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Abstract—We propose a method for constructing a video sequence of high space-time resolution by combining information from

multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in

space. By “temporal super-resolution,” we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such

dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in “slow-

motion.” The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs

in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the

temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality

still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to

those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the

upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial “ringing” effect?

Index Terms—Super-resolution, space-time analysis, temporal resolution, motion blur, motion aliasing, high-quality video, fast

cameras.
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1 INTRODUCTION

A video camera has limited spatial and temporal
resolution. The spatial resolution is determined by

the spatial density of the detectors in the camera and by
their induced blur. These factors limit the minimal size of
spatial features or objects that can be visually detected in an
image. The temporal resolution is determined by the frame-
rate and by the exposure-time of the camera. These limit the
maximal speed of dynamic events that can be observed in a
video sequence.

Methods have been proposed for increasing the spatial
resolution of images by combining information from
multiple low-resolution images obtained at subpixel
displacements (e.g., [1], [2], [3], [6], [7], [11], [13], [14],
[15], [16]. See [4] for a comprehensive review). An
extension of [15] for increasing the spatial resolution in
three-dimensional (x, y, z) medical imagery has been
proposed in [12], where MRI data was reconstructed both
within image slices (x and y axis) and between the slices
(z axis).

The above-mentionedmethods, however, usually assume
static scenes with limited spatial resolution and do not
address the limited temporal resolution observed in dynamic
scenes. In this paper, we extend the notion of super-
resolution to the space-time domain. We propose a unified
framework for increasing the resolution both in time and in
space by combining information from multiple video

sequences of dynamic scenes obtained at (subpixel) spatial
and (subframe) temporal misalignments. As will be shown,
this enables new visual capabilities of dynamic events, gives
rise to visual trade-offs between time and space, and leads to
new video applications. These are substantial in the presence
of very fast dynamic events. From here on, we will use SR as
an abbreviation for the frequently used term “super-
resolution.”

Rapid dynamic events that occur faster than the frame-
rate of video cameras are not visible (or else captured
incorrectly) in the recorded video sequences. This problem
is often evident in sports videos (e.g., tennis, baseball,
hockey), where it is impossible to see the full motion or the
behavior of the fast moving ball/puck. There are two
typical visual effects in video sequences which are caused
by very fast motion. One effect (motion blur) is caused by
the exposure-time of the camera and the other effect
(motion aliasing) is due to the temporal subsampling
introduced by the frame-rate of the camera:

1. Motion Blur: The camera integrates the light coming
from the scene during the exposure time in order to
generate each frame. As a result, fast moving objects
produce a noted blur along their trajectory, often
resulting in distorted or unrecognizable object
shapes. The faster the object moves, the stronger
this effect is, especially if the trajectory of the moving
object is not linear. This effect is notable in the
distorted shapes of the tennis ball shown in Fig. 1.
Note also that the tennis racket also “disappears” in
Fig. 1b. Methods for treating motion blur in the
context of image-based SR were proposed in [2], [1].
These methods, however, require prior segmenta-
tion of moving objects and the estimation of their
motions. Such motion analysis may be impossible in
the presence of severe shape distortions of the type
shown in Fig. 1. We will show that, by increasing the
temporal resolution using information from multiple
video sequences, spatial artifacts such as motion blur
can be handled without needing to separate static
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and dynamic scene components or estimate their
motions.

2. Motion-Based (Temporal) Aliasing: A more severe
problem in video sequences of fast dynamic events
is false visual illusions caused by aliasing in time.
Motion aliasing occurs when the trajectory gener-
ated by a fast moving object is characterized by
frequencies which are higher than the frame-rate of
the camera (i.e., the temporal sampling rate). When
that happens, the high temporal frequencies are
“folded” into the low temporal frequencies. The
observable result is a distorted or even false
trajectory of the moving object. This effect is
illustrated in Fig. 2, where a ball moves fast in
sinusoidal trajectory of high frequency (Fig. 2a).
Because the frame-rate is much lower (below the
Nyquist frequency of the trajectory), the observed
trajectory of the ball over time is a straight line
(Fig. 2b). Playing that video sequence in “slow-
motion” will not correct this false visual effect
(Fig. 2c). Another example of motion-based aliasing
is the well-known visual illusion called the “wagon
wheel effect”: When a wheel is spinning very fast,
beyond a certain speed it will appear to be rotating
in the “wrong” direction.

Neither themotion-based aliasing nor themotion blur can

be treated by playing such video sequences in “slow-

motion,” even when sophisticated temporal interpolations

are used to increase the frame-rate (as in video format

conversion or “retiming” methods [10], [20]). This is because

the information contained in a single video sequence is

insufficient to recover the missing information of very fast

dynamic events. The high temporal resolution has been lost

due to excessive blur and excessive subsampling in time.

Multiple video sequences, on the other hand, provide

additional samples of the dynamic space-time scene. While

none of the individual sequences provides enough visual
information, combining the information from all the
sequences allows us to generate a video sequence of high
space-time resolution which displays the correct dynamic
events. Thus, for example, a reconstructed high-resolution
sequence will display the correct motion of the wagon wheel
despite it appearing incorrectly in all of the input sequences.

The spatial and temporal dimensions are very different
in nature, yet are interrelated. This introduces visual trade-
offs between space and time, which are unique to spatio-
temporal SR, and are not applicable in traditional spatial
(i.e., image-based) SR. For example, output sequences of
different space-time resolutions can be generated from the
same input sequences. A large increase in the temporal
resolution usually comes at the expense of a large increase
in the spatial resolution and vice versa.

Furthermore, input sequences of different space-time
resolutions can be meaningfully combined in our frame-
work. In traditional image-based SR, there is no benefit in
combining input images of different spatial resolutions
since a high-resolution image will subsume the information
contained in a low-resolution image. This, however, is not
the case here. Different types of cameras of different space-
time resolutions may provide complementary information.
Thus, for example, we can combine information obtained by
high-quality still cameras (which have very high spatial-
resolution, but extremely low “temporal resolution”) with
information obtained by standard video cameras (which
have low spatial-resolution but higher temporal resolution)
to obtain an improved video sequence of high spatial and
high temporal resolution.

Differences in the physical properties of temporal versus
spatial imaging lead to marked differences in performance
and behavior of temporal SR versus spatial SR. These
include issues such as: the upper bound on improvement in
resolution, synchronization configurations, and more.
These issues are also analyzed and discussed in this paper.
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Fig. 1. Motion blur. Distorted shape due to motion blur of very fast moving objects (the tennis ball and the racket) in a real tennis video. The perceived

distortion of the ball is marked by a white arrow. Note the “V”-like shape of the ball in (a) and the elongated shape of the ball in (b). The racket has

almost “disappeared.”

Fig. 2.Motion aliasing. (a) showsa ballmoving in a sinusoidal trajectory over time. (b) displays an image sequenceof the ball capturedat low frame-rate.
The preceivedmotion is along a straight line. This false perception is referred to in the thesis as “motion aliasing.” (c) Illustrates that, even using an ideal
temporal intyerpolation for “slowmotion” will not produce the correct motion. The filled-in frames are indicated by dashed blue lines. In other words, the
false perception cannot be corrected by playing the video sequence in slow-motion as the information is already lost in the video recording (b).



The rest of this paper is organized as follows: Section 2
describes our space-time SR algorithm. Section 3 shows
some examples of handling motion aliasing and motion
blur in dynamic scenes. Section 4 analyzes how temporal SR
can resolve motion blur and derives a lower bound on the
minimal number of input cameras required for obtaining an
effective motion deblurring. Section 5 explores the potential
of combining input sequences of different space-time
resolutions (e.g., video and still). Finally, in Section 6, we
analyze the commonalities and the differences between
spatial SR and temporal SR.

A shorter version of this paper appeared in [22].

2 SPACE-TIME SUPER-RESOLUTION

Let S be a dynamic space-time scene. Let fSl
ig

n
i¼1

be n video
sequences of that dynamic scene recorded by n different
video cameras. The recorded sequences have limited spatial
and temporal resolution (the subscript “l” stands for “low”
space-time resolution). Their limited resolutions are due to
the space-time imaging process, which can be thought of as
a process of blurring followed by sampling both in time and
in space.

We denote each pixel in each frame of the low resolution
sequences by a “space-time point” (marked by the small
boxes in Fig. 3a). The blurring effect results from the fact
that the value at each space-time point is an integral (a
weighted average) of the values in a space-time region in the
dynamic scene S (marked by the large pink and blue boxes
in Fig. 3a). The temporal extent of this region is determined
by the exposure-time of the video camera (i.e., how long the
shutter is open) and the spatial extent of this region is
determined by the spatial point-spread-function (PSF) of
the camera (determined by the properties of the lens and
the detectors [5]).

The sampling process also has a spatial and a temporal
component. The spatial sampling results from the fact that
the camera has a discrete and finite number of detectors (the
output of each detector is a single pixel value) and the
temporal sampling results from the fact that the camera has

a finite frame-rate resulting in discrete frames (typically
25 frames=sec in PAL cameras and 30 frames=sec in NTSC
cameras).

The above space-time imaging process inhibits high
spatial and high-temporal frequencies of the dynamic scene,
resulting in video sequences of low space-time resolutions.
Our objective is to use the information from all these
sequences to construct a new sequence Sh of high space-
time resolution. Such a sequence will ideally have smaller
blurring effects and finer sampling in space and in time and
will thus capture higher space-time frequencies of the
dynamic scene S. In particular, it will capture fine spatial
features in the scene and rapid dynamic events which
cannot be captured (and are therefore not visible) in the
low-resolution sequences.

The recoverable high-resolution information in Sh is
limited by its spatial and temporal sampling rate (or
discretization) of the space-time volume. These rates can
be different in space and in time. Thus, for example, we can
recover a sequence Sh of very high spatial resolution but
low temporal resolution (e.g., see Fig. 3b), a sequence of
very high-temporal resolution but low spatial resolution
(e.g., see Fig. 3c), or a bit of both. These trade-offs in space-
time resolutions and their visual effects will be discussed in
more detail later in Section 6.1.

We next model the geometrical relations (Section 2.1) and
photometric relations (Section 2.2) between the unknown
high-resolution sequence Sh and the input low-resolution
sequences fSl

ig
n
i¼1

.

2.1 The Space-Time Coordinate Transformations

In general, a space-time dynamic scene is captured by a
4D representation ðx; y; z; tÞ. For simplicity, in this paper, we
deal with dynamic scenes which can be modeled by a
3D space-time volume ðx; y; tÞ (see in Fig. 3a). This assump-
tion is valid if one of the following conditions holds: 1) The
scene is planar and the dynamic events occur within this
plane or 2) the scene is a general dynamic 3D scene, but the
distances between the recording video cameras are small
relative to their distance from the scene. (When the camera
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Fig. 3. The space-time imaging process. (a) illustrates the continuous space-time scene and two of the low resolution sequences. The large pink and

blue boxes are the support regions of the space-time blur correspodning to the low resolution space-time measurements marked by the respective

small boxes. (b), (c) show two different possible discretizations of the continuous space-time volume S resulting in two different possible types of

resolution output sequences Sh. (b) has a low frame-rate and high spatial resolution, whereas (c) has a high frame-rate but low spatial resolution.



centers are very close to each other, there is no relative
3D parallax.) Under those conditions, the dynamic scene can
be modeled by a 3D space-time representation. Note that the
cameras need not have the same viewing angles or zooms.

Without loss of generality, let Sl
1
(one of the input low-

resolution sequences) be a “reference” sequence. We define
the coordinate system of the continuous space-time volume
S (the unknown dynamic scene we wish to reconstruct) so
that its x; y; t axes are parallel to those of the reference
sequence Sl

1
. Sh is a discretization of S with a higher

sampling rate than that of Sl
1
(see Fig. 3b). Thus, we can

model the transformation T1 from the space-time coordi-
nate system of Sl

1
to the space-time coordinate system of Sh

by a scaling transformation (the scaling can be different in
time and in space). Let Ti!1 denote the space-time
coordinate transformation from the ith low resolution
sequence Sl

i to the reference sequence Sl
1
(see below). Then,

the space-time coordinate transformation of each low-
resolution sequence Sl

i is related to that of the high-
resolution sequence Sh by Ti ¼ T1 � Ti!1.

The space-time coordinate transformations Ti!1 between
input sequences (and, thus, also the space time transforma-
tions from the low resolution sequences to the high
resolution sequence) result from the different settings of
the different cameras. A temporal misalignment between two
video sequences occurs when there is a time-shift (offset)
between them (e.g., if the two video cameras were not
activated simultaneously) or when they differ in their frame
rates (e.g., one PAL and the other NTSC). Such temporal
misalignments can be modeled by a 1D affine transforma-
tion in time and are typically at subframe time units. The
spatial misalignment between the sequences results from the
fact that the cameras have different external (e.g., rotation)
and internal (e.g., zoom) calibration parameters. In our
current implementation, as mentioned above, because the
camera centers are assumed to be very close to each other or
else the scene is planar, the spatial transformation between
the two sequences can thus be modeled by an intercamera
homography (even if the scene is a cluttered 3D scene). We
computed these space-time coordinate transformations
using the method of [9], which provides high subpixel
and high subframe accuracy.

Note that, while the space-time coordinate transforma-
tions (fTigni¼1

) between the sequences are very simple (a spatial
homography and a temporal affine transformation), the
motions occurringover timewithin each sequence (i.e.,within
the dynamic scene) can be very complex. Our space-time
SR algorithm does not require knowledge of these complex
intrasequence motions, only knowledge of the simple
intersequence transformations fTigni¼1

. It can thus handle
very complex dynamic scenes. For more details, see [9].

2.2 The Space-Time Imaging Model

As mentioned earlier, the space-time imaging process
induces spatial and temporal blurring in the low-resolution
sequences. The temporal blur in the low-resolution
sequence Sl

i is caused by the exposure-time (shutter-time)
of the ith video camera (denoted henceforth by �i). The
spatial blur in Sl

i is due to the spatial point-spread-function
(PSF) of the ith camera, which can be approximated by a
2D spatial Gaussian with std �i. (A method for estimation of
the PSF of a camera may be found in [14].)

Let Bi ¼ Bð�i;�i;pliÞ denote the combined space-time blur
operator of the ith video camera corresponding to the
low resolution space-time point pli ¼ ðxl

i; y
l
i; t

l
iÞ. Let ph ¼

ðxh; yh; thÞ be the corresponding high resolution space-
time point ph ¼ TiðpliÞ (ph is not necessarily an integer
grid point of Sh, but is contained in the continuous
space-time volume S). Then, the relation between the
unknown space-time values SðphÞ, and the known low
resolution space-time measurements Sl

iðpliÞ can be ex-
pressed by:

Sl
i

�

pli
�

¼
�

S �Bh
i

�

ðphÞ

¼
R

x

R

y

R

t

p¼ðx;y;tÞ2SupportðBh
i Þ
SðpÞ Bh

i ðp� phÞdp;
ð1Þ

where Bh
i ¼ TiðBð�i;�i;pliÞÞ is a point-dependent space-time

blur kernel represented in the high resolution coordinate
system. Its support is illustrated by the large pink and blue
boxes in Fig. 3a. This equation holds wherever the discrete
values in the left-hand side are defined. To obtain a linear
equation in terms of the discrete unknown values of Sh, we
used a discrete approximation of (1). See [7], [8] for a
discussion of the different spatial discretization techniques
in the context of image-based SR. In our implementation,
we used a nonisotropic approximation in the temporal
dimension and an isotropic approximation in the spatial
dimension (for further details, refer to [21]). Equation (1)
thus provides a linear equation that relates the unknown
values in the high resolution sequence Sh to the known low
resolution measurements Sl

iðpliÞ.
When video cameras of different photometric responses

are used to produce the input sequences, then a preproces-
sing step is necessary. We used a simple histogram
specification to equalize the photometric responses of all
sequences. This step is required to guarantee consistency of
the relation in (1) with respect to all low resolution
sequences.

2.3 The Reconstruction Step

Equation (1) provides a single equation in the high
resolution unknowns for each low resolution space-time
measurement. This leads to the following huge system of
linear equations in the unknown high resolution elements
of Sh:

Ah
!¼ l

!
; ð2Þ

where h
!

is a vector containing all the unknown high
resolution values (grayscale or color values in YIQ) of Sh,
l
!

is a vector containing all the space-time measurements
from all the low resolution sequences, and the matrix A
contains the relative contributions of each high resolution
space-time point to each low resolution space-time point,
as defined by (1).

When the number of low resolution space-time measure-
ments in l

!
is greater than or equal to the number of space-

time points in the high-resolution sequence Sh (i.e., in h
!
),

then there are more equations than unknowns and (2) is
typically solved using LSQ methods. This is obviously a
necessary requirement, however, not sufficient. Other
issues, such as dependencies between equations or noise
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magnification, may also affect the results (see [3], [18] and
also Section 6.2). The above-mentioned requirement on the
number of unknowns implies that a large increase in the
spatial resolution (very fine spatial sampling in Sh) will
come at the expense of a significant increase in the temporal
resolution (very fine temporal sampling in Sh) and vice
versa. This is because, for a given set of input low-resolution
sequences, the size of l

!
is fixed, thus dictating an upper

bound on the number of unknowns in Sh. However, the
number of high resolution space-time points (unknowns)
can be distributed differently between space and time,
resulting in different space-time resolutions (this issue is
discussed in more detail in Section 6.1).

2.3.1 Directional Space-Time Regularization

When there is an insufficient number of cameras relative to
the required improvement in resolution (either in the entire
space-time volume or only in portions of it), then the above
set of equations (2) becomes ill-posed. To constrain the
solution and provide additional numerical stability (as in
image-based Super-Resolution [6], [11], [19]), a space-time
regularization term can be added to impose smoothness on
the solution Sh in space-time regions which have insuffi-
cient information. We introduce a directional (or steerable
[16]) space-time regularization term which applies smooth-
ness only in directions within the space-time volume where
the derivatives are low and does not smooth across space-
time “edges.” In other words, we seek h

!
which minimizes

the following error term:

min jjAh
!� l

!jj2 þ jjWxLx h
!jj2 þ jjWyLy h

!jj2 þ jjWtLt h
!jj2

� �

;

ð3Þ

where Lj (j ¼ x; y; t) is a matrix capturing the second-order
derivative operator in direction j and Wj is a diagonal
weight matrix which captures the degree of desired
regularization at each space-time point in the direction j.
The weights in Wj prevent smoothing across space-time
“edges.” These weights are determined by the location,
orientation, and magnitude of space-time edges and are
approximated using space-time derivatives in the low
resolution sequences. Thus, in regions that have high spatial
resolution but small motion (or no motion), the regulariza-
tion will be stronger in the temporal direction (thus
preserving sharp spatial features). Similarly, in regions that
have fast dynamic changes but low spatial resolution, the
regularization will be stronger in the spatial direction. This
is illustrated in Fig. 4. In a smooth and static region, the
regularization will be strong both in time and in space.

2.3.2 Solving the Equation

The optimization problem of (3) has a very large dimen-
sionality. For example, even for a simple case of four low
resolution input sequences, each of one-second length
(25 frames) and of size 128� 128 pixels, we get: 1282 � 25�
4 � 1:6� 106 equations from the low resolution measure-
ments alone (without regularization). Assuming a similar
number of high resolution unknowns poses a severe
computational problem. However, because matrix A is
sparse and local (i.e., all the nonzero entries are located in a

few diagonals), the system of equations can be solved using
“box relaxation” [23], [19]. For more details, see [21].

Fig. 5 shows a result of applying our space-time
SR algorithm to 36 low resolution sequences. The increase
in dimension of the output sequence relative to the input
sequences is �2� 2� 8 (an increase of �2 in x, �2 in y, and
�8 in t). In other words, the output frames are twice as big
in each spatial dimension and the frame-rate was increased
by a factor of 8. The increase both in spatial and temporal
resolution relative to the input sequences is evident. Note
the increase in spatial resolution of the text in the static
background, as well as the increase in resolution and
reduction in the motion-blur of the moving object (the Coke
can). It is important to emphasize that this is achieved
without any motion segmentation or estimation of the object
motion. The notion of spatial SR is quite familiar and
intuitive. However, not so is the notion of temporal SR. We
devote the next two sections to explaining the significance
and properties of temporal SR in video.

3 EXAMPLES OF TEMPORAL SR

Before proceeding with more in-depth analysis and details,
we first show a few examples of applying the above
algorithm for recovering higher temporal resolution of fast
dynamic events. In particular, we demonstrate how this
approach provides a solution to the two previously
mentioned problems encountered when fast dynamic
events are recorded by slow video cameras: 1) motion
aliasing and 2) motion blur.

3.1 Example 1: Handling Motion Aliasing

We used four independent PAL video cameras to record a
scene of a fan rotating clockwise very fast. The fan rotated
faster and faster until, at some stage, it exceeded themaximal
velocity thatcanbecapturedcorrectlybythevideoframe-rate.
As expected, at thatmoment, all four input sequences display
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Fig. 4. Space-time regularization. The figure shows the space-time
volume with one high resolution frame from the example of Fig. 6. It
illustrates a couple of interesting cases where the space-time
regularization is applied in a physically meaningful way. In regions that
have high spatial resolution but small (or no) motion (such as in the
static background), the temporal regularization is strong (green arrow).
Similarly, in regions with fast dynamic changes and low spatial
resolution (such as in the rotating fan), the spatial regularization is
strong (yellow arrows).



the classical “wagonwheel effect”where the fanappears tobe
falsely rotatingbackwards (counterclockwise).Wecomputed
the spatial and temporal misalignments between the se-
quences at subpixel and subframe accuracy using [9] (the
recovered temporal misalignments are displayed in Figs. 6a,
6b, 6c, and 6d using a time-bar). We used the SR method of
Section 2 to increase the temporal resolution by a factor of 3
while maintaining the same spatial resolution. The resulting
high-resolution sequence displays the true forward (clock-
wise)motion of the fan as if recorded by a high-speed camera

(in this case, 75 frames/sec). Examples of a few successive

frames fromeach low resolution input sequence are shown in

Figs. 6a, 6b, 6c, and 6d for the portion where the fan falsely

appears to be rotating counterclockwise. A few successive

frames from the reconstructed high temporal-resolution

sequence corresponding to the same time are shown in

Fig. 6e, showing the correctly recovered (clockwise)motion. It

is difficult to perceive these strongdynamic effects via a static

figure. We therefore urge the reader to view the video clips
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Fig. 5. Space-time super-resolution. This figure shows a result of simultaneous resolution enhancement in time and in space using the algorithm
described in Section 2. The top part shows one out of the 36 simulated low resolution sequences used as input to the algorithm. The lower part
shows the output sequence whose frames are 2� 2 larger and whose frame-rate is �8 larger. The right-hand side shows the resolution
enhancement obtained in space (text) and in time (moving coke can). These results are contrasted with the corresponding places in the low
resolution input sequence (regions are magnified). It should be appreciated that no object motion estimation or segmentation was involved in
generating these results.

Fig. 6. Example 1: Handling motion aliasing—The “wagon wheel effect.” (a)-(d) display three successive frames from four PAL video recordings of a

fan rotating clockwise. Because the fan is rotating very fast (almost 90� between successive frames), the motion aliasing generates a false

perception of the fan rotating slowly in the opposite direction (counterclockwise) in all four input sequences. The temporal misalignments between

the input sequences were computed at subframe temporal accuracy and are indicated by their time bars. The spatial misalignments between the

sequences (e.g., due to differences in zoom and orientation) were modeled by a homography and computed at subpixel accuracy. (e) shows the

reconstructed video sequence in which the temporal resolution was increased by a factor of 3. The new frame rate 75
frames
sec

� �

is also indicated by

time bars. The correct clockwise motion of the fan is recovered. For video sequences, see: www.wisdom.weizmann.ac.il/~vision/SuperRes.html.



www.wisdom.weizmann.ac.il/~vision/SuperRes.html,
where these effects are very vivid.

Note that playing the input sequences in “slow-motion”
(using any type of temporal interpolation) will not reduce
the perceived false motion effects as the information is
already lost in any individual video sequence (as illustrated
in Fig. 2). It is only when the information is combined from
all the input sequences that the true motion can be
recovered.

3.2 Example 2: Handling Motion Blur

In the following example, we captured a scene of fast
moving balls using four PAL video cameras of 25 frames/
sec and exposure-time of 40 msec. Figs. 7a, 7b, 7c, and 7d
show four frames, one from each low-resolution input
sequence, that were the closest to the time of collision of the
two balls. In each of these frames, at least one of the balls is
blurred. We applied the SR algorithm and increased the
frame-rate by a factor of 4. Fig. 7e shows an output frame at
the time of collision. Motion-blur is reduced significantly.
Such a frame did not exist in any of the input video
sequences. Note that this effect was obtained by increasing
the temporal resolution (not the spatial) and, hence, did not
require estimation of the motions of the balls. This
phenomena is explained in more detail in Section 4.

To examine the performance of the algorithm under
severe effects of motion-blur of the kind shown in Fig. 1, one
needs many (usually more than 10) video cameras. A
quantitative analysis of the amount of input data needed
appears in Section 4. Since we do not have so many video
cameras, we resorted to simulations, as described in the
next example.

3.3 Example 3: Handling Severe Motion Aliasing &
Motion Blur

In the following example, we simulated a sports-like scene
with an extremely fast moving object (of the type shown in
Fig. 1) recorded by many video cameras (in our example,
18 cameras). We examined the performance of temporal SR
in the presence of both strong motion aliasing and strong
motion blur.

To simulate such a scenario, we recorded a single video
sequence of a slow moving object (a basketball bouncing on
the ground). We temporally blurred the sequence using a
large (9-frame) blur kernel (to simulate a large exposure
time), followed by a large subsampling in time by a factor of
1 : 30 (to simulate a low frame-rate camera). Such a process
results in 18 low temporal-resolution sequences of a very

fast dynamic event having an “exposure-time” of about 1

3
of

its frame-time and temporally subsampled with arbitrary
starting frames. Each generated “low-resolution” sequence
contains seven frames. Three of the 18 sequences are
presented in Figs. 8a, 8b, and 8c. To visually display the
dynamic event, we superimposed all seven frames in each
sequence. Each ball in the superimposed image represents
the location of the ball at a different frame. None of the
18 low-resolution sequences captures the correct trajectory
of the ball. Due to the severe motion aliasing, the perceived
ball trajectory is roughly a smooth curve, while the true
trajectory was more like a cycloid (the ball jumped five
times on the floor). Furthermore, the shape of the ball is
completely distorted in all of the input image frames due to
the strong motion blur.

We applied the SR algorithm of Section 2 on these 18 low-
resolution input sequences and constructed a high-resolu-
tion sequence whose frame-rate is 15 times higher than that
of the input sequences. (In this case, we requested an
increase only in the temporal sampling rate.) The recon-
structed high-resolution sequence is shown in Fig. 8d. This
is a superimposed display of some of the reconstructed
frames (every eighth frame). The true trajectory of the
bouncing ball has been recovered. Furthermore, Figs. 8e
and 8f show that this process has significantly reduced the
effects of motion blur and the true shape of the moving ball
has been automatically recovered, although no single low
resolution frame contains the true shape of the ball. Note
that no estimation of the ball motion was needed to obtain
these results.

The above results obtained by temporal SR cannot be
obtained by playing any low-resolution sequence in “slow-
motion” due to the strong motion aliasing. While interleav-
ing and interpolating between frames from the 18 input
sequences may resolve some of the motion aliasing, it will
not handle the severe motion-blur observed in the indivi-
dual image frames. Note, however, that, even though the
frame rate was increased by a factor of 15, the effective
reduction in motion blur in Fig. 8 is only by a factor of � 5.
These issues are explained in the next section.

A method for treating motion blur in the context of
image-based SR was proposed by [2], [1]. However, these
methods require a prior segmentation of the moving objects
and the estimation of their motions. These methods will
have difficulties handling complex motions or motion
aliasing. The distorted shape of the object due to strong
blur will pose severe problems in motion estimation.
Furthermore, in the presence of motion aliasing, the
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Fig. 7. Example 2: Handling motion blur via temporal SR. A “tic-tac” toy (two balls hanging on strings and bouncing against each other) was shot by

four video cameras. (a)-(d) display the four frames, one from each of the input sequences, which were closest to the time of collision. In each one of

these frames, at least one of the balls is blurred. The four input sequences were plugged into the temporal SR algorithm and the frame-rate was
increased by a factor of 4. (e) shows the frame from the output, closest to the time of collision. Motion-blur is evidently reduced.



direction of the estimated motion will not align with the
direction of the induced blur. For example, the motion blur
in Figs. 8a, 8b, and 8c is along the true trajectory and not
along the perceived one. In contrast, our approach does not
require separation of static and dynamic scene components,
nor their motion estimation, and therefore can handle very
complex scene dynamics. However, we require multiple
cameras. These issues are explained and analyzed next.

4 RESOLVING MOTION BLUR

A crucial observation for understanding why temporal SR
reduces motion blur is that motion blur is caused by temporal
blurring and not by spatial blurring. The blurred colors
induced by amoving object (e.g., Fig. 9) result from blending
color values along time and not from blending with spatially
neighboring pixels. This observation and its implications are
the focus of Section 4.1. Section 4.2 derives a bound on the
best expected quality (temporal resolution) of a high
resolution output sequence which yields a practical formula
for the recommended number of input cameras.

4.1 Why Is Temporal Treatment Enough?

The observation that motion blur is a purely temporal artifact
is nonintuitive. After all, the blur is visible in a single image
frame. This is misleading, however, as even a single image
frame has a noninfinitesimal exposure time. The first
attempts to reduce motion blur, which date back to the
beginning of photography, tried to reduce the exposure
time by increasing the amount of light.

Figs. 9a and 9b display the same event (a ball falling)
captured by two cameras with different exposure times.
Since the exposure time of the camera in Fig. 9a was longer
than that of Fig. 9b, its shape is more elongated. The amount
of induced motion blur is linearly proportional to the
temporal length of the exposure time. The longer the
exposure-time is, the larger the induced spatial effect of
motion blur is.

Another source of confusion is the indirect link to
motion. The blur results from integration over time (due
to the exposure time). In general, it captures any temporal
changes of intensities. In practice, most of the temporal
changes result from moving objects (which is why this
temporal blur is denoted as “motion blur”). However, there
exist temporal changes that do not result from motion, e.g.,
in a video recording of a flashing light spot. With
sufficiently long exposure time, the spot of light will be
observed as a constant dim light in all frames. This light
dimming effect and motion blur are both caused directly by
temporal blur (integration over exposure time), but with
different indirect causes of temporal change. Our algorithm
addresses the direct cause (i.e., temporal blur) and thus
does not need to analyze which of the indirect causes where
involved (i.e., motion, light-changes, etc.).

To summarize, we argue that all pixels (static and
dynamic) experience the same temporal blur—a convolution
with a temporal rectangular function.However, the temporal
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Fig. 8. Example 3: Handling motion blur & motion aliasing. We simulated 18 low-resolution video recordings of a rapidly bouncing ball inducing strong
motion blur and motion aliasing (see text). (a)-(c) display the dynamic event captured by three representative low-resolution sequences. These
displays were produced by superposition of all seven frames in each low-resolution sequence. All 18 input sequences contain severe motion aliasing
(evident from the falsely perceived curved trajectory of the ball) and strong motion blur (evident from the distorted shapes of the ball). (d) The
reconstructed dynamic event as captured by the recovered high-resolution sequence. The true trajectory of the ball is recovered, as well as its
correct shape. (e) A close-up image of the distorted ball in one of the low resolution sequences. (f) A close-up image of the ball at the exact
corresponding frame in time in the high-resolution output sequence. For video sequences see: www.wisdom.weizmann.ac.il/~vision/SuperRes.html.

Fig. 9: What is motion blur? A spatial smear induced by temporal
integration. A free-falling tennis ball was shot by two cameras through a
beam-splitter (hence, the flip). The camera on the left (a) had a long
exposure time and the camera on the right (b) had a short one. The
longer the exposure time is, the larger the spatial smear of moving
objects is.



blur is visible only in image locations where there are

temporal changes (e.g., moving objects). Our algorithm

addresses this temporal blur directly by reducing the

exposure time and, thus, does not require motion analysis,

segmentation, or any scene interpretation.

4.2 What Is the Minimal Number of Required Video
Cameras?

Denote by �tin and �tout the elapsed time between

successive frames in the input and output sequences,

respectively, i.e., �t ¼ 1

FR , where FR is the frame-rate.

�tin is a physical property of the input cameras. �tout is

dictated by the output frame rate (specified by the user).

Similarly, denote by �in and �out the exposure time of the

input and output sequences. All these quantities are

illustrated in Fig. 10. �in is a physical quantity—the

exposure time of the input sequences. On the other hand,

�out is not a physical quantity. It is a measure of the quality

of the output sequence. Its units are the exposure time of a

real camera that will generate an equivalent output (an

output with the same motion-blur). Thus, �out is denoted

here as the “induced exposure time,” and quantifying it is

the objective of this section.

We have shown analytically in [21] that, under ideal
conditions (i.e., uniform sampling in time and no noise), �out
is bounded by:

�out � �tout: ð4Þ

Equation (4) should be read as follows: The residual motion
blur in the output sequence is at least the same as the
motion blur caused by a true camera with exposure time
�tout.

Furthermore, the experiment in Fig. 11 shows that, in
ideal conditions (i.e., optimal sample distribution and
ignoring noise amplification), this bound may be reached.
Namely, �out � �tout. Rows (b) and (c) compare the SR
output to the “ground truth” temporal blur for various
specified �tout. These “ground truth” frames were synthe-
sized by temporal blurring the original sequence (in the
same way in which the low resolution sequence was
generated) such that their exposure time is �tout. One can
see that the induced motion blur in the reconstructed
sequences is similar to the motion blur caused by the
imaging process with the same exposure time (i.e.,
�out � �tout).

Given the above observation, we obtain a practical
constraint on the required number of input video sequences
(cameras) Ncam.

Naturally, the smaller the exposure time, the smaller the
motion blur. In our case, the output induced exposure time
(�out) is dictated by the user-selected output frame-rate
(�out � �tout ¼ 1

FRout
). However, there is a limit on how

much the output frame-rate (FRout) can be increased (or,
equivalently, how much �tout can be decreased). This
bound is determined by the number of low resolution input
sequences and their frame rate:

FRout 	 Ncam � FRin; ð5Þ

or, equivalently, �tout � �tin=Ncam. If the frame-rate is
further increased, we will get more equations than
unknowns. Fig. 12 displays several results of applying our
algorithm, but with different specified FRout. The minimal
number of required cameras for each such reconstruction
quality is indicated below each example. These numbers are
dictated by the required increase in frame-rate (5).
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Fig. 10. Frame-time and exposure time. This figure graphically illustrates
the quantities used in Section 4.2. The time-bars in (a) and (b) denote
the frame-rates of the input and output sequences, respectively (the
same time scale is used). The quantity �t denotes the elapsed time
between successive frames (frame-time), where FR is the video frame-
rate. The quantity � denotes the exposure times.

Fig. 11. Residual motion blur as a function of �tout. Using the same number of input cameras (18), we have reconstructed several output sequences
with increasing �tout. (a) shows a frame from one of the input sequences in Fig. 8. (b) displays frames from the reconstructed outputs. A user-
defined �tout in each case is indicated below in row (c). As can be seen, the amount of motion-blur increases as �tout increases. Row (d) displays
frames from “ground truth” blur. These are frames from synthesized blurred sequences, each with exposure time that is equal to the corresponding
�tout (i.e., (c) above). The similarity between the observed motion blur in rows (b) and (d) argues that, in this example, �out � �tout.



It is interesting to note that, in some cases, the “SR”
increases the motion blur. Such an undesired outcome
occurs when the input exposure time �in is smaller than
the induced output exposure time �out. Thus, requiring that
the output motion blur be better than the input motion blur
(�out < �in) yields the following constraint on the minimal
number of input cameras:

�in � �out � �tout ¼
�tin
Ncam

: ð6Þ

Substituting input frame-rate and reordering termsprovides:

Ncam � 1

�inFRin
: ð7Þ

Anumerical example of this constraint is illustrated in Fig. 12.
Rows (a) and (b)display input andoutput frames as in Fig. 11.
Row (c) illustrates graphically the ratio between �out (the red
rectangle) and �in (the blue rectangle). It is evident from the
figure that, if �in > �out (the three left images), the output
quality outperforms the input quality (a). Similarly, when
�in < �out (the twomost right images), then the outputmotion
blur is worse than the input motion blur. In this example, the
input frame rate is FRin ¼ 1

frames
sec and �in ¼ 1

3
sec (see

Section 3 for details), thus the minimal number of required
cameras to outperform the input motion blur is at least three,
exactly as observed in the example.

Finally, the analysis in this section assumed ideal
conditions. It did not take into account the following
factors: 1) There may be errors due to inaccurate sequence
alignment in space or in time and 2) nonuniform sampling
of sequences in time may increase the numerical instability.
This analysis therefore provides only a lower bound on the
number of required cameras. In practice, the actual number
of required cameras is likely to be slightly larger. For
example, in our experiments, we sometimes used more
cameras than the computed minimum, but never more than
twice this lower bound.

5 COMBINING DIFFERENT SPACE-TIME INPUTS

So far, we assumed that all input sequences were of similar
spatial and temporal resolutions. However, the space-time
SR algorithm of Section 2 is not restricted to this case and
can also handle input sequences of different space-time

resolutions. Such a case is meaningless in image-based SR
(i.e., combining information from images of varying spatial
resolution) because a high-resolution input image would
always contain the information of a low-resolution image.
In space-time SR, however, this is not the case. One camera
may have high spatial resolution but low temporal
resolution, and the other vice versa. Thus, for example, it
is meaningful to combine information from NTSC and PAL
video cameras. NTSC has higher temporal resolution than
PAL (30 frames/sec versus 25 frames/sec), but lower
spatial resolution (640�480 pixels versus 768�576 pixels).
An extreme case of this idea is to combine information from
still and video cameras. Such an example is shown in Fig. 13.
Two high quality still images (Fig. 13a) of high spatial
resolutions (1;120�840 pixels) but extremely low “temporal
resolution” (the time gap between the two still images was
1.4 sec.) were combined with an interlaced (PAL) video
sequence using the algorithm of Section 2. The video
sequence (Fig. 13b) has three times lower spatial resolution
(we used fields of size 384�288 pixels), but a high temporal
resolution (50 fields/sec). The goal is to construct a new
sequence of high spatial and high temporal resolutions (i.e.,
1;120�840 pixels at 50 fields/sec). The output sequence
shown in Fig. 13c contains the high spatial resolution from
the still images (the sharp text) and the high temporal
resolution from the video sequence (the rotation of the toy
dog and the brightening and dimming of illumination).

In the example of Fig. 13, the number of unknowns was
significantly larger than the number of low resolution
measurements (the input video and the two still images).
Although, theoretically, this is an ill-posed set of equations,
the reconstructed output is of high quality. This is achieved
by applying physically meaningful space-time directional
regularization (Section 2.3), that exploits the high redun-
dancy in the video sequence.

In the example of Fig. 13, we used only one input video
sequence and two still images, thus we did not attempt to
exceed the temporal resolution of the video or the spatial
resolution of the stills. However, when multiple video
sequences and multiple still images are used (so that the
number of input measurements exceeds the number of
output high resolution unknowns), then an output sequence
can be recovered that exceeds the spatial resolution of the
still images and temporal resolution of the video sequences.
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Fig. 12. The required number of input cameras. This figure shows the relation between the number of cameras in use and the reduction in motion
blur. We have reconstructed several output sequences with decreasing FRout. (a) shows a frame from one of the input sequences in Fig. 8.
(b) displays frames from reconstructed outputs. (c) The blue and red rectangles illustrate the input and output exposure-time, respectively (the input
is identical in all cases and the output is induced by the output frame-rate FRout—the red bars). Row (d) indicates the minimal number of cameras
required for obtaining the corresponding FRout (5). In order to reduce motion blur with respect to the input frame (a), �out (the red rectangles) should
be smaller than �in (the blue rectangles). Therefore, in the left three sequences, the motion blur is decreased, while in the right two sequences,
although we increase the frame-rate, the motion blur is increased.



6 TEMPORAL VERSUS SPATIAL SUPER-

RESOLUTION: DIFFERENCES AND SIMILARITIES

Unlike in image-basedSR,where both x andydimensions are
of the same type (spatial), different types of dimensions are
involved in space-time SR. The spatial and temporal dimen-
sions are very different in nature, yet are interrelated. This
leads to different phenomena in space and in time, but also to
interesting tradeoffs between the two dimensions. In
Section 5, we saw one of the differences between spatial SR
and space-time SR. In this section, we will discuss more
differences, aswell assimilaritiesbetweenspaceandtime that
lead to new kinds of phenomena, problems and challenges.

6.1 Producing Different Space-Time Outputs

The mix of dimensions introduces visual tradeoffs between
space and time, which are unique to spatio-temporal SR,
and are not applicable to the traditional spatial (image-
based) SR. In spatial SR, the increase in the sampling rate is
equal in all spatial dimensions. This is necessary to
maintain the aspect ratio of image pixels. However, this is
not the case in space-time SR. The increase in sampling rate
in the spatial and temporal dimensions need not be the
same. Moreover, increasing the sampling rate in the spatial
dimension comes at the expense of increase in the temporal
frame rate and the temporal resolution, and vice-versa. This is

because the number of equations provided by the low
resolution measurements is fixed, dictating the maximal
number of possible unknowns (the practical upper limit on
the number of unknowns is discussed later, in Section 6.2).
However, the arrangement of the unknown high-resolution
space-time points in the high-resolution space-time volume
depends on the manner in which this volume is discretized.

For example, assume that eight video cameras are used
to record a dynamic scene. One can increase the temporal
frame-rate alone by a factor of 8 or increase the spatial
sampling rate alone by a factor of

ffiffiffi

8
p

in x and in y (i.e.,
increase the number of pixels by a factor of 8) or do a bit of
both: Increase the sampling rate by a factor of 2 in all three
dimensions x; y; t. These options are graphically illustrated
in Fig. 14. For more details, see [22].

6.2 Upper Bounds on Temporal versus Spatial
Super-Resolution

The limitations of spatial SR have been discussed in [3], [18].
Both showed that the noise that is amplified by the SR
algorithm grows quadratically with the magnification
factor. Thus, large magnification factors in image-based
SR are not practical. Practical assumptions about the initial
noise in real images [18] lead to a realistic magnification
factor of 1.6 (and a theoretical factor of 5.7 is claimed for
synthetic images with quantization noise). Indeed, many
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Fig. 13. Combining Still and Video. A dynamic scene of a rotating toy-dog and varying illumination was captured by: (a) a still camera with spatial
resolution of 1; 120� 840 pixels and (b) a video camera with 384� 288 pixels at 50 f/sec. The video sequence was 1:4sec. long (70 frames) and the
still images were taken 1:4sec. apart (together with the first and last frames). The algorithm of Section 2 is used to generate the high resolution
sequence (c). The output sequence has the spatial dimensions of the still images and the frame-rate of the video (1120� 840� 50). It captures the
temporal changes correctly (the rotating toy and the varying illumination), as well as the high spatial resolution of the still images (the sharp text). Due
to lack of space, we show only a portion of the images, but the proportions between video and still are maintained. For video sequences, see:
www.wisdom.weizmann.ac.il/~vision/SuperRes.html.



image-based SR algorithms (e.g., [1], [2], [3], [6], [7], [11],
[13], [14], [15], [16]) illustrate results with limited magnifi-
cation factors (usually up to 2). In this section, we will show
and explain why we get significantly larger magnification
factors (and resolution enhancement) for temporal SR.

The analysis described in [3], [18] applies to temporal SR
as well. The differences result from the different types of
blurring functions used in temporal and in spatial domains:
1) The temporal blur function induced by the exposure time
has approximately a rectangular shape, while the spatial
blur function has a Gaussian-like shape. 2) The supports of
spatial blur functions typically have a diameter larger than
one pixel, whereas the exposure time is usually smaller than
a single frame-time (i.e., � < �t). These two differences are
depicted in Fig. 15. 3) Finally, the spatial blurring acts along
two dimensions (x and y), while temporal blurring is
limited to a single dimension (t). These differences in shape,
support, and dimensionality of the blur kernels are the
cause of having a significantly larger upper bound in
temporal SR, as explained below.

When the blur function is an “ideal” low-pass filter, no
SR can be obtained since all high frequencies are eliminated
in the blurring process. On the other hand, when high
frequencies are not completely eliminated and are found in
aliased form in the low resolution data, SR can be applied
(those are the frequencies that are recovered in the SR
process). The spatial blur function (the point spread
function) has a Gaussian shape and its support extends
over several pixels (samples). As such, it is a much
“stronger” low-pass filter. In contrast, the temporal blur
function (the exposure time) has a rectangular shape and its
extent is subframe (i.e., less than one sample), thus
preserving more high temporal frequencies. Figs. 15c and
15d illustrate this difference. In addition to the above, it was
noted in [3] that the noise in image-based SR (2D signals)
tends to grow quadratically with the increase of the spatial
magnification. Using similar arguments and following the
same derivations, we deduce that the noise in one-
dimensional temporal SR grows only linearly with the
increase in the temporal magnification. Hence, larger
effective magnification factors are expected. Note that, in
the case of SR in space and in time simultaneously, the noise
amplification grows cubically with the magnification factor.

The next experiment illustrates that: 1) Large magnifica-
tion factors in time are feasible, (i.e., recovery of high
temporal frequencies, and not just a magnification of the
frame-rate). 2) The noise growths linearly with temporal
magnification factor.

To show this, we took four sets of 30 input sequences
with different exposure times. Each set was synthetically
generated by temporal blurring followed by temporal
subsampling, similar to the way described in Section 3
(Example 3). Small Gaussian noise was added to the input
sequences in a way that, in all of them, the temporal noise
would be the same (�in � 2:3 gray-levels, RMS). Figs. 16a,
16b, 16c, and 16d show matching frames from each set of
the simulated sequences with increasing exposure times.

We increased the frame-rate by factor 15 in each of the
sets using the temporal SR algorithm. No regularization was
applied to show the “pure” output noise of the temporal
SR algorithm without any smoothing. Figs. 16e, 16f, 16g,
and 16h are the corresponding frames in the reconstructed
sequences. It is vivid that: 1) The size of the ball is similar
in all cases, thus, the residual motion-blur in the output
sequences is similar regardless of the SR magnification (the
reconstructed shape of the ball is correct). Note that the SR
magnification factors M ¼ �in

�out
are defined as the increase

of temporal resolution (the reduction in the exposure-time)
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Fig. 14. Trade-offs between spatial and temporal resolution. (a) Two out of eight input sequences. (b)-(d) graphically display output discretization
options. (b) One option—apply SR to increase the density by a factor of 8 in time only. The spatial resolution remains the same. (c) Another
option—apply SR to increase the density by a factor of 2 in all three dimensions x, y, t. (d) A third option—increase the spatial resolution alone by a
factor of

ffiffiffi

8
p

ð� 2 : 8Þ in each of the spatial dimensions (x and y) maintaining the same frame-rate. Note that (b)-(d) are not the actual output of the
SR algorithm. The results appear in [22].

Fig. 15. Temporal versus spatial blur kernels.



and not as the increase of the frame-rate1 �tin=�tout. 2) The
measured noise was amplified linearly with the SR
magnification factor (Fig. 16i).

To conclude, it is evident that typical magnification
factors of temporal SR are likely to be much larger than in
spatial super-resolution. Note, however, that spatial and
temporal SR are inherently the same process. The differ-
ences reported above result from the different spatial and
temporal properties of the sensor. In special devices (e.g., a
nondiffraction limited imaging system [17]), where the
spatial blur of the camera lens is smaller than the size of a
single detector pixel, spatial SR can reach similar bounds as
temporal SR of regular video cameras.

6.3 Temporal versus Spatial “Ringing”

So far, we have shown that the rectangular shape of the blur
kernel has an advantage over a Gaussian shape in the
ability to increase resolution. On the other hand, the
rectangular shape of the temporal blur is more likely to
introduce a temporal artifact which is similar to the spatial
“ringing” ([11], [7], [3]). This effect appears in temporal
superresolved video sequences as a trail that is moving
before and after the fast moving object. We refer to this
temporal effect as “ghosting.” Figs. 17a, 17b, and 17c show
an example of the “ghosting” effect resulting in the
basketball example when temporal SR is applied without
any space-time regularization. (The effect in Fig. 17d is
magnified by a factor of 5, to make it more visible.)

The explanation of the “ghosting” effect is simple if we
look at the frequencies of the temporal signals. The SR
algorithm (spatial or temporal) can reconstruct the true
temporal signal at all frequencies except for specific
frequencies that have been set to zero by the temporal
rectangular blur. The system of equations (2) does not
provide any constraints on those frequencies. If such

frequencies are somehow “born” in the iterative process

due to noise, they will stay in the solution and will not be

suppressed. These “unsuppressed” frequencies are con-

nected directly to the shape of the rectangular blur kernel

through its exposure-time. If the exposure-time width is an

integer multiple of the wavelength of a periodic signal

(thus, the integral over the periodic signal is 0), then such a

signal cannot be handled by the SR algorithm. This is

illustrated in Fig. 17e where the “unsuppressed” frequen-

cies are shown as temporal sinusoidal signals in one of the

pixels of the “ghosting” trail.2 These frequencies can be

predicted (see [21]) from the number of input cameras, their

frame-rate, and the frame-rate of the output sequence.
The “ghosting” effect is significantly reduced by the

space-time regularization. It smoothes those trails in regions

where no spatial or temporal edges are expected. This is

why the ghosting effect is barely visible in our example

output videos.

7 CONCLUSIONS

We have shown that space-time SR can improve the

resolution of both static and dynamic scene components

without needing to segment them or to perform any motion

estimation within the sequence. We further showed that,

because motion blur is inherently a temporal phenomenon,

temporal SR (and not spatial SR) is the correct way to

address it. Space-time SR can be used for generating a high-

speed video camera from multiple slow video cameras, as

well as for combining information from still and video

cameras for producing high-quality video. We have further

provided analysis of the limitations and bounds of this

method.
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1. In spatial SR, there is no difference between the two since the diameter
of a typical PSF is close to a pixel size.

2. Those frequencies are also upperbounded by the frame-rate of the
output sequence.

Fig. 16. Temporal SR with large magnification factors. In the following example, we simulated four sets of 30 sequences with different exposure
times for each set. (a)-(d) display the corresponding frame from each set of the simulated low resolution sequences. The corresponding exposure-
times are indicated below each frame (where “1” =�tin). (e)-(h) display the corresponding frames in the reconstructed high resolution sequence with
frame-rate increased by a factor of 15. The resulting temporal SR magnification factors, M ¼ �in

�out
, are indicated below. Note that we denote the

magnification as the increase of temporal resolution (captured by the change in exposure time �) and not as the increase of the frame-rate (which is
captured by �t and is �tin

�tout
¼ 15 in all cases). The graph in (i) shows the RMS of the output temporal noise �out as a function of M, where the noise

level of all input sequences was �in ¼ 2:3.
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Fig. 17: “Ghosting” effect in video sequence. In order to show the “ghosting” effect caused by temporal SR, we applied the algorithm without any
regularization to the basketball example (see Section 3). One input frame of the blurred ball is shown in (a). The temporal SR matching frame is
shown in (b). (c) is the difference between the frame in (b) and a matching frame of the background. The “ghosting” effect is hard to see in a single
frame (c) but is observable when watching a video sequence (due to the high sensitivity of the eye to motion). In order to show the effect in a single
frame, we magnified the differences by a factor of 5. The resulting “ghosting” trail of the ball is shown in (d). Note that some of the trail values are
positive (bright) and some are negative (dark). (e) illustrates that, although this effect has spatial artifacts, its origin is purely temporal. As explained
in the text, due to the rectangular shape of the temporal blur, for each pixel (as the one marked in green), there are some specific temporal
frequencies (e.g., the sinusoids marked in black) that will remain in the reconstructed sequence.
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