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Abstract. In this contribution we propose reduced order methods to fast and reliably solve
parametrized optimal control problems governed by time dependent nonlinear partial differential
equations. Our goal is to provide a tool to deal with the time evolution of several nonlinear op-
timality systems in many-query context, where a system must be analysed for various physical
and geometrical features. Optimal control can be used in order to fill the gap between collected
data and mathematical model and it is usually related to very time consuming activities: inverse
problems, statistics, etc. Standard discretization techniques may lead to unbearable simulations
for real applications. We aim at showing how reduced order modelling can solve this issue. We rely
on a space-time POD-Galerkin reduction in order to solve the optimal control problem in a low
dimensional reduced space in a fast way for several parametric instances. The proposed algorithm
is validated with a numerical test based on environmental sciences: a reduced optimal control
problem governed by viscous Shallow Waters Equations parametrized not only in the physics fea-
tures, but also in the geometrical ones. We will show how the reduced model can be useful in
order to recover desired velocity and height profiles more rapidly with respect to the standard
simulation, not losing accuracy.

Keywords. Reduced order modelling, optimal control problems, time dependent nonlinear partial
differential equations, Lagrangian approach.

1. Motivations and Historycal Background

This contribution is rooted in control systems and controllability theory for partial differential
equation. A control problem is a system on which you can act through suitable external variables
said controls [21]. The controllability theory answers to the need of steering a system towards a
desired configuration. Is it always possible? Under which conditions can I reach an exact prescribed
profile for my system?
The problem is quite fascinating and of utmost usefulness in many applications. Even if linear partial
differential control systems have many complex aspects and features to be analyzed both theoreti-
cally and numerically [21, 29, 45, 47, 51], our main focus will concern nonlinearity in fluid dynamics.
In this setting, the problem becomes more challenging and, besides the growing complexity, the
need of a control tool increases. The case of nonlinear partial differential equations is much more
complicated to handle. The control theory for fluid models, e.g. Navier-Stokes equations, prospered
in the eighties thanks to the research of J. L. Lions. The main idea of his production relied on the
role which nonlinearity plays as a control itself, giving the possibility or preventing the achievement
of peculiar motion behaviours [48]. This intuition paves the way to a wide range of literature which
addresses the problem [6, 20, 46, 49, 50, 86].
However, in many applied contexts, it is clear that not all the systems are controllable and, further-
more, it is not possible to prove the existence of controls which give the exact desired solution profile
one wants to reach. This is the reason why the controllabilty theory expands towards optimization
and optimal control theory. Namely, the new objective is to find a way to reach the most similar
configuration with respect to the desired one, satisfying the underling partial differential equation
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constraint. In the next Section, we will introduce optimal control theory in a parametrized setting,
addressing the great importance of a such mathematical model in scientific and engineering contexts.

2. Introduction

This Chapter deals with parametrized optimal control problems (OCP(µ)s) governed by time
dependent nonlinear parametrized partial differential equations (PDE(µ)s). Optimal control is a
versatile mathematical tool which has been exploited in many fields of applications: shape optimiza-
tion, see e.g. [25, 32, 56], fluid dynamics, see e.g. [23, 57, 60, 22], heamodynamics [10, 43, 81, 91],
environmental predictions [63, 64, 77, 81] and more. In a parametrized setting, where a parameter
µ ∈ P ⊂ Rd could represent physical or geometrical features, OCP(µ)s are exploited in order to
study different configurations, which can be used to better understand the phenomenon one is deal-
ing with.
The main motivation for using OCP(µ)s relies in the need of simulations which have to be similar
to a given observation or collected data. If on one hand, OCP(µ)s can be useful in many research
fields, on the other, they are very complex and demanding from a computational point of view and
this issue limits their applicability, most of all in a time dependent framework. Time dependence in
OCP(µ)s has been widely described in literature, see e.g. [34, 37, 44, 72, 75, 76]. In this context, the
required computational resources for OCP(µ)s simulations drastically increase, and parametrized
simulations can be unbearable to be performed with standard discretization techniques. To achieve
a real-time OCP(µ) model, able to reconstruct observable profiles varying with respect to a param-
eter, a rapid and suitable approximation technique is needed. To this end, we rely on reduced order
methods (ROMs). This discretization approach builds a low dimensional framework which can be
exploited in order to solve several parametric instances to give real-time information on the model
at hand. Working in this reduced space allows us to solve the parametrized optimality system in
a small amount of time, by reducing the involved computational costs: for an introduction to the
methodology the interested reader may refer to [7, 13, 33, 61, 67, 68, 62], for example.
If we focus on OCP(µ)s applications, there is a wide production concerning steady linear governing
equations, see e.g. the following far-from-exhaustive list [8, 9, 24, 27, 38, 39, 40, 41, 57, 58, 64]. Then,
the consolidated knowledge about ROM for steady OCP(µ)s has been extended to time dependent
OCP(µ)s: moving from [34, 75, 76, 90] as a starting point, in [37, 79, 80, 81] the main effort is to
enlarge the model in a parametrized setting, and generalize the standard algorithm used to build the
reduced space framework to time dependency. From now on, we will only focus on POD-Galerkin
approach. The motivation relies in its versatility, since it can be even applied to every kind of
governing equations: see e.g. [59, 81, 91] for POD employed in steady OCP(µ)s for nonlinear gov-
erning equations, or [78] for the application of such an algorithm to a space-time nonlinear OCP(µ).
In this contribution, the proposed techniques have been tested through parametrized numerical
simulations given by distributed control for viscous Shallow Waters Equations (SWEs), a model ca-
pable to simulate coastal current behaviour and used in environmental sciences for monitoring plans.

We aim at providing a space-time POD-Galerkin strategy for time dependent nonlinear OCP(µ)s.
This work is outlined as follows. In Section 3, we introduce the theoretical formulation for OCP(µ)s
following [36] and [84], focusing on time dependent nonlinear problems. Furthermore, a brief intro-
duction of the space-time algebraic formulation is presented. Section 4 deals with the main idea
behind reduced order approximation [33] and with its application to space-time nonlinear OCP(µ)s.
When dealing with the numerical approximation of time dependent nonlinear OCP(µ)s, we will re-
strict ourselves to the case of semi-linear PDEs with quadratic nonlinearity in the state variable, to
comply with the numerical test presented in Section 5: an application in coastal marine management
through an OCP(µ) governed by SWEs. The proposed numerical test is inspired by [78], but in
this case we consider not only physical, but also geometrical parametrization. Conclusions follow in
Section 6.
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3. Nonlinear Time Dependent Parametrized Optimal Flow Control Problems

This Section provides the continuous formulation for nonlinear time dependent OCP(µ)s. We
will introduce the Lagrangian approach technique [31, 36] to minimize a quadratic cost functional
constrained to nonlinear time dependent PDE(µ)s. We remark that the analysis is still valid in the
Banach spaces setting, but for the sake of clarity, we will restrict ourselves to the simpler case of the
real Hilbert spaces.

3.1. Problem Formulation. Let us suppose to have a spatial domain Ω where a physical event
described by a time dependent nonlinear PDE(µ) occurs. In order to mathematically represent such
an evolution in the time interval [0, T ], we define the spaces

(1) Y = {y ∈ L2(0, T ;Y ) such that yt ∈ L2(0, T ;Y ∗)} and Q = L2(0, T ;Y ),

for Y Hilbert space. Indeed, we are provided by a nonlinear state equation G : Y× P → Q∗ of the
form

(2) G(y;µ) = f,

where y := y(µ) ∈ Y is the state variable, namely the physical quantity we are interested in, while
f ∈ Q∗ is a forcing term and P ⊂ RP is a parameter space of dimension P ≥ 1, which can describe
physical and/or geometrical features of the system at hand. Moreover, we call L(·, ·) the space of
the continuous linear functions between two spaces. The considered PDE(µ)s present the following
form:

(3) G(y;µ) = yt + En`(y;µ) + E`(y;µ),

where E` ∈ L(Y,Q∗) and En` represent the linear and nonlinear contributions to the equation,
respectively. The term yt describes the time evolution of the equation.
We now want to change the behaviour of the state variable steering it to a desired profile, say
yd := yd(µ) ∈ Yobs ⊇ Y, thanks to the action of a control variable u := u(µ) ∈ U, where U =
L2(0, T ;U) with U another Hilbert space. Thanks to all the previous definitions, we are able to
define the controlled equation E(y, u;µ), where E : Y× U× P → Q∗ of the form:

(4) E(y, u;µ) := G(y;µ)− C(u)− f = 0,

where C ∈ L(U,Q∗) is related to the control variable action on the system in order to change the
original state variable. The OCP(µ) reads: given a µ ∈ P, find the pair (y, u) ∈ Y×U which solves

(5) min
y∈Yad⊂Y,u∈Uad⊂U

J(y, u; yd) subject to E(y, u;µ) = 0,

where J : Y× U× Yobs → R is the cost functional defined by

(6) J(y, u; yd) := 1
2‖y − yd‖2Yobs

+ α

2 ‖u‖
2
U,

and α ∈ (0, 1] is a penalization parameter. It is clear that the smaller is the value of α, the more the
control variable will influence the system. Problem (5) admits a solution if [36, Section 1.5.2]:

(i) Uad is convex, bounded and closed;
(ii) Yad is convex and closed;
(iii) for every µ ∈ P, the controlled system E(y, u;µ) = 0 has a bounded solution map u ∈ U 7→

y(u) ∈ Y;
(iv) for a given µ ∈ P, the map (y, u,µ) ∈ Y × U × P → E(y, u;µ) ∈ Q∗ is weakly continuous

with respect to (w.r.t.) the first two arguments;
(v) for a given yd ∈ Yobs, the cost functional J(y, u; yd) is weakly lower semicontinous w.r.t. the

first two arguments.
To apply the Lagrangian theory, we define z := z(µ) ∈ Y∗∗ = Y ⊂ Q be an arbitrary adjoint variable,
which allows to translates the (5) in an unconstrained minimization problem. Indeed, calling with
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X := X(µ) = (y(µ), u(µ), z(µ)) ∈ X := Y×U×Y the global variable of the system at hand, we can
build the Lagrangian functional L : X× Yobs × P → R as

(7) L (X; yd,µ) := J(y, u; yd) + 〈z, E(y, u;µ)〉QQ∗ ,

where with 〈·, ·〉QQ∗ we mean the duality pairing between Q and Q∗. Let us assume that the following
hold:

(vi) U is nonempty;
(vii) J : Y×U×Yobs → R and E : Y×U×P → Q∗ are continuously Fréchet differentiable w.r.t.

the first two arguments;
(viii) given µ ∈ P, the controlled system E(y, u;µ) = 0 has a unique solution y = y(u) ∈ Y for all

u ∈ U;
(ix) given µ ∈ P, DyE(y, u;µ) ∈ L(Y,Q∗) has a bounded inverse for all control variables u.

From (ix), it is clear that D? indicates the Fréchet derivative w.r.t. a variable ? and we will exploit
this notation from now on. Thanks to hypotheses (vi) - (ix), given a solution (y, u) ∈ Y× U of (5)
for a given µ ∈ P, there exists an adjoint variable z ∈ Y which satisfies the following optimality
system [36]:

(8)


DyL (X; yd,µ)[ω] = 0 ∀ω ∈ Q,
DuL (X; yd,µ)[κ] = 0 ∀κ ∈ U,
DzL (X; yd,µ)[ζ] = 0 ∀ζ ∈ Q,

or equivalently, in strong form

(9)


y +DyE(y, u;µ)∗(z) = yd,

αu− C∗(z) = 0,
E(y, u;µ) = 0,

where DyE(y, u;µ)∗ ∈ L(Q,Y∗) is the adjoint operator of the Fréchet linearization of E(y, u;µ)
w.r.t the state variable, while C∗ ∈ L(Y,U∗) is the adjoint of the control operator. Furthermore,
the system (8) can be recast in compact form: given µ ∈ P, find X ∈ X such that

(10) G(X;µ) = F ,

with

G(X;µ) :=

y +DyE(y, u;µ)∗(z)
αu− C∗(z)

G(y,µ)− C(u)

 and F :=

yd
0
f

 .
We underline that the dual variable z is considered in Y in order to guarantee a proper definition
of the optimality system due to the presence of a backward time evolution of the form −zt in the
expression of DyE(y, u;µ)∗.
In this context, we will always assume that the state equation is local invertible for every parametric
instance, i.e. assumptions (viii) and (ix) always hold. We underline that in the nonlinear case it
may happen to find multiple solutions for a given parameter. However, it will not be the case of
this work, since we are restricting ourselves to a well-posed setting for the state equation. Indeed,
we stress that in the nonlinear case it is only possible to recover existence results for the system
(5). Uniqueness results are strongly related to the state equation one is dealing with and multiple
solutions for the optimality system (10) can be found, see for example [59].

In the next Section, we will show the space-time approximation of the optimality system at hand,
generalizing the strategy already presented in [28, 85, 88, 89]. We will focus on the case of semi-
linear governing equations with quadratic dependence in the state variable, guided by the numerical
results provided in Section 5.
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3.2. The Space-Time Approximation. The next step to be taken is the numerical approximation
of the optimal solution X of (10) in order to investigate its features varying µ ∈ P in a space-time
fashion. This approximation approach is a versatile tool already exploited in the discretization of
parabolic equations and several OCP(µ)s, see e.g. [28, 34, 36, 35, 42, 79, 80, 78, 88, 89, 85]. We first
focus on the space discretization, which is performed through the Finite Element (FE) technique.
Let us define the FE function space Y N

y
FE = Y ∩Kry and UN

u
FE = U ∩Kru , where

Kr = {v ∈ C0(Ω) : v|K ∈ Pr, ∀K ∈ T },
with Pr is the space of all the polynomials of degree at most equal to r and K is an element of
a triangularization T of the spatial domain Ω. We can now consider the semi-discrete function
spaces YN

y
FE =

{
y ∈ L2(0, T ;Y N

y
FE) s.t. yt ∈ L2(0, T ; (Y N

y
FE)∗)

}
, QN

y
FE = L2(0, T ;Y N

y
FE) and

UNuFE = L2(0, T ;UNFE). Once made the spatial discretization step, a time discretization over the
interval [0, T ] must be taken into account resulting in the final space-time discrete spaces, which are
denoted by YN

y
FE

Nt
, QN

y
FE

Nt
and UN

u
FE

Nt
, where Nt is the number of the considered timesteps. Following

[42], we decided to use the same space-time approximation for YN
y
FE

Nt
and QN

y
FE

Nt
. For the sake

of notation, we will refer to the space-time function spaces as YNy ≡ QNy and UNu and, as a
consequence, XN := QNy ×UNu×QNy , i.e. N = 2Ny +Nu, with Ny = Ny

FE ·Nt and Nu = Nu
FE ·Nt.

In this finite dimensional setting the problem to be solved reads: given µ ∈ P and observation
yNd ∈ QNy find XN := XN (µ) ∈ XN such that

(11) G(XN ;µ) = F .
In the following, we make clear the algebraic structure we exploited in the numerical experiment

presented in Section 5.1. First of all, let us divide the time interval [0, T ] inNt equispaced subintervals
of length ∆t and let us call tk = k∆t for k = 0, . . . , Nt a generic time instance. The variables yNk m
uNk and zNk for a specific timestep, can be represented with FE basis {φi}N

y
FE

i=1 and {ψi}N
u
FE

i=1 for Y N
y
FE

and UN
u
FE , respectively as follows

yNk =
NyFE∑
i=1

yikφ
i, uNk =

NuFE∑
i=1

uikψ
i, and zNk =

NyFE∑
i=1

zikφ
i.

We now define the space-time state, control and adjoint vectors

y =

 ȳ1
...
ȳNt

 , u =

 ū1
...

ūNt

 , and z =

 z̄1
...
z̄Nt

 .
Namely, ȳk, ūk and z̄k are the column vectors with FE coefficients of the variables at time instance
tk, with k = 1, . . . , Nt, i.e.

ȳk =

 y1
k
...

y
Ny
FE

k

 , ūk =

 u1
k
...

u
NuFE
k

 , and z̄k =

 z1
k
...

z
Ny
FE

k

 .
Applying the same strategy to the initial time condition, to the desired state and the forcing term,
we can define

y0 =


ȳ0
0
...
0

 , yd =


ȳd1
ȳd2

...
ȳdNt

 , and f =


f̄1
f̄2
...
f̄Nt

 ,
respectively, where ȳ0, ȳdk and f̄k, in analogy with the aforementioned space-time variables, are the
column vectors given by the FE coefficients in their respectively function spaces, with k = 1, . . . , Nt.
We begin the discretization analysis from the state equation, for the sake of clarity. Concerning the
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space discretization level, once applied the controlled equation to the FE basis, we can derive the
matrices En`(y;µ) + E`(µ)− C, omitting for the moment the time evolution. Furthermore, we need
the mass matrices My and Mu for state/adjoint variables and control, respectively. At every time
instance, after performing a backward Euler discretization in time, we have to solve the following
system:

(12) My ȳk + ∆t (En`(y;µ) + E`(µ))︸ ︷︷ ︸
E(y,µ)

ȳk −∆tCūk = My ȳk−1 + f̄k∆t for 1 ≤ k ≤ Nt.

Thus, the whole space-time system reads
My + ∆tE(y,µ)

−My My + ∆tE(y,µ)
−My My + ∆tE(y,µ)

. . . . . .
−My My + ∆tE(y,µ)


︸ ︷︷ ︸

K(y;µ)


ȳ1
ȳ2
ȳ3
...
ȳNt



(13) −∆t


C

C
C

. . .
C




ū1
ū2
ū3
...

ūNt

=


My ȳ0 + ∆tf̄1

0 + ∆tf̄2
0 + ∆tf̄3

...
0 + ∆tf̄Nt

 .
We underline that the system presents a nonlinear dependence from the state in the term En`(µ),
related to the nonlinear contribution of the state operator En`(y;µ). The space-time state equation
can be written in compact form as

(14) K(y;µ)y −∆tCstu = Mysty0 + ∆tf,

where the subscript “st” indicates the all-at-once matrices, namely Cst is the block-diagonal matrix
which entries are given by C of dimension RNy × RNu and Myst is the matrix made by My on the
diagonal, of dimension RNy × RNy .
We now take into account the optimality equation, which easily reads:

(15) α∆tMuūk −∆tCT z̄k = 0 for 1 ≤ k ≤ Nt,

or in compact form

(16) α∆tMustu−∆tCTstz = 0,

where Must is the block-diagonal matrix which entries are given by Mu of dimension RNu×RNu . We
can now take into account the adjoint equation. To this purpose, we have to explicit the algebraic
structure of DyE(y, u;µ). The assumption of the quadratic nonlinearity in the state variable gives
the following form to the Fréchet derivative of the controlled state equation with respect to the
state y: E′n`[y](µ) + E`(µ), where the linear state structure remains the same, while the nonlinear
operator is linearized in E′n`[y]. It is clear that the control operator C has to disappear since it does
not depend on the state variable. Thus, performing a forward Euler method which is equivalent to
an implicit scheme due the backward parabolic nature of the adjoint equation, at each time instance
it reads:
(17)

My z̄k−1 = My z̄k + ∆t(−Mobsȳk−1−E′n`[y]T (µ)− ET` (µ)︸ ︷︷ ︸
−EadjT (µ)

p̄k−1 + Mobsȳdk−1) for 1 < k ≤ Nt,

where Mobs is the state mass matrix restricted to the observation domain. We stress that Eadj(µ)
hides the state variable dependence. Futhermore, also in this case, we can write the whole all-at-once
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system:
My + ∆tEadjT (µ) −My

My + ∆tEadjT (µ) −My

. . . . . .
My + ∆tEadjT (µ) −My

My + ∆tEadjT (µ)


︸ ︷︷ ︸

K′(µ)


z̄1
z̄2
z̄3
...
z̄Nt



+∆t


Mobs

Mobs
Mobs

. . .
Mobs




ȳ1
ȳ2
ȳ3
...
ȳNt

 =


∆tMobsȳd1

∆tMobsȳd2

∆tMobsȳd3
...

∆tMobsȳdNt

 .
Then, in a more compact notation, the adjoint equation reads:

(18) K′(µ)z + ∆tMobssty = ∆tMobsstyd,

where Mobsst ∈ RNy × RNy is the block-diagonal matrix which entries are given by Mobs. Finally,
we are able to collect all the information and build the global all-at-once system:

(19)

G(X;µ)︷ ︸︸ ︷∆tMobsst 0 K′(µ)
0 α∆tMust −∆tCTst

K(y;µ) −∆tCst 0

y
u
z


︸︷︷︸

X

=

F︷ ︸︸ ︷ ∆tMobsstyd
0

Mysty0 + ∆tf

 .
We remark that the nonlinearity of G(X;µ) derives from K(y;µ) and K′(µ), due to the nonlin-
ear terms En`(y;µ) and E′n`[y]T (µ). However, for the sake of notation, we omitted the direct
X−dependence from the matrices.
The nonlinear system, then, can be recast in residual formulation as

(20) R(X;µ) := G(X;µ)− F = 0,

where R(X;µ) will be called the global residual of the optimality system. To solve system (20), we
employed Netwon’s method: namely we iteratively solve

(21) Xj+1 = Xj + Jac(Xj ;µ)−1(F− G(Xj ;µ)), j ∈ N,

until a residual based convergence criterion is satisfied. We recall that the matrix K′(µ) still depends
on the state vector y in the term E′n`[y]T . Then, the linearization w.r.t. y of K′(µ) leads to a new
term in the formulation:

(22) Dy(E′n`[yj ]T )[zj ].

Namely, the Jacobian matrix will have the following form:

(23) Jac(Xj ;µ) =

∆tMobsst + Dy(E′n`[yj ]T )[zj ] 0 Kl(yj ;µ)T
0 α∆tMust −∆tCTst

Kl(yj ;µ) −∆tCst 0

 ,
where each matrix taken into consideration is now linear in the j−th value of one of the involved
variables and Kl(yj ;µ) is the linearized version of K(y,µ). Thanks to this remark we are able to
show the saddle point structure of the system at hand. Indeed, equation (23) can be written as

(24) Jac(Xj ;µ) =
[
A BT
B 0

]
,
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where

(25) A =
[
∆tMobsst + Dy(E′n`[yj ]T )[zj ] 0

0 α∆tMust

]
and B =

[
Kl(yj ;µ) −∆tCst

]
.

The proposed framework is very common in many CFD applications, from Stokes equations to PDEs
contrained optimization. In the saddle point setting, following the Brezzi theory [15], to guarantee
the existence of a unique solution of (24), the matrix A should be invertible and the following Brezzi
inf-sup condition should be verified [14, 15]:

(26) βN (µ) := inf
0 6=z

sup
0 6=x

zTBx
‖x‖Y×U‖z‖Y

≥ β̂(µ)N > 0,

where x = [y, u]T . For linear state equations hypotheses (i)-(ix) assure the well-posedness of the
saddle point structure [36, 57, 58, 79]. This is not the case for nonlinear settings, where the where
the fulfillment of (i)-(ix) does not ensure uniqueness and the Brezzi theorem should be verified
from case to case. In the FE context, the inequality (26) holds when the function spaces for state
and adjoint coincide [57, 58]. The assumption z ∈ Y, will guarantee the fulfillment of the inf-sup
stability condition in the space-time approximation once provided at the continuous level. It is
clear that in order to solve the all-at-once optimization problem in a parametrized setting, for a
given µ ∈ P, we have to deal with a high-dimensional systems. The solution of many-query and/or
real-time tasks require growing computational resources and computational time for simulations.
In this context, the space-time approximation has some limitations most of all when one relies,
as in our case, on the direct solution of the optimality system. To lighten this issue, besides the
employment of more computational resources, proper preconditioners and multigrid approaches cen
be used, see e.g. [14, 71, 75, 76] and the references therein. In the next Section we will introduce
ROMs for space-time nonlinear OCP(µ)s, providing a general approximation strategy which can
solve the issue of the huge amount of computational costs that are usually associated to a standard
space-time solution process.

4. ROMs for Nonlinear Space-Time OCP(µ)s

This Section introduces ROMs for nonlinear space-time OCP(µ)s. We refer to [77, 81, 91] for
previous contributions to ROM for nonlinear OCP(µ)s and to [78] for their extension to time depen-
dent nonlinear governing equations. First, we introduce the ROMs ideas and we will briefly focus on
the standard approaches to make the strategy effiecient in terms of computational resources. Then,
we will describe the POD-Galerkin basis construction algorithm, see [11, 13, 16, 18, 33] as general
references. We will exploit the classical aggregated spaces technnique, following the linear OCP(µ)s
fashion, as already presented in [8, 9, 24, 27, 39, 40, 57, 58, 64]. We underline that the proposed
strategy is strictly related to the linear quadratic case, i.e. OCP(µ)s governed by linear PDE(µ)s
with a quadratic cost functional. However, it represents a classic choice to deal with more general
nonlinear frameworks, see e.g. [62].

4.1. General Reduction Strategy. In Section 2, we introduced the importance of parametric
optimal control in several field of applications. Parameters can represent physical features and/or
geometrical ones and, in many-query and real-time contexts, there exists the need to study several
parametric instances to better understand the properties of a system. For this task, the space-
time formulation can be unbearable and limit the knowledge capability of OCP(µ)s due to the
huge amount of computational resources needed for their simulations. The ROM aim at building
a low-dimensional surrogate function space, in order to decrease the needed time for a simulation,
guaranteeing a better parametric analysis in a small amount of time. We now provide the main
ROM ideas for OCP(µ)s. Let us consider the global variable X(µ) = (y(µ), u(µ), z(µ)), parametric
solution of (10). In this Section we make the parameter dependence explicit, for the sake of clarity.
Indeed, it will be useful to understand the basics and main features of this discretization approach.
The first phase of the ROM relies in the construction of basis functions to represent the high fidelity
solution XN (µ). This goal is reached through the employment of snapshots, i.e. properly chosen
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solutions of (11). The low-dimensional function space is a subset of XN and in order to solve the
optimality system for a new value of µ ∈ P it is sufficient to perform a standard Galerkin projection
over the reduced space. In the following, we assume to have already built the reduced space1 for the
global variable X(µ), say XN ⊂ XN . We stress that the reduced dimension N verifies N � N . The
building procedure is part of the offline phase where not only the basis functions are computed, but
also the µ-independent quantities are assembled and stored.
Once the offline phase is concluded, the reduced optimality system reads: given µ ∈ P, find
XN (µ) := (yN (µ), uN (µ), zN (µ)) ∈ XN := YN × UN × YN such that it holds:

(27)


DyL (XN ; yd,µ)[ω] = 0 ∀ω ∈ YN ,
DuL (XN ; yd,µ)[κ] = 0 ∀κ ∈ UN ,
DzL (XN ; yd,µ)[ζ] = 0 ∀ζ ∈ YN .

The solution is given in an online phase, where for every new evaluation of µ ∈ P, the optimality
system (27) is assembled and solved. From the latest arguments, it is natural to deduce that one of
the main ingredients of this procedure is the efficient division between a possibly expensive offline
phase, which is performed only once, and a fast projection phase to solve the system for several
parameters. This may be possible if we assume an affine decomposition for (27), i.e. the involved
equations have the following form:

(28)

DyL (XN , yd,µ)[ω] =
Qy∑
q=1

Θq
y(µ)DyL

q(XN ; yd)[ω],

DuL (XN ; yd,µ)[κ] =
Qu∑
q=1

Θq
u(µ)DuL

q(XN ; yd)[κ],

DzL (XN ; yd,µ)[ζ] =
Qz∑
q=1

Θq
z(µ)DzL

q(XN ; yd)[ζ].

In other words, the system can be recast as the product of µ−dependent smooth functions
Θq
y(µ),Θq

u(µ),Θq
z(µ) and µ−independent forms DyL q(XN , yd)[ω], DuL q(XN ; yd)[κ], and

DzL q(XN ; yd)[ζ].
When this is the case, the online phase does not depend on N and usually guarantees the solution
of the system in a small amount of time.
Remark 4.1. For nonlinear systems, even if structure (28) is fulfilled, the involved nonlinear forms still
depend on XN (µ) and this affects the computational advantage in using a POD-Galerkin approach,
since it involves the assembly (and projection) of the high fidelity solution during the online stage.
To overcome this issue, hyper-reduction techniques based on the Empirical Interpolation Method
(EIM) may be employed, see e.g. [12] or [33, Chapter 5].

In the next Section, we will describe the space-time POD-Galerkin strategy to build the reduced
space XN .

4.2. Offline and Online phase: from Space-Time POD Algorithm for OCP(µ)s to Galerkin
Projection. The ROM building process has mainly been addressed through two techniques: the
POD [11, 16, 18, 33] and the greedy algorithm [27, 33, 57, 58, 69]. In this work, we will focus on
the first one since it can be applied to any state equation: indeed, greedy constructions are based
on the employment of an error estimator, which is still not available for nonlinear time dependent
OCP(µ)s.
The POD-Galerkin algorithm samples Nmax parameters in P and computes the related snapshots.
After this exploratory phase, a compressing stage starts, where N < Nmax basis functions are
provided after snapshots manipulation, aiming to get rid of the redundant information in the
parametrized system.

1The description of the algorithm used to build the spaces is postponed in Section 4.2
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Let us define the subset PNmax ⊂ P given by the sampled parameters, which has cardinality Nmax.
The chosen snapshots will form the following sampled manifold

MNNmax
= {XN (µ) | µ ∈ PNmax} ⊂ MN ,

where we assume Nmax large enough to let MNNmax
be a reliable representation MN . The POD

algorithm is applied separately for each involved variable, in a partitioned space-time approach,
where the procedure provides spaces of dimension N which minimizes the following quantities:√

1
Nmax

∑
µ∈PNmax

min
ωN∈YN

‖yNy (µ)− ωN‖2Y,
√

1
Nmax

∑
µ∈PNmax

min
κN∈UN

‖uNu(µ)− κN‖2U,

√
1

Nmax

∑
µ∈PNmax

min
ζN∈YN

‖zNy (µ)− ζN‖2Y.

In the following we describe the snapshots manipulation to build the reduce space only for one
variable, say the state y(µ). The proposed arguments can be identically replied for the other
variables as well. First of all, we consider the ordered set of parameters µ1, . . . ,µNmax ∈ PNmax

to which correspond a set of order snapshots yNy (µ1), . . . , yNy (µNmax). The correlation matrix
Cy ∈ RNmax×Nmax of snapshots of the state variable, i.e.:

Cy
ml = 1

Nmax
(yNy (µm), yNy (µl))Y, 1 ≤ m, l ≤ Nmax.

First, we solved the following eigenvalue problem:

Cyxyn = λynx
y
n, 1 ≤ n ≤ N,

with ‖xyn‖Y = 1. Let us assume to have sorted the eigenvalues λy1, . . . , λ
y
Nmax

in decreasing order and
to consider only the first N ones, namely λy1, . . . , λ

y
N , and the corresponding eigenvectors xy1, . . . , x

y
N .

Let (xyn)m be m-th component of the state eigenvector xyn ∈ RNmax . Thus, the POD basis functions
are given by the following relation:

(29) χyn = 1√
λyn

Nmax∑
m=1

(xyn)myNy (µm), 1 ≤ n ≤ N.

The relation (29) is standard in data-compression algorithms such as POD, see e.g. [33, 62] . It
represents how the bases can be written in terms of the POD eigenvalues-eigenvectors pairs. We
remark that the time instances are not separated in the POD procedure: i.e. the snapshots preserve
the space-time structure. The values Nmax and N can be guided by the analysis of the POD
eigenvalues, since the following holds [33, 62]:

(30)

√√√√ 1
Nmax

Nmax∑
m=1
‖yNy (µm)− PN (yNy (µm))‖2Y =

√√√√ Nmax∑
m=N+1

λym,

where PN : Y→ YN is the projection for functions in Y onto the reduced space YN . Another aspect
to take care of is the sampling of the Nmax parameters for the POD, which can be related to some
previous knowledge one has of the system at hand.
As already specified in Section 3.2, the linearized OCP(µ) leads to the solution of a saddle point
system at each iteration of the Newton’s method. To prove the existence and uniqueness of the
solution, the matrix B of system (24) must verify the inf-sup stability condition (26) for every
µ ∈ P. The relation, at the space-time level, holds thanks to the same discretization technique used
for state and adjoint variable. However, this assumption does not guarantees the fulfillment of the
inf-sup stability at the reduced level. Indeed, the basis has to be manipulated in order to achieve
this goal since the standard space-time POD process may lead to different reduced spaces for state
and adjoint, even if the high fidelity discretization is the same for both the variables. To overcome
this issue, we exploit aggregated spaces technique. This strategy is very common and well known in
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ROM literature for OCP(µ)s, see [8, 9, 24, 27, 39, 40, 57, 58, 64] as references. The main idea is to
build a common function space which represents both state and adjoint variables
(31) YN = span {χyn, χzn, n = 1, . . . , N},
while for the control variable we rely on the standard space
(32) UN = span{χun, n = 1, . . . , N}.
We can now define the basis matrix

Z =
[
Zx
Zz

]
, and Zx =

[
Zy
Zu

]
where Zy ≡ Zz = [χy1| · · · |χ

y
N |χz1| · · · |χzN ] ∈ RNy×2N and Zu = [χu1 | · · · |χuN ] ∈ RNu×N . The Z spans

the reduced space XN . In this framework we can solve the optimality system in a small amount of
time for every parametric instance through a Galerkin projection into the reduced spaces. Thus, the
final system reads:
(33) GN (XN ;µ)XN = FN ,
with

GN (XN ;µ) := ZTG(ZXN ;µ), and FN := ZTF.
The system (33) inherits the nonlinearity feature from the high fidelity one and the Newton’s method
can be employed also in this case

(34) Xj+1
N := XjN + JacN (XjN ;µ)−1(FN − G(XjN ;µ)XjN ), j ∈ N,

presenting the saddle point structure for the Frechét derivative, i.e.

(35) JacN (XN ;µ)XN =
[
AN BTN
BN 0

] [
xN
zN

]
,

with JacN (XN ;µ) = ZT Jac(ZXN ;µ)Z, AN = ZTx AZx and BN = ZTz BZx
In the reduced framework, the reduced inf-sup condition reads

(36) βN (µ) := inf
0 6=zN

sup
0 6=xN

zTNBNxN
‖xN‖Y×U‖zN‖Y

≥ β̂N (µ) > 0,

which is verified due to the aggregated spaces definition. It is known that using the state and adjoint
function spaces built on their respective snapshots without any kind of manipulation might be not
sufficient to guarantee the well-posedness of a linear saddle point system (35). Indeed, by means of
standard POD function spaces, the fulfillment of (36) is not assured. To avoid this issue, we follow
the strategy already employed in [58] and previously in [24]: we use the same space for state and
adjoint, made by the union of the two different bases obtained by the POD applied to state and
adjoint, respectively, as defined in (31). We remark that, even if the reduced system increases its
final dimension through this approach, it is usually much smaller then N . Moreover, it is clear that
to have a good reduced approximation, the high fidelity solution must be a good representation of
the continuous framework. However, as already specified in Section 3, it has to be verified case by
case. This kind of analysis goes beyond the goal of this contribution and we will always assume that
the space-time approximation is a valid discrete representation of the continuous problem. In the
next Section we will show with some numerical examples on how convenient ROMs can be in the
framework of space-time nonlinear OCP(µ)s.

5. Application to Shallow Waters Equations

This Section shows how the previously proposed methodologies can be applied to the viscous
SWEs model. We stress that the described strategies are general and can be applied to several state
equations. Furthermore, they easily adapt to simpler settings like steady and/or linear problems,
which are still useful in many engineering and scientific fields, as already specified in Section 2.
However, in the following, we will focus on environmental sciences and, more specifically, in coastal
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management: a growing impact field of research that needs the support of accurate real-time simu-
lations. To this end, first, we will introduce the viscous SWEs state equations and some motivations
for the primary importance of such a model in coastal fluid dynamics. Then, we will briefly describe
the optimality system formulation at the continuous level before proposing some numerical results
to test our methodology in a physical and geometrical parametrized setting.

5.1. Main Motivations and Problem Formulation. This Section is motivated by the growing
demand of fast and reliable simulations in the framework of coastal management. Indeed, the marine
environment is related to social and economic growth, biodiversity and ecosystem preservation,
monitoring plans for possibly dangerous events related to weather factors or anthropic behaviour.
The viscous SWEs result in a very versatile model in coastal sciences which can represent marine
impact on shores and coasts, planetary currents, tsunamis waves... [17, 87]. The state equation and
the control problem have been studied analytically and numerically in several works, see for example
[3, 2, 4, 5, 26, 55, 54, 53, 65, 66, 83]. In a parametrized setting, they have been explored as state
equation in [73, 74] and in [78] in an optimal control framework.
First of all we define our parameter, µ = (µ1, µ2, µ3, µ4) ∈ P ⊂ R4. The first three parameters are
related to the physics of the problem, while the latter describes the geometry of the considered spatial
domain: the specific description of the parametrized setting is postponed later in the Section. For
this peculiar state equation, we define the function spaces Yv = H1

ΓDv (µ4)(Ω(µ4)), Yh = L2(Ω(µ4))
and the space U = L2(Ω(µ4)), where ΓDv (µ4) is a portion of the boundary domain ∂Ω(µ4) where
Dirichlet boundary conditions have been imposed. The involved variables are the vertically averaged
velocity profile of the wave v and the surface elevation variable h, respectively considered in Yv and
Yh. We will focus on the simpler setting, where the bottom bathymetry zb is defined as a constant
function: it can be generalized to more realistic bathymetry, see e.g [26, 66, 65]. In Figure 1 we
provide a description of the physical phenomenon we are dealing with, together with the notations
we will exploit. We used the standard 2D-model presented in [2, 55].

x

z

h

zb

Figure 1. Notations: schematic representation.

The state solution valocity and height are defined, respectively, in

Yv =
{
v ∈ L2(0, T ; [Yv]2) such that vt ∈ L2(0, T ; [Y ∗v ]2)

}
,

and
Yh =

{
h ∈ L2(0, T ;Yh) such that ht ∈ L2(0, T ;Y ∗h )

}
.

Thus, we can define the global state function space given by Y = Yv ×Yh, where the state variable
(v, h) will be sought. Furthermore, let u ∈ U := L2(0, T ; [U ]2) be the control variable of the system.
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For the numerical results, we will deal with a distributed optimal control, where the control variable
acts as an external forcing term such as atmospheric pressure, bottom friction and wind action.
Namely, you are not actually controlling the system but one can interpret the optimal control
framework as an inverse problem capable to guess what are the physical conditions that can represent
a desired velocity-height profile (vd, hd) ∈ Yobs := Qv ×Qh, where Qv := L2(0, T ; [L2(Ω(µ4))]2) and
Qh := L2(0, T ;L2(Ω(µ4))). The problem at hand reads: given µ ∈ P find (v, h) ∈ Y which minimizes
J((v, h),u, (vd, hd)), where

J((v, h),u; (vd, hd)) =1
2

∫ T

0

∫
Ω(µ4)

(h− hd(µ3))2dΩ(µ4)dt

(37)

+ 1
2

∫ T

0

∫
Ω(µ4)

(v − vd(µ3))2dΩ(µ4)dt+ α

2

∫ T

0

∫
Ω(µ4)

u2dΩ(µ4)dt,

constrained to the following equation

(38)



vt − µ1∆v + µ2(v · ∇)v + g∇h− u = 0 in Ω(µ4)× (0, T ),

ht + div(hv) = 0 in Ω(µ4)× (0, T ),
v = v0 on Ω(µ4)× {0},
h = h0 on Ω(µ4)× {0},
v = 0 on ∂Ω(µ4)× (0, T ).

We recall that v ∈ L2(0, T ; [Yv]2), vt ∈ L2(0, T ; [Yv∗]2), h ∈ L2(0, T ;Yh), ht ∈ L2(0, T ;Yh∗) and
u ∈ L2(0, T ; [U ]2), where Yh = U = L2(Ω(µ4)) and Yv = H1

ΓD (Ω(µ4)). Now, noticing that

Yv ↪→ U ↪→ Y
∗

v ,

we can interpret the first equation as a sum of terms in L2(0, T ; [Yv∗]2). We now focus on the second
equation. Using standard regularity results for Navier-Stokes equations [19], h is in L2(0, T ;Yv).
Exploting Sobolev embedding theorems in dimension three (considering space and time), we have
hv ∈ L2(0, T ; [Yh]2) and, consequently, div(hv) ∈ L2(0, T ;Y ∗v ). Thus, the second equation is a sum
of terms in L2(0, T ;Yv∗), since Y ∗h ↪→ Y

∗

v . Even if the setting presented in Section 3 includes a broad
class of state equations, to the best of our knowledge no results about OCP(µ)s governed by the two-
dimensional SWEs are known in the Lagrangian context. However, we believe that one could apply
the same techniques already used in [36, Section 1.8.1] for Navier-Stokes equations to state the well-
posedness of the problem and to recover hypothesis (i) - (ix). However, this topic goes beyond the
goal of this contribution and we will restrict ourselves to the case of well-posedness for this specific
test case. As already specified in Section 3, the value of α ∈ (0, 1] influences the control action:
the smaller is α, the larger the action of the control variable is. The state equation (38) models
free surface incompressible flows in hydrostatic pressure: this assumption is verified when shallow
depths are considered, namely when the water height is much lower than the wavelength, which
is classical for coastal phenomena. We deal with two physical parameters µ1 and µ2 representing
diffusive and convective action of the system considered, respectively. Moreover, µ3 will define the
desired solution profile, while µ4, as already specified, will affect the spatial geometry we will deal
with. Let us suppose to have recast the state equation (38) in weak formulation as E((v, h),u;µ),
thus we can define the following Lagrangian functional

(39) L ((v, h),u, (z, q), (vd, hd);µ) = J((v, h),u; (vd, hd)) + 〈(z, q), E((v, h),u;µ)〉QQ∗ ,

where the variable (z, q) ∈ Y is the adjoint variable. Here we do not specify all the bilinear forms
involved, the interested reader may refer to [78]. The optimality system is, then, obtained through
the differentiation with respect to the all involved variables. The minimization problem thus reads:
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given µ ∈ P, find ((v, h),u, (z, q)) ∈ Y× U× Y such that

(40)



DvL ((v, h),u, (z, q))[ζ] = 0 ∀ζ ∈ Qv,
DhL ((v, h),u, (z, q))[θ] = 0 ∀θ ∈ Qh,
DuL ((v, h),u, (z, q))[τ ] = 0 ∀τ ∈ U,
DzL ((v, h),u, (z, q))[κ] = 0 ∀κ ∈ Qv,
DqL ((v, h),u, (z, q))[ξ] = 0 ∀ξ ∈ Qh.

For the sake of completeness, we report the system (40) in strong formulation:

v − zt − µ1∆z − µ2(v · ∇)z + µ2(∇v)Tz − h∇q = vd(µ3) in Ω(µ4)× (0, T ),

h− qt − v · ∇q − gdiv(z) = hd(µ3) in Ω(µ4)× (0, T ),

z = 0 on ∂Ω(µ4)× (0, T )
z = 0 on Ω(µ4)× {T},
q = 0 on Ω(µ4)× {T},
αu = z in Ω(µ4)× (0, T )
vt − µ1∆v + µ2(v · ∇)v + g∇h = u in Ω(µ4)× (0, T ),

ht + div(hv) = 0 in Ω(µ4)× (0, T ),
v = 0 on ∂Ω(µ4)× (0, T ),
v = v0 on Ω(µ4)× {0},
h = h0 on Ω(µ4)× {0}.

(41)

In the next Section we will present the numerical results for a distributed OCP(µ)s with physical and
geometrical parameters. They are an extension of [78] to parametrized spatial domain. Furthermore,
we will briefly discuss the high fidelity space-time approximation and how we perform a POD-
Galerkin in this specific framework in order to build the reduced space approximation for this
specific OCP(µ)s.

5.2. Numerical Results. This Section aims at validating the performances of the POD-Galerkin
projection reduced approch proposed in Section 4. We followed the test case presented in [26],
recasting it in the parametrized setting briefly introduced in Section 5.1, where not only physical
parameter is considered, but also the gemetry of the spatial domain changes with respect to the
choise of µ ∈ P = (0.00001, 1.) × (0.01, 0.5) × (0.1, 1.) × (0.8, 1.5). Indeed, the spatial domain is
given by Ω(µ4) = [0, 10µ4]× [0, 10]. In an inverse problem fashion, the optimal control setting gives
information about the forcing term needed to achieve a given desired solution profile. To perform
simulations and consequent reduction, we took into account a pull back of the optimality system
(40) in the reference domain given by Ω = [0, 10] × [0, 10], i.e. the reference parameter is µ4 = 1.
In the considered framework, we exploited zb = 0 for the flat bathymetry and we studied the wave
evolution in the time interval [0, T ] where the final time is T = 0.8s. Let x1 and x2 be the spatial
coordinates. The problem at hand aims at reducing the impact of the spreading of a mass of water
with an initial Gaussian distributed elevation under a null initial velocity: i.e.

v0 = 0, and h0 = 0.2(1 + 5e(−( x1
µ4
−5)2−(x2−5)2+1))).

Namely we want to study under which physical conditions, say wind action and bottom friction, the
system can reach a the desired state (µ3vd, µ3hd), where (vd, hd) is the solution at time T of the
uncontrolled state equation (38), with

vd0 = 0, and hd0 = 2e(−( x1
µ4
−5)2−(x2−5)2+1),

and no forcing term, i.e. u = 0.
Let us briefly analyse the high fidelity approximation. We exploited FE discretization, and the
optimal solution fields have been discretized through linear polynomial, namely Ny

FE = Nv
FE +Nh

FE,
where Nv

FE and Nh
FE are the FE dimensions for state and adjoint velocity and height profile and
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control variable, respectively, obtained using rv = rh = 1, as proposed in [70]. The same polynomial
degree has been exploited for the control variable, giving a FE discretization of dimension Nu

FE.
Concerning the time approximation, we perform Euler methods, dividing the time interval Nt = 8
timesteps, with a ∆t = 0.1s. The number of timesteps can be increased following the iterative
techniques presented in [34, 35, 75, 76]. Although, in this work, for the sake of simplicity and
clearness, we exploited a direct solver for the optimality system (41) and this affects the resolution
of the high fidelity approximation. In the end, at the truth approximation level, we deal with a
system of a total dimension N = 76352, although, we underline that it is sufficient to validate the
reduced approach proposed in Section 4. Let us focus our attention on the construction phase of
the low dimensional function spaces. As specified in Section 4.2, we applied a partitioned approach,
where several POD compressions, over the five different correlation matrices ofNmax = 100 snapshots
have been carried out for all the involved variables.The number of snapshots Nmax was heuristically
chosen observing that the POD eigenvalue decay is comparable to the one obtained by Nmax = 150,
see Figure 2. Besides, we could not explore further the parametric space since the space-time
approximation drastically affects the computational time needed for the offline phase of the POD
algorithm, i.e. the snapshots collection. Then, the application of the strategy described in Section
4.2 will lead to the following spaces:

YvN = span{χvn, n = 1, . . . , N},
YhN = span{χhn, n = 1, . . . , N},
UN = span{χun, n = 1, . . . , N},
YzN = span{χzn, n = 1, . . . , N},
YqN = span{χqn, n = 1, . . . , N},

where we retained N = 30 basis functions2, given a global reduced space dimension of 9N = 270. The
value N has been heuristically chosen as a trade-off between relative errors values and computational
time saving in the reduced framework. Thus, we define

ZvzN = span {χvn, χzn, n = 1, . . . , N} and ZhqN = span {χhn, χqn, n = 1, . . . , N}.

For state and adjoint velocity-height variable we will use ZN = ZvzN ×Z
hq
N so that the inf-sup condition

(36) holds. Indeed, we remark that, this strategy guarantees the reduced inf-sup stability condition
(36) to be verified for the linearized problem at each step of the Newton’s Method. Despite the
increasing of the dimensionality, we will see that the performances of the reduced projection is still
convenient with respect to the high fidelity simulations: comments on the computational advantages
are postponed later in the Section. We stress that the used POD-Galerkin approach might be sub-
optimal for the state equation at hand as underlined in several works, see e.g. [30, 82]. However,
the proposed optimal control numerical setting does not suffer much the reduced representation:
indeed we are dealing with a viscous model and, furthermore, the controlled framework seems to act
itself as a sort of stabilization, where the forcing term changes in order to achieve a less convection-
dominated solution. This is confirmed both by the comparison between projection-based ROM and
best-fit projection averaged relative log-errors for a testing set of 20 uniformly distributed parameters
of Table 1 and by the eigenvalue decay represented in Figure 2.

All the features of the offline and online phase of the experiment are reported in Table 2.

2For the sake of simplicity, we exploit the same value of N for all the spaces.
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Table 1. Projection-based ROM and best-fit projection averaged relative log-errors com-
parison.

Averaged relative errors proj-ROM Averaged relative errors best-fit projection
N

v h u w q v h u w q

6 4.68e–2 5.42e–3 2.30e–2 5.26e–2 2.39e–2 2.52e–2 4.05e–3 1.17e–2 2.11e–2 2.21e–2
10 1.48e–2 2.28e–3 4.53e–3 1.28e–2 7.34e–3 1.22e–2 1.58e–3 4.47e–3 1.04e–2 5.89e–3
16 6.82e–3 9.01e–4 1.97e–3 5.72e–3 3.27e–3 5.65e–3 5.88e–4 1.97e–3 4.73e–3 2.50e–3
20 4.14e–3 5.83e–4 1.34e–3 3.96e–3 2.07e–3 3.44e–3 3.89e–4 1.34e–3 3.40e–3 1.52e–3
26 2.43e–3 3.17e–4 7.94e–4 4.47e–3 1.16e–3 2.07e–3 2.04e–4 7.88e–4 2.13e–3 8.39e–4
30 1.81e–3 2.25e–4 5.48e–4 1.75e–3 7.73e–4 1.15e–3 1.44e–4 5.48e–4 1.52e–3 5.54e–4

Table 2. Data for the distributed OCP(µ) governed by SWEs.

Data Values
P (0.00001, 1)× (0.01, 0.5)× (0.1, 1)× (0.8, 1.5)

[0, T ] [0s, 0.8s]
values of (µ1, µ2, µ3, µ4, α) (0.1, .01, .1, 1.5, 0.1)

Nmax 100
N 30

Sampling Distribution Uniform
N 76352

ROM System Dimension 270

The basis function considered allowed us to well describe the full order approximated system
in the reduced framework, as the reader can notice from the average relative errors represented in
Figure 3 with the following norms:

∫ T

0
‖vN

v
FE − vN‖2H1 dt,

∫ T

0
‖hN

h
FE − hN‖2L2 dt,

∫ T

0
‖uN

u
FE − uN‖2L2 dt,

∫ T

0
‖zN

v
FE − zN‖2H1 dt, and

∫ T

0
‖qN

h
FE − qN‖2L2 dt.

The errors are averaged over a testing set of 20 parameters uniformly distributed: from the plots in
Figure 3, one can observe how the POD-Galerkin approach leads to a good approximation of all the
involved quantities. Indeed, using N = 30, state and adjoint velocity reach values around 2 · 10−3,
while the relative error for control, state and adjoint elevation is below 10−3. Furthermore, the
accuracy of the reduced model can be understood also from the comparison between the space-time
solutions and the ROM solutions presented in Figures 5, 4 and 6 for state velocity, state elevation and
control at t = 0.1s, 0.4s, 0.8s, respectively. Let us comment on the computational time performances
between space-time approximation and ROM simulations. Indeed, not only the reduced basis are
able to reproduce several time instances in an accurate way, but there is a gain in the computational
time needed for parametrized simulations.
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Figure 2. Comparison of POD eigenvalues for Nmax = 100 and Nmax = 150. Top Left:
state variables. Top Right: control variable. Bottom: adjoint variables.

Figure 3. Averaged relative error between the space-time and ROM approximation for all
the involved variables.

We call speedup index the number of reduced simulations which can be performed in the time of
the solution of one high fidelity optimality system. For this specific test case, the speedup is of the
order of O(20) for N = 1, . . . , 30, namely, it is lightly influenced by the reduced spaces dimension.
The speedup index tells us that performing a Galerkin projection in the aggragated spaces is still
convenient with respect the solution of the whole space-time OCP(µ). The saved computational
time can be used to study and analyse several parametric configurations in a real-time or many-
query context.
In the next Section some comments and conclusions follow.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Optimal high fidelity and reduced state elevation variable with α = 0.1 and µ =
(0.1, .01, .1, 1.5). High fidelity solutions for t = 0.1s, 0.4s, 0.8s in (a), (b), (c), respectively,
and reduced solutions for t = 0.1s, 0.4s, 0.8s in (d), (e), (f).

(a) (b) (c)

(d) (e) (f)

Figure 5. Optimal high fidelity and reduced state velocity variable with α = 0.1 and µ =
(0.1, .01, .1, 1.5). High fidelity solutions for t = 0.1s, 0.4s, 0.8s in (a), (b), (c), respectively,
and reduced solutions for t = 0.1s, 0.4s, 0.8s in (d), (e), (f).
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(a) (b) (c)

(d) (e) (f)

Figure 6. Optimal high fidelity and reduced control variable with α = 0.1 and µ =
(0.1, .01, .1, 1.5). High fidelity solutions for t = 0.1s, 0.4s, 0.8s in (a), (b), (c), respectively,
and reduced solutions for t = 0.1s, 0.4s, 0.8s in (d), (e), (f).

6. Conclusions

In this contribution, we propose ROMs as a reliable and fast strategy to deal with parametrized
nonlinear time dependent OCP(µ). The analysis we propose is general and can be applied to several
PDE(µ)s constrained optimization processes. We described the optimality system used to reach a
desired profile both at the continuous and discrete level, in a space-time fashion, presenting it not
only from a theoretical point of view, but also in its algebraic form, underlining the hidden saddle
point structure of the linearized system. Thus, we moved towards model order reduction in order to
alleviate the issue of the complexity of the optimality system, which results in a high dimensional
problem. We propose a space-time POD-Galerkin approach: the choice was led by the need of an
algorithm which could be applied also to very complicated equations, such as the nonlinear time
dependent optimality systems. This work relies in building a reduced framework for time dependent
nonlinear OCP(µ)s, capable of filling the gap between data and physical model. We validate the
method in environmental applications such as marine ecosystem management and coastal engineer-
ing, though a solution tracking optimization problem governed by viscous SWEs under physical and
geometrical parametrization. Our aim was to show how ROMs could be a suitable tool to rapidly
simulate marine environment, deeply characterized by a growing demanding computational effort.
Indeed, the general proposed methodology results in fast simulations without paying in accuracy
with respect to the time consuming space-time approximation.
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