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Abstract— The existing constructions of space-time codes or
modulation have mainly focused on two ideal situations: either
quasi-static or rapid fading channels. In this paper, we consider
the design of robust space-time modulation for time-correlated
Rayleigh fading channels. We show that the space-time sig-
nals of square size achieving full diversity in quasi-static fading
channels can also achieve the full diversity in time-correlated
fading channels irrespectively of the time correlation matrix.
Moreover, we propose a space-time signal construction method
by combining orthogonal designs with sphere packings. The
simulation results show that our scheme outperforms the previ-
ously existing methods. For example, we observe a coding gain
of about 1.5 dB over the conventional orthogonal design, about
2 dB over the parametric code, and about 4 dB over the cyclic
code under certain fading conditions.

I. INTRODUCTION

Space-time coding for multiple antenna wireless commu-
nication systems has attracted considerable attention lately.
A large number of space-time codes have been proposed
based on two ideal channel conditions: either quasi-static
or rapid fading [1], [2], [8]–[13]. These codes do not guar-
antee robust performance in correlated fading channels. In
[3], [4], [5], Fitz et. al. presented a general design cri-
terion for Rayleigh fading channels with space-time corre-
lations. However, it is hard to construct space-time codes
directly from the general design criterion. In [4], some
hand crafted space-time trellis codes that combine the mul-
tiple trellis-coded modulation (M-TCM) with the Alamouti
scheme show robust performance over space-time correlated
fading channels. In [6], the general design criterion [3], [5]
was further simplified assuming that the space-time correla-
tion matrix was of full rank. In this case, the resulting design
criterion becomes the same as that for rapid fading channels.

In [7], characterizing the performance of space-time codes
over space-time-correlated Rayleigh fading channels was
also considered. The relationship between the robustness (di-
versity) and the rank of the space-time correlation matrix was
established, and space-time codes designed for the indepen-
dent fading channel model were proposed for communica-
tion over space-time-correlated fading channels.

In this paper, we consider the design of robust space-time
block codes, or more precisely space-time signals, for time-
correlated Rayleigh fading channels. We assume that the
wireless channel exhibits temporal correlation, but there is
no spatial correlation between the transmit and the receive
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antennas. A typical physical environment related to this sce-
nario is the downlink from a base station with multiple trans-
mit antennas to a mobile, which is usually modeled by the
Jakes fading model [14]. The time correlation is determined
by the Doppler frequency shift. Let fD be the maximum
Doppler frequency shift normalized by the sampling period.
For stop-and-go mobiles, the maximum Doppler frequency
shift fD changes frequently. Therefore, it is of interest to
design robust space-time modulation that provide good per-
formance over all time-correlated fading conditions.

First, we show in Section III that for space-time signals
of square size, the signal design problem for time-correlated
channels can be reduced to the design problem for quasi-
static fading channels, independently of the time correlation
matrix. Then, in Section IV, we propose a class of space-
time signals from orthogonal designs with sphere packings.
The simulation results show that our scheme outperforms the
previously existing methods.

II. CHANNEL MODEL AND BACKGROUND

We consider a wireless communication system with M
transmit antennas and N receive antennas. We use space-
time signals to transmit binary information. Each space-time
signal can be expressed as a T ×M matrix

C =





c1
1 c2

1 · · · cM
1

c1
2 c2

2 · · · cM
2

...
...

. . .
...

c1
T c2

T · · · cM
T



 , (1)

with the energy constraint E||C||2F = MT where ||C||F is
the Frobenius norm of C, and E stands for the expectation.

The received signal yj
t at receive antenna j at time t is

yj
t =

√
ρ

M

M∑

i=1

ci
thi,j(t) + zj

t , t = 1, 2, · · · , T, (2)

where zj
t is the AWGN noise with zero-mean and unit vari-

ance, and hi,j(t) is the channel coefficient from transmit an-
tenna i to receive antenna j at time t which is known at the
receiver. The channel coefficients are modeled as zero-mean
complex Gaussian random variables with variance 1/2 per
dimension. We assume that the channel fading has only tem-
poral correlation, i.e., the channel coefficients hi,j(t) are in-
dependent for different index (i, j) and dependent in the time
direction. The factor

√
ρ/M in (2) ensures that ρ is the SNR

at each receive antenna, and independent ofM .
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The received signal (2) can be rewritten in vector form as

Y =
√

ρ

M
DH + Z, (3)

where D is an NT ×MNT matrix formed from the space-
time signal matrix C in (1) as follows [3], [5]:

D=





D1 D2 · · · DM 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 D1 D2 · · · DM · · · 0 0 · · · 0

...
...

. . .
...

0 0 · · · 0 0 0 · · · 0 · · · D1 D2 · · · DM



 ,

(4)
in which Di = diag(ci1, c

i
2, · · · , ciT ), i = 1, 2, · · · ,M.

The channel vector H of sizeMNT × 1 is formatted as

H = [hT
1,1 · · · hT

M,1 hT
1,2 · · · hT

M,2 · · · hT
1,N · · · hT

M,N ]T , (5)

where hi,j = [hi,j(1) hi,j(2) · · · hi,j(T )]T . The re-
ceived signal vector Y of size NT × 1 is Y =[
y11 · · · y1T y21 · · · y2T · · · yN

1 · · · yN
T

]T
, and the noise vec-

tor Z has a same form as Y.
Suppose that D and D̃ are two different matrices related to

two different space-time signals C and C̃, respectively. The
pairwise error probability between D and D̃ can be upper
bounded as [3], [5]

P (D → D̃) ≤
(
2K − 1

K

) (
K∏

i=1

γi

)−1 (
ρ

M

)−K

, (6)

whereK is the rank of (D−D̃)R(D−D̃)H, γ1, γ2, · · · , γK

are the non-zero eigenvalues of (D − D̃)R(D − D̃)H, and
R = E{HHH} is the correlation matrix of H. The super-
script H stands for the complex conjugate and transpose.

Based on the upper bound on the pairwise error probability
in (6), a general code design criterion has been proposed in
[3] and [5]. This criterion is consistent with the well-known
criteria [2] for two ideal cases: the quasi-static and the rapid
fading channel models, i.e.,

• For quasi-static fading channels: The minimum rank of

∆
�
= (C − C̃)(C − C̃)H (7)

over all pairs of distinct signalsC and C̃ should be max-
imized. If ∆ is of full rank for distinct signals C and C̃,
then the diversity product [10], [11] is given by

ζstatic =
1

2
√

M
minC �=C̃ |det(∆)|1/(2T ) , (8)

which is related to the coding advantage and should also
be maximized.

• For rapid fading channels: The minimum number of
non-zero rows of C − C̃ should be as large as possible
for any pair of distinct signals C and C̃. If for any pair
of distinct signals C and C̃, there is no zero row in C −
C̃, then the diversity product, given by

ζrapid =
1

2
√

M
minC �=C̃

(
T∏

t=1

||ct − c̃t||2F

)1/(2T )

, (9)

should be maximized. In (9), ct and c̃t are the t-th rows
of C and C̃, respectively.

III. DESIGN CRITERIA FOR TIME-CORRELATED FADING

CHANNELS

In this section, we derive the design criteria assuming only
time correlation. In this case, the channel correlation matrix
R becomes

R = diag(R1,1, · · · , RM,1, R1,2, · · · , RM,2, · · ·
· · · , R1,N , · · · , RM,N ),

where Ri,j = E
(
hi,jhH

i,j

)
is the time correlation matrix of

the channel coefficients from transmit antenna i to receive
antenna j. We may further assume that all of the time corre-
lation matrices Ri,j are the same, which is true for the Jakes

fading model [14]. Denote R
�
= Ri,j , then we have

R = IMN ⊗ R, (10)

where ⊗ denotes the tensor product and IMN is the identity
matrix of sizeMN ×MN . Then, we have

(D − D̃)R(D − D̃)H = IN ⊗
{[

(C − C̃)(C − C̃)H]
◦ R

}

= IN ⊗ {∆ ◦ R}, (11)

where ◦ denotes the Hadamard product2. Substituting (11)
into (6), the pairwise error probability between C and C̃ can
be upper bounded as

P (C → C̃) ≤
(
2rN − 1

rN

) (
r∏

i=1

λi

)−N (
ρ

M

)−rN

, (12)

where r is the rank of ∆◦R, and λ1, λ2, · · · , λr are the non-
zero eigenvalues of ∆ ◦ R. Clearly, the minimum rank of
∆ ◦R over all pairs of distinct signals C and C̃ should be as
large as possible.

If the minimum rank of ∆ ◦R is ν for any pair of distinct
signals C and C̃, we say that the set of space-time signals
achieves a diversity of νN . For fixed time duration T , the
number of transmit antennasM , and time correlation matrix
R, the maximum achievable diversity or full diversity is de-
fined as the maximum diversity level that can be achieved
by space-time signals of size T × M . For example, for
quasi-static fading channels, R is an all one matrix of size
T × T . In this case, the maximum achievable diversity is
min(M,T )N . For rapid fading channels, R = IT , then the
maximum achievable diversity is TN .

Assume that the time correlation matrix R is of rank
Γ (1 ≤ Γ ≤ T ). According to a rank inequality on Hadamard
products ([16] p.307), we have

rank(∆ ◦ R) ≤ rank(∆)rank(R).
2Assume A = (ai,j)1≤i≤m,1≤j≤n and B = (bi,j)1≤i≤m,1≤j≤n,

the Hadamard product of A and B is A ◦ B = (ai,jbi,j)1≤i≤m,1≤j≤n.
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The rank of ∆ cannot be greater than min(M,T ). Therefore,
we can state the following theorem.

Theorem 1: For space-time signals of size T ×M oper-
ating in time-correlated fading environment, the maximum
achievable diversity is upper bounded by min(MΓ, T )N ,
where Γ is the rank of the time-correlation matrix R.

For space-time signals of square size, i.e., T = M , the
maximum achievable diversity cannot be greater than MN .
Now we will show that this upper bound can be achieved for
any time-correlated fading channel. Note that both ∆ and R
are non-negative definite, and all of the diagonal entries of
R are non-zero. Therefore, we can apply Schur’s theorem
on Hadamard products ([16], p.309): if ∆ is positive definite
(i.e. of full rank), then ∆ ◦R is also positive definite (i.e. of
full rank). Thus, we arrive at the following theorem.

Theorem 2: If a set of space-time signals of sizeM ×M
achieves full diversity (MN) for quasi-static fading chan-
nels, then it also achieves full diversity (MN) for any time-
correlated fading channel, independent of the time correla-
tion matrix R.

The result in Theorem 2 is very interesting. It is well
known that if a set of space-time signals of square size
achieves full diversity for quasi-static fading channels, then
it also achieves full diversity for rapid fading channels. How-
ever, it is not obvious that it can also achieve full diversity for
any time-correlated fading channels. It follows from Theo-
rem 2 that all of the space-time signals of square size de-
signed for quasi-static fading channels can also be used to
achieve full diversity in any time-correlated fading channel.

Theorem 2 does not hold for non-square signals (i.e. T �=
M ). However, if the time correlation matrix is of full rank,
we can establish another result. We observe that the diagonal
entries of ∆ are ||ct − c̃t||2F , t = 1, 2, · · · , T , where ct and
c̃t are the t-th rows of C and C̃, respectively. Thus, we can
apply Schur’s theorem again: if all of ||ct − c̃t||2F ’s are non-
zero for any pair of distinct signals C and C̃, then ∆ ◦ R is
of full rank whenever the time correlation matrix R is of full
rank. This implies that the maximum achievable diversity is
TN for any full rank time correlation matrix R. This result
is summarized in the following theorem.

Theorem 3: If a set of space-time signals of size T ×
M, T ≥ M achieves full diversity (TN) for rapid fading
channels, then it also achieves full diversity (TN) for any
time-correlated fading channel, provided that the time corre-
lation matrix R is of full rank.

In the following, we consider the coding advantage of the
space-time signals for time-correlated fading channels. As-
sume that ∆ ◦R is of full rank for any pair of distinct signals
C and C̃, then the diversity product can be generalized as

ζR =
1

2
√

M
minC �=C̃ |det (∆ ◦ R)|

1
2T . (13)

It is easy to see that for quasi-static fading channels, the di-
versity product (13) reduces to (8); and for rapid fading chan-
nels, the diversity product (13) becomes (9). Furthermore, it
can be shown that the diversity product ζR is upper bounded
by ζrapid and lower bounded by ζstatic as follows.

Theorem 4: If a set of space-time signals hasL elements,
and ∆ ◦ R is of full rank for any pair of distinct signals C
and C̃, then ζR, the diversity product of these signals for a
fading channel with time correlation R, satisfies

max
{

ζstatic, |det(R)|
1

2T ζrapid

}
≤ ζR ≤ ζrapid ≤

√
L

2(L−1)
.

(14)

The details of the proof are omitted for brevity. The first
inequality in (14) follows from Oppenheim’s inequality [16],
the second inequality follows from Hadamard’s inequality
[16], and the third inequality can be established using meth-
ods similar to [12]. From Theorem 4, we can see that if
ζstatic = ζrapid, then ζR is fixed, no matter what the time
correlation matrix R is.

IV. ORTHOGONAL DESIGNS WITH SPHERE PACKINGS

In this section, we consider the construction of space-time
signals of square size. In this case, according to Theorem 2
and 4, an efficient way to design robust space-time signals is
to make ζstatic as large as possible. Thus, the problem of de-
signing robust space-time signals for time-correlated fading
channels is reduced to that of designing space-time signals
for quasi-static fading channels. It follows that the abundant
classes of space-time signals designed for quasi-static fading
channels, for example, cyclic codes [10], codes from orthog-
onal designs [8], [9], parametric codes [12], may also be used
for time-correlated fading channels.

We now construct space-time signals from orthogonal de-
signs with sphere packings for M = 2k, k = 1, 2, 3, · · ·,
transmit antennas. In case of the conventional space-time
signal design methods, the symbols are chosen indepen-
dently from PSK or QAM constellations. The basic idea
of the new scheme is that we design these symbols jointly
with sphere packings to further increase the coding advan-
tage. Notice that, for quasi-static channels, the indepen-
dent choices of the symbols in orthogonal designs allow
for fast maximum likelihood (ML) decoding. However, in
time-correlated fading environment, the joint ML decoding
is inevitable, so the proposed space-time modulation method
does not cause any extra increase in decoding complexity.

Orthogonal designs have a long history in mathematics.
Recently, orthogonal designs have attracted considerable at-
tention in space-time coding due to their special structure [8],
[9], [13]. A recursive expression of orthogonal designs was
given in [13] as follows. Let G1(x1) = x1I1, and

G2k(x1, · · · , xk+1)=

[
G2k−1(x1,· · · ,xk) xk+1I2k−1

−x∗
k+1I2k−1 GH

2k−1(x1,· · · ,xk)

]
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for k = 1, 2, 3, · · ·. Then, G2k(x1, x2, · · · , xk+1) is an or-
thogonal design with complex variables x1, x2, · · · , xk+1 for
2k transmit antennas. The symbol rate of G2k is (k+ 1)/2k,
which is the maximum rate for orthogonal designs of square
size ( [13] and the references therein).

For M = 2k, k = 1, 2, 3, · · ·, transmit anten-
nas, a set of space-time signals can be constructed
directly from the orthogonal design G2k as C =√

2k/(k + 1)G2k(x1, x2, · · · , xk+1) with some specific
choices of x1, x2, · · · , xk+1. The factor

√
2k/(k + 1) is a

normalization for the energy constraint.
For two distinct signals C and C̃ with varialbes xi and x̃i

respectively, we have

(C − C̃)(C − C̃)H =
2k

k + 1

k+1∑

i=1

|xi − x̃i|2I2k .

Since all of the diagonal entries of the auto-correlation ma-
trix R are unity, the diversity product (13) becomes

ζR =
1

2
√

k + 1
min

(x1,···,xk+1) �=(x̃1,···,̃xk+1)

(
k+1∑

i=1

|xi − x̃i|2
)1/2

,

(15)
which is not affected by a specific time correlation matrix
R. In fact, (15) can also be derived from Theorem 4, since
ζstatic = ζrapid in this case.

Having ensured that the space-time signals achieve full
diversity, the next step is to maximize the coding advan-
tage. From (16), we can see that the diversity product is
determined by the minimum Euclidean distance of the vec-
tors {(x1, x2, · · · , xk+1)}. Therefore, sphere packings in
R2(k+1) [15] can be used to maximize the coding advan-
tage. In the sequel, we will describe a particular example for
2 transmit antennas, but the proposed method can be easily
generalized to otherM = 2k transmit antennas.

For 2 transmit antennas, the 2 × 2 orthogonal design is

G2(x1, x2) =
[

x1 x2
−x∗

2 x∗
1

]
, (16)

which was first used by Alamouti in space-time coding [8].
Later in [11], a similar structure with constraint |x1|2 +
|x2|2 = 1 was used to build 2 × 2 unitary matrices, a so-
called Hamiltonian constellation for differential modulation.
This constraint is not necessary for the space-time signals for
time-correlated fading channels.
D4 is a sphere packing with the best known minimum Eu-

clidean distance in R4 [15]. We combine the orthogonal de-
signG2 andD4 to construct space-time signals. Assume that
S = {[sl,1 sl,2 sl,3 sl,4] ∈ R4 : 0 ≤ l ≤ L− 1} is a set of L
points from D4. Let Cl = G2(sl,1 + jsl,2, sl,3 + jsl,4), l =
0, 1, · · · , L − 1, then {Cl : 0 ≤ l ≤ L − 1} is a set of
space-time signals whose diversity product is determined by
the minimum Euclidean distance of S. We list the diversity

Table 1: Comparison of diversity product for 2 transmit antennas.

Size Up. Bound Diversity product Comments

L
√

L
2(L−1) ζstatic ζrapid

4 0.8165 0.8165 0.8165 Orth. S.P.
0.5946 0.5946 Cyclic code

8 0.7559 0.7071 0.7071 Para. code
0.7071 0.7071 Orth. S.P.
0.3827 0.3827 Cyclic code

16 0.7303 0.5946 0.5946 Para. code
0.5000 0.5000 Orth. QPSK
0.5535 0.5535 Orth. S.P.
0.2494 0.2494 Cyclic code

32 0.7184 0.3827 0.3827 Para. code
0.4658 0.4658 Orth. S.P.
0.1985 0.1985 Cyclic code

64 0.7127 0.3070 0.3778 Para. code
0.2706 0.2706 Orth. 8PSK
0.3860 0.3860 Orth. S.P.
0.1498 0.1498 Cyclic code

128 0.7099 0.2606 0.3261 Para. code
0.3226 0.3226 Orth. S.P.

products of the orthogonal designs with sphere packings (ab-
breviated as Orth. S.P.) in Table 1, and compare them with
those of cyclic codes [10], parametric codes [12], and or-
thogonal designs with PSK. Note that for L = 4, there are
optimal space-time signals [12], in a sense that the diversity
product achieves the upper bound

√
2/3, and they actually

came out from orthogonal designs with sphere packings.
The simulation results are given for two transmit and one

receive antennas under three different channel conditions:
quasi-static, time-correlated (fD = 0.1) and rapid fading.
We used ML decoding and presented block error rate (bler)
versus average signal to noise ratio (SNR) curves.

Fig. 1(a) provides the simulation results for the L = 32
case, i.e., 2.5 b/s/Hz. The curves demonstrate that the pro-
posed method outperforms the other approaches under al-
most all channel conditions. For the quasi-static fading chan-
nel model, the orthogonal design with sphere packing has an
improvement of about 0.5 dB over the parametric code, and
about 3.5 dB over the cyclic code at a bler of 10−2. In time-
correlated fading environment, the improvement is approxi-
mately 0.5 dB and 3 dB over the the parametric code and the
cyclic code, respectively. In the rapid fading case, the per-
formance of the proposed scheme is about 2 dB better than
that of the cyclic code, but 0.25 dB worse than that of the
parametric code at a bler of 10−2. Note that the performance
of the cyclic code is almost the same for the three channel
conditions.

The block error rate curves for the L = 64 scenario,
i.e., 3 b/s/Hz, are shown in Fig. 1(b). We compare our
method with other three schemes: the conventional orthog-
onal design with 8PSK, the parametric code, and the cyclic
code for two channel models: quasi-static and rapid fading.
The curves for the time-correlated channel model are omit-
ted for clarity. It can be observed that the orthogonal de-
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Fig. 1. Block error rate performance of cyclic codes ’◦’, parametric code
’�’, orth. with PSK ’+’, and orth. with sphere packing ’∗’ at three chan-
nel conditions: quasi-static (solid line), correlated (dotted line), and rapid
(dashed line). (a) L = 32 and (b) L = 64.

sign with sphere packing has superior performance over the
other schemes. For the quasi-static fading channel model, the
block error rate curves show a performance improvement of
about 1.5 dB over the conventional orthogonal design with
8PSK, 2 dB over the parametric code, and 4 dB over the
cyclic code at a bler of 10−2. For the rapid fading chan-
nel model, the performance of the new scheme is about 1 dB
better than that of the conventional orthogonal design with
8PSK, and about 2 dB better than that of the cyclic code, but
0.5 dB worse than that of the parametric code.

The results of Theorem 4 indicate that the performance
of the space-time modulation methods is the worst in quasi-
static fading environment. Yet, from the simulation results
in Fig. 1(a) and (b), it seems that for space-time block codes
from orthogonal designs, the worst channel is the rapid fad-

ing channel, not the quasi-static fading channel, in contrast
to the observations from space-time trellis codes [2], [4], [6].

V. CONCLUSION

In this paper, we focused on the problem of designing
space-time modulation for time-correlated Rayleigh fading
channels. We showed that the design problem of square
space-time signals can be simplified to the signal design
problem for the quasi-static fading channel model, indepen-
dently of the time correlation matrix. This result implies
that various classes of space-time signals of square size de-
signed for quasi-static fading channels may also be used for
time-correlated fading channels. We also proposed a class of
space-time signals constructed from orthogonal designs with
sphere packing. The simulation results show that our scheme
outperforms the previously existing methods. For example,
we observed a coding gain of about 1.5 dB over the con-
ventional orthogonal design, about 2 dB over the parametric
code, and about 4 dB over the cyclic code for two transmit
and one receive antennas under certain fading conditions.
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