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1 Introduction

We often sum over states to compute physical quantities. We do it when computing parti-

tion functions in quantum or statistical physics. Also, when studying correlation functions

in a conformal field theory, we can successively apply the operator product expansion

(OPE) to write a general n-point function as multiple sums over the states generated by

the fusion of the local operators. What is less widely known is that a similar strategy can

be applied for computing the vacuum expectation values of null polygonal Wilson loops W
in conformal gauge theories [1].

This method, which parallels the one for correlators, goes under the name of OPE

as well. It entails however summing over a rather different class of states: namely, the

complete set of excitations ψ of the flux tube supported by two null Wilson lines [2]. For a

generic polygon we have to perform this sum as many times as needed to fully decompose

the evolution of the flux-tube state along the loop. This has to be done n − 5 times for

an n-edged Wilson loop, in accord with the counting of conformal invariants of the loop.

In a previous communication [3] we pushed ahead with this idea and proposed that these

multiple sums should be organized into the sequence

W =
∑

ψi

[
n−5∏

i=1

e−Eiτi+ipiσi+imiφi

]
P (0|ψ1) P (ψ1|ψ2) . . . P (ψn−6|ψn−5) P (ψn−5|0) , (1.1)

which reflects the decomposition (1.2) of the WL into a sequence of overlapping squares

and pentagons. The geometrical data of the loop, or equivalently the set of (4D) cross

ratios {τi, σi, φi}, appears in the first factor only and couples directly to the energy, mo-

mentum, and angular momentum {Ei, pi,mi} of the flux-tube state ψi defined on the i-th

square. The other elementary building blocks, which arise from the unions of two consec-

utive squares, are the pentagon transitions P (ψi|ψj) between the states ψi and ψj . They

are independent of the global geometry and fully determined by the flux-tube dynamics.

They are the analogues of the structure constants for local operators:

ψ1

ψ2

ψ3

ψ1

ψ2

ψ3

O
O

O
O

O

O

OPE for Correlation Functions OPE for Wilson Loops (1.2)

Whenever it applies, the pentagon decomposition provide us with the complete infor-

mation on the Wilson loopW. This remains true when we have a marginal coupling λ in the

theory: in this case all the OPE data become coupling dependent and the decomposition

holds regardless of the specific value of the coupling as long as the spectrum of flux-tube
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excitations remains gapped. This is the situation in planar N = 4 Super-Yang-Mills theory

for generic values of the ’t Hooft coupling λ = g2YMN . What is even more interesting is

that in this theory null polygonal Wilson loops are believed to be the same as color-ordered

scattering amplitudes [4–8]. By means of this duality the pentagon decomposition should

then stand as a non-perturbative definition of scattering amplitudes in this theory.

For both practical and theoretical reasons, the most relevant pentagon transitions are

those associated to single-particle states. These are the lightest states of the flux tube at

generic coupling. They form the seed for building up the contributions of heavier states

that display more intricate transitions. In this paper we will expand on [3] and study two

specific, but prominent, examples of single-particle transitions: the ones corresponding to

the scalar and the gluonic excitations of the flux tube, respectively. They form the almost

complete list of the fundamental, i.e., twist one, excitations of the flux tube [9] — the only

ones missing being the fermions, which will be analyzed in a future publication.

From a practical view point, the transitions for the lightest excitations are the easiest

ones to extract as they dominate at large τi — meaning that they decay the slowest in

the multi-collinear limit τi → ∞. Their contributions can thus be neatly separated from

the rest, especially at weak coupling. These transitions also occupy a distinctive position

numerically. Clearly, if we manage to compute exactly the pentagon transitions for all the

lightest states of the flux tube, we will already have a good approximation to W for generic

kinematics. The situation is similar to the conventional OPE for correlators. If we have

at our disposal the OPE structure constants for the first few operators with lowest scaling

dimensions, summing over them already gives an excellent estimate of an higher-point cor-

relation function. This is so unless we are close to the radius of convergency of the OPE,

in which case we might need a lot more operators to get a good approximation. Of course,

in all cases, if we sum over all the states then we get the full exact result without any

approximation.

This way of organizing our expansion — by the importance of the states that are flowing

— should be contrasted with more conventional approaches based on perturbation theory.

In perturbation theory we power expand around λ = 0. The term proportional to λ0 is

the tree level result and the terms suppressed as λl are called the l-th loops contributions.

If we keep all terms in the perturbative expansion we can in principle re-sum the series

and obtain the exact result without any approximation. The two expansions are clearly

different. At any loop order, we typically need to sum over all the states to get the complete

result from the OPE. Reciprocally, to get the exact contribution of any given state we need

to re-sum all orders in perturbation theory. Still, the data from one approach provides

valuable constraints and checks on the other one.

In this paper we will explain how to make use of this interesting interplay between

the OPE expansion and perturbation theory and illustrate how to efficiently extract in-

formation about the pentagon transitions from the abundant knowledge and literature on

scattering amplitudes/Wilson loops at weak coupling. We shall make extensive use, in

particular, of the work [10] which builds on the recent developments about the all-loop

integrand [11–13] and where all the one-loop amplitudes were given in manifestly confor-

mally invariant notation. Another source of invaluable data comes from higher-loop results
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based on the Q-bar equation [14] or its predecessor [15], as well as on the symbol tech-

nology [16–19] which extend results based on more traditional techniques [20–22]. Our

discussion here will be centered around the six and seven points amplitudes corresponding

to the hexagon and heptagon (super) Wilson loops. These are the simplest possible ones

and by far the most well studied both in the OPE framework and in perturbation theory.

They play a pivotal role in our approach since they give us the most direct access to the

pentagon transitions of interest.

From a theoretical perspective the single-particle pentagon transitions are obviously

the most fundamental ones. For them, a set of axioms or bootstrap has been proposed in [3].

It lays the ground for the application of the powerful integrability technology (see [23] for

a recent review) and allows one to come up with an educated guess for the pentagon

transitions at finite coupling. This was illustrated in [3] for the gluonic transitions. In this

paper we elaborate on this conjecture and generalize it to the scalar transitions. We shall

provide further evidence for our finite coupling expressions by matching them against data

up to the available orders in perturbation theory. We will also present several predictions

for the OPE behaviour of Wilson loops that should be very helpful for constraining the

expectation values of these loops at higher-loop orders.

Certainly the most remarkable property of the pentagon transitions is their relation to

the flux tube S-matrix. This is what we called the fundamental relation in [3]. Precisely, it

states that the pentagon transition P (ψ1|ψ2) between two single-particle states is related to

the transition P (ψ2|ψ1) by a very simple factor: the flux-tube S-matrix amplitude between

states ψ1 and ψ2. A single-particle state can always be parametrized by its momentum

such that we should observe that

P (p1|p2)
P (p2|p1)

=

p2

p1

= = S(p1, p2)

p2p1

S

p1

p2
(1.3)

This relation neatly relates the space-time S-matrix which is built out of the pentagon

transitions P (p1|p2) to the flux-tube S-matrix S(p1, p2). As an illustration of how this

relation works we will now consider the simplest possible amplitude and to the lowest pos-

sible order in perturbation theory: a tree level NMHV amplitude. By choosing carefully a

component of this amplitude we shall see how the equality (1.3) comes out for a complex

scalar excitation Z of the flux tube.

1.1 The flux-tube S-matrix...

The flux-tube S-matrix can be obtained in many different ways, reflecting the many equiv-

alent pictures for the flux tube itself [2]. This flux can be viewed as a twist-two operator

at large spin, or as the dual of the so-called Gubser-Klebanov-Polyakov (GKP) string [24],

– 4 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

or again as a Π-shaped null Wilson line [25, 26]. The first picture, which relates directly to

the integrable spin-chain description, is by far the best one computationally. Nonetheless

it is the last one that carries the clearest physical interpretation. In this case, the flux tube

excitations are represented by insertions of adjoint fields at positions x(σ1), x(σ2), etc.,

along the Wilson line, here parameterized with the null coordinate x = x−. For example,

a complex scalar field Z can be inserted (conformally along the line) by

⋆ Z(σ) ⋆ ≡ ⋆|∂σx(σ)|sZ (x(σ)) ⋆ (1.4)

where the stars stand for the Wilson line and where s = 1/2 is the SL(2) conformal spin

of the scalar field. More generally a state with N scalars is written as

∫

−∞<σ1<···<σN<+∞

dσ1 . . . dσN ψ(σ1, . . . , σN ) ⋆ Z(σ1) ⋆ · · · ⋆ Z(σN ) ⋆ , (1.5)

with ψ(σ1, . . . , σN ) the wave function in position space. The eigenstates of the flux tube

can be fixed by diagonalizing the (euclidean) time evolution −∂τ = N+H with the light-ray

Hamiltonian

H·ψ = 2g2
N∑

j=1

σj+1−σj∫

σj−1−σj

dt

sinh |t|
[
e−|t|ψ(. . . )− e−(2s−1)|t|ψ(. . . , σj−1, σj + t, σj+1, . . . )

]
, (1.6)

here at one loop with g2 ≡ λ/(4π)2 and with σN+1 = −σ0 = ∞. It is of the familiar

type [25–27] and acts by displacing local insertions between their nearest neighbours. It

commutes with the momentum p = −i∑N
i ∂σi which then solves the one particle problem

immediately. The plane wave ψ(σ) = eipσ diagonalizes H with the one-loop energy

γ(p) = 2g2
(
ψ

(
s+ i

p

2

)
+ ψ

(
s− i

p

2

)
− 2ψ(1)

)
, (1.7)

and ψ(z) = ∂z log Γ(z), in agreement with the spin-chain prediction [9, 28, 29].

To read out the S-matrix S(p1, p2) one should solve the two-particle problem H · ψ =

(γ(p1) + γ(p2))ψ whose solution is of the generic type

ψ(σ1, σ2) = eip1σ1+ip2σ2fp1,p2(σ1 − σ2) + eip2σ1+ip1σ2S(p1, p2)fp2,p1(σ1 − σ2) , (1.8)

with some partial wave fp1,p2(σ) normalized to 1 at large separation σ → −∞. It is a

difficult task to get f by using the integral operator H directly. A shortcut is found by

using integrability: the crucial point is that H commutes with the diagonal component

of a transfer matrix, whose construction follows the habitual procedure (see [26] for the

case at hand). This turns the problem into an hypergeometric differential equation, whose

solution is given by (1.8) with

fp1,p2(σ) = 2F1

(
1− s+

ip1
2
, 1− s− ip2

2
, 1 +

ip1
2

− ip2
2

|e2σ
)
. (1.9)
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The regularity of the wave function at σ1 = σ2 fixes then the S-matrix,

S(p1, p2) =
Γ(s− ip1

2 )Γ(s+ ip2
2 )Γ( ip12 − ip2

2 )

Γ(s+ ip1
2 )Γ(s− ip2

2 )Γ( ip22 − ip1
2 )

, (1.10)

in accord again with the spin-chain expression (which could be extracted from [28]). This

route to the flux-tube S-matrix makes its extraction physically more transparent. It shares

also many similarities with the analysis of the Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Hamiltonian performed in [30], hence promising an interesting interplay between the two

approaches. At higher loops, the integrable spin-chain description takes over and pre-

dicts the flux-tube S-matrix at any value of the coupling, as shown in [31, 32] for scalar

excitations.

1.2 ...and the spacetime S-matrix

The usual Wilson loop computes maximal helicity violating (MHV) amplitudes [4–8]. The

(Next-to)kMHV amplitudes are given by the super Wilson loop [33, 34] up to a tree-level

MHV prefactor. The various components of the NkMHV amplitudes correspond to differ-

ent field insertions along the various edges and cusps of the Wilson loop. Some of these

components have a simple OPE interpretation. This is particularly true for those where

we just insert at tree level a scalar Z and its conjugate Z̄ at the bottom and top cusps of

the polygon, see [26, 35]. For them we expect the same kind of decomposition as in (1.1)

to apply. The only obvious difference is that we should sum over states with the given

overall R-charge. This implies in particular that the first pentagon transition P (0|ψ1) no

longer stands for the creation of the state ψ1 from the vacuum, but instead represents the

creation of the state ψ1 in the background of a scalar insertion.1 To signal this difference

we add a star to this transition and write it as P∗(0|ψ1) — similarly for the last transition

that lies at the top of the loop.

Consider now an heptagon Wilson loop with one complex scalar Z inserted at the

bottom cusp x and a conjugate scalar Z̄ at the top cusp y. These scalars are coming

with certain kinematical factors made out of the usual spinor helicity brackets (1/〈7 1〉 and
1/〈4 5〉 respectively) and with an overall 1/g each [34]. Those are conformal factors that

insure the conformal invariance of the final result. To evaluate the Wilson loop at tree level

we simply connect the two scalars by the free scalar propagator g2/(x− y)2. Hence

1The operatorial definition of the various components of the super Wilson loop might receive loop

corrections. In this paper we will refer to these components by their tree level form. E.g., a scalar component

is a component that corresponds at tree level to a scalar insertion at a cusp. At higher loops this component

also includes for instance fermions integrated on the neighboring edges [34, 36]. Similarly, throughout the

paper, when we refer to an excitation being inserted at a cusp it should be understood that this is a tree

level concept and that at loop level the excitation will typically be more delocalized.
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7
1

2

3

4
5

6
g2

(x− y)2

Z(x)

Z̄(y)

1
g〈7 1〉

1
g〈4 5〉

=
1

〈7 1〉(x− y)2〈4 5〉R(7145)
tree =

(1.11)

where we use blue and red colors to indicate the two conjugate field insertions. It could

hardly be simpler. The final expression can be written in terms of four-component mo-

mentum twistors, which are briefly reviewed in appendix A. We get

R(7145)
tree =

1

〈7, 1, 4, 5〉 , (1.12)

where the bracket in the denominator stands for the determinant of the four momentum

twistors. The result is now manifestly conformally invariant, since conformal transforma-

tions act linearly as SL(4) transformations on the twistors.

To make contact with the pentagon decomposition (1.1), we should express the re-

sult (1.12) in terms of the OPE variables {σi, τi, φi}. The procedure, which was previously

explained in [3, 35, 37], goes as follows. The heptagon is composed from a sequence of four

squares:

{τ1, σ1, φ1}

{τ2, σ2, φ2}

Top square

Bottom square

1st middle square

2nd middle square

(1.13)

It has in particular two middle squares, each of which has three conformal symmetries.

These play an important role in the OPE approach since they allow us to parametrize all

conformally inequivalent heptagons by acting with the symmetries of the middle squares

on the twistors (i.e., on the cusps) located to their bottom. The corresponding six pa-

rameters, {τ1, σ1, φ1} and {τ2, σ2, φ2}, are the six independent conformal cross ratios of

an heptagon. The whole construction can be made very explicit by using a particular

choice of momentum twistors, as done in (A.11) in appendix C. Using these twistors, the

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

determinant in (1.12) is now expressed in terms of our OPE parameters. To single out the

single-particle contribution in (1.1), which is the one of interest here, we then expand at

large τ1 and τ2. This step has a clear geometrical interpretation and corresponds to the

collinear limit where the bottom and top squares are being flattened. We find

R(7145)
tree = e−τ1−τ2 × 1

eσ1−σ2 + eσ2−σ1 + eσ1+σ2
+ · · · =

τ1 → ∞

τ2 → ∞

σ1

σ2

(1.14)

Finally, to decompose (1.14) into energy eigenstates, we go to Fourier space

R(7145)
tree = e−τ1−τ2

∫
dp1 dp2
(2π)2

eip1σ1+ip2σ2f(p1, p2) + . . . (1.15)

where the integration contours are slightly shifted in the upper-half planes, and read that

f(p1, p2) =
1

4
Γ

(
1

2
+
ip1
2

)
Γ

(
− ip1

2
− ip2

2

)
Γ

(
1

2
+
ip2
2

)
. (1.16)

As explained in [3] — and in much detail in this paper — this integrand should be identified

with the product

f(p1, p2) = P∗(0|p1)µ(p1)P (−p1|p2)µ(p2)P∗(−p2|0) (1.17)

of pentagon transitions P and square measures µ. Most of them drop out from the ratio

f(−p1, p2)/f(−p2, p1) leaving

P (p1|p2)
P (p2|p1)

=
Γ(12 − ip1

2 )Γ(12 + ip2
2 )Γ( ip12 − ip2

2 )

Γ(12 + ip1
2 )Γ(12 − ip2

2 )Γ( ip22 − ip1
2 )

, (1.18)

and revealing the sought-after relation with the scalar flux-tube S-matrix (1.10).

This concludes our illustration of the fundamental relation (1.3) for the scalar pen-

tagon transition. We stress again that the computations of the left and right hand sides

in (1.3) are very different. The left hand side in (1.18) is obtained by Fourier transform-

ing a tree-level propagator while the right hand side comes from diagonalizing a one-loop

Hamiltonian. Still, and remarkably enough, these two distinct computations yield the

same result at the end. When writing (1.3) we explicitly assume that the phenomenon will

persist at any loop order, such that at l loops, for instance, the same NMHV component

as above will compute the scalar flux-tube S-matrix coming from the l + 1 loops light-ray

Hamiltonian. The main goal of the paper is to provide evidence for the validity of the

fundamental relation at higher loops for both scalar and gluonic transitions.
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2 Geometry and decomposition

2.1 Square and pentagon transitions

In this section we comment on the pentagon decomposition (1.1), expanding on the dis-

cussion in [3]. A small but significant generalization of this decomposition is to allow for

insertions of local fields at both the bottom and top cusps and/or edges of the polygon. Tak-

ing this step enables us to encompass several components of the super Wilson loop [33, 34]

within the OPE framework [35], besides the usual bosonic loop. One such example is the

component (1.11) encountered in the introduction. What they all have in common is that

they can be computed by means of the sequence of transitions and propagations2

W = 〈vac|P̂∗ e
−τn−5Ĥ+iσn−5P̂+iφn−5Ĵ P̂ . . . P̂ e−τ1Ĥ+iσ1P̂+iφ1Ĵ P̂∗|vac〉 , (2.1)

whose building blocks we now discuss in details.

The representation (2.1) is based on a tessellation of the n-gon WL into a sequence of

n − 3 null squares, as depicted in (1.2). The propagation over anyone of these squares is

simply given by e−τiĤ+iσiP̂+iφiĴ , where Ĥ, P̂ and Ĵ are the generators of the three con-

formal symmetries of the square. Since we always start and end with the vacuum state,

the propagations in the first and last squares are trivial. Hence we only have n − 5 non-

trivial exponentials in (2.1), one for each middle square. This leads to 3(n− 5) coordinates

{τi, σi, φi} that parametrize all conformally inequivalent polygons (for explicit definitions

see (A.13) in appendix C). This matches with the number of independent cross-ratios for

a polygon with n null edges.

Each two consecutive squares in the decomposition (1.2) form a pentagon. Accordingly,

the transitions between two neighboring squares is represented by a pentagon operator P̂
in (2.1). There are n− 4 pentagon transitions in total and thus n− 4 operators P̂ in (2.1).

For those components of the super loop where we have insertions at the bottom and top of

the polygon, the first and the last pentagon operators are slightly more general: they may

have additional fields insertions at their cusps and edges carrying some charges. To allow

for that possibility, we added a star ∗ to the first and last transitions in (2.1).

To make contact with the decomposition (1.1) we insert the resolution of the identity

at every middle square of the Wilson loop. For example, for a bosonic heptagon WL we

2Null polygonal Wilson loops have well understood (cusp and collinear) UV divergences [38–42]. Here

W is a (conformally invariant) ratio of polygonal Wilson loops [3] which is free from these divergences. Its

precise definition is recalled in section 2.2.
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have

✶̂ =
∑
ψ1

|ψ1〉〈ψ1|

✶̂ =
∑
ψ2

|ψ2〉〈ψ2|

while for the NMHV scalar component we have the same picture but with scalars inserted

at the top and bottom cusps, see (1.11).

The states ψi are eigenstates of the flux tube Hamiltonian Ĥ in the i-th middle square.

As alluded to in the introduction, there are at least three equivalent ways of thinking about

them:

• Null Wilson Line with Insertions. A convenient way of thinking of the flux tube

is as a square null Wilson loop [2]. It is the most natural one here and will pervade our

analysis. By further sending the top edge of this loop to infinity we get the Π-shaped

Wilson loop [25, 26] alluded to in the introduction. This step is useful when the

focus is on the study of the excitations of the flux tube for instance. Excited states

then correspond to insertions of local operators along the bottom line of the loop

parameterized by the null direction x−, as in (1.5). When we flatten Wilson loops in

the OPE approach, this is what we usually end up with, as illustrated in (1.14).

In (1.14) we dealt with the Born level expression at weak coupling. Starting at the

next loop order, the operators acquire anomalous dimensions that are controlled by a

light-ray Hamiltonian [25–27], as the one introduced in (1.6) in a particular subsector

of states. The mixing captured by this Hamiltonian originates from the UV diver-

gences that accompany the insertions and are handled in the usual way: by regular-

izing/renormalizing the insertions. The eigenvalues of this Hamiltonian are nothing

else than the anomalous component of the energies of the flux tube excitations.

The description of the GKP states in terms of Wilson lines with insertions is well

suited for geometrical considerations. For example, as we will see below, the connec-

tion between the square and the pentagon transitions becomes quite transparent in

this picture.

• Large Spin Operators. Wilson lines are extended operators. They can be ob-

tained from local operators with a large number of derivatives that delocalize them

along a null direction. That is, the flux tube can be described by an operator with a

very large spin. Excited states are obtained by sprinkling excitations in the middle

of this ‘sea’ of derivatives. For example, in this language, we can have two gluonic
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excitations F = Fz− on top of the flux tube by means of a linear combination of local

operators of the form3

O = tr (Z DDDD . . .DDDDF DDDD . . .DDDDF DDDD . . .DDDDZ) (2.2)

where D = D− is the covariant derivative along the null direction x−.

This picture is computationally appealing since a lot is known about single-trace op-

erators in planar N = 4 SYM using the technology based on integrability. Thanks to

this mapping to the integrable spin chain, the complete spectrum of flux-tube exci-

tations and their associated dispersion relations were found at any coupling [9]. We

can also derive, from the underlying spin-chain description, the way these excitations

scatter — i.e. their S-matrices — at any coupling [31, 43]. The energies enter directly

the decomposition (1.1) while the S-matrices are the fundamental objects governing

the pentagon transitions. The use of integrability is then essential to our approach

since it allows us to compute these objects at finite coupling.

• Excited GKP String. Finally, it is sometimes convenient to think of the flux tube

as the (dual of the) GKP string [24]. Indeed, the string that ends on the null square

at the boundary of AdS is dual to the two-point function of the large spin operators

discussed above [1, 44].4 Excitations of the flux tube are dual to ripples on this string.

For example, (2.2) is dual to a folded string in AdS5 with two bumps that are dual

to the gluonic excitations, while (1.5) involves fluctuations in the sphere S5, dual to

the scalar excitations.

The string point of view is also quite instructive. Since it is based on a two dimen-

sional quantum field theory, non-trivial transformations such as mirror or crossing

symmetries are conceptually simpler to grasp in this dual language.

As we see, all these descriptions are complementary and depending on the context we

might find convenient to use one or the other. Let us now focus on some features that are

common to all these descriptions.

• Since the flux is infinite and its excitations are gapped, the number of excitations

N is a conserved charge. These excitations can be of different kinds: there are

fermions, gluons, scalars and also bound states of these more fundamental fields [9].

We use a vector of indices a = {a1, . . . , aN} to indicate what kind of particles we

are considering. For example, in (1.5) we have a = {Z, . . . , Z} while for (2.2) we get

a = {F, F}. Since it is typically clear which excitations are being discussed we will

often omit the dependence on a in most formulae.

3In (2.2) we have two gluonic excitations F plus two scalars Z. These scalars are already present for the

vacuum (i.e., twist two) state Ovac = tr (Z DDDD . . .DDDDZ)+ . . . since the derivatives need something

to act on. They are not dynamical, however, and can be thought as being part of the background.
4Strictly speaking, Gubser-Klebanov-Polyakov studied a folded string rotating in the middle of AdS [24].

This description is related to the one invoked here by analytic continuation [1, 44, 45].
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• The N excitations have momenta {p1, . . . , pN}. These momenta are conjugate to a

non-compact direction labelled (in each square) by σ and as such they can take any

real values. The sums in (1.1) therefore include integrations over these momenta.

The energy of the state is the sum of the energies of the constituents. As suggested

by the integrability-based description, it appears convenient to introduce a so-called

Bethe rapidity u. The single particle energy E(u), the momentum p(u), as well as

the S-matrix between two excitations S(u, v), are most naturally parametrized in

terms of such rapidities. To leading order in perturbation theory, the rapidity and

the momentum are roughly the same, p = 2u+O(g2). We shall use u = {u1, . . . , uN}
instead of momenta to parameterize the state.

For now on we stick to the first description of the flux tube states, that is, in terms of

Wilson lines with insertions. The pentagon transitions, which arise through the gluing of

two squares in (1.2), are then depicted as

u

v

u2

v

u1

v1

u1 u2

v2

, , , (2.3)

One important feature of the pentagon is that it does not preserve the three space-time

symmetries of either the bottom or the top squares.5 As a result, the pentagon transition

does not preserve the momentum and energy of the excitations. Even the number of

excitations does not need to be conserved, see middle object in (2.3).

In the pictures (2.3) the insertions are assumed to be renormalized within some scheme,

an example of which will be given shortly. There are accordingly no UV divergences in (2.3)

coming from the insertions themselves. There are nonetheless well understood UV diver-

gences accompanying the cusped Wilson loop [38–42] on which the insertions are living.

These ones are universal and can be removed by dividing each expression in (2.3) by a

pentagon Wilson loop of the same shape but without any insertions. The finite and con-

formally invariant quantities so obtained are what we call pentagon transitions. As an

illustration, we have

P (u|v) =

u

v

(2.4)

5Note that thanks to the integrability of the flux-tube, the square Wilson loop has actually infinitely

many (hidden or dynamical) symmetries. They are responsible for the separate conservation of all individual

momenta and for the factorization of the S-matrix for instance.
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and

P (u1, u2|v1, v2) =

u1

v1 v2

u2

(2.5)

for the one- and two-particle transitions, respectively. Note that for simplicity we depicted

transitions for particles of the same kind at the top and bottom. We also used blue and red

circles to indicate the two conjugate fields that respectively create and annihilate a given

excitation. For instance, for a complex scalar excitation we would have Z(u) at the bottom

and Z̄(v) at the top, and the transition in (2.4) is what we would denote as PZZ(u|v).
An important aspect of our decomposition is that any two adjacent pentagons over-

lap on a middle square. Therefore, the product of two consecutive pentagon transitions

accounts twice for the propagation of the eigenstate on this middle square. To remedy

for this double counting, we must ‘divide’ by the relevant square transition, which is de-

fined by an expression similar to (2.4) and (2.5) but with a square in place of a pentagon.

This procedure can be thought of as the proper way of gluing two consecutive pentagons

together through the matching on the square of their common excitations. In practice it

means that whenever we integrate over the rapidities u of the intermediate states, which

always happens on a middle square, we should include a measure µ(u) to get rid of the

effect mentioned before. If the spectrum were discrete the measure would be exactly the

inverse of the square transition. Since we have a continuum of states the measure is in fact

a density. For a single particle, it is defined as

2π

µ(u)
δ(u− v) =

u

v

(2.6)

where, to remove the cusp divergences, we divided by the expectation value of the bare

square WL. This last step can actually be viewed as subtracting out the (infinite) energy

of the flux tube vacuum. Similarly, for two particles, we have

=
(2π)2

µ(u1)µ(u2)
[δ(u1−v1)δ(u2−v2)+S(u1, u2)δ(u1−v2)δ(u2−v1)]

u1

v1

u2

v2

(2.7)

where S(u1, u2) is the S-matrix between the two excitations. Notice that in our normal-

ization the rapidities are ordered and states with different orderings are related by an

S-matrix. The fact that the two-particle measure factorizes into the product of the single-

particle measures, i.e., µ(u1, u2) = µ(u1)µ(u2), is an outcome of the coordinate Bethe
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ansatz normalization that we are using. We shall use this normalization for any number

of particles and hence the N -particle integration measure reads

du = Na

N∏

j=1

duj
2π

µa(uj) , (2.8)

where Na is a symmetry factor (it is equal to 1/N ! for identical particles for example).

Though they might look very different, the measure and the pentagon transitions are

actually not independent. Instead,

residue
v=u

Paa(u|v) =
i

µa(u)
. (2.9)

This relation has a simple geometrical origin. In position space, the residue at u = v of the

pentagon transition controls the regime where σ1, σ2 → −∞ with σ1 − σ2 kept fixed. This

limit corresponds to sending the bottom and top pentagon insertions to the edge opposite

to the middle cusp, i.e., close to the left edge in (2.4). This on the other hand is conformally

equivalent to flattening the rightmost cusp of the pentagon. In this way we end up with

the square depicted in (2.6).

As mentioned above, beyond Born level, the insertions along null lines in (2.4)–(2.8)

should be properly renormalized. There are of course many different schemes for doing this.

Here we will briefly comment on the most natural one in our geometrical context. It is based

on the observation that a possible way of regularizing an insertion on a null WL is to move

it a bit away from the line — the distance from the line playing the role of the regularization

scale. Now there is a simple way of implementing this geometrical regularization by using

the polygon Wilson loops with insertions given to us by the (component) expansion of the

super Wilson loop. In a nutshell, we add a bump with an insertion at the top, by choosing

carefully a component of the super loop, that we immediately flatten:

(2.10)

As it is, this is not yet the proper way of doing, because we introduced meantime an

extra cusp in the problem, sitting in the rightmost picture above. We know how to handle

this kind of divergence, however, by using squares and pentagons. Hence, we can insert a

regularized excitation through the combination

reg

(2.11)
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When deforming the loop we also added one more edge and thus three new cross ratios

appeared along the way. In other words, what was before the top square in the left hand

side is now a middle square in the right hand side. This new middle square is equipped

with its usual three parameters τ, σ and φ. To flatten the bump and get a renormalized

insertion, we take τ → ∞, then Fourier transform with respect to σ, and extract finally

the leading piece that goes as e−E(u)τ+imφ. The multi-particle insertions can be treated

similarly [43], see also the discussion section.

Note that in (2.11) we added a blue circle at the top cusp. This one can represent a

scalar insertion for example. If we want to insert a gluonic excitation instead, then we will

have two options. We can insert it directly at a cusp, like for the scalar, using the super

Wilson loop. Another option is to recall that a geometric deformation of the loop generates

by itself a gauge field insertion. So we can simply flatten the loop without inserting any

fields by hand. The latter option is the way gluons are created at the bottom and top of

the bosonic Wilson loop, while the former occurs for some components of the super loop.

They differ by a simple form factor which will be discussed in section 4.5.

2.2 Combining the pieces together

We shall now combine all the pieces together and convert the somewhat formal sums over

flux tube states in (1.1) into precise integrals over Bethe rapidities and sums over particle

quantum numbers.

We start with the definition of our renormalized Wilson loop W. We saw above that

each pentagon transition should be divided by a bare pentagon Wilson loop, in order to

remove the UV divergences. Similarly each measure associated to a middle square should

be multiplied by a bare square Wilson loop. Hence, the finite and conformal invariant ob-

ject that admits the decomposition (2.1) is obtained by dividing the original Wilson loop

or the component of the super loop by

w ≡ 〈W1stpent〉
1

〈W1stmiddle sq〉
〈W2ndpent〉

1

〈W2ndmiddle sq〉
. . . 〈W(n−4)thpent〉 . (2.12)

For example, for the usual bosonic loop we have

W = WMHV ≡ 〈W 〉/w , (2.13)

while for the component (1.11) we get W = W(7145)
NMHV ≡ 〈W (7145)

NMHV〉/w. We could as well

define a superconformal invariant ratio W = 〈Wsuper〉/w containing all these cases at once6

W = WMHV + η1i η
2
j η

3
kη

4
l W(ijkl)

NMHV + η1i η
2
j η

3
kη

4
l η

1
mη

2
nη

3
oη

4
p W(ijkl)(mnop)

N2MHV
+ . . . (2.14)

The ratio W is finite and conformal invariant because Wsuper has the same UV divergences

as the bosonic loop [47], and so is renormalized by the same ratio of pentagons and squares

as in (2.13). In practice, we will always consider separately the different components of W

6The η’s are the dual Grassmann variables [46, 47]. They carry a lower edge index i = 1, . . . , n and an

upper R-charge index A = 1, 2, 3, 4.
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since they are described by different OPE transitions. An interesting open question, which

we leave for the future, is whether all components of W can be analyzed using the OPE.

We now re-write the decompositions (2.1) using the labels a,b, . . . for the (discrete)

isotopic degrees of freedom and u,v, . . . for the (continuous) rapidities. To be as explicit

as possible we will consider specific components of W and therefore fix the top and bottom

pentagon operators in (2.1). We begin with the case where both of them stand for the

bosonic transitions. Then W= WMHV describes the bosonic Wilson loops dual to the

MHV amplitudes. The simplest example is the hexagon for which we have a single middle

square in (1.1), (2.1). Given the discussion in the previous section we are led to

Whex≡ =
∑

a

∫
duPa(0|u) e−E(u)τ+ip(u)σ+imφPa(ū|0)

(2.15)

which should be clear by itself right now. All the ingredients in this expression were

discussed before, see (2.4)–(2.8), with the exception of the notation ū. It stands for

ū = {−uN , . . . ,−u1} and is an artifact of our conventions, on which we comment fur-

ther in appendix B.7

As we are describing the bosonic Wilson loop, all states being summed over in (2.15)

have no overall R-charge. The lightest states propagating in the middle square dominate

the decomposition (2.15) at large τ . In the present case the lightest accessible state is

the vacuum itself, which has zero energy, momentum and U(1) charge. Furthermore the

vacuum to vacuum transition is, by definition, equal to 1 since in that case the numerator

and denominator in the ratio (2.4) coincide. Hence Whex = 1 + . . . where the dots stand

for the contribution of the excited states.

At small enough coupling, the lightest excited states are always single-particle and thus

parametrized by a single rapidity u. For the bosonic loop, we get the two conjugate gluonic

excitations F = F−z and F̄ = F−z̄.8 They carry no R-charge and opposite U(1) charge ±1

with regard to rotations in the plane transverse to the flux tube. At weak coupling, their

energy (twist) is equal to one. They contribute equally to the decomposition (2.15) except

that the contribution of F is weighted by e+iφ while the contribution of F̄ is dressed by

e−iφ. Hence

Whex = 1 + e+iφ
∫
du

2π
PF (0|u)µ(u)PF (−u|0)e−E(u)τ+ip(u)σ

+ e−iφ
∫
du

2π
PF̄ (0|u)µ(u)PF̄ (−u|0)e−E(u)τ+ip(u)σ + . . . (2.16)

7These minus signs could be absorbed into a redefinition of the pentagon transitions, which would just

move the drawbacks elsewhere.
8The subscript µ = − in Fµν denotes the light-like direction identified with the σ direction of the flux

tube while ν = z = 1+ i2 and ν = z̄ = 1− i2 stand for right- and left-handed polarizations with respect to

the 1-2 plane transverse to the flux tube.
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where the dots stand for the contribution of heavier excitations (such as gluonic bound

states) or multiparticle states. Here, PF (0|u) and PF̄ (0|u) are form factors for creation

of a gauge field from the vacuum. They are nothing else but a pentagon Wilson loop

with an insertion of a Faraday tensor at the top edge. The two form factors are the same

PF (0|u) = PF̄ (0|u) as a consequence of charge conjugation that swaps F and F̄ . The

latter is a symmetry of the pentagon for the following reason. A pentagon can always be

embedded in an R1,2 ⊂ R1,3 subspace and is therefore invariant under reflection of the

extra direction which we denote as x2. This translates into a Z2 symmetry of the pentagon

which is nothing but charge conjugation, see footnote 8. Note finally that these form fac-

tors, PF (0|u) and PF̄ (0|u), can be set to 1 by an appropriate normalization of the single

gauge field wave function (see end of this section and section 2.4 for further discussion of

this point). Under this convention the WL (2.16) becomes

Whex = 1 + 2 cos(φ)f(τ, σ) + . . . with f(τ, σ) ≡
∫
du

2π
µ(u)e−E(u)τ+ip(u)σ . (2.17)

Our next example is the MHV heptagon for which we have

Whep ≡

(2.18)

=
∑

a,b

∫
du dvPa(0|u) e−E(u)τ1+ip(u)σ1+im1φ1Pab(ū|v) e−E(v)τ2+ip(v)σ2+im2φ2Pb(v̄|0)

Again, the vacuum contribution gives 1. Then, the leading processes at large τ1, τ2 are

those involving a single gluonic excitation F or F̄ . Such gluonic excitation can be produced

at the bottom and absorbed at the top. It can also be produced latter or annihilated

before. Furthermore, in the middle transition, it can change its nature. This is because

the pentagon can absorb the U(1) charge of the excitations and convert an F into an F̄ .

We therefore have two possible gluonic transitions

P (u|v) ≡ PFF (u|v) = PFF (u|v) and P̄ (u|v) ≡ PFF̄ (u|v) = PF̄F (u|v) , (2.19)

associated respectively to the U(1)-preserving and U(1)-violating processes: F
(
F̄
)

→
F

(
F̄
)
and F

(
F̄
)
→ F̄ (F ). In sum, we have

Whep = 1 vacuum → vacuum → vacuum → vacuum

+ 2 cos(φ1)f(τ1, σ1) vacuum → F (F̄ ) → vacuum → vacuum

+ 2 cos(φ2)f(τ2, σ2) vacuum → vacuum → F (F̄ ) → vacuum

+ 2 cos(φ1 − φ2)h̄(τ1, τ2, σ1, σ2) vacuum → F̄ (F̄ ) → F (F̄ ) → vacuum
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+ 2 cos(φ1 + φ2)h(τ1, τ2, σ1, σ2) vacuum → F (F̄ ) → F (F̄ ) → vacuum

+ . . . (2.20)

Here, f is the same as before, see (2.17), the helicity preserving transition contributes as

h(τ1, τ2, σ1, σ2) =

∫
du

2π

∫
dv

2π
µ(u)P (−u|v)µ(v) e−τ1E(u)+ip(u)σ1−τ2E(v)+ip(v)σ2 , (2.21)

and the helicity violating transition h̄ is given by the same expression with P replaced by P̄ .

An important comment about the heptagon concerns the integration contour in (2.21).

As explained before P (u|v) has a pole at u = v and this entails choosing an iǫ prescription

for properly integrating the pentagon transition in (2.21). The residue at this pole controls

at the end the collinear limit σ1, σ2 → −∞ with σ1 − σ2 held fixed, which was related to

the measure in (2.9). This implies that we should shift slightly the integration contours

in (2.21) to the upper half plane such that Im(u) = Im(v) = 0+.

We now move to a case where the first and last transitions in (2.1) are charged. This

is relevant for the study of NMHV amplitudes. For illustration, we consider the NMHV

heptagon component W(7145)
NMHV introduced in (1.11). For this component, a complex scalar

Z is inserted at the bottom cusp and the conjugate scalar Z̄ is inserted at the top cusp.

These scalars carry one unit of R-charge implying that the first and last pentagon tran-

sitions, noted as P∗, are charged transitions carrying the corresponding R-charge. Since

the middle pentagon is not charged and thus invariant under SU(4) rotations, the unit of

R-charge ought to propagate all the way from the bottom to the top. As a result, the

vacuum can no longer propagate at intermediate steps and the analogue of the first line

in (2.20) is absent. The leading large τ contribution should carry one unit of R-charge and

is just the scalar excitation Z

vacuum → Z(u) → Z(v) → vacuum . (2.22)

That is, instead of (2.20), we simply have

W(7145)
hep =

∫
du dv

(2π)2
P∗(0|u)µ(u)P (−u|v)µ(v)P∗(−v|0) e−τ1E(u)+ip(u)σ1−τ2E(v)+ip(v)σ2 + . . .

(2.23)

Note that there is no dependence on φ1 or φ2 in (2.23) since scalars are neutral with respect

to the U(1) rotation. In this expression P (u|v) = PZZ(u|v) stands for the scalar pentagon

transition. The first and last transitions P∗(0|u) and P∗(−v|0) represent the amplitude for

creating a scalar excitation from the vacuum through a charged transition. These can again

be removed by a judicious choice of normalization of the single particle wave function. A

convenient one in this case is to set P∗(0|u) = P∗(u|0) = 1/g, see also section 2.4. For a

similar hexagon NMHV component, in this normalization, we simply have

1

2

3
4

5

6

W(6134)
hex =

1

g2

∫
du

2π
µ(u) e−τE(u)+ip(u)σ + . . .

(2.24)
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We remind the reader that we are working in rapidity space u because this variable

is the most natural one from the integrability view point. We could of course use the

momentum of the excitation p(u), which is somewhat more ‘physical’. The two measures

in both rapidity and momentum spaces would then be related as

dp µ̂(p) = duµ(u) . (2.25)

We conclude this subsection with a short comment on the normalization independence

of ‘physical’ quantities. The square measure and the pentagon transition enter ‘physical’

amplitudes through the particular combinations that appear in the hexagon and heptagon

expansion, see for example (2.16) and (2.23). In practice this implies that by analyzing the

amplitudes we can only access to

P (0|u)µ(u)P (u|0) and
P (u|v)

P (0|u)P (v|0) (2.26)

for MHV Wilson loops (and similarly with a few stars for the supersymmetric case). Hence,

only these ratios are physical for us. Our normalization, which corresponds to setting the

single-particle creation amplitudes to a constant, is just equivalent to saying that we are

only studying and interested in these (normalization independent) physical quantities.

2.3 Flattening — extracting pentagons and square transitions

One of the goal of this paper is to confront predictions for pentagon transitions and mea-

sures with perturbative data at weak coupling. To set the ground work for this comparison

we shall now go through some specifics of the weak coupling expansion. Our consideration

will also illustrate the way one can extract the transitions and measures from the flattening

of the Wilson loops.

A distinctive feature of the weak coupling expansion is that the energies of the flux-

tube excitations are dominated by their tree-level expressions which are independent of

the momenta. For example, the gluonic and scalar excitations discussed above have both

energy one in accord with their (bare) twist. More precisely, their energies take the form

E(u) = 1+ γ(u) where γ(u) depends on the flavour but always starts at order g2. Note on

the other hand that their momenta read p(u) = 2u + O(g2) in both cases. To isolate the

single particle contributions from the full OPE expansion of the Wilson loops, it suffices

then to take the large τi limit and look for the term(s) decaying like e−τi . Take for instance
the hexagon (2.17). We have

Whex = 1 + 2 cos(φ)e−τ
∫
du

2π
µ(u)e−γ(u)τ+ip(u)σ + . . . (2.27)

at large τ , and moreover both the measure µ(u) and the anomalous dimension γ(u) are of

order g2. Hence, at the l-th loop order in perturbation theory, the function dressing e−τ is

a polynomial of degree l− 1 in τ . The terms multiplying positive powers of τ in this poly-

nomial necessarily involve loop corrections to the energy [1] and thus the knowledge of the

measure at the previous loop orders. The most interesting term at each loop order is then

the one without any powers of τ . It is this one which after Fourier transform yields directly
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the l-th loop measure in momentum space, or equivalently in rapidity space using (2.25).

Of course, to generate new predictions for the Wilson loops or reciprocally to check the

full consistency of the OPE, it is important to keep all powers of τ . But to extract the

measure we can just expand at large τ and drop all positive powers of τ . We dub this

procedure flattening. The exact same discussion applies for NMHV hexagon components

such as (2.24) up to a shift of the overall normalization by g2.

The strategy for extracting the pentagon transitions is similar and applies to both the

bosonic heptagon (2.20) and the susy components like (2.23). This time we look for the term

that scales as e−τ1−τ2 at large τ1, τ2 and drop all positive powers of τ1, τ2 in it. For the scalar

NMHV component (2.23) this is the end of the process. For the bosonic one in (2.20) we still

need to separate the helicity preserving transition (h) from the helicity violating one (h̄)

as they come with different φ’s dependence. For example, the contribution in the last line

of (2.20) corresponds to the term in the heptagon bosonic Wilson loop Whept that scales as

2 cos(φ1 + φ2)e
−τ1−τ2

[ ∫ du dv

(2π)2
µ(u)P (−u|v)µ(v)eip(u)σ1+ip(v)σ2

︸ ︷︷ ︸
≡ h(σ1, σ2)

+positive powers of τ1, τ2

]

(2.28)

and directly probes the helicity preserving pentagon transition P (u|v). Similarly, the term

that scales as 2 cos(φ1−φ2)e−τ1−τ2 h̄(σ1, σ2) probes the helicity violating one, with h̄(σ1, σ2)

given by the same expression as h(σ1, σ2) with P̄ instead of P .

In summary, by flattening hexagons and heptagons we have direct access to the mea-

sures and pentagon transitions respectively,

µ(u) , P (u|v)

(2.29)

Polygons with more edges are made out of the same building blocks and therefore do not

involve new (independent) structures. Their analysis tests the way µ and P are glued

together into a big polygon, as illustrated in appendix C for the scalar NMHV component

of an octagon WL at Born level.

Our final comment concerns the reflection symmetry of an insertion obtained by the

above flattening procedure. One would have noticed that the two edges on the top of the

hexagon in (2.29), or equivalently on the bottom, are not on an equal footing since only

one of them ends on a cusp of the square. This implies that the hexagon is not invariant

under σ → −σ. Instead, under a reflection interchanging the left and right sides of the

hexagon, we have that σ → −σ + log(1 + e−2τ ), while τ and φ stay the same. What is

important here is that the symmetry breaking term log(1 + e−2τ ) is suppressed at large
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τ and cannot affect the leading twist-one states. In other words, the insertions of scalar

and gauge fields considered in this paper are invariant under the σ → −σ transformation

or equivalently under the flipping of the signs of the momenta. For the measure we can

derive from it that µ(u) = µ(−u) while for the transition we get

P (−u| − v) = P (v|u) , (2.30)

which is the first axiom for the pentagon transitions in [3].

2.4 Revisiting scalars at Born level

To get familiarized with the square and pentagon transitions it helps computing them

directly from their definitions (2.4) and (2.6). This is what we shall do here at the leading

order in perturbation theory and for the simplest possible insertions, i.e. for scalars.

We first prepare two GKP eigenstates |u〉 and 〈v| for a single scalar with rapidity u or

v. At Born level, these states are simply obtained by inserting a scalar field at the bottom

or top edge of the loop, see (1.4). For example, a single particle state with momentum

p = 2u is given by9

|u〉 ≡ N (u)√
2

∞∫

−∞

dσ e2iuσ|σ〉, where |σ〉 = ⋆
√
|∂σx(σ)|Z(x(σ)) ⋆ , (2.31)

with x = x− the coordinate along the null line (which is the only direction relevant here)

and N (u) a normalization factor. Note that the factor
√
2 could be absorbed in N but is

introduced here to make the following formulae look nicer.

We can now use these states to compute the square and pentagon transitions by a

direct Feynman diagram algebra. We start with a square and insert the state |σ1〉 for the
complex scalar Z at the bottom edge and the state 〈σ2| for the conjugate Z̄ field at the

top edge. At tree level, we just draw a free propagator between the two fields, which are

dressed by their conformal factors, and get

σ1

σ2

=
√

|∂σ1x| ×
g2

x− y
×
√

|∂σ2y| =
2g2

eσ2−σ1 + eσ1−σ2

(2.32)

where we have suppressed the trivial x+ dependence.10 Using (2.31) we can convert the po-

sition space relation (2.32) into its momentum space counterpart and extract the measure

9Note that the insertion |σ〉 would look different in different conformal frames. For example, in the (0,∞)

frame we have x(σ) = e2σ and therefore |σ〉 ∝ ⋆
√
xZ(x)⋆. In the (0, 1) frame we have x(σ) = e2σ/(1+ e2σ)

instead and then the same state takes the form |σ〉 ∝ ⋆
√

x(1− x)Z (x) ⋆.
10We work in the Euclidian kinematics where x and y are space-like separated for all values of σ1,2. For

example, in the (0,∞) frame, this choice corresponds to x(σ) = e2σ and y(σ) = −e2σ. Please see figure

3 in [48] or the discussion around (75) in [26] for simple examples illustrating some differences between

Euclidean and Lorentzian kinematics.
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by comparing with (2.6). This leads to

= N (u)2
g2π2

2 cosh(πu)
δ(u− v) ⇒ µ(u) =

4 cosh(πu)

πg2N (u)2
u

v

(2.33)

where we used that at tree level the vacuum square transition in the denominator of (2.6)

is equal to one.

The computation of the pentagon transition at Born level is no more difficult. We now

insert the states |σ2〉 and 〈σ1| on the bottom and top edges of a pentagon and find

σ1

σ2

=
√

|∂σ1x| ×
g2

x− y
×

√
|∂σ2y| =

2g2

eσ2−σ1 + eσ1−σ2 + eσ2+σ1

(2.34)

The reader may have noticed that at this order in perturbation theory the excitations do

not probe all of the geometry of the pentagon. Still they know about it since they are in

different conformal frames,11 in contrast with the square transition where they are both in

the same frame. This is the reason for the difference between (2.32) and (2.34). We note

also that we can always shift the origin of σ1 or σ2 by a constant. We use the natural choice

for the origin that is induced from the pentagon geometry, see appendix A for details. We

now use (2.31) to convert the position space transition (2.34) into its momentum space

counterpart (2.4) and conclude that

P (u|v) = g2

4
N (u)N (v) Γ

(
1

2
− iu

)
Γ (iu− iv) Γ

(
1

2
+ iv

)
. (2.35)

Let us add a comment here on the square limit of the tree level pentagon transition. If

we send both excitations in the pentagon transition (2.34) to the left, σ1, σ2 → −∞, while

holding σ = σ1 − σ2 fixed, we arrive at the position space square transition (2.32). This

is what we explained before. The position space behavior at large σ1 + σ2 translates, in

momentum space, to the limit u → v. More precisely, in prefect agreement with (2.9) we

observe that (2.35) and (2.33) are related through

Res
v=u

P (u|v) = i

µ(u)
. (2.36)

The remaining single scalar transition entering our decomposition is the amplitude

P∗(0|u) for creating an excitation from the vacuum through the charged pentagon, see (1.17)

for instance. At tree level, the charged transition is nothing else than a pentagon with a

scalar insertion at the right bottom cusp. Accordingly, a direct way to P∗(0|u) is to start

from the pentagon transition (2.34), send the bottom excitation to the latter cusp using

11For example, we can take y(σ) = −e2σ and x(σ) = e2σ/(1 + e2σ) in (2.34).
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σ1 → ∞ and extract the term scaling like e−σ1 . After multiplying the result by 1/(2g),

to match with the normalization [34] of the scalar insertion in the super loop, and Fourier

transforming, we arrive at

σ

=
g

eσ + e−σ
⇒ P∗(0|u) = N (u)

gπ

2 cosh(πu)

(2.37)

We can test now how these various ingredients combine together when constructing

physical quantities (i.e., those entering the computation of scattering amplitudes), by look-

ing at the integrand for the heptagon super Wilson loop, for instance. To leading order at

large τi, it describes the process ‘vacuum → Z(u) → Z(v) → vacuum’ and it is given by

P∗(0|u)µ(u)P (−u|v)µ(v)P∗(−v|0) = Γ

(
1

2
+ iu

)
Γ (−iu− iv) Γ

(
1

2
+ iv

)
. (2.38)

We verify here that the unphysical normalization N (u) drops out completely at the end,

as it should be.12 We further observe that the integrand (2.38) matches perfectly with the

one (1.16) computed in the introduction (by decomposing a tree level scattering amplitude)

once we identity p1 = 2u and p2 = 2v. Finally, we already pointed out that we can always

fix our normalization, i.e. N (u), such that

P∗(0|u) = 1/g . (2.39)

We can impose this normalization at any loop order as we will always do it in this paper.

Then

µ(u) =
πg2

cosh(πu)
, P (u|v) = Γ (iu− iv)

g2Γ
(
1
2 + iu

)
Γ
(
1
2 − iv

) , (2.40)

to leading order at weak coupling. Note that in this normalization the hexagon integrand

is now governed by the measure µ(u) and nothing else, see (2.24).

3 Scalars

In this section we introduce and motivate our conjecture for the transition of a single scalar

excitation over the pentagon Wilson loop at finite coupling. As for the gluonic excitations

discussed in [3] and later on in this paper, our construction relies on two fundamental

axioms. They encode the properties of the transition under permutation and crossing of

the excitations respectively. Their main ingredients are the S-matrix for scattering on top

of the GKP flux tube and the mirror rotation that we shall first review. At the end, part

of the evidence for our expressions comes from the matching with higher-loop data that

shall be performed here for both the hexagon and heptagon Wilson loops.

12An even simpler example would be the hexagon integrand P∗(0|u)µ(u)P∗(−u|0) = πg2sech(πu) where

again the normalization neatly drops out.
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3.1 The scalar S-matrix and the mirror rotation

One feature of the scalars is that they are charged under the SU(4) symmetry of the gauge

theory. The scalars Φi come in 6 different flavours i = 1, . . . , 6 and transform in the

vector representation of SU(4). When inserted with definite rapidities along the flux tube

direction, they scatter among themselves and exchange their flavour indices. The most

elementary process involves the scattering of two scalars only

Φi(u)Φj(v) → Φl(v)Φk(u) (3.1)

and is fully characterized by the S-matrix Sklij (u, v). The latter matrix was extracted in [31]

from the all-loop Bethe ansatz equations for the super-spin-chain of the N = 4 gauge the-

ory [49, 85]. It has the expected form for a factorized S-matrix having the O(6) symmetry,

being proportional to the rational R-matrix Rklij (u − v) in the vector representation [50]

(see also [31] for the case at hand)

Sklij (u, v) = S(u, v)Rklij (u− v) , Rklij (u− v) =
u− v

u− v − i
δki δ

l
j + . . . . (3.2)

The object of interest here is the scalar factor S(u, v) that multiplies this R-matrix. This

phase encodes the dynamical information of the GKP background that distinguishes it from

other integrable models sharing the same O(6) symmetry. It can be read directly from the

scattering of two scalars in the symmetric channel or, equivalently, from the scattering

of two scalars Z, with Z ∝ Φ1 + iΦ2. The scattering phases in the other two channels

appearing in (3.1), i.e., the adjoint and singlet channels, differ from it by simple rational

prefactors. For instance, the scattering phase in the singlet channel reads

Ssinglet(u, v) ≡
1

6
Sklij (u, v)δ

ijδkl =
(u− v + i)(u− v + 2i)

(u− v − i)(u− v − 2i)
S(u, v) . (3.3)

At generic values of the coupling constant, the scattering phase S(u, v) is a complicated

function of the two rapidities and in particular it is not just a function of their difference.

It is only known implicitly through the solution to a linear integral equation (see [31] and

appendix E). This equation is however easily solved iteratively at weak coupling hence

providing explicit expression for S(u, v) order by order in perturbation theory. To the

leading order the relevant expression was already given in (1.10) with s = 1/2 for a scalar

and p1 = 2u, p2 = 2v. The computation of the higher-loop corrections is explained in

appendix E and implemented in the notebook attached to this paper.

In what follows we shall also need some non-perturbative information about S(u, v).
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This one is provided by [31]

A. Unitarity : S(u, v)S(v, u) = 1 =

B. Crossing : S(u2γ , v)S(u, v) =
u− v

u− v + 2i
∝

C. Mirror symmetry : S(uγ , vγ) = S(u, v) =

(3.4)

The first equation above is easily grasped since it expresses the unitarity of the theory. In

an integrable theory all scattering processes are elastic hence resulting in simple unitarity

relation like equation A in (3.4). Of particular importance for the remaining two equations

is the mirror transformation γ that maps the rapidity plane back to itself, γ : u→ uγ . This

map takes an excitation from the real kinematics, that is where its energy and momentum

are real, and brings it to the so-called mirror kinematics, where its energy and momentum

are both purely imaginary. Physically it is a transformation that swaps the role of the

(flux-tube) space and time directions (σ, τ) → (−τ, σ). The mirror excitation can then

be thought as propagating with energy −ip(uγ) along the time σ and with momentum

−iE(uγ) with respect to the space −τ . Pictorially, if we think of a real particle as evolving

from bottom to top then we can view the mirror one as evolving from left to right,

γ: u→ uγ =
u

uγ

(3.5)

One important point here is that the GKP background is expected to be mirror invariant.

This symmetry was formulated in [2, 51] and is common to relativistic models. It means

that the theory should look the same before and after the γ rotation. At the level of the

dispersion relation it translates into

p(uγ) = iE(u) , E(uγ) = ip(u) , (3.6)

and was checked for a scalar in [52]. For this excitation the transformation γ is especially

simple [52] as it amounts to shifting the rapidity u by the imaginary unit: uγ = u + i.

This is quite transparent at strong coupling where the theory becomes relativistic and the

rapidity u becomes the hyperbolic rapidity θ = πu/2, such that θγ = θ + iπ/2. For more

generic values of the coupling it is primordial to specify the path along which the shift

uγ = u + i is performed. The reason behind this subtle step is that observables like the

– 25 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

energy, the momentum, or the S-matrix are multivalued functions of their rapidities. No-

tably, they all have square-root branch points at u = ±2g + i/2. To implement correctly

the mirror rotation γ it is necessary to pass in-between these two branch points.13 Equa-

tion C in (3.4) reflects the mirror invariance at the level of the scalar S-matrix. It implies

indeed that the scattering of two scalars propagating in the mirror channel is identical to

the scattering of two scalars in the real kinematics. Finally we note that when combining

two mirror rotations we get a transformation that changes the sign of both the energy and

the momentum. This is the more familiar crossing transformation that maps a particle

into an anti-particle. For a scalar excitation particle and anti-particle are the same and the

equation B in (3.4) simply results from this identification (see [31, 50] for more details).

We stress that the equations A-B-C in (3.4) are valid regardless of the value of the

coupling constant. They are actually much more general and would be the same in any

factorizable O(6) model with mirror symmetry, like the (relativistic) 2d non-linear O(6)

sigma model for instance.

Equipped with these equations we can now turn to the consideration of the scalar

pentagon transition.

3.2 The pentagon transition at finite coupling

We are interested in the transition from a state Φi(u) at the bottom to a state Φj(v) at

the top of the pentagon. The matrix structure for this transition is very simple. Since the

R-symmetry is preserved by the pentagon14 the scalar transition ought to be proportional

to the Kronecker delta

〈Φj(v)| P̂ |Φi(u)〉 = P (u|v)δij . (3.7)

In other words there is only one possible channel for the transition of a single scalar through

the pentagon and it is characterized by a single dynamical function P (u|v). This is the

latter object our fundamental axioms apply to. They read

I. P (u|v) = S(u, v)P (v|u) see (1.3)
(3.8)

u−γ

−γ

u

=

v v

II. P (u−γ |v) = P (v|u)

where S(u, v) is the scattering phase introduced before and −γ stands for the inverse of

the mirror rotation. These axioms are quite similar to the ones proposed in [3] for glu-

ons. Axiom I is especially important since it relates the pentagon transition P (u, v) to the

S-matrix S(u, v). Axiom II states that the pentagon transition goes back to itself if the

13At weak coupling these two branch points collide leaving some singularities behind them at u = i/2.

For this reason the mirror rotation is non-perturbative in nature and requires a non-perturbative control

on the observables under study.
14Note that of all the continuous symmetries of the underlying theory this is the only one preserved by

the pentagon.
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inverse mirror transformation is performed on the bottom rapidity u. Behind it is the idea

that the very same transformation that rotates an excitation from one edge to another on

the square would apply to the pentagon as well. Under this assumption the excitation u−γ

on the bottom edge of the pentagon can be viewed as an excitation u now living on the

right neighbouring edge (see picture in (3.8)). Under a cyclic rotation of the pentagon this

is nothing else that describing the pentagon transition P (v|u) as written in axiom II. Note

that there is a slight difference here with the case of gauge fields where this transformation

also changes the (relative) helicity of the gluons [3].

It was pointed out in [3] that Axiom I is reminiscent of the Watson’s equation for form

factors in integrable theory [53, 54]. This analogy is sometimes deceptive and shall be made

more precise shortly. To motivate our axioms we can perform the following consistency

checks:

Unitarity: it is nice to observe that Axiom I directly implies the unitarity of the S-matrix,

S(u, v)S(v, u) =
P (u|v)
P (v|u) ×

P (v|u)
P (u|v) = 1 , (3.9)

in agreement with property A in (3.4).

Mirror symmetry: combining twice Axiom II we find

P (u−γ |v−γ) = P (v−γ |u) = P (u|v) . (3.10)

It means that the pentagon transition is mirror invariant. This relation has a simple

geometric understanding since it follows from the cyclicity property of the pentagon

(i.e., the invariance under an overall γ-rotation of the pentagon). We notice that this

property of the pentagon transition would be in conflict with Axiom I if the S-matrix

S(u, v) was not itself invariant under a mirror rotation, see property C in (3.4).

Watson’s equation: we can consider the process where a pair of scalars is produced at the

top of the pentagon. It is described by the form factor

〈Φi(u)Φj(v)| P̂ |0〉 = P (0|u, v)δij , (3.11)

and should satisfy the Watson’s equation

=〈Φi(u)Φj(v)| P̂ |0〉 = Sklij (v, u) 〈Φl(v)Φk(u)| P̂ |0〉
u v

⇒ P (0|u, v) = Ssinglet(v, u)P (0|v, u)
v u

(3.12)

with Ssinglet(u, v) defined previously in (3.3). The Watson’s relation is easy to under-

stand: reordering two adjacent scalars within a state (here at the top of the pentagon)

is equivalent to acting with the S-matrix (see picture in (3.12)). The point we would

like to stress is that the Watson’s equation is not independent of our axioms (3.8). In
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fact it is a consequence of them. To see it, we observe that we can access to P (0|u, v)
by performing on the bottom excitation either two mirror rotations or three inverse

mirror rotations,

=P (0|u, v) = P (u2γ |v) = P (v−3γ |u)
u2γ

vvu

v−3γ
=

u

(3.13)

It allows us to write

P (0|u, v)
P (0|v, u) =

P (u2γ |v)
P (u−3γ |v) =

S(u2γ , v)S(uγ , v)

S(v, u−2γ)S(v, u−γ)S(v, u)
, (3.14)

where in the last equality we made use of our two axioms (3.8) to reexpress the ratio

on the left-hand side in terms of S-matrices only. After using the unitarity property

of S(u, v) and comparing with (3.12), we conclude that our axioms will be consistent

with the Watson’s equation if and and only if the pentagon identity

S(u2γ , v)S(uγ , v)S(u, v)S(u−γ , v)S(u−2γ , v) = Ssinglet(v, u) (3.15)

is observed. A simple algebra based on the property B of the scalar S-matrix reveals

that this identity is indeed correct!

It is interesting to notice that the consistency between the fundamental relation and

the Watson’s equations strongly relies on the fact that we are dealing with an O(6)

invariant S-matrix. Curiously, the same algebra would not work out correctly if we

were using an S-matrix with O(N) symmetry with N 6= 6.

This series of checks illustrate the nice interplay between the axioms for the pentagon

transition and the general properties of the flux tube S-matrix.

The fundamental axioms (3.8) allow us to make an educated guess for what the pen-

tagon transition should be. Looking at Axiom I, for instance, we realize that the pentagon

transition P (u|v) is essentially the square-root of the S-matrix S(u, v). More precisely and

with help of property A, we get

P (u|v)2
P (v|u)2 = S(u, v)2 =

S(u, v)

S(v, u)
, (3.16)

that is solved by

P (u|v)2 = z(u, v)S(u, v) , (3.17)

with z(u, v) = z(v, u) a symmetric function. Plugging (3.17) into Axiom II and using

symmetry of z(u, v), we arrive at

z(u, v)

z(u−γ , v)
=
S(u−γ , v)
S(v, u)

=
S(v, uγ)

S(v, u)

(u− v − i)

(u− v + i)
× u− v

u− v
, (3.18)
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where in the last step we used the crossing property B of the S-matrix. Recalling that

uγ = u+ i for a scalar, we see that the above relation is equivalently written as

z(u, v) =
w(u, v)S(v, uγ)

(u− v)(u− v + i)
=

w(u, v)

(u− v)(u− v + i)S(uγ , v)
, (3.19)

where w(u, v) is, by construction, invariant under mirror rotation of its rapidity, w(uγ , v) =

w(u, v). It is also symmetric under exchange of the two rapidities w(u, v) = w(v, u).15

Clearly the simplest possible solution for w is that it is a constant. Our conjecture is that

it is exactly equal to 1/g2 (within the normalization assumed in this paper).

Combining everything together our proposal for the transition of a single scalar over

the pentagon is

P (u|v)2 = S(u, v)

g2(u− v)(u− v + i)S(uγ , v)
. (3.21)

We see that it is expressed directly in terms of the scalar S-matrix which can be constructed

exactly using integrability. The only ambiguity that is left over is the choice of the branch

when taking the square-root of (3.21). This one is easily fixed by comparison with data,

at tree level already.

To complete our construction we also need to get the expression for the measure. Ac-

cording to our previous discussion, see (2.9), the measure µ(u)2 is readable from the double

pole of P (u|v)2 at u = v. Looking at (3.21) and using that S(u, u) = −1, it should then

be true that

µ(u)2 = g2 lim
v→u

i

u− v
S(uγ , v) . (3.22)

At first sight it is not obvious that this limit exists at all. Remarkably enough, it appears

that S(uγ , v) has a simple zero for u ∼ v and this regardless of the value of the coupling

constant. The expression (3.22) thus determines the measure unambiguously, up to an

overall sign which is easily fixed from data.

Equations (3.21) and (3.22) conclude our discussion of the all-loop scalar pentagon

transition.

3.3 Weak coupling expansion

We shall now confront our OPE predictions with explicit data extracted from perturbative

scattering amplitudes at weak coupling. It is quite straightforward to expand all our build-

ing blocks (i.e., the transition, measure, energy and momentum) in perturbation theory.

This is explained in appendix E and implemented in a mathematica notebook attached to

this submission. For instance, one easily verifies that the scalar pentagon transition takes

the form

P (u|v) = Γ(iu− iv)

g2Γ(12 + iu)Γ(12 − iv)

[
1 + g2α(u, v) +O(g4)

]
, (3.23)

15This follows both form the property of z(u, v) and from unitarity and crossing, which can be combined

into

(u− v)(u− v + i)S(uγ , v) = (v − u)(v − u+ i)S(vγ , u) . (3.20)
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at weak coupling. Here the function α(u, v) is given by

α(u, v) = ψ(1)

(
1

2
+ iu

)
+ ψ(1)

(
1

2
− iv

)
− π2

3

+Hiu− 1
2
Hiv− 1

2
+H−iu− 1

2
H−iv− 1

2
+H−iu− 1

2
Hiv− 1

2
−Hiu− 1

2
H−iv− 1

2
,

(3.24)

where Hz = ψ(z + 1)− ψ(1), ψ(z) = ∂z log Γ(z), and ψ
(1)(z) = ∂zψ(z).

We immediately notice that the leading order expression in (3.23) agrees perfectly with

the pentagon transition computed at Born level from Feynman diagrams in (2.40). This

was already matched successfully against a particular component of the super Wilson loop

in the introduction.

Higher loops are similar to (3.24) but contain higher derivatives of the polygamma

function. In fact, one neat feature of our finite coupling conjecture is the presence of a

sort of exponentiation: the logarithm of the square bracket in (3.23) is much nicer than

the bracket itself. Namely, it is at most quadratic in ψ(n) — derivatives of the polygamma

function — with arguments 1/2±iu or 1/2±iv only! This follows from the expansion of the

functions f1, f2, f3, f4 that appear in the construction of the finite-coupling expression and

that only generate quadratic monomials of this sort in perturbation theory (see appendix E

and the discussion surrounding (E.16) for more details).

The measure is related to the pole of the pentagon transition at u = v, see (2.9)

and (3.22). This yields

µ(u) =
πg2

cosh (πu)

[
1 + g2

(
4π2

3
− 2π2

cosh2 (πu)
− 2Hiu− 1

2
H−iu− 1

2

)
+O(g4)

]
. (3.25)

It follows from what was said before that the logarithm of this square bracket is also a

nicer quantity at any loop order. Namely, it is at most quadratic in ψ(n)(1/2± iu).

Finally, we recall that for a scalar the momentum and energy are given by

p(u) = 2u− 2πg2tanh(πu) +O(g4) , (3.26)

E(u) = 1 + γ(u) = 1 + 2g2
(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

)
− 2ψ(1)

)
+O(g4) . (3.27)

It is worth mentioning that the way the energy and the momentum are computed is not

disconnected from the way we compute the S-matrices or the pentagon transitions. On

the contrary, when computing the S-matrices we solve a set of integral equations for an

infinite series of auxiliary variables, see appendix E. These auxiliary variables are the

higher conserved charges of the flux tube, which guarantees its integrability. The energy

and momentum are just two special representatives of these charges, see (E.18).

We now have all the ingredients to predict the leading OPE behavior for the scalar

component of the NMHV hexagon and the NMHV heptagon to any loop order. In the

following subsections we will check them against perturbation theory to provide support

for our conjectures.
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3.4 The NMHV hexagon and the scalar measure

We start by matching our predictions with perturbative data for the NMHV hexagon,

see (2.24). Unfortunately, the perturbative data is conventionaly given in position space

(σ) rather than in rapidity space (u). Hence, in order to compare it with our predictions, we

have to perform the Fourier transform from u to σ in (2.24) or reciprocally inverse-Fourier

transform the perturbative data. At the first few loops it is rather straightforward to do

either and perform the relevant integrals explicitly, since we deal with relatively simple

functions. At higher loops this becomes quite tedious and one has to rely on alternative

strategies. We will present one of them in the following.

We begin with the Born level where we can easily Fourier transform our expres-

sion (3.25) for the measure,

W(6134)
tree = e−τ

1

g2

∫
du

2π
µ(u)eip(u)σ−γ(u)τ + . . .

= e−τ
∫
du

2π

π

cosh(πu)
e2iuσ + . . .

= e−τ
1

2 cosh(σ)
+ . . . (3.28)

It agrees perfectly with the direct computation of the Born level amplitude:

1

2

3
4

5

6

W(6134)
tree = =

1

〈6, 1, 3, 4〉 = e−τ
1

2 cosh(σ)
+ . . .

(3.29)

where we used the hexagon twistors written down in appendix A, see (A.9). In section 1.2

and 2.4 we performed a similar check for the heptagon. In that case we inverse Fourier

transformed the (leading collinear limit of the) heptagon amplitude and matched it against

the bootstrap predictions. Of course, the heptagon check includes the hexagon one, since

the two are related by a collinear limit. It is nice to verify it explicitly nevertheless. The

match of (3.28) with (3.29) is also useful to align the sign ambiguity discussed below (3.22)

with our convention for the normalization of the twistors (A.9).

From the bootstrap viewpoint higher loops are not conceptually more involved. The

only difficulty, as alluded to before, is technical and related to the Fourier transformation

to position space. The simplest way of guessing these Fourier integrals is to assume —

based on empirical evidence — that at any loop order the hexagon contribution (2.24) can

be parametrized in terms of so called Harmonic Polylogs (HPLs). Precisely we write

W(6134) =
e−τ

2 cosh(σ)

∞∑

l=0

g2l
l∑

n=0

τnF (l)
n (σ) + O(e−2τ ) , (3.30)
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where F
(l)
n are linear combinations of HPLs in x = e2σ of maximum degree 2l−n and with

slots 0 or 1 only,16

F (l)
n (σ) = a+

1∑

i=0

aiHi(−x) +
1∑

i,j=0

ai,jHi,j(−x) + . . . +
1∑

i1,...,i2l−n=0

ai1,...,i2l−nHi1,...,i2l−n(−x) .

(3.31)

Here a, a0, a1, a0,0, a0,1, etc., are just constants, which depend implicitly on l and n.

For example, at tree level l = n = 0 and all that we have is a constant a which in our

normalization is just 1. Note that the harmonic polylogs are generalizations of the usual

polylogs. In fact, up to degree three, they can all be re-expressed as familiar polylogs Li1,2,3.

More generally, they can all be conveniently manipulated using the mathematica package

HPL [55, 56], where, for illustration, H1,0(x) is entered as HPL[{1,0},x]. For further details
on this interesting class of functions please see [55–57].

Equipped with the ansatz (3.31) the next step is to fix the constants a, a0, . . . . One

way of doing is by comparing the Taylor expansion in eσ of the ansatz (3.31) with the one of

the integral in (2.24) at the given loop order. What is nice about it is that both expansions

are very simple to perform. To expand (3.31) we can use the HPL package, for instance,

while to expand (2.24) we just need to extract residues of the integrand in the lower half

of the u plane. In the latter case, each residue is in correspondence with a power of eσ.

Once all the constants have been fixed using the first few terms in the expansion, one

can test a few more residues as self-consistency checks. Typically, it is relatively easy to

perform the analysis for the first few hundred powers of eσ. Then, as an extra verification,

one can compare (3.31) and (2.24) numerically with high precision.

This algorithm works perfectly up to the maximal order we have checked, which is

three loops. The functions F
(l)
n (σ) that we obtained are summarized in appendix F and

given in a companying notebook. The simplest ones, at one loop, are given by

F
(1)
0 = −2 log(1 + x) log(1 + 1/x) , F

(1)
1 = 4 log(

√
x+ 1/

√
x) . (3.32)

At two loops the most transcendental contribution is

F
(2)
0 = 4H1H̄0H0,1 +

1

2
H̄2

0H0,1 − 4H̄0H0,1,1 + 2ζ(3)H̄0 + 4H3
1 H̄0 +H2

1 H̄
2
0 +

4

3
π2H1H̄0

+
1

12
π2H̄2

0 +
1

6
π2H0,1 + 4H0,0,0,1 + 2H0,1,0,1 − 4ζ(3)H1 + 2H4

1 + π2H2
1 +

π4

36

where H is short for H(−x) and H̄ for H(+x). For the other functions see appendix F.

The next and most important step is to compare all the functions F
(l)
n (σ) with Scat-

tering Amplitudes. Up to two loops there are the 6 functions:

F
(0)
0 ,

F
(1)
0 , F

(1)
1 ,

16There is an even more convenient ansatz: one applies HPLLogExtract@ansatz/.HPL[{0},-x]->
HPL[{0},x] to the ansatz (3.31). This new ansatz is a bit more convenient: it is more manifestly real

for x ≪ 1, provided the coefficients {a, ai, . . .} are all real.
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F
(2)
0 , F

(2)
1 , F

(2)
2 , (3.33)

to match against perturbative results for the ratio function R(6134), which is the same as

our W(6134) to leading order in the OPE (i.e., they differ only for higher powers of e−τ ).
Note that the mere fact that the perturbative results organize as in (3.30) is in itself

a prediction coming from the OPE approach which is far from obvious from the amplitude

side. Checking that this structure comes right is the zero-th order step before matching

the precise form of the functions F
(l)
n .

The first function F
(0)
0 = 1, at Born level, was already matched before. We can ex-

tract F
(1)
n by expanding the one-loop Hexagon ratio function to leading order at large τ .

The six gluons NMHV amplitude at one loop was computed in [58] and written as a ra-

tio function in terms of conformal cross-ratios in [47]. A very convenient source for any

one loop NkMHV n-point Amplitude is the package [10] by Bourjaily, Caron-Huot and

Trnka. For example, to extract the Hexagon one-loop ratio function using this package

we simply define the Zs to be given by the hexagon twistors (A.9), run the command

evaluate@superComponent[{1},{},{2},{3},{},{4}]@ratioIntegral[6,1] and finally

Series expand the result. In this way we read off both F
(1)
0 and F

(1)
1 and find that they

agree precisely with our predictions (3.32). At two loops we can use the results of Dixon,

Drummond and Henn in [59]. In their notations, the component we are considering is given

by

R(6134) =
g2

〈6, 1, 3, 4〉V3(u1, u2, u3) with ui =
〈i, i+ 1, i+ 2, i+ 3〉〈i, i− 1, i− 2, i− 3〉
〈i, i+ 1, i− 2, i− 3〉〈i, i− 1, i+ 2, i+ 3〉 ,

(3.34)

see (A.10). Here also, after OPE expanding their result, we find a perfect match with the

bootstrap predictions.17

At three loops the ratio function is not known. Formulae (F.1) in appendix F are new

predictions from the OPE approach. It would be very interesting to use them to constrain

the three-loop result or to check them against an independent computation.

3.5 The NMHV heptagon and the scalar transitions

We will now check the bootstrap predictions for the pentagon transition. As explained in

section 2.3, the pentagon transition governs the term that decays as e−τ1−τ2 in the hep-

tagon amplitude. It can read from the component R(7145) for which a scalar is inserted at

the bottom cusp and absorbed at a top cusp, see (1.11). At tree level we already observed

a perfect match between our expression and the one coming from the Amplitude side, see

sections 1.2 and 2.4. We now move to loops.

At any loop order, the OPE decomposition states that

R(7145) ≃ e−τ1−τ2





∫

R+i0

∫

R+i0

dudv

g2(2π)2
µ(u)µ(v)P (−u|v)eip(u)σ1+ip(v)σ2 + higher powers of τ1, τ2



 . (3.35)

At l loops order we have at most l total powers of the τ ’s. The terms with positive powers of

τi are obtained by dressing previous loop orders by the anomalous energy of the excitations.

17We thank Lance Dixon, Matt von Hippel and Jeffrey Pennington for sharing with us a notebook with

the near collinear expansion of the NMHV functions in [59] up to O(e−2τ ).
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Hence they probe the structure of the OPE but they do not probe the l-th loop correction to

the transition (which is what we are most interested in, in this paper). At each loop order,

the quantum correction to the transition appears in the term with no powers of τ1, τ2. Fur-

thermore, the more powers of τi we consider the simpler (less transcendental) the functions

get (see for example (F.1) for the hexagon). Hence the most non-trivial checks are, by far,

those involving no powers of τi. We are now going to check those terms up to two loops.

We start by writing our predictions (3.23) in positions space,

∫

R+i0

∫

R+i0

dudv

(2π)2
1

g2
µ(u)µ(v)P (−u|v)eip(u)σ1+ip(v)σ2 =

1 + g2α(σ1, σ2) + g4β(σ1, σ2) + . . .

eσ1−σ2 + eσ2−σ1 + eσ1+σ2
.

(3.36)

The challenge is to compute the functions α, β from (3.23) and match them against per-

turbative data. The one loop correction is easy enough to be done without any fancy

techniques. It reads

α=log (1+e2σ1) log (1+e2σ2)−log

[
e2σ1(1 + e2σ2)

e2σ1+e2σ2+e2σ1+2σ2

]
log

[
e2σ2(1 + e2σ1)

e2σ1+e2σ2+e2σ1+2σ2

]

+

[
Li2

(
e2σ1

e2σ1 + e2σ2 + e2σ1+2σ2

)
+ Li2

(
e2σ1

1 + e2σ1

)
+ σ1 ↔ σ2

]
− π2

6
.

(3.37)

We can compare it with data as before: we use the Loop_Amplitudes.m package [10] to

extract the corresponding heptagon NMHV one-loop component and expand it at large τi
using the heptagon twistors (A.11). We find a perfect match.

The computation of the two-loop prediction β is considerably more difficult. After

some work18 one gets

β = −3Li2,2

(
−x,− y

y(1 + x)

)
+ 2Li3,1

(
−x,− y

xy + x

)
+ (x↔ y) (3.38)

+huge expression with classical polylogs up to weight 4, π’s and ζ(3) ,

where x = e2σ1 and y = e2σ2 . The full expression can be found in a notebook attached to

this submission. In the first line we have the functions

Lia,b(x, y) ≡
∞∑

n=1

n∑

m=1

xnym

namb
, (3.39)

which can not be written in terms of classical polylogs. We have checked the validity

of (3.38) by matching the expansion of the first few hundred terms in small x and large y

with the expansion computed by picking residues in the Fourier integral in the left hand

side of (3.36). As a further check we also computed the left and right hand side of (3.36)

numerically.

18We looked at the two loop symbol of [14] to get some inspiration about what kind of ansatz to use. In

particular, it was very useful to use a projector [16] that removes all terms that can be written as classical

polylogs therefore isolating the hardest parts of the result. We thank Cristian Vergu for his explanations

about how this projector works.
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It is worth emphasizing that the expressions obtained from the bootstrap are way sim-

pler when written in momentum space at finite coupling, see e.g. (3.21). It is only when we

expand the integrand in small g and insist on going to position space that we get enormous

expressions as in (3.38). Of course this is a necessary evil to compare with perturbation

theory.

We can now confront our predictions with the two-loop result obtained from the Q-bar

approach of [14].19 To do so we discard all π’s and ζ(3)’s in (3.38), since unfortunately the

symbol is insensitive to those, and then compute the symbol of whatever remains.20 Then

we compare the result with the τi → ∞ limit of the symbol [14] itself21 and find a perfect

match! An interesting question is whether the leading collinear behaviour (3.38) can be

used to construct the full NMHV heptagon two-loop ratio function from its symbol.

4 Gluons

In this section we shall motivate our ansatz for the gluonic transitions and measure pre-

sented in [3]. We will then extract the same transitions from known MHV amplitudes

and match them against our expressions. Finally, we will comment on a different way of

inserting a gluonic excitation, which is related to the MHV procedure by a form factor.

4.1 Bootstrapping the pentagon transitions

The gauge field excitations come in two types: a particle F and its anti-particle F̄ . They

are associated to the twist-one components of the Faraday tensor F−z and F−z̄, respectively,
and they carry opposite U(1) charge ±1 with regard to rotations in the plane transverse

to the flux tube.

A U(1) symmetric S-matrix has three independent components. One of them simply

accounts for the scattering phase between two F s. The remaining two components of the S-

matrix describe the backward and forward scattering of an F with an F̄ . All other processes

can be obtained from them by charge conjugation, that is by invoking the symmetry under

the exchange F ↔ F̄ . An important observation regarding the scattering of gauge field

excitations in the flux-tube theory is that it is reflectionless. It means that there is no

backward scattering among gluonic excitations carrying opposite U(1) charge: when an F

and an F̄ scatter they do it without exchanging their individual momenta. The gluonic

19We thank Simon Caron-Huot and Song He for sharing with us a notebook with their heptagon result [14].
20We thank Song He for teaching us about the functions Li2,2 and Li3,1 and their symbols.
21Taking a collinear limit inside a symbol is not totally straightforward. For each slot of the symbol we

write · · · ⊗ f ⊗ · · · = a(· · · ⊗ (e−τ1) ⊗ . . . ) + b(· · · ⊗ (e−τ2) ⊗ . . . ) + (· · · ⊗ freg ⊗ . . . ) where, for large τi,

f = e−aτ1−bτ2(freg + positive powers of e−τi). For this NMHV example, all terms with e−τi as slots are

nothing but the shuffle product of (the symbol of powers of) log(eτi) = τi with a τi independent symbol.

Hence they only contribute to the higher powers of τi in (3.35) which are not what we are after here. Hence,

in practice, we can drop them all and keep freg only. In this way we obtain a symbol with four slots which

depends on σ1 and σ2 only and which can be matched with the symbol of β. For a more complete discussion

on comparisons of our predictions with symbols please see sections 4.3 and 4.4.
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S-matrix is then fully specified by the two phases associated to the two processes

S(u, v) : F (u)F (v) → F (v)F (u) ,

S̄(u, v) : F̄ (u)F (v) → F (v)F̄ (u) .
(4.1)

These two scattering phases are actually not independent. They are related by

S(u, v) =
u− v + i

u− v − i
S̄(u, v) . (4.2)

Accordingly, the gauge-field S-matrix is known once S(u, v) is known. The leading order

expression for S(u, v) at weak coupling is given by (1.10) with the conformal spin s = 3/2

appropriate for a gauge field excitation. The higher-loop corrections and more generally

the finite-coupling prediction from integrability are detailed in appendix E.

The origin or explanation of the relation (4.2) in the flux-tube theory, and more gen-

erally of the absence of backward scattering, are not clear to us. They stand as predictions

that we extracted from the spin-chain description, where F and F̄ are viewed as excitations

of the large spin background. In this picture, the entire S̄(u, v) scattering originates from

the back reaction of the large spin background, while the simple rational factor in (4.2)

accounts for an extra bare or spin-chain scattering between two F s with same U(1) charge.

One interesting question is whether the dual string description can shed light on these

features of the gluon S-matrix.

The gluon S-matrix has further remarkable properties, which are similar to (3.4) and

valid at any coupling. We list them here,

A. Unitarity: S(u, v)S(v, u) = 1 ,

B. Crossing: S(u2γ , v)S̄(u, v) = 1 ,

C. Mirror symmetry: S(uγ , vγ)S(v, u) = 1 ,

(4.3)

together with the three equations obtained upon exchanging S ↔ S̄. These equations have

the same physical contents as the ones for scalars. The only difference is technical and

resides in the mirror path γ which is different from the one previously encountered. For a

gauge field excitation the path γ describes a loop in rapidity space [52] and at the end of day

maps a rapidity u to the same rapidity uγ = u. The subtlety is that the final rapidity is not

lying on the same sheet as the original one. To properly rotate a gauge field into the mirror

kinematics we should first cross the cut stretching between u = ±2g+ i/2 in the upper-half

plane and then go through the one connecting u = ±2g − i/2 in the lower-half of this

new plane. This has to be done in this order as the order matters. For the inverse mirror

rotation −γ one would have to go counterclokwise and first cross the cut in the lower-half

plane and so on. This is all we need to know about the mirror rotation of a gauge field. We

stress that when applied to functions with no cuts in the u plane (like the rational factor

in (4.2) for instance) the mirror rotation boils down to the trivial transformation uγ = u.

Equipped with the previous understanding of the scattering among gauge field excita-

tions we now turn to the discussion of their pentagon transitions. Recall that we have two

gluonic pentagon transitions

P (u|v) ≡ PFF (u|v) , P̄ (u|v) ≡ PFF̄ (u|v) , (4.4)
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associated respectively to the U(1)-preserving and U(1)-violating processes, see discussion

around (2.19). Our conjectures for these transitions were already presented in [3]. Here we

would like to elaborate on them.

The first step is to relate the pentagon transitions (4.4) to the gluon S-matrix. This is

the content of the fundamental axiom proposed in [3],

P (u|v) = S(u, v)P (v|u) , P̄ (u|v) = S̄(u, v)P̄ (v|u) . (4.5)

On their own they are not enough to fix completely the form of the transitions (4.4). The

extra information is provided by the transformation law under a mirror rotation. As al-

ready explained in the scalar section we expect that the transformation γ introduced before

will map an excitation on one edge of the pentagon to an excitation on the neighbouring

right edge, see (3.5) and (3.8). For a gauge field excitation F (u−γ) there are two possible

excitations on the neighbouring edge with the same dispersion relation: F (u) and F̄ (u),

and they carry opposite U(1) charge m = ±1. As explained in details in appendix D, a

mirror rotated gauge field is a gauge field with opposite U(1) charge. That is, γ : F → F̄

and similarly γ : F̄ → F . We conclude therefore that

P (u−γ |v) = P̄ (v|u) , P̄ (u−γ |v) = P (v|u) . (4.6)

We can test the consistency of our axioms as we did before for the scalars. Starting

with the helicity violating transition, we can bring the bottom excitation to the top using

two mirror rotations and get P̄ (u2γ |v). Alternatively, starting with the helicity conserving

transition, we can bring the bottom excitation to the top using three (inverse) mirror rota-

tions and end up with P (u−3γ |v). Either way we find ourselves with two F excitations on

the top but in with opposite orderings. Using the two axioms for the transitions we find that

P̄ (u2γ |v)
P (u−3γ |v) = S(v, u) , and similarly

P (u2γ |v)
P̄ (u−3γ |v) = S̄(v, u) , (4.7)

in perfect agreement with the Watson’s equation, see discussion below (3.12) and [3].

We will now explain how Axioms (4.5) and (4.6) lead us to the proposal made in [3]

for the gluonic pentagon transitions.

By going along with an argumentation similar to the one presented before scalar, one

would easily convince oneself that

P (u|v)P̄ (u|v) = S(u, v)

S(uγ , v)
(4.8)

is consistent with our axioms for the product of the two gluonic pentagon transitions. Of

course this solution is not unique but it constrained as much as the scalar transition was.

The choice of the normalization is at the end of the day motivated by the matching with

data at weak coupling. What remains to be done is to fix the ratio

r(u, v) = P (u|v)/P̄ (u|v) . (4.9)

– 37 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

This is where the analysis slightly differs from scalar. This ratio satisfies the simple relation

(u− v − i)r(u, v) = (u− v + i)r(v, u) which is easily solved by

r(u, v) =
f(u, v)

g2(u− v)(u− v − i)
, (4.10)

where the coupling g2 was introduced for later convenience and where f(u, v) is a symmetric

function. The latter function is not arbitrary and has to fulfill the equation

f(u−γ , v)f(u, v) = g4(u− v)2(u− v + i)(u− v − i) . (4.11)

The main difference between this relation and the one we had to solve before is that it

involves simpler functions of the rapidities. In fact, if we were tracing back the origin of

the right-hand side in (4.11), we would find that is associated to the spin-chain factor that

distinguishes between S and S̄ in (4.2). In light of this remark it seems natural to look

for a spin-chain-like solution to the ‘crossing’ equation (4.11). This equation implies for

instance that the function f has a nontrivial monodromy under the mirror path γ. In the

spin-chain context, the simplest way to place cuts of the right type and at the right place

is through the use of the Zhukowki variable

x(u) =
u+

√
u2 − (2g)2

2
. (4.12)

It was found as the natural deformation of the spectral parameter of the SYM spin chain,

x(u) = u+O(g2). In these terms, a simple solution to (4.11) with the minimal amount of

branch-point singularities is

f(u, v) = (x+ − g2/y−)(x− − g2/y+)(y+ − g2/x+)(y− − g2/x−) , (4.13)

where x± = x(u± i
2) and y

± = x(v± i
2). It is easily seen to solve (4.11) taking into account

that under the mirror path x±(u−γ) = g2/x± and using simple identities among Zhukowki

variables like

(x+ − y−)(1− g2/x+y−) = u− v + i , (4.14)

for instance. Combining everything together we obtain the proposal [3]

P (u, v)2 =
f(u, v)

g2(u− v)(u− v − i)

S(u, v)

S(uγ , v)
, (4.15)

with f(u, v) the symmetric function (4.13). The transitions P̄ (u|v) is then obtained by

using (4.9) and (4.10). The measure µ(u) is extracted from the residue of the transition as

for the scalar, see (2.9).

We close this section by presenting explicit expressions for µ(u), µ(u)P (−u|v)µ(v), and
µ(u)P̄ (−u|v)µ(v) at leading order in perturbation theory. These combinations are nothing
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but the hexagon and heptagon leading OPE integrands, see (2.17)–(2.21). We find

µ(u) = −g2Γ
(
1
2 − iu

)
Γ
(
1
2 + iu

)

u2 + 1
4

+ . . .

µ(u)P (−u|v)µ(v) = −g2Γ
(
3
2 + iu

)
Γ
(
3
2 + iv

)
Γ(−iu− iv)(

u2 + 1
4

) (
v2 + 1

4

) + . . .

µ(u)P̄ (−u|v)µ(v) = g4
Γ
(
3
2 + iu

)
Γ
(
3
2 + iv

)
Γ(2− iu− iv)

(
u2 + 1

4

)2 (
v2 + 1

4

)2 + . . .

(4.16)

See appendix E for the full finite-coupling formulae. In the next section we shall match these

expressions — and their higher loops generalizations — against available perturbative data.

4.2 Matching with data: W versus remainder function

To the first orders at weak coupling, the expansion of the gluonic transitions, measure and

dispersion relation were presented in [3], see also (4.16). It is straightforward to generate

further terms in these expansions for the higher orders in perturbation theory. The proce-

dure is explained in appendix E and automatized in the attached mathematica notebook.

With this in hand, we can proceed with the Fourier transform and obtain arbitrarily many

predictions for the leading collinear behavior of Wilson loops in perturbation theory.

Prior to compare bootstrap predictions and known amplitudes, we recall that the OPE

computes the ratio W defined in (2.12) and (2.13). On the other hand, the relevant data

for bosonic Wilson loops (dual to MHV amplitudes) is usually expressed in terms of the

so-called remainder function [20, 21]. It is quite simple to establish the dictionary between

these two finite and conformally invariant quantities. The remainder function logR is

defined as the logarithm of the ratio between the amplitude and the BDS ansatz [20, 21, 60]

W = R×WBDS , (4.17)

whereWBDS is given by the Wilson loop expectation value computed in a U(1) theory with

coupling 4g2 → Γcusp(g).
22 At one loop WBDS is equal to W and therefore the remainder

functions starts at two loops only, R = 1+O(g4). To convert the remainder function into

our W, we plug (4.17) into the finite ratio of polygons (2.13) and obtain that

W = R×WBDS , (4.18)

where WBDS is given by the same ratio of polygons as in (2.13), but computed in the U(1)

theory. For any given number of edges, the quantity WBDS can be explicitly written in

terms of the conformal cross-ratios and the cusp anomalous dimension. For example, for

an hexagon we find (4.22). (Please note that in arriving at (4.18) we used that the square

and the pentagon Wilson loops are correctly captured by the BDS ansatz.)

The bootstrap predictions for the measure and the pentagon transitions can now be

matched against the flattening of the data for Whex and Whep, as explained in section 2.3

and worked out in greater detail in what follows.

22Strictly speaking, this equality between WBDS and the v.e.v. of the Wilson loop in an abelian theory

holds only up to scheme dependent quantities, which drop out when considering our ratios.
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4.3 The MHV hexagon and the gluonic measure

We begin the discussion with the hexagon. In perturbation theory, its leading behaviour

at large τ is given in (2.27),

Whex = 1 + 2 cos(φ)e−τ
[
f(σ) + positive powers of τ

]
+ . . . , (4.19)

where

f(σ) =

∫
du

2π
µ(u) eip(u)σ = g2f1(σ) + g4f2(σ) + g6f3(σ) + g8f4(σ) + . . . (4.20)

Clearly, to test the square measure it suffices to analyze the contribution f(σ) which comes

without powers of τ , see also section 2.3. We computed the latter function up to O(g8) by

Fourier transforming the expression for µ(u). We used here the same strategy as presented

in sections 3.4 and 3.5 to perform the relevant integrals.23 At leading order we found

f1(σ) =
(
eσ − e−σ

)
σ −

(
eσ + e−σ

)
log(eσ + e−σ) . (4.21)

The higher loops corrections f2,3,4(σ) are presented in a companying mathematica note-

book.

To match these predictions with data we consider the bosonic hexagonal Wilson loop.

Since the remainder function starts at two loops only, W1-loop = WBDS, see (4.18). We can

easily compute the ratio of amplitudes WBDS using the BDS ansatz [60]. Alternatively,

we can compute it by noticing that Wilson loops in the abelian theory are given by the

exponential of the free propagator integrated along the loop. In particular, the ratio WBDS
hex

is the exponential of the one loop correlator between the bottom and top squares of the

hexagon. This correlator is manifestly finite and can be easily written in terms of the

conformal cross ratios [29]

WBDS
hex =exp Γcusp = exp

[
Γcusp

4

{
Li2 (u2)−Li2 (1−u1)−Li2 (1−u3)+log2 (1−u2)

− log (u1) log (u3)+log (u1/u3) log (1−u2)+
π2

6

}]

(4.22)

where Γcusp = 4g2 + O(g4) is the cusp anomalous dimension. Expanding this result at

large τ we find

W1-loop = 1 + 2 cos(φ)e−τg2
[(
eσ − e−σ

)
σ −

(
eσ + e−σ

)
log(eσ + e−σ)

]
+ . . . (4.23)

in perfect agreement with the bootstrap prediction (4.21).

We repeated this hexagon flattening exercise at two and three loops. At two loops,

we used the result of [16, 61] for the two loops remainder function. We converted it into

23The only difference is that in sections 3.4 and 3.5 our ansatz involved summing over products of

transcendental functions with constant coefficients, see for example (3.31). Here, it turns out that one must

allow for rational pre-factors as well. Namely, at any given loop order, f(σ) in (4.20) can be written using

an ansatz similar to (3.31) provided we replace a... → a+
... e

+σ + a−
... e

−σ.
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W2-loop using (4.18) and expanded the result at large τ . We found a precise match with

our prediction for f2(σ) here also.

At three loops, the data extraction is a bit more involved because the three loops

MHV hexagon is only known at the level of the symbol [14, 17]. At a given loop order,

MHV amplitudes are expected to have uniform transcendentality. Accordingly, they are

completely determined by their symbols, up to contributions multiplied by transcendental

numbers like powers of π or odd ζ functions. Nevertheless, even if we discard the latter

contributions, converting the symbol of the three loops hexagon into a function of τ , σ and

φ remains difficult. This eventually renders the comparison with the bootstrap predictions

considerably more challenging than at the lower-loop orders.

Fortunately, we are only interested in the large τ expansion for which there is a big

simplification. The symbol of the three loops remainder function is a linear combination

of monomials with six slots:

S[R3-loop] =
∑

i

Ci

6⊗

n=1

a
(n)
i (4.24)

where the slots a
(n)
i depend on τ, σ and φ. Using the method developed in [62], the symbol of

a pure function with uniform transcendentally can be expanded at large τ .24 The outcome

is a linear combination of symbols of different lengths.25 Using this technique we find that

S[R3-loop] = e−τ
2∑

k=0

τk
6−k∑

l=1

∑

i

C
(l,k)
i

l⊗

n=1

a
(n,l,k)
i + . . . , (4.25)

where now the slots a
(n,l,k)
i no longer depend on τ . In principle, they could depend on

both φ and σ. However, from the OPE approach it is clear that they should only depend

on σ as the dependence on the angle should factorize as in (4.19). In other words, all the

dependence on φ should appear as C
(l,k)
i = cos(φ)c

(l,k)
i (σ) and, indeed, this turns out to be

the case. We observe furthermore that the slots of the symbol obtained after expanding in

τ are simple functions of σ: they are either x or 1 + x where x = e2σ. Symbols with such

slots are in one-to-one correspondence with the Harmonic Polylogs (HPL) with indices 0

or 1 that we encountered before.26 This is reassuring since we have found before that such

functions form a good basis for writing our conjectured measure in position space. To

summarize, from the analysis of (4.25) we conclude that

R3-loop = 2 cos(φ)e−τ × linear combination of HPL’s (H0,1,...(−x), . . . ) + . . . (4.26)

where the dots stand for both the contributions proportional to π’s or ζ’s, that the sym-

bol can not probe, and the higher-twist corrections. We can now transform this into a

24We thank Jeffrey Pennington for explaining to us a simple recursive algorithm for performing this kind

of expansions.
25Note that there is no ambiguity when adding up symbols of different length if (and only if) we set all

π’s and ζ’s to zero.
26We read the HPL from the symbol by reading its slots in reverse order and multiplying the result by

(−1) if the number of 1 + x slots is odd. For example, x ⊗ (1 + x) ⊗ (1 + x) ⊗ x ⊗ x = S[H0,0,1,1,0(−x)]

while (1 + x)⊗ (1 + x)⊗ (1 + x)⊗ x⊗ x = S[−H0,0,1,1,1(−x)].
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prediction for W by using (4.18) and compare the outcome with f3(σ) obtained by using

the bootstrap. We observe a perfect match. Nicely, we were informed by Lance Dixon

et al. that this match can be upgraded to functional level such that even the π’s and ζ’s

contributions agree precisely [19, 62, 63].

Finally, let us add a comment about the four loops function f4(σ) in (4.20). It turns

out to be a powerful constraint on the four loops hexagon and, when combined with the

techniques of [17] (see also [64]), it allowed the authors of [18] to successfully determine

the symbol of the four loops remainder function.

4.4 The MHV heptagon and the gluonic transition

The Fourier transform of the two gluonic pentagon transitions yield the functions h(σ1, σ2)

and h̄(σ1, σ2) which govern the leading collinear behaviour of the heptagon Wilson loop at

any loop order, see discussion around (2.28). At weak coupling, we have that

h(σ1, σ2) = g2h1(σ1, σ2) + g4h2(σ1, σ2) + . . .

h̄(σ1, σ2) = 0 + g4 h̄2(σ1, σ2) + . . . , (4.27)

where the contribution h̄ starts one loop later than h since it comes from a non-helicity

preserving transition, see (4.16). We computed the functions h1, h2 and h̄2 by Fourier

transforming the conjecture (4.15) and found that

h1(σ1, σ2)=
eσ1+σ2

2
log

(
e2σ1+1

) (
e2σ2+1

)

e2σ1+e2σ2+e2σ1+2σ2
+ eσ2−σ1 log

e2σ2
(
e2σ1 + 1

)

e2σ1+e2σ2+e2σ1+2σ2
+(σ1↔σ2) .

(4.28)

The expressions for h2, h̄2 are more bulky and given in the companying notebook. Here we

just quote few terms of h̄2 for illustration,

h̄2(σ1, σ2) = eσ1+σ2Li2

( −1

e2σ1 + e2σ1−2σ2

)
+2eσ1−σ2 log(1+e2σ2)+· · ·+ π2

3
e−σ1−σ2 . (4.29)

This should be contrasted with its remarkably simple expression in momentum space (4.16).

This remark concludes the bootstrap side of the story and we now move to the comparison

with available data.

As previously explained, to match the above predictions with the data we should first

compute the product Whep = R7 ×WBDS
hep . The ratio WBDS

hep is the exponential of the sum

of three one-loop correlators

WBDS
hep = exp Γcusp( + + )

(4.30)

with the gluon propagator stretching between two non-neighbouring squares in the decom-

position of the heptagon. The first two terms are nothing but the hexagon WBDS
hex computed
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in (4.22) with arguments τ1, σ1, φ1 and τ2, σ2, φ2 respectively. The last term is a correlator

between the bottom and the top squares of the heptagon and as such it depends on all the

six cross-ratios of the heptagon. This object is actually not new and coincides precisely

with the ratio r̃hep introduced in [37], see figure 5 of that paper. In sum, we get

Whep = R7(τ1, σ1, φ1, τ2, σ2, φ2)WBDS
hex (τ1, σ1, φ1)WBDS

hex (τ2, σ2, φ2)r̃hep(τ1, σ1, φ1, τ2, σ2, φ2) .

(4.31)

Since at one loop the remainder function is zero, W1-loop is given by the last three terms

in this expression only. In the large τ1,2 limit, we find

Whep = 1 + g2
[

2 cos(φ1)e
−τ1f(σ1)

︸ ︷︷ ︸

from WBDS
hex (τ1, σ1, φ1)

+ 2 cos(φ2)e
−τ2f(σ2)

︸ ︷︷ ︸

from WBDS
hex (τ2, σ2, φ2)

+2 cos(φ1 + φ2)e
−τ1−τ2f(σ1, σ2)

︸ ︷︷ ︸

from r̃hep(τ1, τ2, σ1, σ2, φ1, φ2)

+ . . .
]

(4.32)

and observe that the three contributions are clearly distinct. Each of them correspond to

a different sequence of transitions in (2.20).27 For instance, from the viewpoint of (2.20),

the first term in (4.32) describes a transition where a particle is produced at the bottom

square and annihilated at the second middle square. This is in line with the one-loop

contribution to WBDS
hex (τ1, σ1, φ1) which involves a gluon exchange between the bottom and

second middle square, see the first term in (4.30). Of all the contributions in (4.32) the most

interesting one is certainly the last one, which describes the propagation of a gluon all the

way from the bottom to the top. It is this contribution that probes the pentagon transition

happening in the middle of the heptagon. By directly expanding r̃hep(τ1, τ2, σ1, σ2, φ1, φ2)

in [37] we find

f(σ1, σ2)=
eσ1+σ2

2
log

(
e2σ1 + 1

) (
e2σ2 + 1

)

e2σ1 + e2σ2 + e2σ1+2σ2
+eσ2−σ1 log

e2σ2
(
e2σ1 + 1

)

e2σ1 + e2σ2 + e2σ1+2σ2
+(σ1 ↔ σ2)

which agrees beautifully with the bootstrap prediction (4.28).

At two loops we can proceed similarly after noting that the remainder function in (4.31)

needs now to be taken into account. The latter is not known yet as a function but for-

tunately its symbol has already been found [15]. The situation is then analogous to the

problem we handled before for the three-loop hexagon. Here again we can use the technol-

ogy developed in [18, 62] to expand the symbol, this time at large τ1,2. We then extract

from it the term going like e−τ1−τ2 and coming with no powers of τ1 nor τ2. Eventually,

we compare this contribution with the predictions h2 and h̄2 obtained from the bootstrap

and find a perfect match.28

Let us mention finally that in the course of our study of the leading OPE behaviour of

the hexagon and heptagon Wilson loop we encountered numerous symbols of various com-

plexity. Still, a pattern seemed to emerge as their slots were always more or less the same.

It would be interesting to see if this can be a reflection of the recent motivic classification

in [65] at the level of the collinear limit.

27At this loop order we see only three contributions in (4.32) while generically there are four processes

in (2.20); this is expected since the helicity violating transition only starts at two loops as mentioned above.
28We recall that all the terms proportional to π’s or ζ’s must be dropped when performing these checks,

since the symbol is blind to them. In this repect, the last term in (4.29) stands as a new prediction or

constraint from the bootstrap for the full two loops heptagon remainder function.
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4.5 The NMHV form factors for gluons

In sections 4.3 and 4.4 we extracted the gluonic measure and pentagon transitions by flat-

tening the hexagon and heptagon bosonic Wilson loops, respectively. In this procedure,

the gluonic excitation, which controlled the leading OPE behaviour, was produced by the

geometric deformation of the Wilson loop in the near-collinear limit. This is however not

the only way of creating a gluonic excitation along the flux tube and, accordingly, the MHV

amplitudes are not the only ones whose leading OPE behaviours are captured by this glu-

onic exchange. Instead, just like for scalars, we can insert a gluonic excitation more directly

by flattening a polygon WL that is already dressed with a field strength insertion at a cusp.

Such an insertion can easily be engineered by considering suitable components of the super

Wilson loop [33, 34] or, equivalently, by looking at appropriate components of NkMHV am-

plitudes. In this penultimate section we would like to illustrate how a simple modification

of our previous MHV expressions can accommodate for these NkMHV amplitudes as well.

Our main character here is the hexagon NMHV component W(1111)
hex , with four η’s on

the bottom edge (numbered 1 in the text). The motivation for considering this specific com-

ponent comes from its (tree-level) operatorial definition. This one reveals that it contains

the insertion of a gauge field at the bottom cusp which we want to investigate here29

W(1111)
tree = = + = 1− e−τ+iφ

2 coshσ
+O(e−2τ )

1

3
4

5

6

2

(4.33)

This is actually not the only component that leads to such an insertion. We could also

distribute the Grassmann variables more democratically over a neighbouring edge by look-

ing at components with the superscript (6111), (6611), (6661), or even (6666). These five

configurations are all physically inequivalent in that they involve different insertions along

different edges of the WL. But, for what matters here, they all contain the sought insertion

and they all share the same leading OPE behaviour. More precisely they start differing

at twist 2, i.e, at the level of contributions of order O(e−2τ ) in the near-collinear limit

τ → ∞. We leave for the future the interesting question of disentangling among these

various NMHV components by means of the OPE. Here we simply point out that the de-

generacy seems to be lifted by different choice of contours of integration for the fermions

that come in pairs and thus kick in at twist 2.

What distinguishes the NMHV component (1111) from the MHV one is that the first

transition from the vacuum at the bottom of the hexagon is charged. We already met this

situation before when considering scalars and we can handle it similarly by introducing a

new creation amplitude that takes the effect of the insertion into account. We denote the

corresponding charged transition by P∗(0|ψ). With an F insertion at the bottom, the light-

est states which can be excited are the vacuum and the gluon excitations. They correspond

29At tree level, W(1111)
hex-tree = R(1111)

hex-tree =
〈2,3,4,6〉3

〈1,2,3,4〉〈3,4,6,1〉〈4,6,1,2〉〈6,1,2,3〉
+ 〈2,4,5,6〉3

〈1,2,4,5〉〈4,5,6,1〉〈5,6,1,2〉〈6,1,2,4〉
reduces

to (4.33) upon the use of the hexagon momentum twistors (A.9).
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to twist-0 and twist-1 contributions, respectively. The two processes are sketched in (4.33)

that illustrates the decomposition of our (renormalized) super-WL component at tree level.

The first term in (4.33), with no dependence on the kinematics, stands for the case

where we just have the vacuum in the middle square, ψ = vac = 0, so P∗(0|ψ) = P∗(0|0).
It corresponds to an MHV pentagon which is the same as the MHV one and therefore

is independent of the coupling. Stricly speaking, this vacuum form factor P∗(0|0) carries

helicity weight since it comes from an NMHV amplitude. Here we chosen to work in the

normalization where P∗(0|0) = 1.

The second piece in (4.33) is interpreted as originating from the exchange of a gauge

field excitation with positive U(1) charge, i.e., what we call an F . Its contribution is of the

type

− 1

2 coshσ
=

∫
du

2π
P∗(0|u)µ(u)P (−u|0)e2iuσ , (4.34)

which, upon Fourier transformation and comparison with the MHV result (4.16), gives a

direct access to the creation amplitude P∗(0|u) for an F carrying the rapidity u. This new

creation amplitude, or rather the ratio P∗(0|u)/P (0|u), can be extracted by comparing the

NMHV and MHV hexagon integrands in the OPE limit. The result is conveniently written

in terms of the form factor

h(u) ≡ P∗(0|u)
P (0|u) × 1

P∗(0|0)
=
u2 + 1

4

g2
+O(g0) , (4.35)

where the second equality follows from the tree-level result (4.34). The factor P∗(0|0) was
included such that h(u) carries no helicity weight at the end.

The F excitation is not the only twist-one particle that can be produced and similarly

to the ratio h(u) in (4.35) there is a form factor for the creation of the conjugate F̄ excitation

h̄(u) ≡ P̄∗(0|u)
P (0|u)

1

P∗(0|0)
. (4.36)

This form factor is a further example of a U(1) violating process. It ought to start at

higher loop in perturbation theory, since no tree level diagram can connect this excitation

to the decorated pentagon under consideration. This is why no contribution proportional

to e−τ−iφ shows up in (4.33).

We already exhausted the information available from the tree level analysis. To pro-

ceed further with the determination of the two form factors h and h̄, we need some axioms

that we shall now present and motivate.

Axiom I

The first axiom simply follows from the reflexion property of the pentagon,

h(u) = h(−u) . (4.37)

We can immediately check that this property is true at tree level, see (4.35).

– 45 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

Axiom II

The second axiom is related to mirror rotation and reads

h(u−γ) = h̄(u) . (4.38)

It is inspired by the mirror transformation of the gauge field. As discussed in the

previous section, under a mirror rotation F → F̄ . Our assumption is then that this

transformation will swap the two form factors for gluon and anti-gluon.

Axiom III

The last axiom reads

h(u)h̄(u) = 1 . (4.39)

It has a somewhat different origin. The particular combination displays above ap-

pears in the computation of a certain N2MHV hexagon amplitude, as we shall see

below. An N2MHV hexagon is the same as MHV. The condition above guarantees

that this is true at any coupling.

As in the previous examples, we look for the simplest solution to these axioms. In particu-

lar we expect the relevant solution to display the minimal amount of singularities that are

needed to fulfill the above equations. The most obvious solution in this respect is certainly

h(u) = h̄(u) = 1. However this would not reproduce the tree-level expectation quoted

before. A more promising candidate is given by the pair

h(u) =
x+(u)x−(u)

g2
, h̄(u) =

g2

x+(u)x−(u)
, (4.40)

where we recall that x±(u) = x(u± i
2) with x(u) =

1
2(u+

√
u2 − 4g2) the Zhukowky variable.

This expression has the right weak coupling limit, as one can verify with x(u) = u+O(g2).

It also satisfies our three axioms; axiom II and III for instance follow from the fact that

x±(u−γ) = x±(uγ) = g2/x±(u) under the mirror path γ of a gauge field, while Axiom I is

obvious.

Using our from factors (4.40) we can now write down a very precise expression for the

leading OPE contribution to the NMHV ratio function R(1111)
hex = W(1111)

hex /Whex. It reads

R(1111)
hex = 1 + eiφ−τ

∫
du

2π
µ(u)(h(u)− 1)eip(u)σ−γ(u)τ

+e−iφ−τ
∫
du

2π
µ(u)(h̄(u)− 1)eip(u)σ−γ(u)τ + . . . , (4.41)

where dots stand for higher twist corrections and with γ(u) = E(u)− 1 the anomalous en-

ergy of a gauge field excitation. Notice that the form factors appear subtracted by −1 in the

two integrands. This comes from the fact that we divided by the MHV contribution (here

truncated to its leading OPE behaviour ∼ e−τ ) to get to the ratio function. We also special-

ized to the normalization used throughout this paper for the MHV creation/annihilation

amplitudes, that is P (0|u) = P (u|0) = 1 and the charge conjugate relations.
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We see that the form factors play their expected role and break the symmetry between

positively and negatively charged excitations. This is immediate at weak coupling since to

the leading order

µ(u)h(u) = −π sech(πu) , µ(u) = −πg
2 sech(πu)

u2 + 1
4

, µ(u)h̄(u) = −πg
4 sech(πu)

(u2 + 1
4)

2
, (4.42)

hence delaying the contribution of the negatively charged excitation. By construction the

expression (4.41) reduces properly to the tree-level result (4.33). What is less trivial is

that (4.41) with the form factors (4.40) works perfectly at higher loops. We verified it

explicitly by comparing with the one- and two-loop expressions for the NMHV hexagon

ratio function [59].30 This confirms in particular that h̄(u)µ(u) only starts at two loops,

as predicted by (4.42).

These checks also serve the purpose of providing evidence for the existence of a well

defined super loop for all possible components. This one was previously questioned in [66]

where it was shown that there are some components for which unwanted anomalous con-

tributions survive in traditional dimensional regularization. In [36, 67] it was argued that

these anomalies can be cured by a more careful operatorial definition and regularization

of the super loop. Our analysis here supports this picture, since it successfully combines

higher-loop scattering amplitude data with the OPE interpretation of the super Wilson

loop.

Another interesting application of our form factors (4.40) comes from considering the

N2MHV hexagon ratio function, and in particular its component

R(1111)(4444)
hex = W(1111)(4444)

hex /Whex . (4.43)

At leading twist it can be thought as an hexagon Wilson loop with an F insertion at both

the bottom and top cusps,

P∗(u)

1/µ(u)

P̄∗(u)

+ . . .W(1111)(4444)
hex = 1 + eiφ

P̄∗(u)

1/µ(u)

P∗(u)

+ e−iφ

(4.44)

This component involves two form factors for both creation and annihilation of the gauge

field excitation at the top and bottom. It leads to

R(1111)(4444)
hex = 1 + eiφ−τ

∫
du

2π
µ(u)(h(u)h̄(u)− 1)eip(u)σ−γ(u)τ

+e−iφ−τ
∫
du

2π
µ(u)(h(u)h̄(u)− 1)eip(u)σ−γ(u)τ + . . . . (4.45)

30We are very grateful to L. Dixon for sharing with us the collinear OPE expansion of all relevant

functions in [59].
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We see that due to the specific combination of the form factors implied by this component

the symmetry between positively and negatively charged excitations has been restored.

This does not stop here and we know actually that this particular ratio function should

be identically 1 (in our normalization). This is because N2MHV hexagons describe MHV

amplitudes which are the same as MHV ones. This property will be properly observed if

and only if h(u)h̄(u) = 1. This final remark makes clear why we enforced our Axiom III

for the form factors.

5 Discussion

In this paper, following [3], we presented a new non-perturbative formulation of scattering

amplitudes or equivalently null polygonal Wilson loops in planar N = 4 SYM theory. In

this approach, scattering amplitudes and Wilson loops are given by sums over flux tube

states, similar to partition functions. The fundamental building blocks in these sums are

the so called pentagon transitions. They encode the dynamical information about the cre-

ation, propagation and annihilation of the excitations living on the flux-tube spanned by

the Wilson loop. These transitions allow us to fully characterize the most elementary Wil-

son loops with edge-insertions and to glue them together into the more complicated ones

that are dual to scattering amplitudes. In this paper, we have shown, using a minimal set

of axioms, how the expression for the transitions of a single scalar or gauge field excitations

can be found at finite coupling. Once expanded in perturbation theory, our conjectures

were found to match with all available perturbative data.

The OPE approach armed with the pentagon bootstrap axioms nicely combines fea-

tures of the celebrated bootstrap programs for CFT [68, 69] and integrable QFT [50]. Both

programs are based on pushing elementary ideas such as crossing and unitarity to their

ultimate consequences. In the context of correlation functions, the bootstrap program was

recently revived in [70], see also [71–76] and references therein for latest developments. We

believe there is room for fruitful interplay between the Wilson loops bootstrap and the

more conventional CFT bootstrap for correlation functions.

It is quite remarkable, at the end, that all the fundamental ingredients of the underly-

ing integrable flux tube dynamics appear nicely combined in the form of our conjectures.

Of course, this was already hinted in the pioneering OPE paper [1] where the details of

the spectrum of GKP excitations and of their dispersion relations [9, 29] were shown to be

embraced by the WLs. This relationship between 2D and 4D data has now become more

stringent. Take for example the leading behaviour off the collinear limit of an heptagon

Wilson loop. It reads (here for gluons)

Wheptagon = · · ·+ e±iφ1±iφ2−τ1−τ2
∫
du

2π

∫
dv

2π
integrand+ . . . (5.1)

where, up to a very simple function of u and v (with no obvious flux tube interpretation),

integrand ∝
(
x+(u)x−(u)

)η1 (x+(v)x−(v)
)η2

√
S(u, v)

S(uγ , v)
e−γ(u)τ1+ip(u)σ1−γ(v)τ2−ip(v)σ2 .

(5.2)
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In this expression the famous Zhukowsky variables x+ and x− appear with a nice geomet-

rical interpretation: they are form factors for the production of gauge fields. They appear

raised to the powers ηi which can be −1, 0 or 1 depending on which kind of scattering

component we are considering. For MHV amplitudes ηi = 0 for example. The (anomalous)

energy γ and the momentum p of the fundamental excitations appears directly multiplying

the space-time cross-ratios, as proclaimed by [1]. The scattering of excitations factorizes

on the flux tube, thanks to Integrability, and is therefore uniquely determined by the 2

body S-matrix S(u, v). This object nicely shows up in our pentagon transitions. It comes

along with the ‘mirror’ S-matrix S(uγ , v) that is a physical object on its own; it yields

for instance the Casimir energy of the Integrable system in finite volume through the so-

called Lüscher formula [77–79]. Altogether, we see that all the physical observables that

determine the flux tube dynamics beautifully govern the behaviour of the four dimensional

scattering amplitudes.

In the OPE construction of scattering amplitudes we need to sum over all possible

states and there are infinitely many of them. If we restrict the sum to a finite subset, then

the more states we include the better is the approximation for the amplitude. This expan-

sion is quite distinct from other approaches such as perturbation theory. This feature is in

practice very fortunate since it means that we can learn a lot about the OPE approach by

analyzing perturbative data. For instance, already the tree level amplitude (1.11) contains

transitions involving any number of particles. Conversely we can easily generate infinitely

many predictions for perturbative amplitudes from the OPE. In this paper we illustrated

this important interplay on several examples.

Apart from scalars and gauge fields, which were the focus of our analysis, the remaining

twist-one excitations in the theory are fermions. We have a conjecture for their pentagon

transitions that matches successfully against data, as well as for the other twist-one excita-

tions. This proposal deserves however a separate discussion and will be reported elsewhere.

The main reason is that there is strong evidence that crossing symmetry does not exist for

fermions (see for example [52] and appendix D). It means in practice that we cannot easily

move a fermion from one edge of the Wilson loop to another or at least not just through

a simple analytical continuation. This obstruction makes the construction of the pentagon

transitions for fermions a bit harder and our conjecture for them is based to a large extent

on the experience acquired here with the gluonic and scalar transitions. We hope that a

more rigorous understanding of fermions transitions will be achieved in the near future.

As we move to higher twist we encounter bound states and multi-particle states. The

bound states can be treated similarly to single-particle states. Their S-matrices and dis-

persion relations are known at any coupling and they obey nice fusion relations. The latter

relations connect bound states of different sizes to one another and also relate them to

their fundamental twist-one constituents. It follows then that the bound-state transitions

satisfy the very same kind of axioms as those for the twist-one particles considered in this

paper. The bound-state family comprise the two towers Dm
z Fz− and Dm

z̄ Fz̄− which played

an important role in previous OPE analysis [1, 29]. They also play a prominent role at

strong coupling and they will be studied in greater details in a forthcoming publication [43].

The multi-particle transitions are also equipped with their own bootstrap equations.
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These can often be solved explicitely in terms of single-particle transitions, as exempli-

fied in [3] with gauge fields. More generally we believe that their solution can always be

written as a product of two contributions: the dynamical part and the matrix structure,

which transform respectively as scalar and tensor under the R-symmetry group SU(4). For

example, for a 2 → 2 transition among scalars we found that

P (u|v)j1j2i1i2
= Pdyn(u|v)

[
π1(u|v)δj1i1 δ

j2
i2

+ π2(u|v)δj2i1 δ
j1
i2

+ π3(u|v)δi1i2δj1j2
]
, (5.3)

where u = {u1, u2} and v = {v1, v2}. The incoming SO(6) indices i1, i2 run from 1 to

6 and indicate which pair of scalars we insert at the bottom while the outgoing indices

j1, j2 parametrize the state at the top. This transition fulfills several important require-

ments, which almost uniquely specify it. For instance, suppose we take a bottom particle

and move it to the top through a sequence of mirror transformations while at the same

time we take a top particle and move it to the bottom. We should end up with the very

same object up to a relabelling of R-symmetry indices and rapidities. More precisely, since

for scalars a mirror transformation is simply a shift of rapidity, we should observe that

P (u1, u2− 3i|v1− 2i, v2)
j1j2
i1i2

= P (v1, u1|v2, u2)j2i2j1i1
. Further constraints come from the Wat-

son’s equations that tell us that exchanging two particles can be compensated by the action

of the S-matrix. All these equations have their counterparts in the bootstrap program for

form factors in integrable models [53, 54] which provides us with valuable strategy for

solving them (see in particular the analysis of matrix structures for form factors in models

with O(N) symmetry [80, 81]). At the end of the day we found that the most natural

solution to all these equations reads

Pdyn(u|v) =
P (u1|v1)P (u1|v2)P (u2|v1)P (u2|v2)

P (u2|u1)P (v1|v2)
,

while

π1(u|v) + π2(u|v) = 1 , π2(u|v) =
(u1 − v1)(u2 − v2 + i)

(u1 − u2 − i)(v1 − v2 + i)
,

π2(u|v) + π3(u|v) =
(u1 − v1)(u2 − v2 + i)(u1 − v1 − i)(u2 − v2 + 2i)

(u1 − u2 − i)(u1 − u2 − 2i)(v1 − v2 + i)(v1 − v2 + 2i)
. (5.4)

We expect (and partially checked) a similar pattern for a larger number of scalars and also

for a broader class of excitations. We believe for instance that the factorization of the

dynamical part (into a product of single particle transitions) is universal and should be a

consequence of the Integrability of the theory. This part should also capture all the non-

trivial dependence on the coupling (which is hidden inside the single-particle transitions).

The matrix part is then coupling independent and governed by a bunch of functions πi,

whose number grows fast with the number of particles. Our guess for them is that they

are all rational functions of the differences of rapidities. This is clearly the case for the

two-particle solution in (5.4). Our algorithm for producing all these functions πi for tran-

sitions involving higher number of scalars also supports this assumption. It would be very

interesting to explore these matrix structures on their own, to investigate whether they

admit a factorization of sort, whether they are subject to some kind of simple graphical
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relation or to some fusion-hierarchy equations which will make their construction easier

and their analysis more transparent.

There is a also a very nice story about data extraction for multi particle transitions.

We can check for example a particular component of the conjecture (5.3) by first using the

mirror transformation to distribute the excitations on different edges of the pentagon and

then apply the flattening procedure of section 2.3 to each of the edges

vγ2v1

u−γ2u1

Z X

=

X̄ Z̄

u1

u2

v2

v1

Integrability Amplitude

WN2MHV
nonagon

(5.5)

This is quite a nice trick actually, for at least two reasons. First, it probes the mirror

transformation, which we recall is non-perturbative in the ’t Hooft coupling and thus al-

ways constitutes a very non-trivial check of the finite coupling structure. Second, it is very

useful at the technical level: since we end up with a single scalar at each edge after the

mirror transformations, we do not need to use the two-particle wave function (which is not

known yet in the relevant channel).

For gluons, because their scattering is reflectionless, everything is much simpler. There

is no matrix part and their multi-particle transitions were already reported in [3]. For

fermions, again the lack of ability of moving them around using mirror transformations am-

putates the bootstrap from one of its legs. This is where a better understanding of the alge-

braic properties of the matrix structures might help remedying to this unpleasant situation.

In fact, and probably related to the above subtleties, multi-particle states involving

fermions behave in an interesting and non-trivial fashion. Consider for example a neutral

state made out of a fermion ψ and an anti-fermion ψ̄. An important contribution, that

dominates in perturbation theory, comes from the region where the momentum of one of

the excitations vanishes. When this happens, the fermion excitation becomes a generator

of a super-symmetry broken by the Wilson loop [2]. That generator can act on the vacuum

or it can act on the other fermion, thus transforming it into another excitation; for example

a ψ̄ can become an F+− . At leading order in perturbation theory the action on the vac-

uum is suppressed and we only produce an F+−. Hence, at leading order in perturbation

theory the state F+− can be treated as a single particle excitation but as we go to finite

coupling it is more appropriate to think of it as a pair of two fermionic excitations. This

is the origin of a symmetry enhancement at weak coupling [9] and this is compatible with

the analysis of several OPE studies [29, 35, 37, 51], where F+− (and several other states

dubbed descendants there) were treated as single-particles. This shows that the fermions
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are pivotal for the OPE since already at tree level infinitely many of them are needed to

recover the amplitude in full kinematics. There are also central at strong coupling where

they relate to the mass 2 boson of the GKP string.

One additional point of data for scattering amplitudes is their value at strong cou-

pling [48, 82, 83]. There the amplitude is captured by a classical string saddle-point [4]. As

previously sketched [3] and analyzed more thoroughly in [43], our pentagon decomposition

and transitions are perfectly consistent with the string saddle-point predictions. Hopefully

the OPE approach will allow us to study perturbative corrections to scattering amplitudes

at strong coupling, for which almost nothing is known to date.

Our final comment concerns the radius of convergency of the OPE. The OPE is an ex-

pansion around the (multi) collinear limit. As such, by including more and more excitations

in the decomposition, one can obtain an arbitrarily precise description of an amplitude at

finite coupling. This is assuming that the conformal cross ratios lie inside the radius of

convergency of the OPE. What eventually controls the size of this radius is the mass gap

in the spectrum of flux-tube excitations. This one is known to become exponentially small

at strong coupling [2] since scalar excitations become massless. Though this phenomenon

might be of no concern at the semiclassical level at strong coupling, it will certainly plays

an important role at subleading orders. This immediately raises the fascinating question

of the re-summation of the scalar contributions at strong coupling and more generally of

the complete OPE at finite coupling. It is not yet clear if any one of these re-summations

is possible. An encouragement comes from strong coupling where the OPE indeed re-sums

into a very natural object from the Integrability point of view: the Thermodynamic Bethe

Ansatz Yang-Yang Functional. Is this a strong coupling accident or are four dimensional

scattering amplitudes given by a Yang-Yang functional at any coupling?
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A Geometry of the decomposition

In this appendix we study the geometry of null polygons. We consider squares, pentagons,

hexagons and heptagons. Squares and pentagons are the fundamental building blocks in-

volved in the decomposition of higher n-gons while hexagons and heptagons are the simplest

polygons one can use for extracting measures and transitions. For each one of these geome-

tries we shall provide an explicit representation of the associated twistors, which could be
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directly plugged into mathematica if needed. More general expressions, i.e., not referring

to a specific representation, could of course be inferred from the ones presented below.

Momentum twistors. We represent R1,3 as a lightcone in R2,4. That is, any point

x ∈ R1,3 is associated with a null ray in R2,4, {X ∈ R2,4, X2 = 0, X ≃ tX}. The map to

the usual Poincare coordinates is given by

xµ =
Xµ

X−1 +X4
. (A.1)

The conformal group is then realized linearly in the form of the SO(2, 4) rotations of the

embedding coordinates X. A convenient way of representing a null polygon is found by

using momentum twistors [84]. These are R2,4 spinors that are defined up to rescaling,

Z ≡ (Z1, Z2, Z3, Z4) ≃ tZ. The conformal group acts on these spinors by multiplication on

the right with a group element ∈ SL(4). To any pair of momentum twistors Z, Z̃ we can

associate a null ray in R2,4 and therefore a point x ∈ R1,3 as

Xab = XMΓMab = Z[aZ̃b] ,
M = −1, 0, 1, 2, 3, 4

a, b = 1, 2, 3, 4
, (A.2)

where ΓM are sigma matrices in R2,4. Group theoretically, the representation (A.2) is

nothing but the isomorphism between the vector and the antisymmetric representation of

SO(2, 4). A polygon with N null sides can be given as a sequence of N twistors Zi, such

that the intersection of the sides i and i + 1 is the point Xi = Zi ∧ Zi+1. The distance

between two cusps of the polygon reads

(xi − xj)
2 =

〈Zi, Zi+1, Zj , Zj+1〉
(Zi · Γ+ · ZTi+1)(Zj · Γ+ · ZTj+1)

, (A.3)

where Γ+ = i√
2

(
Γ−1 + Γ4

)
.31 Here, 〈Zi, Zj , Zk, Zl〉 = det [(Zi, Zj , Zk, Zl)] is the SL(4)

invariant product of four twistors. Note that we automatically have Xi−1 ·Xi = 0, which

is the condition that the i-th side should be null.

The square. A square is specified by four twistors. For example, these can be

rig
h
tle

ft

top

bot

Zleft = (0, 1, 0, 0)

Zright = (1, 0, 0, 0)

Ztop = (0, 0, 0, 1)

Zbot = (0, 0, 1, 0)

(A.4)

31For implementation into mathematica, one can use Γ+ = i
2








0 −
√
2 1 1√

2 0 −1 1

−1 1 0 −
√
2

−1 −1
√
2 0








as a particular

represention. Note, however, that most of the time we do not need to compute distances, since these are

not conformally invariant quantities. In the latter cases, only SL(4) invariant products 〈Zi, Zj , Zk, Zl〉
(or cross-ratios) can appear and these are of course independent of any specific representation for the

sigma matrices. An example of when we do need to compute distances is for checking whether the

non-neighboring cusps of a given polygon are space-like separated from one another.
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These twistors parametrize a null square in Euclidian kinematics. That is, any two non-

neighboring cusps of the polygon are space-like separated. The square preserves three (com-

muting) conformal symmetries [1] parametrized by τ, σ and φ and discussed in section 1.2.

For the choice (A.4) the SL(4) group element implementing these symmetries reads32

M1 =




eσ−
iφ

2 0 0 0

0 e−σ−
iφ

2 0 0

0 0 eτ+
iφ

2 0

0 0 0 e−τ+
iφ

2



. (A.5)

The pentagon. A pentagon is specified by five twistors. For example, these can be

bottom

top

le
ft

ri
gh
t-
b
ot

right-top

middle

Zleft = ( 0, 1, 0, 0)

Ztop = ( 0, 1,−1, 1)

Zright top = (−1, 0, 0, 1)

Zright bot = ( 1, 0, 0, 0)

Zbot = ( 0, 0, 1, 0)

(A.6)

As for the square, these twistors parametrize a pentagon in Euclidian kinematics. In (1,3)

signature it is not possible to have a real configuration of five null separated cusps such

that the distance between any two non-consecutive cusps is spacelike.33 This is however

possible in (2,2) signature which is the signature in which the pentagon parametrized by the

twistors (A.6) is living. The discrete geometrical symmetries of the pentagon transition,

namely cyclicity and reflection, are only manifest in Euclidian kinematics:

x1

x2

t1

t2

(A.7)

Note also that null polygons in (1,3) and (2,2) signature are related by analytic contin-

uation in the external data, i.e., in the conformal cross ratios {τi, σi, φi}. Such analytic

continuation leaves the transitions in the decomposition (1.1) untouched.

32All the twistors in this appendix are written in the (2,2) signature where φ is purely imaginary. To go

to (1,3) signature one needs to take φ real and apply a conformal transformation to the sigma matrix Γ+

appearing in footnote 31.
33Note also that for polygons with an odd number of edges we can not have all the cusps being of the

in-out type.
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Any pentagon can be divided into a top and a bottom squares using a null line that

starts from the right cusp and ends on the left edge, see (A.6). These two squares share

three of their twistors with the pentagon,

Top square={Zleft, Ztop, Zright-top, Zmiddle} , Bot square={Zleft, Zmiddle, Zright-bot, Zbot} ,

where Zmiddle is the twistor associated to the dividing line. It is given by

Zmid =
〈Zbot, Zleft, Ztop, Zright-bot〉Zright-top − 〈Zbot, Zleft, Ztop, Zright-top〉Zright-bot

〈Zbot, Ztop, Zright-top, Zright-bot〉
= Ztop .

(A.8)

The hexagon. An hexagon is specified by six twistors. We think of it as a sequence

of three squares or, equivalently, as two pentagons overlapping on a middle square. We

coordinatize all conformally inequivalent hexagons by acting with the symmetries of the

middle square on the cusps located to its bottom. The corresponding six twistors are

1

2

3
4

5

6




Z1

Z2

Z3

Z4

Z5

Z6




=




eσ−
iφ

2 0 eτ+
iφ

2 e−τ+
iφ

2

1 0 0 0

−1 0 0 1

0 1 −1 1

0 1 0 0

0 e−σ−
iφ

2 eτ+
iφ

2 0




(A.9)

Here, Z6 = (0, 1, 1, 0) ·M1(τ, σ, φ) and Z1 = (1, 0, 1, 1) ·M1(τ, σ, φ) are the two bottom

twistors on which we acted with the symmetries of the middle square. The middle square

is given by (A.4) and one of the two pentagons in (A.9) coincides with (A.6).

In the OPE parametrization, the usual three cross-ratios for the hexagon read

u3 =
(x2 − x6)

2(x3 − x5)
2

(x2 − x5)2(x6 − x3)2
=

〈2, 3, 6, 1〉〈3, 4, 5, 6〉
〈2, 3, 5, 6〉〈6, 1, 3, 4〉 =

1

1 + e2σ + 2 eσ−τ cos(φ) + e−2τ
,

u2 =
(x1 − x5)

2(x2 − x4)
2

(x1 − x4)2(x5 − x2)2
=

〈1, 2, 5, 6〉〈2, 3, 4, 5〉
〈1, 2, 4, 5〉〈5, 6, 2, 3〉 =

1

2
e−τ sech(τ) ,

u1 =
(x6 − x4)

2(x1 − x3)
2

(x6 − x3)2(x4 − x1)2
=

〈1, 2, 3, 4〉〈6, 1, 4, 5〉
〈4, 5, 1, 2〉〈6, 1, 3, 4〉 = e2σ+2τu2 u3 . (A.10)

Notice that the hexagon has four of its cusps (X1,2,4,5) lying in the plane of the middle

square. The two cusps which stand out of this plane are the top and bottom ones, denoted

X3 and X6 respectively. In the parametrization (A.9) the coordinates (τ, σ, φ) move the

bottom cusp while holding both the middle square and top cusp fixed. One can always shift

the origin of the (τ, σ, φ) by a constant, see discussion below (2.34), but a natural choice

is provided by the hexagon geometry. The origin in the φ direction is fixed such that at

φ = 0 the top and bottom cusps are pointing in opposite directions in the two-dimensional

– 55 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
8

plane transverse to the middle square. This implies that the scalar propagator in (3.29),

i.e, 1/〈6, 1, 3, 4〉, is minimal at φ = 0. The origin in the τ direction is chosen such that at

τ = iπ/2 the points X1 and X3 are null separated. Finally, the origin in the σ direction is

chosen such that at σ = iπ/2 and large τ the points X6 and X3 become null separated.

The heptagon. Finally, an heptagon is specified by seven twistors. We think of it as

a sequence of four squares or three pentagons overlapping on two middle squares. We

coordinatize all conformally inequivalent heptagons by acting with the symmetries of the

two middle squares on the cusps to their bottom. The corresponding twistors (which are

such that (A.9) is one of the hexagons in the heptagon decomposition) are34

Z1

Z2 = Zright bot

Z3 = Zright top

Z4
Z5

Z6 = Zleft

Z7

Ztop

Zmiddle

Zbot

Z4 = (−1, 1,−1, 3).M−1
2

Z5 = ( 0, 2,−1, 1).M−1
2

Zleft = ( 0, 1, 0, 0)

Zright top = (−1, 0, 0, 1)

Ztop = ( 0, 1,−1, 1)

Zmiddle = ( 0, 0, 0, 1)

Zleft = ( 0, 1, 0, 0)

Zright bot = ( 1, 0, 0, 0)

Zmiddle = ( 0, 0, 0, 1)

Zbot = ( 0, 0, 1, 0)

Z7 = ( 0, 1, 1, 0).M1

Z1 = ( 1, 0, 1, 1).M1

(A.11)

The matrix M1 realizes the symmetries of the bottom middle (red) square and is given

by (A.5). The matrix M2 implements the symmetries of the top middle (blue) square

in (A.11). It is easy to see that

M2 =




e−σ−
iφ

2 0 0 −e−σ− iφ

2 + eτ+
iφ

2

0 eσ−
iφ

2 0 0

0 eσ−
iφ

2 − e
iφ

2
−τ e

iφ

2
−τ −e iφ2 −τ + eτ+

iφ

2

0 0 0 eτ+
iφ

2




(A.12)

leaves the twistors (marked in blue in (A.11)) of this square invariant.

General n-gons. For a general n-edges polygon, the three conformal cross ratios of the

j’th middle square (τj , σj , φj) can be expressed in terms of the momentum twistors as

e2τ2j ≡ 〈−j, j + 1, j + 2, j + 3〉〈−j − 1,−j,−j + 1, j + 2〉
〈−j − 1,−j, j + 2, j + 3〉〈−j,−j + 1, j + 1, j + 2〉 ,

34Here, for cosmetic reasons, instead of acting with the symmetries of the top square on the cusps on its

bottom, we acted with the inverse conformal transformation on the cusps on its top.
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eσ2j+τ2j−iφ2j ≡ 〈−j − 1,−j, j + 1, j + 2〉〈j, j + 1, j + 2, j + 3〉
〈−j − 1, j + 1, j + 2, j + 3〉〈−j, j, j + 1, j + 2〉 , (A.13)

eσ2j+τ2j+iφ2j ≡ 〈−j − 2,−j − 1,−j,−j + 1〉〈−j − 1,−j, j + 1, j + 2〉
〈−j − 2,−j − 1,−j, j + 2〉〈−j − 1,−j,−j + 1, j + 1〉 ,

e2τ2j+1 ≡ 〈−j − 1, j + 1, j + 2, j + 3〉〈−j − 2,−j − 1,−j, j + 2〉
〈−j − 2,−j − 1, j + 2, j + 3〉〈−j − 1,−j, j, j + 2〉 ,

eσ2j+1+τ2j+1−iφ2j+1 ≡ 〈−j − 2,−j − 1,−j,−j + 1〉〈−j − 1,−j, j + 2, j + 3〉
〈−j − 2,−j − 1,−j, j + 3〉〈−j − 1,−j,−j + 1, j + 2〉 ,

eσ2j+1+τ2j+1+iφ2j+1 ≡ 〈j + 1, j + 2, j + 3, j + 4〉〈−j − 1,−j, j + 2, j + 3〉
〈−j − 1, j + 2, j + 3, j + 4〉〈−j, j + 1, j + 2, j + 3〉 ,

where in the convention of (1.2) the edge 1 is the very bottom one, the edge 2 is the next

on its right, . . . Here, 〈i, j, k, l〉 is a shorthand for 〈Zi, Zj , Zk, Zl〉 and our definitions here

are equivalent to the ones in figure 2 of [3]. Note that we have different expressions for

even and odd j’s because the tessellation oscillates as indicated in (1.2). Flipping the signs

of all φi is a symmetry of the problem and thus describes conformally equivalent polygons.

B Flipping and gluing

In the decomposition of the Wilson loop (2.15) and (2.18), some rapidities are flipped

and some are not. In this appendix we comment on this feature which relates to the way

pentagons are glued together in the decomposition.

Our convention for the sign and ordering of the rapidities entering the pentagon tran-

sitions is as follows

e−i[p(u1)+p(u2)]σBot P (u1, u2|v1, v2) e+i[p(v1)+p(v2)]σTop = =

Bottom

Top

u1 u2

v1 v2

u2 u1

v2 v1

Bottom

Top

(B.1)

That is, we measure the momentum flow in the bottom edge w.r.t. the direction pointing

toward the middle cusp, while in the top edge this is the other way around. At both the top

and the bottom, the particles are ordered according to their distance to the middle cusp.

This convention is quite natural from the transition/integrability point of view, since they

amount to treating the bottom excitations as incoming and the top excitations as outgoing.

Within this integrability friendly convention, the bootstrap equations that determine the

pentagon transitions become quite nicer, see (1.3) in particular.

However, from a more geometrical perspective, the above convention does not treat

bottom and top in the same way. For example, the pentagon is symmetric under a reflection

that interchanges its bottom and top. In our convention, this translates into

P (u1, . . . , uN |v1, . . . , vM ) = P (−v1, . . . ,−vM | − u1, . . . ,−uM ) , (B.2)
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whose content is identical to the first pentagon axiom in [3]. We could, of course, adopt

a different convention (where all momenta flow towards the middle cusp for example) to

get rid of the minus signs in this expression. The price to pay is that this would introduce

some unpleasant minus signs in the fundamental relation (1.3).

We now explain why the integrability friendly convention (B.1) leads to the flipping

of some rapidities, i.e., to the bar notation, in (2.15) and (2.18). Consider a square that

arises from the overlap of two consecutive pentagons in the tessellation (1.2). Moving the

excitations at the bottom of this square in a given direction is conformally equivalent to

moving the excitations at the top in the opposite direction. This is how the coordinate σ

parameterizes the overall position of the excitations:

σ

An excitation moving to the right at the bottom will of course keep moving in the same

direction when it reaches the top. However, due to the way σ acts, it will be viewed at the

top with the reversed momentum. Similarly, if we have more than than one excitation in

the eigenstate, they are viewed from the top as if their momenta were flipped. For illus-

tration, consider a sequence of two transitions involving two particles (the generalization

to any number of particles is obvious):

u2u1

v2v1

v2v1

w2w1

u2u1

v2v1

−v2−v1

w2w1

convention

The dependence on σ in the middle square only enters through the phase factor

eiσ[p(v1)+p(v2)]. On the right, we have flipped the sign of the rapidities and the direc-

tion of the arrows of all the bottom excitations of the top transition, such as to fit
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this transition with our convention (B.1). This way we see that the phase factor is

multiplied by the bottom transition P (. . . |v1, v2) = P (. . . |v) and by the top transition

P (−v2,−v1| . . . ) = P (v̄| . . . ), hence explaining the notation used in (2.15) and (2.18).

C Gluing pentagon transitions at Born level

In this paper we focused on single-particle transitions and measures, see for instance (2.40)

for a scalar at tree level. The OPE decomposition for polygons with more than seven edges

includes more than two middle squares. Such polygons involve therefore several transitions

between general states which are combined as in (1.1). We will now illustrate how two

such transitions are nicely glued together in the case of the leading OPE contribution of

an octagon NMHV component.

An octagon has three middle squares and therefore nine OPE parameters (or

conformal cross ratios) {τi, σi, φi} with i = 1, 2, 3. Consider the scalar NMHV component

W(8145)
oct at tree level

W(8145)
tree =

1

2

3

4
5

6

8

7

(C.1)

The leading contribution at large τ1, τ2 and τ3 comes from a single scalar propagating

through each of the three channels. We find

W(8145)
oct =

1

〈8, 1, 4, 5〉 =
e−τ1−τ2−τ3

eσ1+σ2+σ3 + eσ2+σ3−σ1 + eσ1+σ3−σ2 + eσ1+σ2−σ3 + eσ2−σ1−σ3
+O(e−2τi) (C.2)

On the other hand, we expect this contribution to be equal to

W(8145)
oct =

∫
du dv dw

g2(2π)3
e−τ1−τ2−τ3+2iuσ1+2ivσ2+2iwσ3µ(u)P (−u|v)µ(v)P (−v|w)µ(w) +O(e−2τi) , (C.3)

where the overall factor 1/g2 comes from the form factors for creation/annihilation of a

scalar, P∗(0|u) = P∗(−w|0) = 1/g, and with the contour R+ i0+ for each one of the three

integrals. By plugging the tree level results (2.40) obtained from the heptagon and hexagon

one can easily check that, indeed, (C.3) is the Fourier transform of (C.2).

D The mirror of a gluon

In this appendix we determine the transformation property of the gauge field excitation

F (or equivalently F̄ ) under analytic continuation to the mirror sheet. The most natural

expectation is that under this transformation F → F . However, as stated in section 4.1,
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this is not the case and instead under the mirror rotation F → F̄ . To derive this relation,

we start with the more general transformation rule

|ψ(u−γ)〉edge I = |ϕ(u)〉edge II (D.1)

where |ψ(u−γ)〉edge I and |ϕ(u)〉edge II are arbitrary excitations inserted on the edge I and II,

with the latter standing on the right side of the former. Equation (D.1) must be consistent

with the symmetries of the square, that is, with the symmetries of the background on which

the excitations are living. In other words, both sides on (D.1) must transform in the same

way under a conformal transformation that leave the flux invariant. We recall that the

square have three conformal symmetries, conjugate to the flux energy (twist), momentum

(conformal spin) and U(1) charge. A convenient description of any null polygon, which has

the virtue of linearizing the action of the conformal generators, is found by using momentum

twistors [84]. This representation, in the specific form relevant to the OPE, is presented in

detail in appendix A. In particular, the square and its conformal symmetries are given by

M =




eσ−
iφ

2 0 0 0

0 e−σ−
iφ

2 0 0

0 0 eτ+
iφ

2 0

0 0 0 e−τ+
iφ

2




and




Zbot

Zright

Ztop

Zleft


 =




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


 (D.2)

where the conformal transformation M(τ, σ, φ) acts on the four momentum twistors of the

square by multiplication Zi → Zi ·M .

The mirror rotation u → u−γ in (D.1) maps an insertion on the bottom edge to an

insertion on the right neighbouring edge. If we now cyclicly relabel the edges of the square,

so that the right edge becomes the bottom edge, etc., we do not change its symmetries

but simply relabel them. This particular cyclic rotation of the twistors is obtained by

acting with the matrix

R =




0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0


 such that




Zright

Ztop

Zleft

Zbot


 =




Zbot

Zright

Ztop

Zleft


 · R . (D.3)

The symmetry generators acts on the cyclic rotated twistors as

R−1 ·M(τ, σ, φ) · R =M(−σ, τ,−φ) ≡M(τ̃ , σ̃, φ̃) . (D.4)

In other words, the space coordinate σ becomes minus the time coordinate when we

the square is viewed from the right and, similarly, the time coordinate τ becomes the

space coordinate. This, of course, could be more simply derived by drawing a picture of

a square, labelled with time and space direction, and performing a direct 90◦ rotation.

What is crucial for the analysis here, and is somewhat less intuitive, is that the U(1) angle

φ has its sign reversed φ→ −φ in the process.
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Now let −E(u), ip(u) and im be the charge conjugate to ∂τ , ∂σ and ∂φ, respectively.

By acting with these generators on both sides of (D.1) and demanding for consistency that

both sides transform in the same way, we conclude that

e−Eϕ(u)τ̃+ipϕ(u)σ̃+imϕφ̃
!
= e−Eψ(u

−γ)τ+ipψ(u
−γ)σ+imψφ

(D.4)
= e−Eψ(u

−γ)σ̃−ipψ(u−γ)τ̃−imψφ̃ ,
(D.5)

and therefore

Eψ(u
−γ) = −ipϕ(u) , pψ(u

−γ) = −iEϕ(u) , and mψ = −mϕ . (D.6)

Finally, we know that for a gauge field, i.e, ψ = F or F̄ , we have [52] that Eψ(u
−γ) =

−ipψ(u) and pψ(u
−γ) = −iEψ(u). We therefore conclude that ϕ has the same dispersion

relation as ψ but carries opposite U(1) charge. In other words, if we start with the gluonic

excitation ψ = F then its mirror excitation is ϕ = F̄ , and reciprocally.

We close this appendix with a comment on the mirror rotation of the twist one fermions.

For them the construction above lends support to the thesis according to which there cannot

exist an analytic continuation to the mirror sheet, which would map a fermion back to itself.

This is in line with the difficulties encountered in [52] to make sense of such a transformation

at finite coupling. The argument goes as follows. Suppose there is an analytic continuation

γ that transforms a twist one fermion on one edge into some excitation on the neighbouring

edge. We thus start on the left hand side of (D.1) with a twist one fermion on edge I. Among

the two kinds of twist one fermions we choose the one with U(1) charge equal to +1/2 for

definiteness (the other possible choice being −1/2). By applying (D.5), we are led to con-

clude that the state on the right hand side of (D.1), i.e., |ϕ(u)〉edge II, has the same R-charge

as the fermion, since SU(4) rotations should commute with the mirror transformation, but

carries opposite U(1) charge, equal to −1/2. The problem is that in N = 4 SYM the U(1)

charge of the twist one fermion is correlated with its R-charge, in such a way that we cannot

flip the former without changing the latter. As a result, the state |ϕ(u)〉edge II cannot be a

twist one fermion on edge II. This obstruction raises many interesting questions regarding

the crossing properties of fermions, which we hope to be able to address in the future.

E Expanding the ansätze at weak coupling

In this section we explain how to generate the expressions for the scalar and gluon

pentagon transitions order by order in perturbation theory. The starting points are the

general formulae for the S-matrix of scalar and gluon. For the scalar they were extracted

in [31, 32] and are recalled below for the reader’s convenience. The formulae for gluon

were obtained by following a similar approach. We shall give the general expressions in

terms of certain functions f1,2,3,4(u, v), satisfying

f1(u, v) = f2(v, u) , f3,4(u, v) = f3,4(v, u) . (E.1)

These are the main dynamical quantities that parameterize the S-matrix on top of the

GKP background. We shall then explain how to compute these functions order by order

in perturbation.
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Formulae for scalar. The S-matrix for scalar (and its mirror-rotated version) can be

parameterized as

S(u, v) =
Γ(12 − iu)Γ(12 + iv)Γ(iu− iv)

Γ(12 + iu)Γ(12 − iv)Γ(iv − iu)
F (u, v) ,

S(uγ , v) =
πg2 sinh (π(u− v))

(u− v + i) cosh (πu) cosh (πv)
G(u, v) .

(E.2)

In this way of writing the leading order expressions are factored out explicitly and all

the higher-loop corrections are absorbed into the functions F (u, v) and G(u, v). As a

consequence the latter functions start with 1 when g → 0. They read explicitly

logF = 2i

∞∫

0

dt

t
(J0(2gt)− 1)

et/2(sin (ut)− sin (vt))

et − 1
− 2if1 + 2if2 ,

logG = 2

∞∫

0

dt

t
(J0(2gt)− 1)

et/2(cos (ut) + cos (vt))− J0(2gt)− 1

et − 1
+ 2f3 − 2f4 ,

(E.3)

where J0(z) = 1+O(z2) is the zero-th Bessel function and we note that F (u, v) = 1/F (v, u),

G(u, v) = G(v, u).

The scalar pentagon transition and measure are related to the S-matrix by our

ansatz (3.21)–(3.22). After combining it with (E.3), one immediately obtains the following

representation for the scalar pentagon transition

P (u|v) = Γ(iu− iv)

g2Γ(12 + iu)Γ(12 − iv)
×

× exp

[ ∞∫

0

dt

t
(J0(2gt)− 1)

J0(2gt) + 1− et/2(e−iut + eivt)

et − 1
− if1 + if2 − f3 + f4

]
.

(E.4)

For the measure we have

µ(u) =
πg2

cosh (πu)
×

× exp

[ ∞∫

0

dt

t
(J0(2gt)− 1)

2et/2 cos(ut)− J0(2gt)− 1

et − 1
+ f3(u, u)− f4(u, u)

]
,

(E.5)

where we used that f1(u, u)− f2(u, u) = 0, see (E.1).

Formulae for gluon. Similarly, we can write

S(u, v) =
Γ(32 − iu)Γ(32 + iv)Γ(iu− iv)

Γ(32 + iu)Γ(32 − iv)Γ(iv − iu)
F (u, v) ,

S(uγ , v) =
πg2 sinh (π(u− v))

(u− v − i) cosh (πu) cosh (πv)
G(u, v) ,

(E.6)
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for the gluons, where now

logF = 2i

∞∫

0

dt

t
(J0(2gt)− 1)

e−t/2(sin (ut)− sin (vt))

et − 1
− 2if1 + 2if2 ,

logG = 2

∞∫

0

dt

t
(J0(2gt)− 1)

et/2(cos (ut) + cos (vt))− J0(2gt)− 1

et − 1
+ 2f3 − 2f4 .

(E.7)

Our ansatz for the gluon transitions and measure in terms of the S-matrix (E.6) are given

in (4.15), (2.9). Using (E.7) we obtain

P (u|v) = − Γ(iu− iv)

g2Γ(32 + iu)Γ(32 − iv)

√
(x+y− − g2) (x−y+ − g2) (x+y+ − g2) (x−y− − g2)×

× exp

[ ∞∫

0

dt

t
(J0(2gt)− 1)

J0(2gt) + 1− e−t/2(e−iut + eivt)

et − 1
− if1 + if2 − f3 + f4

]
.

(E.8)

for the transition, where we recall that x± = x(u ± i
2), y

± = x(v ± i
2) and x(u) = 1

2(u +√
u2 − 4g2). For the measure we have

µ(u) = − πg2

cosh (πu)

(u2 + 1
4)

(x+x− − g2)
√

(x+x+ − g2)(x−x− − g2)
×

× exp

[ ∞∫

0

dt

t
(J0(2gt)− 1)

2e−t/2 cos(ut)− J0(2gt)− 1

et − 1
+ f3(u, u)− f4(u, u)

]
.

(E.9)

We now explain how to compute the functions fi.

Computing the f-functions. A particular way of presenting the f -functions, which is

most convenient for expanding them in perturbation theory, makes use of two auxiliary

vectors κi(u), κ̃j(u) (that depend on the coupling and also on the rapidity u) and of a

matrix Kij (which only depends on the coupling). The indices take values over all positive

integers. In perturbation theory we can effectively truncate the range of the indices as

explained below. The matrix elements are given by

Kij = 2j(−1)j(i+1)

∞∫

0

dt

t

Ji(2gt)Jj(2gt)

et − 1
, (E.10)

where Ji is the i-th Bessel function. This same matrix K is useful for computing the f -

functions for the scalar as well as for the gluon excitations. It corresponds to the kernel of

the Beisert-Eden-Staudacher equation [85], when written in the manner of [86–89], and it

is universal, in that it is the same for all the excitations of the GKP background [9]. The

vectors κ, κ̃, on the other hand, depend on which case we are interested in, but, actually,

in a very minimal way. In fact, we can introduce a parameter η such that η = 0 for scalars

and η = 1 for gluons and describe fi for both cases at once. We have

κj(u) ≡ −
∞∫

0

dt

t

Jj(2gt)(J0(2gt)− cos(ut)
[
et/2

](−1)η×j
)

et − 1
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κ̃j(u) ≡ −
∞∫

0

dt

t
(−1)j+1Jj(2gt) sin(ut)

[
et/2

](−1)η×(j+1)

et − 1

Next we construct the inverse of the identity matrix plus the matrix K,

M ≡ (1 +K)−1 = 1−K +K2 −K3 + . . . (E.11)

together with a trivial diagonal matrix Q with entries Qij = δij(−1)i+1i. The functions fi
are then given by

f1(u, v) = 2 κ̃(u) ·Q ·M · κ(v) , f2(u, v) = 2 κ̃(v) ·Q ·M · κ(v) (E.12)

f3(u, v) = 2 κ̃(u) ·Q ·M · κ̃(v) , f4(u, v) = 2κ(v) ·Q ·M · κ(v) (E.13)

Perturbation theory. In perturbation theory Kij = O(gi+j) so that we can truncate

the range of the indices to go over i, j = 1, 2, . . . ,Λ − 1 and get accurate results to order

gΛ. The inverse M is also trivial to compute exactly in perturbation theory since we can

truncate (E.11). For example, to get results up to order g4 we simply need to use

Q ·M =




11π4g4

45 − π2g2

3 + 1 −4g3ζ(3) − 1
15g

4π4

−4g3ζ(3) 2g4π4

15 − 2 0

− 1
15g

4π4 0 3


 (E.14)

and compute the first three components of the vectors κ and κ̃. For scalars the first

component of κ reads

κ1(u) =
g

2

[
ψ(0)

(
1

2
− iu

)
+ ψ(0)

(
1

2
+ iu

)
− 2ψ(0)(1)

]
(E.15)

−g
3

4

[
ψ(2)

(
1

2
− iu

)
+ ψ(2)

(
1

2
+ iu

)
+ 12ζ(3)

]
+O(g5) ,

for instance. Note that to compute any component of the vectors κ, κ̃ or any element of the

matrix K in perturbation theory all we need to do is to Taylor expand the Bessel functions

at small g. This generates powers of t in the integrands of the relevant integrals, which

always boil down to instances of

∫ ∞

0
dt

eiut

et − 1
tn = (−1)n+1ψ(n)(1− iu) , ψ(n−1)(x) ≡ dn

dxn
log Γ(x) . (E.16)

In fact, by inspecting the remaining contributions to the pentagon transitions, it is easy

to see that this is all we need for computing the expansion of these objects to any order

in perturbation theory, see for example the first terms in the second line in (E.8). Hence,

it is trivial to systematize this expansion to any desired order in perturbation theory. We

attach a mathematica notebook where the functions fi are computed to any desired order.
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A few comments. We conclude with a few remarks.

• The matrix Q ·M is symmetric. This follows from the fact that K as defined in (E.10)

is clearly of the form K = Ksym ·Q where Ksym is a symmetric matrix. Hence

Q ·M = Q−Q ·Ksym ·Q+Q ·Ksym ·Q ·Ksym ·Q− . . .

which is clearly symmetric sincel both Q and Ksym are. The illustration given

in (E.14) clearly exhibits this property. From this and from (E.12) the general prop-

erties (E.1) of the f -functions follow. These relations are quite useful in establishing

several properties of the pentagon transitions as well as of the flux tube S-matrices.

For example, unitarity of the physical S-matrices in (E.2) or (E.6) readily follows

from these symmetry properties for f1 and f2.

• The upper left corner of the matrix Q ·M is a quite physical quantity: it is nothing

but the cusp anomalous dimension, up to an overall factor of 4g2. For example,

by multiplying the upper left corner in the example (E.14) with 4g2 we obtain the

three-loop cusp anomalous dimension

Γcusp(g) = 4g2 − 4

3
π2g4 +

44

45
π4g6 +O(g8) . (E.17)

• The energy and momentum can also be read from the quantities considered here, as

already presented in [9]. We have

E(u) = 1 + 4g (Q ·M · κ(u))1 , p(u) = 2u− 4g (Q ·M · κ̃(u))1 . (E.18)

These expressions are valid at any coupling but they are particularly trivial to eval-

uate at weak coupling as explained above.

F OPE in position space for the scalar NMHV hexagon

All the expressions in this appendix can be found in the compaying notebook Fnl.nb,

where use is made of the notations of the HPL package [55, 56].

We have (H = H(−x) and H̄ = H(+x))

F
(0)
0 = 1

F
(1)
1 = −2H̄0 − 4H1

F
(1)
0 = −2H1H̄0 − 2H2

1

F
(2)
2 = 8H1H̄0 + H̄2

0 + 8H2
1 +

π2

3

F
(2)
1 = 4H̄0H0,1 + 12H2

1 H̄0 + 2H1H̄
2
0 +

4

3
π2H̄0 + 8H3

1 + 2π2H1 − 4ζ(3)

F
(2)
0 = 4H1H̄0H0,1 +

1

2
H̄2

0H0,1 − 4H̄0H0,1,1 + 2ζ(3)H̄0 + 4H3
1 H̄0 +H2

1 H̄
2
0 +

4

3
π2H1H̄0

+
1

12
π2H̄2

0 +
1

6
π2H0,1 + 4H0,0,0,1 + 2H0,1,0,1 − 4H1ζ(3) + 2H4

1 + π2H2
1 +

π4
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For the three-loop predictions we have

−F
(3)
3 = 8H̄0H0,1 + 16H2

1 H̄0 + 4H1H̄
2
0 +

2H̄3
0

9
+

2

9
π2H̄0 −

40

3
H0,0,1 +

32H3
1

3
+

4π2H1

3
− 8ζ(3)

−F
(3)
2 = 40H1H̄0H0,1 + 4H̄2

0H0,1 + 4H̄0H0,0,1 − 40H̄0H0,1,1 − 4ζ(3)H̄0 + 32H3
1 H̄0 + 10H2

1 H̄
2
0

+
2

3
H1H̄

3
0 +

26

3
π2H1H̄0 +

4

3
π2H̄2

0 − 40H1H0,0,1 +
4

3
π2H0,1 − 8H0,0,0,1 + 40H0,0,1,1

+16H0,1,0,1 − 40H1ζ(3) + 16H4
1 +

26

3
π2H2

1 +
7π4

15

−F
(3)
1 = 48H2

1 H̄0H0,1 + 10H1H̄
2
0H0,1 + 8H1H̄0H0,0,1 − 96H1H̄0H0,1,1 +

1

3
H̄3

0H0,1 + 5π2H̄0H0,1

−10H̄2
0H0,1,1 + 4H̄0H0,0,0,1 − 8H̄0H0,0,1,1 + 20H̄0H0,1,0,1 + 96H̄0H0,1,1,1 + 2ζ(3)H̄2

0

+20H4
1 H̄0 + 8H3

1 H̄
2
0 +

2

3
H2

1 H̄
3
0 +

38

3
π2H2

1 H̄0 + 3π2H1H̄
2
0 +

1

18
π2H̄3

0 +
113

90
π4H̄0 − 20ζ(3)H0,1

−40H2
1H0,0,1 +

10

3
π2H1H0,1 + 80H1H0,0,1,1 + 40H1H0,1,0,1 −

10

3
π2H0,0,1 −

10

3
π2H0,1,1

+20H0,0,0,0,1 − 20H0,0,1,0,1 − 80H0,0,1,1,1 − 20H0,1,0,0,1 − 40H0,1,0,1,1 − 40H0,1,1,0,1

−48H2
1 ζ(3) + 8H5

1 + 8π2H3
1 +

91π4H1

45
− 32ζ(5)− 8π2ζ(3)

3

and finally

−F
(3)
0 =

4H6
1

3
+ 4H̄0H

5
1 + 2H̄2

0H
4
1 + 2π2H4

1 +
2

9
H̄3

0H
3
1 +

38

9
π2H̄0H

3
1 + 16H̄0H0,1H

3
1

−40

3
H0,0,1H

3
1 − 16ζ(3)H3

1 +
3

2
π2H̄2

0H
2
1 + 5H̄2

0H0,1H
2
1 +

5

3
π2H0,1H

2
1 + 4H̄0H0,0,1H

2
1

−48H̄0H0,1,1H
2
1 + 40H0,0,1,1H

2
1 + 20H0,1,0,1H

2
1 +

91

90
π4H2

1 +
1

18
π2H̄3

0H1 +
113

90
π4H̄0H1

+
1

3
H̄3

0H0,1H1 + 5π2H̄0H0,1H1 −
10

3
π2H0,0,1H1 − 10H̄2

0H0,1,1H1 −
10

3
π2H0,1,1H1

+4H̄0H0,0,0,1H1 − 8H̄0H0,0,1,1H1 + 20H̄0H0,1,0,1H1 + 96H̄0H0,1,1,1H1 + 20H0,0,0,0,1H1

−20H0,0,1,0,1H1 − 80H0,0,1,1,1H1 − 20H0,1,0,0,1H1 − 40H0,1,0,1,1H1 − 40H0,1,1,0,1H1 − 32ζ(5)H1

+2H̄2
0 ζ(3)H1 − 20H0,1ζ(3)H1 −

8

3
π2ζ(3)H1 +

7

60
π4H̄2

0 +
2

3
π2H̄2

0H0,1 +
7

30
π4H0,1

+
1

3
π2H̄0H0,0,1 −

1

3
H̄3

0H0,1,1 − 5π2H̄0H0,1,1 −
2

3
π2H0,0,0,1 +

10

3
π2H0,0,1,1

+2H̄2
0H0,1,0,1 + 2π2H0,1,0,1 + 10H̄2

0H0,1,1,1 +
10

3
π2H0,1,1,1 − 6H̄0H0,0,0,0,1 − 4H̄0H0,0,0,1,1

−2H̄0H0,0,1,0,1 + 8H̄0H0,0,1,1,1 − 2H̄0H0,1,0,0,1 − 20H̄0H0,1,0,1,1 − 20H̄0H0,1,1,0,1 − 96H̄0H0,1,1,1,1

+56H0,0,0,0,0,1 − 20H0,0,0,0,1,1 + 4H0,0,0,1,0,1 + 4H0,0,1,0,0,1 + 20H0,0,1,0,1,1 + 20H0,0,1,1,0,1

+80H0,0,1,1,1,1 + 4H0,1,0,0,0,1 + 20H0,1,0,0,1,1 + 20H0,1,0,1,0,1 + 40H0,1,0,1,1,1 + 20H0,1,1,0,0,1

+40H0,1,1,0,1,1 + 40H0,1,1,1,0,1 + 16H̄0ζ(5)− 4ζ(3)2 + H̄3
0 ζ(3) +

4

3
π2H̄0ζ(3)

+2H̄0H0,1ζ(3)− 4H0,0,1ζ(3) + 20H0,1,1ζ(3) +
11π6

270
(F.1)

G Description of attached notebooks

Here we briefly describe the few mathematica notebooks that the reader can find in at-

tachment to this paper:

• Fnl.nb contains the functions F
(l)
n in (3.30) up to three loops,

• beta.nb contains the function β in (3.36),
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• Functionshf.nb contains the functions fi in (4.20) and the functions hi in (4.27),

• f1f2f3f4.nb is a notebook that yields the functions f1, f2, f3 and f4 appearing in the

finite coupling conjectures for the pentagon transitions to any desired order in pertur-

bation theory. This allows one to straightforwardly expand the pentagon transitions

perturbatively at weak coupling. For more details see appendix E.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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