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Space-Time Singularities
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Abstract. A set of conditions for the reasonableness of space-time is proposed
and investigated. Using these, together with strong causality and an as-
sumption of genericness, it is shown that future timelike or null geodesically
incomplete space-times contain either curvature or intermediate singularities,
or primordial singularities.

1. What is a Reasonable Space-Time?

One would like to find acceptable physical grounds for excluding many of the
"pathological" spacetimes that can be constructed as counter-examples to seeming-
ly plausible conjectures. For instance, it might be thought that gravitational
collapse would inevitably lead to a curvature or intermediate singularity [1];
it would, however, be mathematically possible for space-time simply to come to
an end before any predicted singularity formed. To prevent this, I shall propose
two physical conditions that space-time should satisfy. One (maximality) asserts
that space-time does not arbitrarily stop; the other (hole-freeness) asserts that
predictions, and perhaps retrodictions, made on the basis of formally adequate
Cauchy data are not falsified by the spontaneous appearance of uncaused
singularities.

A further condition, rather weaker than the Hausdorίf conditions, requires
that a non-quantum space-time (excluding the Wheeler-Everett picture) does not
undergo arbitrary branching. This leads to the concept of a Hajicek space-time
[2,3].

In what follows "smooth" denotes some fixed sufficiently strong differentiability
condition on the metric. "Singularity" is used in the sense of Schmidt [7].

Definition 1. A Hajicek space-time (or simply: a space-time) is a pair (M,g);
where M is a connected C00 A-manifold, not necessarily Hausdorff g is a smooth
pseudo-Riemannian metric on M of signature (—h -f +), and M has the Hajicek
property: there exists no pair of curves C;:(0,1]->M (7=1,2) for which cί\(0,g) =
c2\{0,g) but cΐ{g)ή=c2{g) for some ge(0,1].
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Scholium. Such a pair {cj constitute what Hajicek [2] calls "a bifurcate curve":
that is, a curve which branches, not by splitting within an ordinary Hausdorff
manifold [when cί(g) = c2(g)']9 but by participating in a branching of the whole
space-time. If the q were past-directed timelike curves they would correspond to
a pair of observes who persued a common path cf|(0, g) on a future segment of
their world-lines, but who might totally disagree on what the universe had been
doing when they compared notes about their past segments ct\[g, 1]. In a Hajicek
space-time the universe is allowed to branch providing it does not thereby bifurcate
any curves. As is well known (Lemma 1 and Theorem 2), this imposes a strong
control on any branching.

Definition 2. A space-time is maximal if it is not isometric to a proper subspace
of any other space-time.

Scholium. The class of maximal space-times excludes all those which are obtained
by "cutting out" a closed set.

Definition 3. A space-time is hole-free1 if for any spacelike submanifold S (without
boundary), the domain of dependence2 D(S) has the property that there is no isometry
φ:D(S)-+N into another space-time for which D(φ(S)) + φ{D(S)).

Scholium. This excludes examples such as the following. Let M be the universal
covering space of Minkowski space with the 2-plane {t = 0,x = 0} removed. This
is maximal but not hole-free, since D({t = — 1}) (on any sheet of M) is "punctured"
by the singularity at t = x = 0 and its image under the natural map φ into
Minkowski space is properly contained in D(φ({t= — 1})), which is the whole
space. By using D, rather than D + , the definition is made symmetric between
retrodiction and prediction. This avoids the problem of having to determine
what the appropriate "arrow of time" is either for M or for each S separately;
but it has the possible drawback that examples such as the space-time in [6],
where the singularity leaves no trace behind it, are not hole-free.

Theorem 1. Any space-time has a maximal extension.

This theorem is false for a non-Hausdorff space-time without the Hajicek
condition, since there is then no limit to the extent to which additional branches
can be grafted onto the space-time. We have, however the following:

Lemma 1. A Hajicek space-time is second-count able.

Proof of Lemma. As with the corresponding theorem for Hausdorff space-times,
we can proceed via the bundle L(M) of all frames on M (either pseudo-orthonormal
or linear), showing first that L(M) is Hausdorff (compare [3]).

1. There are no bifurcate curves in L(M). For let {cl5 c2} (cf:(0,1]->L(M)) be
a pair with c1\(09g) = c2\(09g). Then πoc1\(09g) = π°c2\(0,g) [where π:L(M)-+M
is the canonical projection] and so, by the Hajicek property on M, πc1(g) =
nc2(g) = x, say. Since both of π°cf (z = l,2) are continuous, for any coordinate
neighbourhood U of x there will be numbers hί9 h2 with π °cί|(/z/, g~\ mapping
into U. So ci\(hi9g'] maps into π~1U, which is Hausdorff. Hence c1(g) = c2(g).

1 I am indebted to J. Earman and N. Woodhouse for this definition (private communications)
2 The definition of D(S) is as in [5], p. 201, except that I do not require S to be closed
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2. L(M) has a (positive definite) Riemannian metric g [7]. Let p, qeL(M) and
choose convex normal neighbourhoods P, Q of each with respect to g. For any
choice of P, either there is a ^-geodesic in Q ending at q which intersects P at
points arbitrarily close to q, or else there is a least distance from q at which these
geodesies intersect P and so, shrinking Q within this distance, p and q are Haus-
dorff-separated. So suppose the first possibility occurs. Take P, P' to be balls of
radius ε, ε/2 respectively in some normal coordinate neighbourhood and let γ be a
geodesic to q intersecting P' arbitrarily close to q. Consider a point r on γ, distant
less than ε/4 from q along the geodesic, and lying in F. Either r = q, or, since the
intersection of the point set y with P is open in y, there is a positively-directed
segment of γ from r lying in P. This must terminate in P", the ball of radius 3ε/4,
since its length is less than ε/4; and, since curves - in particular, geodesies - cannot
bifurcate, it must have q as its endpoint in P"CP. Thus qeP9 for all ε. Hence
q = p. So L(M) is Hausdorff.

3. We can now implement a well-known proof ([7] p. 278) of second-
countability for Hausdorff space-times. L(M), as a Hausdorff connected Rieman-
nian manifold, is second-countable ([4], p. 271) and has a countable dense set.
This set projects to one in M whose second-countability then follows.

Proof of Theorem ί. We shall construct a maximal increasing chain of space-
times whose "union" is to be the required maximal space. The construction fails
in the general, non-Hajicek case because there are then "too many" space-times:
/ shall show that the class J f of Hajicek space-times can be realized as a set, and
is not only a class as in the general case. To represent Jf in concrete terms3 so as
to be able to apply set theory rigorously, note that any MeJf can, by Lemma 1,
be specified by giving (i) a countable atlas {(Ui,φi)\ί=l,2t...} where, for sim-
plicity, we may take the φf's to be onto 1R4; (ii) the transition functions ψίj=
Φiφj1 :IR4->1R4; (iii) the metric coefficients g^ in each U^ Then call J> the set

of all such specifications (ii) and (iii): that is, a member of J> is a space-time which
is concretely given as a countable collection of maps ψtj and coefficients gf\
satisfying the usual metric conditions and transformation properties.

Since any Me Jf is isometric to a concrete realisation in </, it is now sufficient
to prove maximality in J. The problem is that the only natural inclusion of the
elements of«/ as defined above depends on the numbering of the maps \pip and is
not purely geometrical: We therefore must put in the inclusion maps. (Geroch
[10] avoided this by taking the collection of all framed Hausdorff space-times,
with geometrical inclusions. But this begs the question of whether or not this
collection is a set or a proper class.)

We circumvent the difficulty by defining a nest to be a collection {Mα, χα/?|α,j8e/;
a<β} where I is a well-ordered index set, MaeJ and χaβ:Ma-+Mβ are isometries
satisfying χβyχaβ = χaγ (α</?<y). Nests on J are clearly partially ordered by

3 The basic difficulty stems from the fact that a space-time is usually defined in terms of its internal
properties and not in terms of a specific construction within set theory. Consequently the class of all
space-times with a given property contains a huge number of isometric realisations that differ only
in their incidental characteristics: An equivalence class of isometric space-times is then too big to be
a set, and one cannot talk about "the set of equivalence classes". Either one postulates that there
exists a set of spacetimes, within which one works (which begs the question); or, as here, one refers
to some concrete construction in terms of classes of numerical functions which can be shown to be sets
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inclusions and so we can apply the Kuratowski Lemma ([11], p. 33) to deduce
the existence of a maximal nest containing any MeJ>.

Now a maximal nest {Mα, χaβ} allows one to define the inductive limit M*
([12], p. 255; nests must be ordered inversely by inclusion to apply this definition
verbatim). The natural maps Ma-+M* clearly define a unique space-time structure
on M*, and it is immediate that M* is indeed a required maximal space-time.

It is false that any hole-free space-time has a maximal hole-free extension:
there may be "latent holes" that are revealed by extending. For example, the
metric

on the part of R4 where t<2r (r2 = x2 + y2 + z2) is not hole-free for

ΩJ1 {t<r)

\secπ(ί/r-l)/2 ( r^ ί<2r)
because the singularity at the origin arises with no prior warning. However, if
we take only the part of R4 where, in addition to £<2r, we have 1/2(0+ π ) 2 < r <
1/202, x = cosβ, y = sinθ with — oo <θ< oo, then the resulting space-time is hole-
free and has no hole-free maximal extension. There would seem to be no reason
why this space-time should not be modified to make it a solution of the vacuum
Einstein equations, so that nothing would be gained by modifying the definition
of "hole-free" to make the domain of dependence a solution to the corresponding
Cauchy problem.

The power of the Hajicek condition is shown by the following:

Theorem 2. A strongly causal space-time is Hausdorff. This is a slight strengthening
of the result of [2], and so we provide a new proof.

Proof. Suppose p,qeM are not Hausdorff separated, i.e. any pair of neighbour-
hoods of p, q intersect. As in the proof of Lemma 1, for any neighbourhood P
of p, there is at least one geodesic y to q which intersects P infinitely often, and
which therefore has an accumulation point p'eP. If γ is a horizontal lift of y to
the bundle L(M) of pseudo-orthonormal frames, then, since this bundle is Haus-
dorff, y has no accumulation point in π " 1 ^ ' ) ' i e. there is a sequence {xj of points
on y such that π(x^p' but {xj has no limit point in π~1(p).

We can now obtain a contradiction to strong causality by showing the existence
of a timelike curve y' with properties similar to y; this / is chosen so as to stay
"near" γ, both as seen from p1 and as seen from q. The viewpoint of p' is investigated
by examining the behaviour of the frame-curve γ as it goes repeatedly past π~ V

In a coordinate neighbourhood of p' define a local cross-section σ of L(M),
so that x—lpπXi for a sequence of Lorentz transformations Zf. Write lί = rίb/ί,
where ru r eSO(3), b{ is a boost along the x-axis with velocity v{ and, by choice
of a subsequence of the xb rt-+r, r\-^r' and i;f->oo. Let (e^R4 be the null vector
(1,1,0,0) for which HC^Hoo.

Let Xt be the tangent vector to γ at πxt and write Xt = ξμeiμ = ξ^l^πx^, where
(eί0,eiUei2,ei3) = xi and μ is a tetrad-component index. Since γ traverses any
neighbourhood of p' infinitely often in finite proper time we must have ||£y->oo,
i.e. IKfr^H
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Now, either (i) (ξr)0 = (ξr)ί=Q, or else (ii) the geodesies from πxt with initial
tangent vector ±{ξr^1)μeiμ (for an appropriate choice of sign) intersect the null
cone through q in a sequence of points which tend to p'. In case (ii) we may, without
loss of generality, assume that the " — " sign holds and that the geodesies intersect
the past null cone. By construction the σ-components of their tangent vectors are
bounded. Hence we can find a sequence of points on these geodesies which form
a timelike chain tending to q and lying in a neighbourhood of p'\ joining these
gives the required timelike curve. On the other hand, in case (i) this sequence of
geodesies allows one to construct a rectifiable space-like curve, which can then
be treated in the same way as γ: it will automatically yield case (ii), and a timelike
curve to q is again obtained. •

2. The Existence of Curvature Singularities

In the preceding section the proofs assumed that g was at least C3~, so that
geodesies could be defined in L(M) in the usual way. In fact this is unnecessary,
since rectifiable curves could easily have been used instead of geodesies, and only
some reasonably well-behaved measure of distance on such curves was needed.
Indeed, the results still hold if the differentiability is lowered to the condition used
in [1], where the metric is Lipshitz and the Riemann tensor locally bounded and
locally integrable. We can restate the result obtained there in terms of maximality
as follows.

Theorem 3. In a globally hyperbolic space-time which is maximal (with the dif-
ferentiability just stated) and nowhere D-specialised, every singularity that is
accessible on a timelike or null curve is a curvature or intermediate singularity.

Proof This is simply the theorem of [1] with the inclusion of null curves - an
addition that is desirable in view of the prediction of incomplete null curves in
globally hyperbolic space-times by Hawking in Theorem 1 of [5], § 8.2.

Suppose, then, that κ\ [0,1)->M is a null curve leading to a singularity p, with
horizontal lift k in L(M). We may suppose K to be a geodesic, since otherwise
it is a straightforward manipulation to deform it to a timelike curve. Define a one-
parameter family of geodesies by λ(s, t) = exp(k(t)( — s, 0,0,0)). Then, unless there
is a curvature singularity, the curve λ(a(ί — t% t) is defined and timelike for small
enough a>0 and t sufficiently close to 1, and leads to p. The argument is very
similar to that employed in Lemma 3 of [1]: if λ(ί — tl9 ίx) were not defined, one
could construct a set of causal curves between λ(a, 0) and λ(0, t') for t'>tu having
non-compact closure and so violating global hyperbolicity. On the other hand,
if λ(a(ί — t), t) failed to be timelike for t arbitrarily close to 1 then Proposition 1
of [1] could be used to construct a curve in the image of λ which led to p, but on
which the components of the Riemann tensor became unbounded.

Having constructed a timelike curve, the result follows from [1]. •

If one has a situation of inhomogeneous gravitational collapse, where sin-
gularities may, in a sense, form earlier in some places than in others, then global
hyperbolicity is very unlikely. Without this condition locally extensible (non-
curvature) singularities may be present, as exemplified by the covering space of
Minkowski space with a 2-plane removed: if the plane is space-like there is a
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"hole" (see the Scholium to Definition 3) while if it is timelike there is a primordial
singularity. Theorem 4 below shows that these are the only possibilities.

Let M* denote the set of all submanifolds of M of the form I~(y) where y is a
timelike curve having a generalised affϊne parameter [5] that is bounded to the
future. M* is a subspace of the Geroch-Kronheimer-Penrose space M [8] and so
inherits a natural causal structure with a past-relationship J~ :Ae J~(B)oAcB.
Write this as A^B, and define A<BoA<^B but Aή=B.

Note that any point q in M can be identified with the set qo = I~(q)eM*; also
any point p in the b-boundary M which is accessible along a future timelike
curve y can be mapped onto the point po = I~(y). Thus we have a map x->x0 from
a subset ofM = M u M onto M* which is injective on M, so that we can identify M
with its image M o in M*.

Definition 4. ̂ 4n ίnextensible causal curve in M* is a non-empty set SCM* suc/z ί/zαί
(i) /or any p, qeS either p — q or p<q or q<p;

(ii) for any p, qeS with p<q there is anreS such that p<r<q;
(iii) S is maximal with respect to (i) and (ii).

Lemma 2. If M is a strongly causal space-time and S is a causal curve in M*, then S
with the order topology is homeomorphic to an interval of IR.
Proof. For simplicity let us denote by S' the set S without its greatest and least
members, if it has any. M has a countable dense set D; the subset D' = {xeD\peS\
xep} is mapped into S'by setting φ(x) = \j{peS\xφp}cM. Clearly T = φ(D')
is a countable dense subset of S', and hence ([9], p. 51) it is order-isomorphic to
the rationals in (0,1) by a map ψ: T-+Q. It remains only to extend ψ to an order-
isomorphism with (0,1) by defining xp(x) = sup {ψ(t)\te T, t^x}. Then ψ is certainly
order-preserving and bijective; and it is surjective since for re(0,1) the set
u{ίe T\ψ(t)^r} is easily seen to be an IP, and so it follows from (iii) that it is in S'.
Finally, the greatest and least elements of S, if any, can be added, corresponding
to 1 and 0, respectively. •

Definition 5. A primordial singularity is a point peM such that
(i) p is the future endpoint of a timelike or null curve y;

(ii) there is an inextensible causal curve S with po = I~(y)eS
(iii) {qeS\qSPo}CM*\Mo.

For this definition to correspond to the intuitive picture M must be strongly
causal.
Theorem 4. // M is a strongly causal hole-free space-time that is nowhere
D-specialised and p is a singularity in M accessible on a future-directed causal
curve γ, then either p is a primordial singularity, or M contains a curvature or
intermediate singularity.

Proof. Suppose that M contains no curvature singularities. Let S1 be a maximal
chain in M*\M, simply ordered by <, containing po = I~(γ). We show that Sx

can be extended to an inextensible causal curve.
1. Let q\ p' be two points in Sί with q' <p\ p' = /"(/) where / is an inextensible

future-incomplete curve. The sets Cx = I~({y\yeI~(x)r\γ}) for xey' form a
nested sequence with qf properly contained in (J Cx. So for some xθ9 q' is

xey'

properly contained in CXo. Let γ0 be the part of γ' to the future of x0.
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2. Suppose that for some xey0, V = I~(Y)nI+(x) is globally hyperbolic. Then
from the analysis of [1] we know that V is covered by the future timelike geodesies
from x (provided that x is chosen near enough to p\ and that V has an extension
in some other space-time M in which these geodesies continue without inter-
secting. Thus they define by their endpoints a natural map θ from V\ the closure
of V in M', onto V, the closure of V in M. Either (i) some of these geodesies have
end-points in M on V, or else (ii) by the argument of Lemma 5 of [1] θ is 1 — 1
and onto and maps into M except for the point p. But this case (ii) implies that M
is not hole-free, if we consider a partial cauchy surface which makes a compact
intersection with V.

3. Suppose, on the other hand, that V is not globally hyperbolic, for any x.
Then, arbitrarily close to p\ there will be pairs of points u, v with uel~(v)nγr;
vel~(yf) such that the set I+(u)nI~(v) is not compact. We can find a non-conver-
gent sequence {xj in this set and, if p is not a curvature singularity, Proposition 1
of [1] allows us to conclude that, for u near enough to p9 there are geodesies
joining u to xf whose initial directions converge to an incomplete geodesic.

4. Thus by either 2 or 3 we find an incomplete geodesic in I+(x0)nI~(yf) which
corresponds to some reM*\M with q'<r<p'. Thus since S1 is maximal either
reS 1 ? or there is an r'eS1 such that r<^rf and r'<j:r. But then q'<r'<p', so in any
case there is a point between qf and p'. And, by the same argument, for any p'eS1

there is an r'eSί with r' <pf.
5. Let S be a maximal extension of Sί as a causal curve in M*. Then Sx is

closed in S, since any peS\S1 is a PIP and so must have a neighbourhood of
PIFs [8]. Moreover by 4 above Sx is order-dense and has no least member.
Thus Sι has the form Sί = {teS\t^u} for some ueS, and the result follows. •
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