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Abstract

Conventional video summarization methods focus pre-

dominantly on summarizing videos along the time axis, such

as building a movie trailer. The resulting video trailer tends

to retain much empty space in the background of the video

frames while discarding much informative video content

due to size limit. In this paper, we propose a novel space-

time video summarization method which we call space-time

video montage. The method simultaneously analyzes both

the spatial and temporal information distribution in a video

sequence, and extracts the visually informative space-time

portions of the input videos. The informative video portions

are represented in volumetric layers. The layers are then

packed together in a small output video volume such that

the total amount of visual information in the video volume

is maximized. To achieve the packing process, we develop

a new algorithm based upon the first-fit and Graph cut op-

timization techniques. Since our method is able to cut off

spatially and temporally less informative portions, it is able

to generate much more compact yet highly informative out-

put videos. The effectiveness of our method is validated by

extensive experiments over a wide variety of videos.

1. Introduction

The rapid increase of the amount of on-line and off-line

video data necessitates development of efficient tools for

fast video browsing. Video summarization [6, 14, 13] is

one approach toward tackling this problem, in that it auto-

matically creates a short version of the original input video.

Summarized video content is important for many practical

applications such as archiving 24-hour security videos and

providing easy access to large sets of digital video docu-

mentaries.

This paper addresses the problem of automatically syn-
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Figure 1. Idea of the space-time video montage.

thesizing a new short/small video from a long input video

sequence by extracting and fusing the space-time informa-

tive portions of the input video. Unlike prior video summa-

rization methods, our method is not limited to the frame-

basis, but uses an arbitrary space-time volume that is ex-

tracted as the informative video portion. The extracted 3D

informative video portions are packed together in the output

video volume in a way in which the total visual informa-

tion is maximized. This approach generates a compact yet

highly informative video that tries to retain most informa-

tive portions of the input videos.

Prior works on video summarization [6, 14, 13] have

typically been based on a two-step approach. First, video

streams are divided into a set of meaningful and manageable

segments called shots. Then key frames were selected ac-

cording to criteria from each video shot to generate a sum-

mary video. Although these approaches can extract some

basic information of the video, they suffer a common dis-

advantage. They are all frame-based, i.e. they treat a video

frame as a non-decomposable unit. Therefore, the result-

ing video tends to appear to be a fast-forward version of

the original video while retaining a large amount of empty

space in the video frame background.

Our approach is built upon the idea that some space-time

video portions are more informative than others. Consider-

ing that visual redundancy exists in videos, the assumption

is apparently correct. However the definition of “informa-
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tive” is not straightforward since it involves the problem of

image understanding. There has been extensive work aimed

at extracting salient image/video parts [11, 8, 15]. In gen-

eral, video summarization methods try to determine impor-

tant video portions while relying on studies of pattern anal-

ysis and recognition.

In our method, we extract and represent space-time in-

formative video portions in volumetric layers. The idea of

layered representations was introduced by Wang et al. [16]

in computer vision and has been widely used in many dif-

ferent contexts [2, 17]. The layered representation has of-

ten been used for describing regional information such as

foreground and background or different objects with inde-

pendent motion. Here, we use the layered representation

for depicting saliency distribution. A layer is assigned to

each high-saliency video portion, each of which represents

a different saliency distribution.

1.1. Proposed approach

We try to develop an effective video summarization

technique that can generate a highly informative video,

in which the space-time informative portions of the input

videos are densely packed.

This paper has three major contributions:

Space-time video summarization. Our method treats the

informative video portions as a space-time volume without

being limited by a per-frame basis. It allows us to develop a

new video summarization method which can generate com-

pact yet highly informative summary videos.

Layered representation of informative video portions.

We propose an idea of representing informative video por-

tions in the form of volumetric layers such that each layer

contains an informative space-time video portion. We call

the volumetric layer a saliency layer. The saliency layers

are used to compute the optimal arrangement of the input

video portions for maximizing the total amount of informa-

tion in the output video.

Volume packing and merging algorithm. To achieve the

goal of packing the informative video portions, we develop

a new 3D volume packing and merging algorithm based

upon the first-fit algorithm [5] and Graph cut [4] optimiza-

tion technique. Using this method, the saliency layers are

packed and merged together in the output video volume to

generate the final montaged video.

In the rest of the paper, we first formulate the problem

of space-time video montage in Sec. 2. In Sec. 3, we de-

scribe the detailed algorithm of our space-time video mon-

tage method. We show the experimental results in Sec. 4

followed by conclusions in Sec. 5.
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Figure 2. Overview of the space-time video montage.

2. Overview of Space-time Video Montage

The problem of space-time video montage consists of

three sub-problems, i.e., finding informative video portions,

layer segmentation of informative video portions and pack-

ing them in an output video volume. In this section, we

present an overview of the problem of space-time video

montage and notations which are used in the rest of the pa-

per.

Finding informative video portions. The first prob-

lem in space-time video summarization is finding infor-
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mative video portions from the long input video sequence

V . Defining the amount of information is a difficult

problem since it requires image understanding. There ex-

ist many methods that try to extract saliency from im-

ages/videos [11, 8, 15]. The actual implementation of our

saliency measure will be detailed in Sec. 3. Supposing that

we are able to assign saliency values to all the video pixels,

we are able to obtain a saliency volume S that is associated

with the input video volume V .

Layer segmentation. The saliency volume S may con-

tain a number of isolated informative portions where high-

saliency values are assigned. Here we introduce the idea

of saliency layers to separately treat those informative por-

tions. The saliency layers S = {Sj : j = 1, . . . , n} are ex-

tracted from the original saliency volume S, where n is the

number of layers. We use the notation Sj to represent the

j-th layer.

Packing saliency layers. The problem of packing salient

video portions into an output video volume such that the to-

tal saliency value grows to its maximum and can be viewed

as a variant of the Knapsack problem [7], which is a classic

combinatorial optimization problem. The goal of the Knap-

sack problem is to pack a set of items into a limited size

container such that the total importance of items becomes

maximum. Although our problem is similar to the Knap-

sack problem, the following differences exist: input items

are video volumes, each of which can have a larger volume

than the output volume; every video pixel in the video vol-

umes is associated with its importance; and input items can

overlap each other.

Denoting the output video volume as Vo and the asso-

ciated saliency volume as So, our goal is to pack the input

video volume V into the output video volume Vo in a way

that So contains maximal saliency from S. It is equiva-

lent to finding the optimal space-time translations xj of the

saliency layers Sj which maximizes the following objective

function:

∑

p∈So

f
(

Sj(p− xj)
)

, (1)

where f(·) is the function which evaluates the saliency

value for each pixel p = (x, y, t)T . For instance, f(·) can

be defined as f(·) = maxj(·) which takes the maximum

saliency value at a pixel where the saliency layers are over-

lapped. Since the saliency layers are bounded by the orig-

inal input video volume, it follows Sj(x) = 0 if x /∈ Sj .

Once the positions xj are determined, the color values of

the output video Vo are assigned by composing the input

video according to the arrangement of the saliency layers.

In the case of f(·) = maxj(·), for instance, by denoting

V (p) to represent the color value at the pixel p in the video

volume V , a simple form of the composition can be de-

scribed as

Vo(p) =
{

V (p− xj) : j = argmax
j

(

Sj(p− xj)
)}

. (2)

In the following sections, we describe the implementation

details to solve this problem.

3. Implementation

In this section, we describe the details of the algorithm.

The overview of the proposed method is illustrated in Fig. 2.

Our algorithm consists of three major stages: (1) finding

informative video portions, (2) layer segmentation of the

saliency volumes and (3) packing saliency layers. In the

following subsections, we describe the implementation de-

tails of each stage.

3.1. Finding informative video portions

In order to determine salient portions in video, we de-

fine a spatio-temporal saliency measure using the spatio-

temporal contrast. Our spatio-temporal saliency S(·) at a

video pixel position p is defined using the neighboring pix-

els q ∈ Q as

S(p) = GS
{

∑

q∈Q

dS(p,q)
}

, (3)

where the distance function dS denotes the stimulus mea-

sure and GS is a Gaussian smooth operator with σ = 3.0.

We define dS as the l2-norm color distance:

dS(p,q) = ||I(p) − I(q)||2, (4)

where I(·) is the color vector in the LUV space.

Once the saliency values are computed for all of the pix-

els in the video volume, the saliency values are normalized

to the range of [0, 1].

3.2. Layer segmentation of saliency volumes

In the original volumetric saliency map S, there exist a

set of high saliency portions in a low-saliency background.

In order to treat the high saliency portions separately, we

perform layer segmentation of the volumetric saliency map

so that each layer only contains one salient portion. The

layer segmentation consists of three steps: (a) segmenta-

tion of high saliency portions, (b) morphological growing

of saliency portions and (c) assignment of negative saliency

values.

(a) Segmentation of high saliency portions. The first stage

of the layer segmentation is generating saliency blobs that

represent the high-saliency portions in the input video. To

locate the high-saliency portions and separate them from
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their background, we first group the original saliency val-

ues in S into three different groups, i.e., high, mid and low-

saliency groups. These groups are considered the informa-

tive parts, the skirts of the informative parts, and the back-

ground portions. To achieve the grouping, K-means clus-

tering is applied with K = 3. When n isolated saliency por-

tions are found, n saliency blobs B = {Bj : j = 1, . . . , n}
are generated. The blob Bj represents a set of pixels in the

corresponding j-th high-saliency video portion.

(b) Dilation of saliency blobs. Once the saliency

blobs B are extracted, we generate mask volumes

M = {Mj : j = 1, . . . , n} from B in order to compute the

dilation of the saliency blobs. This dilation operation tries

to simulate the spread of the high-saliency portions. Using

the Gaussian filter, the mask volume Mj for the saliency

blob Bj is generated by the following equation:

Mj(p) = exp

(

−
d(p, Bj)

2

2σ2

M

)

∀p ∈ Sj , (5)

where the distance function d is defined as

d(p, Bj) = min
q∈Bj

‖p− q‖. (6)

In Eq. (5), the Gaussian kernel sigma σM controls the size

of dilation and is set to 50 in our experiments. The mask

volumes Mj are then used to generate the saliency layers

S = {Sj} by taking the product with the original saliency

volume S for each pixel p as

Sj(p) = Mj(p)S(p) ∀p ∈ Sj . (7)

(c) Assigning negative saliency values. At the last step

in the layer segmentation, negative saliency values are as-

signed to each layer Sj . In the saliency layers S, positive

saliency values are assigned in each layer to represent the

corresponding salient video portion. Besides that, the nega-

tive saliency values are used to indicate the other salient por-

tions that appear in other layers. This is equivalent to reduc-

ing the importance of the pixels in a specific layer, when the

pixels are important in the other layers. This helps reduce

the possibility of multiple appearances of the same salient

portions in the output video. To assign negative saliency

values, Sj is updated by:

Sj(p)← Sj(p)−
∑

k 6=j

Sk(p) ∀p ∈ Sj . (8)

After the above three steps, the saliency layers S are ex-

tracted from the original volumetric saliency map S.

3.3. Packing saliency maps

Given the saliency layers S, this step tries to find the

optimal arrangement of S in the output video volume Vo

such that Vo will contain the maximal informative portions

of the input video.

In our approach, we adopt a multi-resolution implemen-

tation of the first-fit algorithm [5] to efficiently compute the

solution from the large-scale data. The first-fit algorithm

is a sequential optimization algorithm that first orders the

items and places the items one-by-one in the container. In

our case, the saliency layers S are ordered by the size of

the corresponding saliency blobs B. The major reason for

choosing this approach is that the largest-block-serve-first

approach is known to result in denser packing [5]. Here, we

assume that the saliency layers S are ordered in descend-

ing order, i.e., the smaller index represents the larger size.

We use the output saliency volume So which has the same

volume as Vo to achieve the optimization. The packing pro-

cess consists of two steps: (a) positioning the saliency layer

and (b) merging saliency layers. The algorithm proceeds

sequentially starting from i = 1 to n with an initialization

that fills the output saliency volume So with −∞. We also

prepare for the output saliency blob Bo for the computation,

which is initialized by filling with zeros.

(a) Positioning the saliency layer We seek the optimal po-

sition xj for the saliency layer Sj which maximizes the to-

tal saliency value in So. To achieve this, multi-resolution

search is performed in a coarse-to-fine manner. It first

searches all possible positions in the coarse scale and re-

fines the position xj by searching the local region in the

finer scale. The amount of saliency gain ∆So in the output

saliency volume So is computed by

∆So(xj) =
∑

p∈Vo

{Sj(p− xj)− So(p)} , (9)

and the optimal position x̂j for the saliency layer Sj is

obtained by finding the position xj which maximizes the

saliency gain by

x̂ = arg max
x

{∆So(x)}. (10)

(b) Merging saliency layers

Once the optimal position x̂j is determined, the saliency

layer Sj is merged to the output saliency volume So in this

step. At the same time, color values are simultaneously as-

signed to the output video. The straightforward approach

of merging two saliency volumes So and Sj is finding the

maximum saliency value for each pixel p. In this case, the

saliency value So and the color value Vo at the pixel p are

determined by

So(p) ← max{So(p), Sj(p− x̂j)}, (11)

Vo(p) = V (p− x̂j) if Sj(p− x̂j) > So(p).

However, this approach may produce a choppy result since

it is a local operation that does not consider the connectiv-

ity of the video portions. In our approach, we try to gen-

erate a visually plausible output video by merging saliency
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layers using three different soft constraints: a) maximizing

saliency, b) maximizing the continuity of high-saliency por-

tions and c) maximizing the color smoothness at the seam

boundaries.

To solve this problem, we build a graphical model

G = 〈N ,A〉 to represent the output saliency volume So.

N is the set of nodes which correspond to pixels p in So,

and A is the set of arcs which connect nodes. To simplify

the explanation, we denote the nodes in N as p while it

is used for representing pixels as well. Each node p has

six-neighboring nodes connected by arcs in the spatial and

temporal directions.

The problem of merging the saliency layer Sj and the

output saliency volume So can be viewed as a binary label-

ing problem, i.e., assigning each node p a label {0,1} rep-

resenting So and Sj , respectively. We also use the notation

pL to represent the label value of the node p. To efficiently

optimize the labeling problem under the soft constraints, we

define the energy function E as

E =
∑

p∈N

E1(p) + α
∑

p∈N

E2(p) + β
∑

p∈N

apq∈A

E3(p,q), (12)

where apq represents the arc which connects nodes p and

q. We solve the optimization problem using the Graph

cut [4, 1] algorithm. The terms E1, E2, and E3 correspond

to the saliency energy, likelihood energy and coherence en-

ergy, respectively, each of which corresponds to the soft

constraints a), b), and c) described above.

Saliency energy. In Eq. (12), E1 represents the energy term

which contributes to maximizing the total saliency value in

the output saliency volume So. E1(p) is defined as follows.

{

E1(p) = sm − (1− pL)So(p)− pLSj(p)
sm = max

p

{So(p), Sj(p)} . (13)

The term E1 is minimized when the total saliency value of

the merged saliency volume is maximized.

Likelihood energy. The term E2 regulates the continuity

of the high-saliency portions in both So and Sj . By measur-

ing the color similarity of the video pixels with the colors

in high-saliency portions, it evaluates the continuity of the

high-saliency portions. Similar to Li et al.’s method [12],

we take an approach of clustering the dominant colors and

measuring the similarity of the colors. To compute the dom-

inant colors, we use the saliency blobs Bj and Bo in order

to determine the high-saliency pixels. The color values ob-

tained via Bj and Bo are clustered independently by the

K-means method. We denote the computed mean colors by

{CBo

k } for representing the major colors associated to Bo

and {C
Bj

k } for the major colors associated to the saliency

layer Bj . We use 15 clusters (k = 1, . . . , 15) for both of

them throughout the experiments. For each node p, the min-

imum color distance between Vo(p) and the major colors

{CBo

k }is computed by

dBo

p
= min

k
‖Vo(p)− CBo

k ‖. (14)

The minimum color distance between V (p − x̂j) and the

major colors {C
Bj

k } is also obtained by

d
Bj

p = min
k
‖V (p− x̂j)− C

Bj

k ‖. (15)

Using these two color distances, the energy term E2(·) is
defined as follows.

8

>

>

<

>

>

:

E2(p
L=0) = 0, E2(p

L=1) = ∞, ∀(p ∈ Bo,p /∈ Bj)
E2(p

L=0) = ∞, E2(p
L=1) = 0, ∀(p /∈ Bo,p ∈ Bj)

E2(p
L=0) =

dBo
p

d
Bo
p +d

Bj
p

, E2(p
L=1) =

d
Bj
p

d
Bo
p +d

Bj
p

, ∀p ∈ else

(16)

With the energy term E2, pixels that are similar in color

with the salient blobs tend to be retained in the output mon-

tage.

Coherence Energy. The third term E3 in Eq. (12) is de-

signed to retain the color coherence at the seam between So

and Sj . It is penalized when a pair of neighboring nodes

(p,q) connected by the arc apq are labeled differently. We

define the coherence energy E3 as follows.

E3(p,q) = |pL − qL| · ‖H(p)−H(q)‖2, (17)

where H(x) is defined as

H(x) = (1 − xL)Vo(x) + xLV (x− x̂j). (18)

In Eq. (17), ‖ · ‖2 is the square of the l2 norm. As it can

be seen in Eq. (17), E3 becomes zero when the same labels

are assigned to p and q. Only when different labels are

assigned, e.g., (0, 1) and (1, 0), E3 is penalized by the color

discontinuity. E3 satisfies the regularity condition that is

necessary for graph representation.

Optimization and update. To achieve the merging step,

we apply the Graph cut algorithm only to the volume where

So and Sj are overlapped. Therefore, the size of the graph

G can be reduced to the overlapped volume. Once the labels

are assigned to all the nodes, the output saliency volume So

and the output video Vo are updated by

So(p)←

{

So(p) if pL = 0
Sj(p− x̂j) else

, (19)

Vo(p)←

{

Vo(p) if pL = 0
V (p− x̂j) else

. (20)

In addition, the output saliency blob Bo is also updated as

Bo(p)←

{

Bo(p) if pL = 0
Bj(p− x̂j) else

. (21)
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4. Experiments

We have tested our method on 30 different videos, all

of which are captured in the ordinary situations. The av-

erage number of frames is around 100, and the resolution

is 320 × 240. We set α = 1.0 and β = 50.0 in Eq. (12)

throughout the experiments. To calculate the saliency mea-

sure, the input video frames are first scaled down to 40×30
spatially. |Q| in Eq. (3) is a set of pixels in 5×5×5 window.

The final saliency value for each pixel is interpolated from

the scaled images. In this section, we show the result of

four different scenarios, i.e, spatial scale-down (the output

volume is spatially smaller than the input volume), tempo-

ral scale-down, space-time scale-down, and fusing multiple

different input videos.1

Spatial scale-down. We first show the result of spa-

tial scale-down, i.e., the output video volume is spatially

smaller than that of the input video while the temporal

length remains the same. The resolution of the original

video is 320 × 240 with 167 frames, and that of the output

video is 220×176 with the same number of frames. The top

row of Fig. 3 shows four frames from the original input im-

age sequence. By our space-time video montage method,

the output video that has the smaller spatial size is gener-

ated as shown in the bottom row of the figure. In the output

images, the boundaries of the different video portions are

drawn to clearly show the composition result.

Temporal scale-down. Fig. 4 shows the result of tempo-

ral scale-down, i.e., the output video volume is temporally

smaller than that of the input video while the spatial size re-

mains the same. The top two rows show eight images from

the original 270 frame video of resolution 320 × 240. The

bottom row shows five frames from the result which is 110
frame video of the same resolution. Since a drastic scene

change due to the camera panning and zoom-in exists, the

top row and the middle row seem to be of different scenes.

Our method is able to generate a short summary from these

types of videos by fusing the important portions in short

duration.

Space-time scale-down. The third result is the space-

time scale-down case, i.e., the output video volume is spa-

tially and temporally smaller than the input video volume.

The top two rows show eight images from the original

baseball scene video, which is 88 frames with resolution

320 × 240. The output video volume is 44 frames with

resolution 220 × 176. This input video has much visual

redundancy. By applying our method, the compact and in-

formative small video is successfully generated.

Fusing multiple videos. Our method aims at summariz-

ing a single long video sequence. For multiple videos, the

same method can be still applied. Here we show this ap-

1Supplementary material includes the movie files for all the experimen-

tal results shown in this section.

plication. Fig. 6 shows the result of fusing multiple videos

together into a single output video volume. In this experi-

ment, three input videos are packed and unified in the output

video. The top three rows show the images from the three

different video clips, each containing 69, 71, and 84 frames,

with resolution 320 × 240. The bottom row shows the re-

sult of our video montage. Here, we show several frames

from 60 frames of output with a resolution of 320 × 240.

As shown in the figure, our method works for fusing and

packing multiple video inputs, however, we would like to

point out that the result usually does not make sense due

to the simultaneous visualization of different subjects, e.g.,

basket ball and soccer.

5. Discussion and Conclusions

In this paper, we proposed the idea of space-time video

montage as a new approach to video summarization. The

proposed method extracts space-time informative portions

from a long input video sequence and fuses them together in

an output video volume. This results in a space-time mon-

tage of the input video where multiple portions from the

input video appear in the same frame at different positions.

Our method has been tested on a variety of videos and has

been shown to be able to produce compact and informative

output videos. We have shown different summarization sce-

narios including temporal scale-down, spatial scale-down,

spatio-temporal scale-down.

This approach is considered as a generalization of the

prior video summarization methods in that our approach is

not constrained by a frame-basis.

Limitations: Our method has a couple of limitations. First,

our algorithm works well for most of the videos; however,

it sometimes produces unsatisfactory results due to the lack

of an image understanding scheme. Fig. 7 shows the failure

case in which the visually less informative input Fig. 7(a)

dominates and pushes out the other input video (b) in the

output video (c). This type of results is observed when

the high-saliency values are assigned to the perceptually

less important video portions due to their high contrast val-

ues. This problem will be better handled by integrating

more sophisticated method such like Ke et al.’s event de-

tection [10, 9, 3]. Second, the proposed approach is com-

putationally expensive. Although we use a sequential op-

timization in the packing stage, it still spends the most of

computational time. For instance, fusing two 100 frame

videos of resolution 320×240 takes 180 seconds using a 2.2
GHz CPU without the harddisk I/O. We are investigating a

faster packing method by approximating the distribution of

the saliency values to a simple distribution model.

As mentioned, the quality of salient portion detection is

crucial. We would like to investigate on high-level features

such as face, text and attention models that would be able to

generate more meaningful summary videos.
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Figure 3. Result of spatial scale-down. The top row shows some frames from the original input image sequence, and the bottom row shows

the video montage result.

Figure 4. Result of temporal scale-down. The top two rows are some frames from the original input image sequence, and the bottom row

shows the video montage result.

Figure 5. Result of space-time scale-down. The top two rows are some frames from the original input image sequence, and the bottom row

shows the video montage result.
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Figure 6. Result of fusing three different video clips. The top three rows show several frames from the input videos. The bottom row shows

the video montage result.

(a) Input video #1 (b) Input video #2 (c) Output video

Figure 7. Failure case of fusing multiple input videos.
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