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Abstract

Detection of high-redshift absorption in the optical spectra of quasars have

provided a powerful tool to measure spatial and temporal variations of physi-

cal “constants” in the Universe. It is demonstrated that high sensitivity to the

variation of the fine structure constant α can be obtained from a comparison

of the spectra of heavy and light atoms (or molecules). We have performed

calculations for the pair FeII and MgII for which accurate quasar and labora-

tory spectra are available. A possibility of 105 times enhanced effects of the

fundamental constants variation suitable for laboratory measurements is also

discussed.
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The first ideas about possible variation of the fundamental physical constants in the
expanding Universe were suggested by Dirac [1]. Now this subject is of particular current
interest because of the new possibilities opened up by the structure of unified theories, like
the string theory and M-theory, which lead us to expect that additional compact dimensions
of space may exist. The “constants” seen in the three-dimensional subspace of the theory
will vary at the same rate as any change occurring in the extra compact dimensions (see,
e.g. [2–4]).

Quasar absorption systems present ideal laboratories where to search for any temporal
or spatial variation of fundamental constants by comparing atomic spectra from the distant
objects with the laboratory spectra (see, e.g. [5] and references therein).

The energy scale of the atomic spectra is given by the atomic unit me4

h̄2 . In the absence
of any corrections, all atomic spectra are proportional to this constant and no change of
the fundamental constants can be detected. Indeed, any change in the atomic unit will be
absorbed in the determination of the red shift parameter 1+z = ω

ω′
which is also found from

the comparison between the cosmic and laboratory atomic spectra (ω′ is the red-shifted
frequency of the atomic transition and ω is this frequency in the laboratory). However,
any change of the fundamental constants can be found by measuring the relative size of
relativistic corrections, which are proportional to α2, where α = e2/h̄c is the fine structure
constant [6].

It would seem natural to find this change from measurements of the spin-orbit splitting
within a fine-structure multiplet. However, this way is not the most efficient, and it may
even give incorrect results, since other relativistic effects are ignored. The aim of this letter
is to demonstrate that the change in α produces an order of magnitude larger effect in
the difference between transition frequencies in heavy and light atoms (or molecules). We
have calculated the dependence of the transition frequencies on α for FeII (see eq.(8)) and
MgII (see eq.(6)) where accurate data exist both for laboratory and quasar spectra. Other
possibilities include comparisons of different optical transitions, for example s−p and p−d,
in the same atom or molecule, or comparisons of microwave transitions in molecules which
contain rotational and hyperfine intervals.

We also propose another interesting possibility: to use transitions between “accidentally”
degenerate levels in the same atom or molecule. This degeneracy would disappear after a
minor change in α. For example, in the Dy atom there are two degenerate opposite-parity
levels [7,8]. The frequency of the E1-transition between them is smaller then the hyperfine
splitting of each level. As a result, the relative effect of the change in α is enhanced by five
orders of magnitude (the ratio of the size of the relativistic effect to the transition frequency).
This case seems to be more suitable for laboratory experiments. Similar experiments with
“accidentally” degenerate molecular levels belonging to different electron terms are also
sensitive to the smallest changes in the ratio of the nucleon to electron masses since in this
case the difference in electron energies is compensated by the difference in the vibrational
and rotational energies of the nuclei. As is known, the nuclear mass is a function of the
strong interaction constants and vacuum condensates.

A competitive possibility is an accurate measurement of a very small difference between
the frequencies of two transitions in different atoms or molecules (like in the comparison with
the frequency standard). This small difference can be measured with a very high absolute
accuracy, up to few Hz, and one can have the same enhanced effects of the change in α or
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the nucleon mass.
Let us start our calculations from simple analytical estimates of the relativistic effects

in transition frequencies. Consider first the relativistic corrections to the frequency of an
atomic transition in a hydrogen-like atom. The relativistic correction to the energy level is
given by (see, e.g. [9])

∆n = −
me4Z2

2h̄2

(Zα)2

n3
(

1

j + 1/2
−

3

4n
), (1)

where Z is the nuclear charge, n is the principal quantum number and j is the total electron
angular momentum. This value of the relativistic correction can be obtained as an expecta-
tion value 〈V 〉 of the relativistic perturbation V , which is large in the vicinity of the nucleus
only. Therefore, the relativistic correction ∆ is proportional to the electron density near the
nucleus |Ψ(r < a

Z
)|2 ∝ Z3

n3a3
(a is the Bohr radius, a

Z
is the size of the hydrogen-like ion). For

an external electron in a many-electron atom or ion the electron density near the nucleus is
given by the formula (see, e.g. [10]) obtained in the semiclassical approximation (n ≫ 1)

|Ψ(r <
a

Z
)|2 ∝

Z2

aZ

ν3a3
,

where Za is the charge “seen” by the external electron outside the atom, i.e. Za = 1 for
neutral atoms, Za = 2 for singly charged ions, etc.; ν is the effective principal quantum

number, defined by En = −me4

2h̄2

Z2
a

ν2
, where En is the energy of the electron. For hydrogen-

like ions ν = n, Za = Z. Thus, to find the single-particle relativistic correction, we should
multiply ∆ in Eq. (1) by the ratio of |Ψ(r < a

Z
)|2 in the multi-electron ion and hydrogen-like

ion. The result is

∆n = −
me4Z2

a

2h̄2

(Zα)2

ν3

[

1

j + 1/2
−

Za

Zν
(1−

Za

4Z
)

]

≃ En
(Zα)2

ν(j + 1/2)
. (2)

The second term in the square brackets is presented to provide a continuous transition from
the hydrogen-like ion Eq. (1) to the multi-electron ion Eq. (2). In multi-electron ions
(Z ≫ Za) this term is, in fact, a rough estimate based on the direct calculation of 〈V 〉. We
should neglect this small term since there are more important many-body corrections (the
accurate many-body calculations discussed below give approximately constant correction
term in square brackets with the value about −0.6).

We see that the relativistic correction is largest for the s1/2 and p1/2 states, where j = 1/2.
The fine structure splitting is given by

∆ls = E(p3/2)−E(p1/2) ≃ −∆(p1/2)/2 ≃ −∆(p3/2). (3)

In the quasar absorption spectra transitions from the ground state have been observed.
Therefore, it is important to understand how the frequencies of these transitions are affected
by the relativistic effects. The fine splitting in excited states is smaller then the relativistic
correction in the ground state, since the density of the excited electron near the nucleus is
smaller. As a result, the fine splitting of the E1-transition from the ground state (e.g., s−p)
is substantially smaller than the absolute shift of the frequency of the s− p transition. The
mean energy of the p-electron is defined as
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E(p) =
2

3
E(p3/2) +

1

3
E(p1/2) ≃ En(p)−

4

3
∆ls,

where En is the non-relativistic energy. Therefore, the relativistic shift of the mean s − p
transition frequency is given by

∆(p − s) ≃ −
4

3
∆ls − ∆(s1/2).

The relative size of the relativistic corrections is proportional to Z2, so they are small in
light atoms. Therefore, we can find the change of α by comparing transition frequencies in
heavy and light atoms. We stress that the most accurate and effective procedure to search
for the change of α must include all relativistic corrections and the analysis of all available
lines (rather then the fine splitting within one multiplet only).

Let us consider an example of the s−p transitions from the ground state in MgII (Z=12)
and FeII (Z=26) ions where accurate data exist for both laboratory and quasar spectra (see
detailed analysis in [11–13]). MgII is a simple system with one external electron above closed
shells. The frequency of the transition can be presented in the following form

E(3p1/2)− E(3s1/2) = El(3p1/2)−El(3s1/2) +K1[(
α
αl
)2 − 1]

E(3p3/2)− E(3s1/2) = El(3p3/2)−El(3s1/2) +K2[(
α
αl
)2 − 1]

(4)

K1 ≃ −2∆ls −∆(3s1/2) ,
K2 ≃ −∆ls −∆(3s1/2).

(5)

Here αl and El are the laboratory values of fine structure constant and energy, α and E are
the values at the distant object. The formulae (2)-(3) for the spin-orbit splitting ∆ls and
relativistic shift ∆(3s1/2) have been obtained in the single-particle approximation. There are
large corrections to these formulae due to partial electron screening of the nuclear potential,
which appears in the equation for the relativistic correction 〈V 〉, and due to a change of
the total atomic potential acting on external electron when we change α. Indeed, the wave
functions of all inner electrons change due to the relativistic corrections (Ψ → Ψ + δΨ),
which in turn produces a change in the mean-field atomic potential (V → V + δV ). In
part these effects can be taken into account by using the experimental value of ∆ls = 91.6
cm−1 and the semiempirical formula for ∆(3s) = −2∆ls(

ν3p
ν3s

)3 = −3.37∆ls = −309 cm−1

obtained from Eqs. (2)-(3). This yields K1 = 126 cm−1 and K2 = 217.6 cm−1. To obtain
more accurate values of K1 and K2 we performed calculations of the MgII spectra using
many-body perturbation theory. We have used the complete set of the relativistic Hartree-
Fock energies and wave functions as a zero approximation and then calculated all second-
order correlation corrections in the residual electron-electron interaction (this technique is
described in [14]). This ab initio calculation reproduces the experimental energy levels of
the external electron with 0.2% accuracy (the single-electron energy levels in the many-
body problem are defined as the ionization energies with a minus sign). To find the value
of relativistic corrections we performed calculations for the two values of α : α = αl and
α = αl/2. The calculated relativistic corrections to the energy levels of the external electron
are :∆(3s) = −189.4, ∆(3p1/2) = −72.1, ∆(3p3/2) = 24.4, ∆ls = 96.5cm−1. Note that the
many-body corrections change the sign of ∆(3p3/2). The final results are the following:
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3s1/2 − 3p1/2 : ω1 = 35669.26 + 119.6[( α
αl
)2 − 1] cm−1

3s1/2 − 3p3/2 : ω2 = 35760.834(4) + 211.2[( α
αl
)2 − 1] cm−1 (6)

We changed slightly the values of the calculated coefficients K1 and K2 to reproduce exactly
the experimental value of the fine splitting ∆ls = 91.6cm−1. The laboratory frequency of
the 3s1/2−3p3/2 transition in the main isotope 24Mg (abundance 79 %) has been taken from
[12]. The increase of the frequencies (isotope shifts) for the transition in 25Mg (abundance
10 %) and 26Mg (abundance 11 %) are equal to 0.053 and 0.102 cm−1, respectively [12]. The
laboratory frequency of the 3s1/2 − 3p1/2 transition has been taken from [11].

Now consider FeII. We are interested in the E1-transition from the ground state
3d64s 6D9/2 to the members of the multiplets 3d64p 6D, 6F and 6P . Due to the
selection rule ∆J ≤ 1 the transitions from the ground state J = 9/2 can involve only few
components of the excited multiplets. The splitting between the nearby components of the
same multiplet (e.g. J = 9/2 and J = 7/2) are about 100 - 200 cm−1. On the other hand,
the total relativistic correction to the mean frequency of the 4s−4p transition is about 1800
cm−1, i.e. ∼ 10 times larger! Unfortunately, we can not measure the effect of this large
correction by measuring the frequency of 4s− 4p transitions in one element (FeII) since it
will be hidden in the definition of the red shift parameter 1 + z. Therefore, to make use of
this large effect we need to consider two elements with different relativistic shifts, e.g. MgII
and FeII, or different transitions in the same element, e.g. s− p and d− p.

We can also consider s− p transitions to the different multiplets. However, the relativis-
tic effects in the differences between the central energy points E0 of different multiplets (
D,F and P ) are substantially smaller ( ∼ 100 - 200 cm−1) than the relativistic shift of the
s− p transition frequency, since these differences are due to the dependence of the Coulomb
interaction Q between external electrons on the relativistic correction to their wave func-
tions (∆ω ∼ QZ2α2 where Q is the non-diagonal matrix element of the Coulomb interaction
producing configuration mixing). There are also small relativistic corrections to the inter-
val between the different multiplets due to the second order in the spin-orbit interaction.
However, the relativistic effect in the difference of the frequencies of particular components
of different multiplets can be larger. The maximal relativistic shift in the differences of the
FeII frequencies (for the transitions which have been observed in the quasar spectra) is 387
cm−1 in the difference between 6F9/2 and 6P7/2 (see below).

In principle, approximate calculations of the average relativistic frequency shift of the
4s − 4p transition and the dependence of the fine structure intervals on α could be done
using semiempirical formulae (2) - (5) which give average the shift 1550 cm−1, and laboratory
experimental data. However, to calculate accurately the relativistic shift for each transition
we performed relativistic many-body calculations for energy levels of FeII.

1. We used averaged relativistic Hartree-Fock potential of the FeIII d6 state to generate
a complete set of the zeroth approximation wave functions and energies.

2. Correlations of the second-order in the residual Coulomb interaction between the va-
lence and core electrons were included by means of the correlation potential (self -
energy operator) method [14].

3. Most of the valence correlations were included by means of a configuration interaction
method. Excited configurations were constructed from the s, p and d single-electron
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Hartree-Fock states with n ≤ 6 (17 single-electron orbitals). Only those configurations
were included that can be obtained by a single or double-electron excitation from the
main configuration. Thus, the total number of configurations was few hundred. This
is a rather small-scale configuration interaction and full convergence was not achieved.
However, good agreement with experimental data for the energy levels shows that a
greater part of the valence correlations were included.

4. To imitate the effect of higher-order many-body corrections we introduced two fitting
parameters. The ab initio correlation potentials for the s and p electrons were mul-
tiplied by the factors fs = 0.94 and fp = 0.9, respectively. These factors imitated
the effect of screening of the Coulomb interaction between the core and valence elec-
trons which reduces the correlations between these electrons (accurate calculation of
this screening has been done in [14]). The values of fs and fp were chosen to fit the
ionization energies of the 3d64s and 3d64p states.

To find the dependence of frequencies on α we use the following formula for the energy levels
within one fine-structure multiplet:

E = E0 +Q1((
α

αl
)2 − 1) +K1(LS)(

α

αl
)2 +K2(LS)

2(
α

αl
)4. (7)

Here L is the total orbital angular momentum and S is the total electron spin. We introduce
an (LS)2 term to describe deviations from the Lande interval rule. There are two sources of
the (LS)2 term: the second order in the spin-orbit interaction (∼ (Zα)4 = 1.3× 10−3) and
the first order in the spin-spin interaction (∼ α2 = 5.3 × 10−5). In FeII the second-order
spin-orbit interaction is larger. Therefore, we first fitted the experimental fine structure
intervals to find K1 and K2 (numerical calculations give close values of K1 and K2). Then
we used numerical calculations for α = αl and α = αl/2 to find the dependence of the
configuration centers E0 on α (coefficient Q1). The coefficients Q1, K1 and K2 are presented
in table I. Very accurate values of the laboratory frequencies (α = αl) can be found in [13].
The errors are about 0.003 cm−1. The Fe atom has one dominating isotope 56Fe (92 %) and
small isotope shifts. Now we can use Eq. (7) and table I to calculate the frequencies of the
E1 transitions from the ground state (in cm−1) as functions of α:

6D J = 9/2 ω = 38458.9871 + 1394x+ 38y,
J = 7/2 ω = 38660.0494 + 1632x+ 0y,

6F J = 11/2 ω = 41968.0642 + 1622x+ 3y,
J = 9/2 ω = 42114.8329 + 1772x+ 0y,
J = 7/2 ω = 42237.0500 + 1894x+ 0y,

6P J = 7/2 ω = 42658.2404 + 1398x− 13y,

(8)

where x = ( α
αl
)2 − 1, y = ( α

αl
)4 − 1. One can use Eqs. (6) and (8) to fit FeII and MgII lines

in the quasar spectra and find the variation of α. Note that besides FeII one can use s− p
transitions from the ground state of GeII, ZnII, NiI, FeI, MnII, CaI and CaII, where the
relativistic corrections have the same order of magnitude, and any light atom besides MgII.

One more interesting possibility more suitable for a laboratory experiment is to use tran-
sitions between “accidentally” degenerate levels in the same atom. Such meta-stable levels
exist, for example, in the Dy atom: two J = 10 opposite parity levels 4f 105d6s and 4f 95d26s
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lying 19797.96 cm−1 above ground state.( This pair of levels was used to study parity non-
conservation in Refs. [7,8]). There are other examples of “accidentally” degenerate levels
in the rare-earth and actinide atoms and many close levels in other heavy atoms and ions
(in the absence of degeneracy one should look for s − d or s − p transitions where the rel-
ativistic effects are larger). In the case of “accidental” degeneracy the contributions of the
relativistic corrections to the frequency of the E1 transition in a heavy atom (∼ 1000cm−1)
is compensated by the difference in the Coulomb interaction energies of the two configura-
tions. However, if α varies with time, this compensation will eventually disappear. Thus,
we have a correction ∼ 1000 cm−1(( α

αl
)2 − 1) to the very small ( ¡ 0.01 cm−1) frequency

of the transition. One can measure, for example, the time dependence of the ratio of fre-
quencies for transitions between the hyperfine components of these two states. In the case
of “accidentally” degenerate levels belonging to different electron terms in a molecule one
can have enhanced effects of the change of both α and the nucleon mass. In the latter case
the enhancement factor is the ratio of the vibration energy to the small frequency of the
transition.

We are grateful to O. Sushkov and D. Budker for useful discussions.
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TABLES

TABLE I. Relativistic energy parameters of some FeII multiplets (cm−1) (Eq. (7))

Multiplets E0 K1 K2 Q1

6D 38686.19 -53.034 1.5189 1659
6F 42168.91 -27.136 0.04741 1826
6P 43078.15 -162.602 -2.145 1805

9




