Progress of Theoretical Physics, Vol. 99, No. 5, May 1998

Space-Time Structures from IIB Matrix Model

Hajime Aoki, ${ }^{*, *)}$ Satoshi Iso,*,**) Hikaru Kawai,*,***)

 Yoshihisa KITAZAWA ${ }^{* *, * * * *)}$ and Tsukasa TADA ${ }^{*, * * * * *) ~}$* High Energy Accelerator Research Organization (KEK)
** Department of Physics, Tokyo Institute of Technology Oh-okayama, Tokyo 152, Japan

 dimensionality and gauge groups from the IIB matrix model.

§1. Introduction

A large N reduced model has been proposed as a nonperturbative formulation
of type IIB superstring theory. ${ }^{1), 2)}$ It is defined by the following action:

$$
(1 \cdot 1)
$$

 aspects of superstring theory. In fact we can in principle predict the dimensionality of space-time, the gauge group, and the matter contents by solving this model. In this paper we report the results of the first such efforts toward this goal. This action can be related to the Green-Schwarz action of superstring the semiclassical correspondence in the large N limit,
${ }^{*}$) e-mail address : haoki@theory.kek.jp, JSPS research fellow.
${ }^{* * *)}$ e-mail address : iso@theory.kek.jp
${ }_{* * * * *)}^{* * * *)}$ e-mail address : kitazawa@th.phys.titech.ac.jp

714 H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada
In fact Eq. (1-1) reduces to the Green-Schwarz action in the Schild gauge: ${ }^{5)}$

The bosonic part of the action vanishes for commuting matrices $A_{\mu}^{i j}=x_{\mu}^{i} \delta^{i j}$,
where i and j are color indices. These are the generic classical vacuum configurations. Namely, the distributions of the eigenvalues determine the extent and the dimensionality of space-time. Hence, the structure of space-time is dynamically determined by
 single eigenvalue can escape from the rest. We may consider $n \times n$ submatrices of our

 a D-string (or D-objects) which occupies a certain region of space-time.

Then, the effective action which describes the $n \times n$ submatrices can be obtained by integrating the rest of the degrees of freedom. It has been shown that a term
 model. ${ }^{1)}$ In fact we will show in this paper that this is indeed the case. The effective action may include all possible terms which are consistent with the symmetry. The term proportional to β is the lowest dimensional term which is consistent with the

 D-objects. ${ }^{6}$ However, we emphasize that we regard the action (1•1) as fundamental, and it should be distinguished from the effective action for N D-instantons.

of D-objects are in accord with string theory. Thus it must be clear that the IIB

 effective theory of a fixed number of D-objects.

It has also been proposed that the Wilson loops are the creation and annihilation operators for strings. We consider the following regularized Wilson loops: ${ }^{2)}$

$w(C)=\operatorname{Tr}[v(C)]$,

$v(C)=\prod_{n=1}^{M}$

 string perturbation theory can be reproduced in the double scaling limit.

It is possible to see the infrared finiteness of the theory in a more direct way. We may expand the fields around the vacuum configurations $A_{\mu}^{i j}=x_{\mu}^{i} \delta^{\imath j}$. While the

 denotes the color indices.

Tada Kitazawa and T. ' λ
 Kawai,
 H.
 Iso,
 か
 H.

both short distance and long distance divergences.

The effective action provides us a useful tool to study the structures of spacetime. In $\S 3$, we study it to determine the distributions of space-time coordinates.
 beginning to determine the structure of space-time dynamically. The readily recognizable structure which emerges from our investigation is in fact a four dimensional object, albeit a fractal. We find that space-time points form branched polymers in ten dimensions within the simplest approximation. Obviously, we need some mechanism to flatten this into four dimensions to describe our space-time. Although our investigation to find such a mechanism in the IIB matrix model is still in progress, we explicitly propose possible mechanisms.
We remark that models related to ours have been proposed and studied in Refs 8) ~ 21). We also note a deep connection between our approach and the noncommutative geometry. ${ }^{22)}$ This paper consists of four sections. In the first introductory
 long distance effective action for the zeromodes (super coordinates). In $\S 3$, we study the effective action to understand the possible structure of space-time. Section 4 is

§2. Effective theory for diagonal elements

In this section, we discuss an effective theory for the diagonal elements of the
 huge moduli, and the diagonal elements of A_{μ} may assume any values. However, this
 the theory, as we show in this section. Let us consider the expansion around the most generic classical moduli, where the gauge group $S U(N)$ is completely broken down to $U(1)^{N-1}$. Then the diagonal elements of A_{μ} and ψ appear as the zeromodes, while the off-diagonal elements become massive. So we may integrate out the massive modes first and obtain the effective action for the diagonal elements.
We thus decompose A_{μ} into a diagonal part X_{μ} and an off-diagonal part \tilde{A}_{μ}. We also decompose ψ into ξ and $\tilde{\psi}$:

Space-Time Structures from IIB Matrix Model 717

 integrating out ξ :

$$
\int d A d \psi e^{-S[A, \psi]}=\int d X d \xi e^{-S_{\mathrm{eff}}[X, \xi]}
$$

where $d X$ and $d \xi$ represent $\prod_{i=1}^{N-1} \prod_{\mu=0}^{9} d x_{\mu}^{i}$ and $\prod_{i=1}^{N-1} \prod_{\alpha=1}^{16} d \xi_{\alpha}^{i}$, respectively.
 turbative expansion in g^{2}. As we see below, this expansion is valid when all of the
 have propagators, we treat them as collective coordinates.
The original action (1-1) can be expanded as

$$
\begin{aligned}
& S=S_{2}+S_{\mathrm{int}}, \\
& (8 \cdot 7)
\end{aligned}
$$

$(G \cdot G)$
 the gauge fixing, we adopt the following covariant gauge:*)

 A_{+}is diagonalized.

 approximation is valid in these regions.
A novel feature of the above Feynman rules compared with those of the gauge
 the one-loop level:

[^0]
difference between the IIB matrix model and super Yang-Mills theory is the presence

 integration gives rise to the following quadratic term of \tilde{A}_{μ} :
$$
\frac{1}{g^{2}} \sum_{i<j}\left(\bar{\xi}^{i}-\bar{\xi}^{j}\right) \Gamma^{\mu \alpha \nu}\left(\xi^{i}-\xi^{j}\right) \frac{\left(x_{\alpha}^{i}-x_{\alpha}^{j}\right)}{\left(x^{i}-x^{j}\right)^{2}} \tilde{A}_{\mu}^{j i} \tilde{A}_{\nu}^{i j}
$$
where $\Gamma^{\mu \alpha \nu}=\frac{1}{3!} \Gamma^{[\mu} \Gamma^{\alpha} \Gamma^{\nu]}$. Here the indices within the bracket [] are totally antisymmetrized. In this way we obtain the following one-loop effective action for the zeromodes:
where

$\int d \tilde{A} d \tilde{\psi} d b d c e^{-\left(S_{2}+S_{\mathrm{gf}}+S_{\mathrm{FP}}\right)}=\prod \operatorname{det}_{\mu \nu}\left(\eta^{\mu \nu}+S_{(i j)}^{\mu \nu}\right)^{-1}$

$1<j$

$$
{ }^{‘}\left[\zeta^{‘} X\right]_{\text {dool- }}{ }_{-1}^{\text {Ha }} S^{-}{ }^{a} \equiv
$$

The effective action can be expanded as

$(2 \cdot 19)$
We remark that Eq. $(2 \cdot 19)$ is gauge independent. This is because the longitudinal part of the bosonic propagator which is sensitive to the gauge parameter yields no contribution, since

720
H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada
explained in this subsection is also applicable to these cases, and we find
$S_{\text {eff }}^{1-\text { loop }}[X, \xi]= \begin{cases}0 & \text { for } D=3 \\ -\sum_{i<j} \operatorname{tr}\left(\frac{S_{(i j)}^{2}}{2}\right) & \text { for } D=4 \\ -\sum_{i<j} \operatorname{tr}\left(\frac{S_{(i j)}^{2}}{2}+\frac{S_{(i j)}^{4}}{4}\right) & \text { for } D=6\end{cases}$
Before we proceed to perform ξ integration and to obtain the effective action for X, we discuss $\mathcal{N}=2$ supersymmetry of the effective action in the next subsection.
$\mathcal{N}=2$ supersymmetry: we show that the effective action (2-19) has the following

$$
(z \tau \cdot z)
$$

These symmetries are the remnants of the symmetry in the original theory: $\begin{cases}\delta^{(1)} A_{\mu} & =i \bar{\epsilon}_{1} \Gamma_{\mu} \psi \\ \delta^{(1)} \psi & =\frac{i}{2} \Gamma^{\mu \nu}\left[A^{\mu}, A^{\nu}\right] \epsilon_{1}\end{cases}$
$\begin{cases}\delta^{(2)} A_{\mu} & =0 \\ \delta^{(2)} \psi & =\epsilon_{2}\end{cases}$

 action is invariant under these transformations at each order of \hbar. Thus $S_{2}(2 \cdot 4)$ is invariant under the transformations which are linear in $\tilde{A_{\mu}}$ and $\tilde{\psi}$,

$$
\left\{\begin{array}{l}
\delta^{(1)} x_{\mu}^{i}=i \bar{\epsilon}_{1} \Gamma_{\mu} \xi^{i} \\
\delta^{(1)} \tilde{A}_{\mu}^{i j}=i \bar{\epsilon}_{1} \Gamma_{\mu} \tilde{\psi}^{i j} \\
\delta^{(1)} \xi^{i}=0 \\
\delta^{(1)} \tilde{\psi}^{i j}=i\left(x^{i}-x^{j}\right)_{\mu} \tilde{A}_{\nu}^{i j} \Gamma^{\mu \nu} \epsilon_{1}
\end{array}, \quad, \quad\left\{\begin{array}{l}
\delta^{(2)} x_{\mu}^{i}=0 \\
\delta^{(2)} \tilde{A}_{\mu}^{i j}=0 \\
\delta^{(2)} \xi^{i}=\epsilon_{2} \\
\delta^{(2)} \tilde{\psi}^{i j}=0
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \begin{cases}\delta^{(1)} x_{\mu}^{i} & =i \bar{\epsilon}_{1} \Gamma_{\mu} \xi^{i} \\
\delta^{(1)} \xi^{i} & =0\end{cases} \\
& \left\{\delta^{(2)} x_{\mu}^{i}=0\right.
\end{aligned}
$$ $\mathcal{N}=2$ supersymmetry:

$$
\text { 2.2. } \mathcal{N}=2 S U S Y
$$

$\mathcal{N}=2$ supersymmetry:	$\left\{\begin{array}{ll}\delta^{(1)} x_{\mu}^{i}=i \overline{\epsilon_{1}} \Gamma_{\mu} \xi^{i} \\ \delta^{(1)} \xi^{i}=0\end{array}\right.$,
	$\begin{cases}\delta^{(2)} x_{\mu}^{i}=0 \\ \delta^{(2)} \xi^{i} & =\epsilon_{2}\end{cases}$

 $\{$
After integration over \tilde{A} and $\tilde{\psi}$, the remaining effective action (2-19) shall have the symmetries (2.22) and (2.23).
One can also show the invariance of (2.19) under the transformations (2.22)
and (2.23) through explicit calculations. Since $S_{(i j)}^{\mu \nu}$ contains ξ^{i} only through the combination $\xi^{i}-\xi^{j}$, one can see that invariance under (2.23) is satisfied rather trivially. As for (2-22), it introduces an additional ξ^{i}. The quantity $\operatorname{tr}\left(S_{(i j)}\right)^{8}$ is
invariant under (2.22), since it already contains 16ξ. Some calculations are required to exhibit the invariance of the term $\operatorname{tr}\left(S_{(i j)}\right)^{4}$:

$$
\operatorname{tr} \delta^{(1)} S_{(i j)} S_{(i j)}^{3}=i \frac{1}{\left(x^{4}\right)^{4}} x_{\lambda} x_{\rho} x_{\sigma} U_{\alpha}^{\alpha \lambda \rho \sigma}-4 i \frac{1}{\left(x^{4}\right)^{4}} \frac{1}{x^{2}} x_{\mu} x_{\nu} x_{\lambda} x_{\rho} x_{\sigma} U^{\mu \nu \lambda \rho \sigma},
$$

where $U^{\mu \nu \lambda \rho \sigma}=\left(\overline{\epsilon_{1}} \Gamma^{\mu} \xi\right)\left(\bar{\xi} \Gamma_{\alpha}^{\nu \beta} \xi\right)\left(\xi \Gamma_{\beta}{ }^{\lambda \gamma} \xi\right)\left(\xi \Gamma_{\gamma}{ }^{\rho \delta} \xi\right)\left(\bar{\xi} \Gamma_{\delta}{ }^{\sigma \alpha} \xi\right)$ is a tensor which is to-

 decompose $U^{\mu \nu \lambda \rho \sigma}$ into irreducible components as
$U_{\text {sym traceless }}^{\mu \nu \lambda \sigma}=$ symmetrization of $U^{\mu \nu \lambda \rho \sigma}-\frac{1}{40}\left(g^{\mu \nu} U_{\alpha}^{\alpha \lambda \rho \sigma}+9\right.$ terms $) . \quad(2 \cdot 28)$
 $\times S O(8)$ where $\xi=\left(s_{a}, c_{\dot{a}}\right), \epsilon=\left(b_{a}, t_{\dot{a}}\right)$. It is then sufficient to demonstrate that
 of $\operatorname{tr}\left(S_{(i j)}\right)^{4}$:

(2.29)

This completes the proof of the invariance of (2-19) under (2-22) and (2.23).

2.3. Dynamics of X at long distances

In this subsection, we study the integration procedure of ξ to obtain an effective
theory for the space-time coordinates X :

$$
(2 \cdot 30)
$$

 between the bosonic and fermionic degrees of freedom, it does not vanish at order
 perturbative evaluation of $S_{\text {eff }}[X]$ to all orders, we prove the finiteness of the X integration in Eq. (2.30) for finite N
2.3.1. One-loop evaluation of $S_{\text {eff }}[X]$
We substitute the one-loop effective action $S_{\text {eff }}^{1-\mathrm{loop}}[X, \xi]$ of Eq. (2-19) into Eq. $(2 \cdot 30)$ and consider the type of terms that survive after ξ integrations:

$\int\left(\frac{8}{\binom{\left(\frac{72}{8}\right)}{8 S} \cdot x_{7}}\right.$

 (LE. $\overline{\text {) }}$ Here the products are taken over all possible different pairs of color indices (ij). When we expand the multi-products, we select one of the three different factors, 1 ,$\operatorname{tr}\left(S_{(i j)}^{4}\right) / 4$ or $\left(\operatorname{tr}\left(S_{(i j)}^{8}\right) / 8+\left(\operatorname{tr}\left(S_{(i j)}^{4}\right)\right)^{2} / 32\right)$ for each pair of $(i j)$. Since the last two factors are functions of $\left(x_{\mu}^{i}-x_{\mu}^{j}\right)$, they can be visualized by bonds that connect the "space-time points" x_{μ}^{i} and x_{μ}^{j}. More precisely, in order to remind us that the factors
 $\xi_{\alpha}^{i}-\xi_{\alpha}^{j}$, we draw 8 or 16 bonds between x_{μ}^{i} and x_{μ}^{j}, depending on whether we take
 component of a spinor $\xi_{\alpha}^{i}-\xi_{\alpha}^{j}$. We call these sets of 8 and 16 bonds " 8 -fold bond" and " 16 -fold bond", respectively. In this way we can associate each term in the expansion of multi-products in Eq. (2.31) with a graph connecting the space-time points by 8 -fold bonds or 16 -fold bonds. We do not assign any bond to the factor 1 . Therefore the multi-products in Eq. (2.31) can be replaced by a summation over all possible graphs.

H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada

Let us consider the spinor ξ_{α}^{i}, component by component, in order to discuss what kind of graphs survive after ξ integrations. Out of the 16 spinor components of ξ_{α}^{i},

rewrite Eq. (2.31) as

$\int d X \int \prod_{i=1}^{N-1} d \xi_{2}^{i} \cdots d \xi_{16}^{i} \prod_{i=1}^{N-1} d \xi_{1}^{i} \prod_{i<j}\left(C_{0}+C_{1} \cdot\left(\xi_{1}^{i}-\xi_{1}^{j}\right)\right)$

 are called "maximal trees".
i) Since ξ_{1}^{i} has $N-1$ independent color components, the subgraphs having $N-1$ bonds remain after ξ_{1}^{i} integration.
ii) If there is a loop in the subgraph, the contribution vanishes, since a product of delta functions of grassmann variables on the loop vanishes:

We also note that all maximal trees contribute equally as we can demonstrate by performing ξ_{1}^{i} integrations from the end points of the maximal trees.

 effective action:

Π W

of G
\sim \qquad

管 $\xrightarrow{\left.\frac{3}{3} \right\rvert\,}$ $\int d X d \xi e^{-S_{\mathrm{eff}}^{1-\mathrm{loop}}[x, \xi]}=$
Space-Time Structures from IIB Matrix Model 723
Here we sum over all possible graphs consisting of 8 -fold and 16 -fold bonds which can be expressed as superpositions of 16 maximal trees. For each bond ($i j$) of G, we assign the first or the second factor, depending on whether it is an 8 -fold or 16 -fold bond.
Since each 16 -fold bond contains 16 spinors, $\left(\xi^{i}-\xi^{j}\right)$ and $\left(x^{i}-x^{j}\right)$ must form
Lorentz singlets by themselves:

In an 8 -fold bond, however, $\left(\xi^{i}-\xi^{j}\right)$ and $\left(x^{i}-x^{j}\right)$ couple as
$\operatorname{tr}\left(S_{(i j)}^{4}\right)=T^{\mu \nu \lambda \rho}\left(x^{i}-x^{j}\right)_{\mu}\left(x^{i}-x^{j}\right)_{\nu}\left(x^{i}-x^{j}\right)_{\lambda}\left(x^{i}-x^{j}\right)_{\rho} /\left(x^{i}-x^{j}\right)^{16} . \quad(2 \cdot 36)$
Here
is a totally symmetric traceless tensor, as shown in Appendix A.

$$
\times\left[\left(\overline{\xi^{i}}-\bar{\xi}^{j}\right) \Gamma_{\delta}^{\lambda \gamma}\left(\xi^{i}-\xi^{j}\right)\right]\left[\left(\bar{\xi}^{i}-\bar{\xi}^{j}\right) \Gamma_{\alpha}^{\rho \delta}\left(\xi^{i}-\xi^{j}\right)\right]
$$

If there were only 16 -fold bonds, considerable simplifications take place, since the

 model in Eq. (2.21) as a simple model which shares such a property. The effective action of the four dimensional model can be represented as

where we sum over all graphs whose bonds form maximal trees. Since ξ has four spinor components in four dimensions, we have
$\operatorname{tr}\left(S_{(i j)}^{2}\right) \sim \delta^{(4)}\left(\xi^{i}-\xi^{j}\right) \frac{1}{\left(x^{i}-x^{j}\right)^{6}}$

$(2 \cdot 39)$

Therefore, in the four-dimensional model, the distribution of X becomes of a "branched
polymer" type:

$$
\frac{1}{\left(x^{i}-x^{j}\right)^{6}}
$$

to be divergent for short distances, this is due to the failure of the one-loop approximation, since the theory itself is manifestly finite at short distances. We consider the short distance behavior of the theory in subsection 2.4. As we see in Appendix C, the dynamics of branched polymers are well-known, and its Hausdorff dimension is four.

 discussion, the IIB matrix model is much more complicated. Nevertheless, we expect that the structure of space-time is also determined dynamically in the IIB matrix model.

> 2.3.2. Infrared convergence
In what follows we show that the X integral is convergent in the infrared region for finite N to all orders of perturbation theory:

$\int d X e^{-S_{\text {eff }}[X]}<\infty$.

(infrared)

$(L T \cdot Z)$

 convergent.
 multiple integral is absolutely convergent when the superficial degrees of divergences
 apply the identical linear transformations T to the variables X and ξ as

up to η^{m}. Thus we can conclude that

$$
\left|e^{-S_{\text {eff }}[y]}\right|<\frac{1}{\prod_{i=1}^{m} \prod_{\alpha=1}^{16} P_{\alpha}^{i}},
$$

where the P_{α}^{i} are homogeneous functions of degree $3 / 2$ of $y^{1} \cdots y^{m}$. Hence the super-
ficial degree of divergence is negative on this $10 m$-dimensional hyperplane. Therefore
the superficial degrees of divergences are negative on any hyperplanes in $\boldsymbol{R}^{10(N-1)}$.
This completes the proof that the theory is infrared finite for finite N to all orders.
Since the theory is manifestly finite at short distances, it also establishes that the
IIB matrix model is a finite theory for finite N.
Finally, we give concrete examples which illustrate the fact that the factor (x^{i}
$\left.-x^{j}\right)^{-3 / 2}$ can be associated with every $\xi^{i}-\xi^{j}$. At the one-loop level, the diagrams
are made of the bosonic propagators $(2 \cdot 8)$, the fermionic propagators $(2 \cdot 9)$ and the
ξ insertion vertex (2•10). The Feynman diagrams contain them consecutively along
the loop as depicted in the following figure:

Therefore we can diagrammatically understand that we can precisely assign the factor $\left(x^{i}-x^{j}\right)^{-3 / 2}$ to $\left(\xi^{i}-\xi^{j}\right)$ in the one-loop effective action.
Since the expansion parameter is g^{2} over the fourth power of the average dis-

 ial X dependences which make the infrared convergence even better after absorbing half of the powers of the bosonic and the fermionic propagators connected to every ξ. For example,

 tor is associated with the four gluon vertex at the center of this diagram and in-
 $=x_{\mu}^{i}-x_{\mu}^{j}$ and $\xi_{\alpha}^{i j}=\xi_{\alpha}^{i}-\xi_{\alpha}^{j}$.
2.4. Short distances
Until now we have considered the effective action for the diagonal elements which

the most generic moduli space in the super Yang-Mills theory, although precisely

 and from the center of mass coordinates of the pair.
We then decompose the $N \times N$ matrix valued variables into 2×2 submatrices
 $2 \times(N-2)$ matrices. Let us further decompose the 2×2 submatrices into the center

 massive, we can integrate them out as before. We write the remaining degrees of freedom as

The first term is the $S U(2)$ part of the original action. The second term is essentially identical to the $S U(N-1)$ case we have discussed in this section. The center of mass coordinates of the degenerate pair play the role of $(N-1)$-th coordinates. The only

 part and the diagonal elements of the $(N-2) \times(N-2)$ matrix. We neglect this since it is small compared to the first term in many cases, as is discussed in the concluding section.
We still need to consider the $S U(2)$ part to determine the dynamics of the relative coordinates of the pair of points. Here we can cite the exact solution for the $S U(2)$ case. As we show in Appendix B, the distribution for the relative coordinates

$$
\int d^{10} r f(r)
$$

Space-Time Structures from IIB Matrix Model 727
We conclude that there is a pairwise repulsive potential of $-8 \ln r$ type when two coordinates are close to each other. It is clear that these considerations are valid
 should be well separated. Although it is possible to repeat these considerations for
 choose to adopt a phenomenological approach and assume the existence of a hardcore repulsive potential of the form

where

$$
S_{\mathrm{core}}[X]=\sum_{i<j} g\left(x^{i}-x^{j}\right)
$$

 presumably captures the essential feature of the IIB matrix model, namely, the incompressibility. If so, our effective action may be in the same universality class as the full IIB matrix model.

§3. Possible scenarios of dynamical generation of space-time

 the semiclassical correspondence, as explained in the Introduction. Let us suppose

 conclude that the dimensionality of space-time is d.

 IIB matrix model uniquely. Our effective action provides us an exciting possibility to realize this.

contain several parameters which may not be easily determined. We therefore draw the phase diagrams of these models for all possible parameter regions and identify the structures of space-time in the respective phases.
The aim here is to show the existence of models which can realize four dimensional space-time. We then need to show that the IIB matrix model indeed belongs to the same universality class. Although these investigations are still in progress, we find
 We explicitly propose some of possible mechanisms to realize realistic space-time.
3.1. Models
We consider the following ensemble in ten dimensions which is controlled by the one-loop effective action (2-19) and the core potential (2.50):

$$
\int d X e^{-S_{\text {core }}} d \xi e^{-S_{\text {eff }}^{1-\text { loop }}[X, \xi]}
$$

$$
=\int d X e^{-S_{\text {core }}} d \xi \sum_{G: \text { :cranh }}
$$

$$
\left.\left(\frac{1}{2}\left(\frac{\operatorname{tr}\left(S_{(i j)}^{4}\right)}{4}\right)^{2}+\frac{\operatorname{tr}\left(S_{(i j)}^{8}\right)}{8}\right)\right]
$$

As explained in §2, we call the bond in association with $\operatorname{tr}\left(S_{(i j)}\right)^{4}$ and the bond with $\left(\operatorname{tr}\left(S_{(i j)}\right)^{4}\right)^{2} / 32+\operatorname{tr}\left(S_{(i j)}\right)^{8} / 8$ a 8 -fold bond and a 16 -fold bond, respectively. The
 16 components and is proportional to $\left(x^{i}-x^{j}\right)^{-24} \delta^{(16)}\left(\xi^{i}-\xi^{j}\right)$.
If only 16 -fold bonds appear in a graph, ξ integration can be easily performed.

 functions of distances only, that is, $\left(x^{i}-x^{j}\right)^{-24}$ for each bond. Thus we can estimate the partition function as

$$
\begin{array}{r}
1 \\
\frac{1}{\left.i-x^{j}\right)^{24}} \\
\quad(3 \cdot 2)
\end{array}
$$

$$
(\varepsilon \cdot \varepsilon)
$$

$$
V_{\mu \nu \lambda \rho}^{i j}=x_{\mu}^{i j} x_{\nu}^{i j} x_{\lambda}^{i j} x_{\rho}^{i j}-\frac{\left(x^{i j}\right)^{2}}{D+4}\left(x_{\mu}^{i j} x_{\nu}^{i j} \delta_{\lambda \rho}+x_{\mu}^{i j} x_{\lambda}^{i j} \delta_{\nu \rho}+\cdots\right)
$$

where $D=10$. Therefore, at each 8 -fold bond there are many choices to select 8

 eigenvalues of A_{μ} are distributed uniformly in ten dimensions.

 the 8 -fold bonds. Instead of considering the graphs consisting of 8 -fold and 16 fold bonds, we introduce two independent maximal trees, each of which maximally connects the N points with coordinate x_{μ}^{2}. When the two trees share a bond (ij),

 repulsive potentials as given by $S_{\text {core }}$ at short distances:

Tada
 -
 Kawai,
 H.
 8

3.2. Branched polymer phase and droplet phase
In this subsection we analyze the double tree model defined by Eq. (3.5). It
contains a parameter λ, and we consider two limiting situations. First we take λ
sufficiently large. Then most of the bonds on one tree are bound to bonds on the
other tree, and the system behaves as an ordinary branched polymer made of 16 -
fold bonds only. We call this state a branched polymer (BP) state. As reviewed in
Appendix C, its partition function is given by

$Z_{\mathrm{BP}}(N)=N!\left(\hat{f}_{1}(0) \alpha_{c}\right)^{N} \sim N!e^{-N F_{\mathrm{BP}}}$

$$
\hat{f}_{1}(0)=\int_{x_{\mathrm{c}}} d^{D} x \frac{1}{x^{24}}
$$

 u

 of eigenvalues.

On the other hand if we take λ small, the number of 8 -fold bonds increases,

 әцд sәұеsuəduоəıəло spuoq ploi-8 पכ! 4 јо зұиәшәяие

 expected to contribute to the partition function an amount

$$
z(n)=\left(n!\left(\frac{\alpha_{c}}{r^{12}}\right)^{n}\right)^{2}
$$

 squares of the eigenvalues, and dots indicate the ratio of 16 -fold bonds. For large values of λ, the system is in a BP phase. For small values of λ, it is in a droplet phase.
independent maximal trees. We can then roughly estimate the partition function of the double tree model in the droplet phase by

$$
Z_{\text {droplet }} \sim(z(n))^{N / n} \frac{N!}{(n!)^{N / n}}
$$

$\sim N!n^{2 N(1-12 / d)}\left(\alpha_{c}^{2} l^{d-24}\right)^{N} e^{-\lambda N_{8} / 2}$,
where N_{8} is the total number of the 8 -fold bonds. Since $d \leq 10, Z_{\text {droplet }}$ is maximized by a small value of n, which should be independent of N. Therefore $Z_{\text {droplet }}$ can be written as
(3.9)
 indicates that there is a phase transition or a cross-over between the two phases at

 эцд алец ұои ор

H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada
 B

 depend on N. We call this state a mean-field state. We can find a lower bound of the partition function by replacing the length of each bond with the size of the whole system:

$$
(3 \cdot 11)
$$

 increase λ as $\log N \rightarrow \infty$ in order to keep the state in the BP phase. Thus we find that any state falls into a mean-field phase if we do not have the core potential.
3.3. A mechanism favoring lower dimensions
 we may need to extend it in order to be more faithful to our effective action. As

 tition function is suppressed in higher dimensions. However, the entropy which is associated with possible orientations of bonds favors higher dimensions. Therefore

 partition function assuming that the system is in a droplet phase and show the possibility of this scenario.

Assuming that $x_{\mu}^{i j}$ lie isotropically in a dimensional subspace, we can estimate the orientation average of $V_{\mu \nu \lambda \rho}^{i j}$ as

$V_{\mu \nu \lambda \rho}^{i j} \sim\left(\frac{2\left(x^{i j}\right)^{4}}{d(d+4)}-\frac{\left(x^{i j}\right)^{4}}{(d+2)(d+4)}\right)\left(\hat{\delta}_{\mu \nu} \hat{\delta}_{\lambda \rho}+\hat{\delta}_{\mu \lambda} \hat{\delta}_{\nu \rho}+\cdots\right)$

Space-Time Structures from IIB Matrix Model 733

uo!suəu!p fo uo!

 the entropy per bond increases as d^{γ}, the partition function for a droplet can be expressed as of space-time.

$$
\begin{aligned}
& \text { We assume } \gamma=17 / 6 \text {. Free energy is mini- } \\
& \text { mized at four dimensions. }
\end{aligned}
$$

$$
\left.-\frac{1}{(d+2)(d+4)}+\frac{2}{d}\left(\frac{1}{d+4}-\frac{1}{D+4}\right)\right)
$$

3.4. Other mechanisms for understanding space-time structure
 2 shows F as a function of d. If this is the mechanism to generate our space-time,
 model is already fixed by nature and we do not have freedom to tune parameters.

One way is to approach from a BP phase in which we regard 8 -fold bonds in Eq. $(3 \cdot 1)$ as perturbations to BP consisting of 16 -fold bonds only. Since the
 might compress the system into four dimensions. If we neglect the effect of selfintersections and naively confine BP into d-dimensional space, the mean density becomes zero for $d>4$ and diverges for $d<4$ in the large N limit. Then for $d<4$,

the system behaves as a gas of 8 -fold bonds. Therefore, only at $d=4$ can we gain the entropy of an 8 -fold bond gas without too much excess energy due to the core potential. The mechanism discussed here is based on the picture of BP

 complementary, since the size of space-time predicted in each of these pictures is both $N^{1 / 4} l$.

Finally, we point out a possibility that four-dimensional space-time is realized in the intermediate region of Fig. 1 even for the naive double tree model, where dimensional dependence of λ is not taken into account. Here we consider the dimensional dependence of the ratio of 8 -fold bonds, r_{8}. In subsection 3.2 , we saw the transition between two limiting phases, namely a BP phase for large λ and a droplet phase for
small λ. For intermediate values of λ, the partition function can be expressed as

$$
Z(\lambda) \sim N!e^{-N(F(\lambda)+\lambda r 8)}
$$

where $F(\lambda=\infty)=F_{\mathrm{BP}}$ and $F(\lambda=-\infty)=F_{\text {droplet }}$. Obviously, the free energy

 simulations, however, showed that r_{8} is smaller in lower dimensions for fixed values of λ. This is consistent with the intuitive idea that each point has a smaller number

 than the ten dimensional phase for some value of λ.

§4. Conclusions and discussion

doот дәчธั!
 fourth power of the average distances between the points, long distance behavior

 әл!ұ!

 the loop expansion can be fully justified.
 gence properties in general, there are diagrams which possess infrared convergence

Space-Time Structures from IIB Matrix Model 735
their insertions into the propagators of the one-loop diagrams which contribute to the effective action. This is a part of the two-loop level contributions.

 $(l+1)$-loop contributions to l-loop contributions may be estimated by dimensional analysis as

where $\rho(x)=\sum_{k} \delta\left(x-x^{k}\right)$ is a single-particle distribution of the eigenvalues.
We first assume that x is distributed uniformly in a d dimensional manifold of
size R. From the correspondence with gauge theories, we can say that there is no
divergences from small x regions for $d>4$, and from large x regions for $d<4$. Thus,

$$
\int^{R} d^{d} x x^{-4}=\left\{\begin{array}{ll}R^{d-4} & d>4 \\ l^{d-4} & d<4\end{array},\right.
$$

where l is a typical size of a short distance cutoff. Therefore,

$$
R_{g^{2}}=\left\{\begin{array}{ll}\frac{g^{2} N}{R^{4}}=N\left(\frac{l}{R}\right)^{4} & d>4 \\ \frac{g^{2} N}{R^{d} l^{4-d}}=N\left(\frac{l}{R}\right)^{d} & d<4\end{array},\right.
$$

where we used the fact that the core size is $l \sim g^{1 / 2}$. Since $N \sim(R / l)^{d}$, we may conclude that the quantum corrections are divergent for $d>4$, but finite for $d<4$

 are finite.
We have found a divergence in the above argument for $d>4$. However, the situation is totally different if we assume that space-time is branched polymer like for

H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada

 $d>4$. We recall that $R \sim N^{1 / 4} l$ for such space-time, since its Hausdorff dimension is four. If so, the estimation of Eq. (4-1) is essentially the same as the four-dimensional
 N limit if the coupling g^{2} is kept fixed.

Next, let us consider higher order effects of the $1 / N$ expansion. It is clear
 compared with the planar contributions. However, they do contribute since they

 let us consider a three-loop correction to the gluon self-energy. Such a nonplanar contribution should have the form

$$
(4 \cdot 4)
$$

 tion variable x^{k} is reduced compared with that of the corresponding planar diagram. For dimensions up to four, the above expression may be evaluated as follows:

$$
g^{6} N \frac{\int d^{10} x \rho(x) \frac{1}{\left(x^{i}-x^{j}\right)^{6}} \frac{1}{\left(x^{i}-x\right)^{2}} \frac{1}{\left(x^{j}-x\right)^{4}}}{\int d^{10} x o(x)}
$$

 This means that all orders of the $1 / N$ expansion contribute equally. On the other hand, the nonplanar contributions diverge in general for $d>4$, although they are
 $\mathcal{K}_{\text {[ए! }}$
 may conclude that all orders of $1 / N$ expansion contribute in all dimensions.

Our findings may be interpreted to imply that $g_{\text {st }} \sim 1$ since we have argued that the string coupling constant is inversely proportional to $N .{ }^{2)}$ Apparently, the double
 here also imply that the string scale satisfies $\left(\alpha^{\prime}\right)^{2} \sim g^{2}$. This is in disagreement with
 reexamination of the loop equations should be able to reconcile this discrepancy.

 SSеן Кң!
737
as ours. Therefore we may argue that the IIB matrix model is universal, and our Lagrangian may correspond to the fixed-point Lagrangian.

In this paper, we have derived an effective action for the IIB matrix model which
 in terms of the super coordinates of space-time. It has clearly been shown that the theory has no infrared divergences, and the universe never disintegrates. The exciting possibility is that we can determine the dimensionality of space-time by studying such an effective action.

There are order N pairwise attractive potentials between the space-time coordinates. Such interactions may be classified into the 16 -fold bond and the 8 -fold bond types. If there were only 16 -fold bond interactions, the space-time coordi-

 -әq s[е!ұиәұоб әл!̣s

 with effective Lagrangians for a finite number of D-objects.

 shrinking. On the other hand, long-distance dynamics protects it from expanding infinitely. This implies the vanishing of the cosmological constant. In our scenario,

 ұе је!

 $=2$ supersymmetry algebra. The vacuum expectation value of the supersymmery transformation of ξ must vanish if supersymmetry is to remain unbroken by the

 try can be preserved. If so, this model realizes a vanishing cosmological constant without supersymmetry, as we have argued.

It is also possible to write a scenario to obtain realistic gauge groups in this

 symmetry of the effective action.

Since we have argued that it is possible to obtain realistic gauge groups in four

 пед-!qегер чұ!м sәures snoso

 the possible candidates for such nontrivial gauge configurations.

 scale. The pairing interaction between the eigenvalues may be identified with the bonds in the dynamical triangulation approach. The integration over the fermionic

There is a permutation symmetry S_{N} which permutes the color indices. This is a subgroup of the full gauge group $S U(N)$ and is an exact symmetry of our effective action. Since it does not change the density of the eigenvalues, it should be part of the

 the diffeomorphism invariances may be unified into the $S U(N)$ symmetry of the IIB matrix model.
Although the investigation of this model is still in an initial stage, this model

 чэns suәqqoлd әл

 structure of space-time and matter.

Acknowledgements

 A. Polyakov for their valuable comments on our work.

Appendix A

 up to 8 . Therefore we are interested in totally symmetric tensors.
We first point out that the only nonvanishing tensors which are quadratic in ξ
 the following identities:

$\left(\bar{\xi} \Gamma^{\mu \alpha \beta} \xi\right)\left(\bar{\xi} \Gamma^{\nu}{ }_{\alpha \beta} \xi\right)=0$,

(A•1)
(A•2)

$$
(\mathrm{A} \cdot 3)
$$

 using Eq. (A•2) we have
740

Appendix B

mensions, $D=3,4,6,10 .{ }^{*)}$ We have

$$
(I \cdot G)
$$

 can be represented as follows:

Performing the integral over fermionic variables gives the pfaffian ${ }^{* *)}$

> $\operatorname{Pf}\left(\alpha^{\mu} A_{\mu}\right)=\operatorname{Pf}\left(\alpha^{\mu} T^{a} A_{\mu}^{a}\right)$, (B-3)
 ${ }^{*)}$ Some results presented here have already been reported in Ref. 23). Similar calculations have also been done in a different context in Ref. 24).

Space-Time Structures from IIB Matrix Model 741

$$
\left\{\operatorname{Pf}\left(\rho^{i} T^{a} A_{i}^{a}\right)\right\}^{p_{D} / 2} \propto\left\{\epsilon_{i j k} \epsilon_{a b c} A_{i}^{a} A_{j}^{b} A_{k}^{c}\right\}^{p_{D} / 2},
$$

which corresponds to (det $A)^{p_{D} / 2}$ when we regard A_{i}^{a} as a 3×3 matrix.
The next step is the integration over three ten-dimensional vectors A_{μ}^{a}, which
we reduce to the integration over three-dimensional vectors. The Jacobian for this
reduction is the volume of the parallelepiped spanned by the three vectors A^{1}, A^{2}
and A^{3}, to the $(D-3)$-th, which is nothing but \mid det $\left.A\right|^{D-3 .}$
To estimate the behavior of the integral, we take the parametrization

$$
\binom{r}{0},\binom{a}{y},\binom{b}{z},
$$

for three vectors A_{i}^{a}, where \boldsymbol{y} and \boldsymbol{z} are two dimensional vectors, while $\mathbf{0}$ is the two dimensional zero vector. After these considerations, we obtain
Integrating over a and b yields

 We can perform the integrations over y and z independently from r. Equation (B-6)

$$
(\mathrm{ZL} \cdot \mathrm{G})
$$

742 H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada
is estimated in this case to be
 effective action for r and ξ is written as

$$
S_{\mathrm{eff}}^{1-\mathrm{loop}}[r, \xi]=\operatorname{tr} \ln \left(1+S^{\mu \nu}\right)
$$

$$
S^{\mu \nu}=\bar{\xi} \Gamma^{\mu \alpha \nu} \xi \frac{r_{\alpha}}{r^{4}} \sim \xi^{2} / r^{3}
$$

Thus the integration over ξ,

where

leads to Eq. (B•8).

$$
\int d^{D} r d^{p_{D}} \xi e^{-S_{\mathrm{eff}}[r, \xi]}
$$

Appendix C

$$
t_{n}^{\# n}
$$ weight function for bonds $f(x)$ can be Fourier transformed as

$\hat{f}(p)=\int d^{D} x f(x) e^{-i p x}=\hat{f}(0)\left(1-c_{2} p^{2}+c_{4} p^{4}+\cdots\right)$,

$$
\begin{aligned}
& (\mathrm{B} \cdot 10) \\
& (\mathrm{B} \cdot 11)
\end{aligned}
$$

 Ref. 25)). The partition function of BP with N points and ($N-1$) bonds is given

$$
(\mathrm{C} \cdot 1)
$$

where the summation is taken over all possible topologies of branched polymers. The quantity t_{n} denotes a positive weight assigned for the points to which n bonds are connected, and $\# n$ denotes the number of such points in a given configuration. The
(C-2)
with a positive coefficient c_{2}. Since we are interested in the thermodynamic limit in whith a positive coefficient c_{2}. Since we are interested in the thermodynamic
whind

 can be connected by bonds in a unique way. In this figure they are connected by five bonds. Such bonds form a random-walk type object. The remaining points in a branched polymer are connected to the points in this object. They are represented by the blobs in this figure.

Fig. 4. Graphical representation of the Schwinger Dyson equation for b. The white circles are not
associated with any weight. associated with any weight.
 function. If we pick up a pair of points in a particular configuration, they are uniquely connected by n bonds. If we assume that they are separated by a fixed distance, n varies from one configuration to another. Therefore we can express a two point function in momentum space as follows:
$\hat{G}\left(p, k_{0}\right)=\int d^{D}(x-y) G\left(x-y, k_{0}\right) e^{i p(x-y)}$

A graphical illustration of this equation is given in Fig. 3.The factor $\left(t_{1}+t_{2} b+\cdots\right)$ is the contribution from each end point in Fig. 3. B represents each blob in Fig. 3 (except those at the endpoints). b is graphically represented in Fig. 4. It satisfies the Schwinger Dyson equation

$b=k_{0} \hat{f}(0)\left(t_{1}+t_{2} b+\frac{t_{3}}{2!} b^{2}+\cdots\right)=k h(b)$,

where $k=k_{0} \hat{f}(0)$. The blob B can be related to $h(b)$ as
(C.6)
$\cdot(q)_{1} \psi=\cdots+{ }_{z} q \frac{i G}{\square q}+q^{\varepsilon} \eta+z_{\eta}=g$
744
Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada

we must tune the fugacity k_{0} so that $\partial k / \partial b$ approaches zero from a positive value. Equation (C•5) solves k as a function of $b: k=b / h(b)$. A typical solution is illustrated

 is a critical fugacity k_{c}, where an averaged number becomes infinite.
Near the critical point, $k(b)$ can be approximated by

(C•10)

where c is a positive constant determined by the set of t_{n}. The partition function is
given by the integral of $h(b)$ over b, and it behaves near the critical point as

This is because the universal part of the infinite sum of the r.h.s. in Eq. (C.12) can

 is given by

$$
Z_{N} \sim\left(\hat{f}(0) \alpha_{c}\right)^{N}
$$

where $\alpha_{c}=1 / k_{c}$ takes a value of order one. In the special case that $t_{n}=1$ for all n, we find that $k=b e^{-b}$, and the critical values are $k_{c}=1 / e$ and $b_{c}=1$. This is the case relevant to our analysis.
Space-Time Structures from IIB Matrix Model
Inserting $k h^{\prime}(b)=1-h(b) k^{\prime}(b)$ (which is derived from Eq. (C.5)) into Eq. (C.7), we obtain the scaling behavior of a two-point function near the critical point. For
small p, it behaves as

$k_{0, c}^{2} h^{2}\left(b_{c}\right) \hat{f}(p)$

(C•14)

$$
\overline{p^{2}+M^{2} \sqrt{\left(k_{c}-k\right)}} \propto \overline{\left(p_{p h y}^{2}+M^{2}\right) \sqrt{\left(k_{c}-k\right)}}
$$

 physical momentum $p_{p h y}=p\left(k_{c}-k\right)^{-1 / 4}$. In this way, we have obtained the scaling relation

 $\sim k_{c} /\left(k_{c}-k\right)$, we can observe from Eq. (C•15) that the Hausdorff dimension of a branched polymer is four.

References

 5) A. Schild, Phys. Rev. D16 (1977), 1722. 7) T. Eguchi and H. Kawai, Phys. Rev. Lett. 48 (1982), 1063.
D. Gross and Y. Kitazawa, Nucl. Phys. B206 (1982), 440. Dhanot, U. Heller and H. Neuberger, Phys. Lett. 11
Alfaro and B. Sakita, Phys. Lett. 121B (1983), 339 V. Periwal, hep-th/9611103.
9) M. Li, hep-th/9612222.
10) I. Chepelev, Y. Makeenko and K. Zarembo, hep-th/9701151.
11) A. Fayyazuddin and D. J. Smith, hep-th/9701168.
12) A. Fayyazuddin , Y. Makeenko, P. Olesen, D. J. Smith and K. Zarembo, hep-th/9703038. Yoneya, hep-th/9703078.
F. Kristjansen and P. Ole
F. Kristjansen and P. Olesen, hep-th $/ 9704017$.
Chepelev and A. A. Tseytlin, hep-th $/ 9705120$.
Chepelev and A. A. Tseytlin, hep-th/9705120.
A. Soloviev, Mod. Phys. Lett. A12 (1997), 3139, hep-th/9708021.
Hirano and M. Kato, hep-th/9708039.
H. Itoyama and A. Tokura, hep-th/970812
H. Itoyama and A. Tokura, hep-th/9708123, hep-th/9801084.
B. P. Mandal and S. Mukhopadhyay, hep-th $/ 9709098$.
N. D. Hari Dass and B. Sathiapalan, hep-th/9712179.
21) A. Connes Commun. Math. Phys. 182 (1996), 155, hep-th/9603053.
23) T. Connes, M. Douglas and A. Schwarz, hep-th/9711162.

[^0]: (2-14)
 remain at least perturbatively. The theory is identical to the large N limit of the

