

Disk rotor width 80

Fig. 4 Tire model

2.2 Problem setup

The problem setup is the same as in [1]; we include it here
for completeness. The rotation speed corresponds to a linear
speed of 100 km/h at the undeformed tire periphery. Themea-
sured tire contact angle is 22◦. The corresponding car speed
is U0 = 99.39 km/h. The reference frame is attached to the
car. The air density and kinematic viscosity are 1.205 kg/m3

and 1.512 × 10−5m2/s. The tire rotation period, which we
will use in reporting the results, is represented by the symbol
TTR.

Figure 5 shows the global computational domain from [1],
which we will call “car global domain (CGD),” and the car
body and the tires. The domain has a length 13 times the body
length, width 20 times the body width, and height 18 times
the body height. The car center is located at 5 times the body
length from the inflow plane. The velocity is specified at the
inflow and bottom boundaries, at U0. The outflow boundary
condition is stress-free, and the lateral and top boundary con-
ditions are slip. The car body is a no-slip boundary. The tires,
wheels, and disk rotors are also no-slip boundaries, and the
meshes around them are rotating with the tire. The velocity
of the rotating surfaces is obtained from the motion.

Taking the data from the CGD computation in [1] as our
global data, we perform high-resolution computations for the
left set of tires, in the local domain shown in Fig. 6, which
we will call “car local domain (CLD).” The shape of CLD is
related to the mesh used over CGD.

Fig. 5 Car global domain (CGD) and the car body and the tires. The
velocity is specified at the inflow and bottom boundaries, at U0. The
outflow boundary condition is stress-free, and the lateral and top bound-
ary conditions are slip. The car body is a no-slip boundary. The tires,
wheels, and disk rotors are also no-slip boundaries, and the meshes
around them are rotating with the tire. The velocity of the rotating sur-
faces is obtained from the motion
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4.121.72

1.06

Fig. 6 Car local domain (CLD) that we perform the high-resolution
computations in. The dimensions are in m. Blue indicates the car body
and red indicates the tires, wheels, and disk rotors

2.3 CGDmesh

For relational context, we describe the CGD mesh used in
[1]. It was generated over five domain parts, separately, and
the mesh parts were connected with SIs. Figure 7 shows the
domain parts. The outer part (“O”) has the simplest shape.
Inside that, is the body part (“B”), which excludes the tire
parts. Each of the four tire parts consists of three parts: tire
rotating part (“TR”), tire stationary part (“TS”), and thewheel
part (“W”). The parts are identified with abbreviations in a
combination form, such as “CGD-O” and “CGD-TR.” The
CGD-B mesh has controlled layers of elements near the car
body. There are 13 layers of elements in the normal direction,
with a first-layer thickness of 0.7mm. Figure 8 shows the
CGD-B mesh. In the CGD-TR mesh, there are 10 layers in
the radial direction. The first-layer thickness is about 1.5mm.
There are 6 layers in the axial direction, with a first-layer
thickness of about 5.0mm. In the computation with the ST-
SI-TC-IGA, only the CGD-TR mesh was deforming. Figure
9 shows the CGD-TR and CGD-W meshes. Although the
CGD-TS meshes for the front and rear tires have the same
number of control points and elements and mesh structure,
the domain shapes are different. The number of control points
and elements for all five parts of the CGD mesh are shown
in Table 2.

Fig. 7 CGD parts. Dark gray: outer part (O), light gray: part around the
car body (B), red: tire rotating part (TR), blue: tire stationary part (TS)
for the ST-SI-TC, and yellow: part around the wheel and disk rotor (W)

Fig. 8 CGD-Bmesh. Entire domain and cross-sections along the width
and flow directions. Dark gray indicates the car body. The checkerboard
pattern is for differentiating between the elements. The colors are for
differentiating between the patches

2.4 CLDmeshes

We define CLD as a subdomain that covers the CGD-TR,
CGD-TS, and CGD-W meshes and, roughly, the inner part
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Fig. 9 CGD-TR mesh and CGD-TR and CGD-W meshes. The cross-
section is placed at 69.6mm outward from the tire center plane in the
width direction. The cross-section is not through the grooves. The bot-
tommesh picture is at an instant during a one-rotation computation with
the ST-SI-TC-IGA. Dark gray indicates the tire and light gray indicates
the wheel. The checkerboard pattern is for differentiating between the
elements. The colors are for differentiating between the patches

Table 2 CGD mesh. Number of control points (nc) and elements (ne)

Mesh nc ne

CGD-O 57,960 41,928

CGD-B 246,388 158,052

CGD-TR 4×144,448 4×89,856

CGD-TS 4×34,696 4×18,432

CGD-W 4×43,164 4×18,560

Total 1,193,580 707,372

of the CGD-B mesh shown in Fig. 10. We decompose CLD
into three overlapping subdomains “CLD1,” “CLD2,” and
“CLD3,” and perform the high-resolution computations over
those subdomains, as a nested MDM sequence. Figure 11
shows CLD and its three overlapping subdomains. The over-
lap between CLD2 and CLD1 is 5.0% of the CLD1 length,
and between CLD3 and CLD2 4.3% of the CLD2 length.

2.4.1 CLD1

The CLD1 mesh is generated over the four parts of that sub-
domain: “CLD1-B,” “CLD1-TS,” “CLD1-TR,” and “CLD1-
W.” The subdomain parts CLD1-TS, CLD1-TR, and CLD1-
W are the same as the global-domain parts CGD-TS,
CGD-TR, and CGD-W, and the meshes are obtained by knot

Fig. 10 Inner part of the CGD-Bmesh. The transparent box represents,
as reference, the shape of the full CGD-B mesh

1.22
1.62

1.41

Fig. 11 CLD1 and its three overlapping subdomains CLD1, CLD2, and
CLD3. The dimensions are in m. Blue indicates the car body and red
indicates the tires, wheels, and disk rotors

insertion from the corresponding CGDmeshes. We note that
CLD1-TS is, of course, the front CGD-TS. Table 3 shows the
number of control points and elements for CLD1. Figure 12
shows the CLD1-B mesh. It was generated by a starting with
a block-structured finite element mesh from Pointwise, con-
verting it to the NURBSmesh with the CGIMG, followed by
mesh relaxation on that with the method described in Sect.
1.7.3. In the computation with the ST-SI-TC-IGA, as how it
was for the CGD-TR mesh, only the CLD1-TR part of the
CLD1 mesh is deforming. Figure 13 shows the CLD1-TR
and CLD1-W meshes. Compared to the CGD-TR mesh, the
CLD1-TR mesh has about 3 times as many elements in the
circumferential direction. There are 11 elements in the radial
direction, with a first-layer thickness of about 0.68mm, and
12 elements in the axial direction, with a first-layer thickness
of about 2.5mm. In total, the CLD1-TR mesh has about 9
times as many elements as the CGD-TRmesh has. The num-
ber of elements in the CLD1-TS and CLD1-W meshes are
twice as many in all three directions.

2.4.2 CLD2

Figure 14 shows the CLD2 mesh. The number of control
points and elements are 941,108 and 845,000. It was gener-
ated by a starting with a block-structured finite element mesh
from Pointwise, converting it to the NURBS mesh with the
CGIMG.
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Table 3 CLD1 mesh. Number of control points (nc) and elements (ne)

Mesh nc ne

CLD1-B 436,683 358,800

CLD1-TS 207,520 147,456

CLD1-TR 1,095,232 832,896

CLD1-W 233,760 148,480

Total 1,973,195 1,487,632

Fig. 12 CLD1-B mesh. The checkerboard pattern is for differentiating
between the elements. The colors are for differentiating between the
patches

Fig. 13 CLD1-TR mesh and CLD1-TR and CLD1-W meshes. The
cross-section is placed at 69.6mm outward from the tire center plane in
the width direction. The cross-section is not through the grooves. The
bottom mesh picture is at an instant during a one-rotation computation
with the ST-SI-TC-IGA. Dark gray indicates the tire and light gray indi-
cates the wheel. The checkerboard pattern is for differentiating between
the elements. The colors are for differentiating between the patches

Fig. 14 CLD2 mesh. The checkerboard pattern is for differentiating
between the elements. The colors are for differentiating between the
patches

Table 4 CLD3 mesh. Number of control points (nc) and elements (ne)

Mesh nc ne

CLD3-B 543,323 447,400

CLD3-TS 207,520 147,456

CLD3-TR 1,095,232 832,896

CLD3-W 233,760 148,480

Total 2,079,835 1,576,232

Fig. 15 CLD3-B mesh. The checkerboard pattern is for differentiating
between the elements. The colors are for differentiating between the
patches

2.4.3 CLD3

The CLD3 mesh is generated over the four parts of that sub-
domain: “CLD3-B,” “CLD3-TS,” “CLD3-TR,” and “CLD3-
W,” in the same way how the CLD1 mesh was generated.
We note that the CLD3-TR and CLD3-W meshes are the
same as the CLD1-TR and CLD1-W meshes. We also note
that, as mentioned in Sect. 2.3, the front and rear CGD-TS
meshes, despite the different domain shapes, have the same
mesh structures, and therefore so do theCLD1-TS (front) and
CLD3-TS (rear) meshes. In the computation with the ST-SI-
TC-IGA, as how it is for the CLD1mesh, only the CLD3-TR
part of the CLD3mesh is deforming. Table 4 shows the num-
ber of control points and elements forCLD3. Figure 15 shows
the CLD3-B mesh.
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2.4.4 CLD1-TR and CLD3-TR mesh updates

The mesh update for the CLD1-TR and CLD3-TR meshes
is done, as how it was done for the CGD-TR meshes, by a
combination of mesh moving with a special-purpose method
and element collapse on the SI plane with the ST-SI-TC.

2.5 Computational conditions

In all computations, the method is the ST-VMS, and the sta-
bilization parameters are those given by Eqs. (4)–(9) in [13].
The element lengths appearing in the expressions for the sta-
bilization parameters and in some of the integrals over the
SI in the ST-SI are those targeting IGA discretization (see
Sect. 1.8). In the CGD computation, the time-step size was
TTR/144. In the CLD computations, it is TTR/432. The num-
ber of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 300. In the
CGD computation, time was measured from a point reached
after a sufficiently long computation at full Reynolds num-
ber. The computation was carried out until t = 5TTR. We
start the CLD1 computation at t = 0, CLD2 computation at
t = 0.59TTR, and the CLD3 computation at t = 1.38TTR.
We compute until t = 5TTR. The initial conditions are from
the CGD computation at those times. We note that 0.59TTR
and 1.38TTR are the approximate durations for the flow infor-
mation advected from the CLD1 inflow plane with the speed
U0 to reach the CLD2 and CLD3 inflow planes.

Figure 16 shows the boundary conditions for CLD1,
CLD2, and CLD3. The prescribed-velocity boundary con-
ditions are extracted from the CGD solution, except for the
CLD2andCLD3 inflowplanes. The velocities at those planes
come from the CLD1 and CLD2 solutions. The stress bound-
ary conditions are extracted from the CGD solution. We note
that the CGD data we are extracting fromwas stored with the
ST-C, using cubic B-splines in time. The time-step size for
the cubic B-spline representation is TTR/48, which is three
times the time-step size used in the CGD computation.

3 Results

Figures 17 and 18 show, for CGD and CLD, the flow patterns
during the last TTR/36. The CGD computation is from [1].
We see better-resolved vortex structures in the CLD solution.
Figures 19 and 20 show, for CGD and CLD, the flow patterns
around the tire–road contact areas during the last TTR/36.We
see more resolved vortices in the CLD solution. Comparing
the larger vortex structures from the CGD and CLD compu-
tations, our observations are different for the front and rear
tires. The vortex structures are similar near the front tire, but
quite different near the rear tire. In the CGD computation, the
vortex structures near the rear and front tires are close. This

Fig. 16 Boundary conditions for CLD1, CLD2, and CLD3. Blue: car
body, red: ground, green: stress boundary condition, dark gray: tire, yel-
low: wheel, and transparent: prescribed-velocity boundaries. The two
planes with orange frames are the inflow planes for those subdomains

implies that the advected small vortex structures influence
the large-scale solution near the rear tire.

Figures 21 and 22 show, forCGDandCLD, the positional-
averaged shear stress over the last TTR. We see that the
shear stress magnitudes are, as can be expected, quite dif-
ferent between the CGD and CLD solutions. Furthermore, in
the CLD solution, while the large vortex structures near the
front and rear tires are quite different, the distributions of the
shear stress magnitude are comparable. This suggests that if
we need computations with even higher resolution to reach
higher accuracy in flow properties in specific regions, that
can be done over smaller, third-level MDM subdomains.
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Fig. 17 CGD. Isosurfaces corresponding to a positive value of the sec-
ond invariant of the velocity gradient tensor, colored by the velocity
magnitude (km/h), at 5 uniformly spaced instants during the last TTR/36

0 60 120 180

Fig. 18 CLD. Isosurfaces corresponding to a positive value of the sec-
ond invariant of the velocity gradient tensor, colored by the velocity
magnitude (km/h), at the same instants as in Fig. 17
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0 60 120 180

Fig. 19 CGD. Isosurfaces corresponding to a positive value of the sec-
ond invariant of the velocity gradient tensor, colored by the velocity
magnitude (km/h), viewed from below the tires„ at the same instants
as in Fig. 17. The free-stream flow is from left to right. The dark gray
zones are the contact areas. The top frames show the tires viewed, with
the arrows indicating the viewing direction

4 Concluding remarks

We have presented high-resolution ST isogeometric analysis
of car and tire aerodynamics, with many of the complexi-
ties of the actual car and tire, such as the near-actual tire
geometry, road contact, and tire deformation and rotation.
We focused on the tire aerodynamics, with high-resolution in
both space and time. The influence of the aerodynamics of the
car body was included, in the framework of the MDM, from
the global computation with near-actual car body and tire
geometries, carried out earlier with a reasonable mesh reso-
lution. The high-resolution local computation was for the left

0 60 120 180

Fig. 20 CLD. Isosurfaces corresponding to a positive value of the sec-
ond invariant of the velocity gradient tensor, colored by the velocity
magnitude (km/h), viewed from below the tires, at the same instants
as in Fig. 17. The free-stream flow is from left to right. The dark gray
zones are the contact areas. The top frames show the tires viewed, with
the arrows indicating the viewing direction

set of tires. It was performed in a nestedMDM sequence over
three subdomains. The first subdomain was for the front tire,
the second for the front-tire wake flow, and the third for the
rear tire. The inflowvelocitieswere extracted from the global,
first-subdomain, and second-subdomain computations. All
remaining boundary conditions for the three subdomains
were extracted from the global computation.

The full computational framework was made of the ST-
VMS, ST-SI, ST-TC, ST-IGA, integrated combinations of
these ST methods, EBMR, methods for calculating the sta-
bilization parameters and related element lengths targeting
IGA discretization, CGIMG, MDM, and the “ST-C” data
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Fig. 21 CGD. Positional-averaged shear stress (Pa) over the last TTR.
Front left tire and rear left tire. The free-stream flow is from left to right

0.0093 0.093 0.93 9.3

Fig. 22 CLD. Positional-averaged shear stress (Pa) over the last TTR.
Front left tire and rear left tire. The free-stream flow is from left to right

compression. Except for the last three, these methods were
used also in the global computation, and they played the same
role in the local computation. The ST-TC, for example, as in
the global computation,made the STmoving-mesh computa-
tion possible even with contact between the tire and the road,
thus enabled high-resolution flow representation near the tire.
Of the three last methods, the CGIMG, which served as an
alternative to the NSVGMG used in the global computation,
made the IGA mesh generation for the complex geometries
less arduous. The MDM reduced the computational cost by
focusing the high-resolution locally to where it was needed
and also by breaking the local computation into its consecu-
tive portions. The ST-C data compression made the storage
of the data from the global computation less burdensome.

The car and tire aerodynamics computation presented
show the effectiveness of the high-resolution computational
analysis framework we have built for this class of problems.
That includes effectiveness in comprehensive and detailed
analysis of the vortex patterns near the tires, such as seeing

that properly resolved small vortex structures in the front-tire
wake influence the large-scale solution near the rear tire.
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