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1.1 Introduction

Multiple-element antenna arrays have an important role to play in both

improving the robustness of wireless transmission through spatial diversity

and increasing the throughput of wireless links through spatial multiplexing.

Indeed, a wide variety of coding and signal processing techniques have been

developed to realize one or the other of these benefits, or combinations of

the two.

In recent years there has been an increasing appreciation that the two

types of gains are inherently coupled. In particular, for a given antenna,

large robustness gains preclude the possibility of large throughput gains, and

vice-versa. While the detailed nature of the fundamental tradeoff between

these gains is rather complicated, in the high signal-to-noise ratio regime, the

scaling behavior of this diversity-multiplexing tradeoff takes a particularly

simple form.

To facilitate the use of this tradeoff by communication engineers in sys-

tem design, this chapter provides an intuitive development of the tradeoff.

In addition, we illustrate how a number of systems make these tradeoffs

efficiently in various regimes of interest. In the process, a variety of ad-

ditional interpretations and persectives on the underlying relationships are

developed,

An outline of the chapter is as follows. We begin with a basic channel

model and some definitions. We then proceed to develop and interpret the

efficient frontier of diversity-multiplexing tradeoffs. The remainder of the

chapter focusses on how to achieve different portions of the frontier, what it

means to operate on the frontier, and on how performance degrades when

operating away from the frontier.

3
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1.2 The Diversity-Multiplexing Tradeoff

1.2.1 Channel Models and System Definitions

We consider a multiple-input multiple-output (MIMO) wireless link with Nt

transmit and Nr receive antennas in a flat fading environment, so that the

Nr-dimensional complex baseband received signal takes the form

y =

√

SNR

Nt
· Hx + w (1.1)

with x denoting the Nt-dimensional transmitted signal, w denoting the white

Gaussian noise, and H denoting the Nt × Nr-dimensional random channel

matrix. Finally, we normalize the noise w and the transmitted signal x to

have unit variance entries, so that SNR is the overall signal-to-noise ratio of

the channel. We also use the notation ρ = SNR/Nt to denote the SNR per

transmit antenna for convenience.

In the scenario of interest, the channel matrix H varies with time. And

while there are a number of different models of such time-variation, we

adopt the block fading model in this chapter. Specifically, H is constant

within a block of T symbol periods, and varies independently from block to

block. We further assume that the blocks are long enough that the receiver

has effectively perfect knowledge of each realization of the channel matrix.

However, we restrict our attention to the case where there is no feedback,

so the transmitter only knows the channel statistics.

Multiple-antenna channels provides spatial diversity, which can be used to

improve the reliability of the link. In [Tarokh et al., 1998], it is shown that

for the multiple antenna channel, the pairwise error probability can be made

to decay as SNR
−NrNt at high SNR. The improvement of the reliability is

thus dictated by the SNR exponent of the error probability, which is referred

to as the diversity gain. Intuitively, the diversity gain corresponds to the

number of independent fading paths that a symbol passes through; in other

words, the number of independent fading coefficients that can be averaged

over to detect the symbol.

In addition to the spatial diversity gain, it is also well-known that using

multiple antennas at both the transmitter and the receiver allows higher data

rates to be supported [Telatar, 1995]. To see this, first note that with an

input with equal power on each antenna element, and for a fixed realization

of the channel, the mutual information between input and output is, in
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b/s/Hz,

I(x, y|H) = log det

(

I +
SNR

Nt
HH†

)

=

min{Nt,Nr}
∑

i=1

log(1 +
SNR

Nt
λi), (1.2)

where the second equality follows from the eigenvalue decomposition HH† =

UΛU† with Λ = diag(λ1, λ2, . . . , λmin{Nt,Nr}) and orthogonal U. From (1.2)

we see immediately that the effect of having multiple antennas is to provide

min{Nt, Nr} separate spatial subchannels over which to multiplex the data.

The ergodic capacity, with the operational meaning of the maximum rate

that can be reliably transmitted in a fast fading sceniro, is given by

C(SNR) = E [I(x, y|H)] =

min{Nt,Nr}
∑

i=1

E

[

log(1 +
SNR

Nt
λi)

]

, (1.3)

Thus, at high SNR, the ergodic capacity increases linearly with log SNR

according to the number of antennas, i.e.,

lim
SNR→∞

C(SNR)

log SNR
= min{Nt,Nr}

When we restrict our attention to codes over a single block (channel re-

alization), as will be our focus, we have to back off from this ergodic ca-

pacity (1.3) to achieve small error rates, but can still achieve significant

gains. To explore this, we consider rates that are a fixed fraction of this

ergodic capacity at high SNR, i.e, rates of the form R = r log SNR with

0 < r < min{Nt, Nr}, and evaluate the associated error behavior. The

value r can therefore be viewed as the spatial multiplexing gain.

Using (M,SNR) to denote a code with M codewords for a single block of

a multiple antenna channel having the specified SNR, and focussing on the

high SNR regime, the following more formal definitions are rather natural.

Definition 1 A spatial multiplexing gain r is said to be achievable if there

exists a sequence of (2TR(SNR),SNR) codes, with

lim
SNR→∞

R(SNR)

log SNR
= r (1.4)

such that the probability of error tends to 0 as SNR → ∞.

Definition 2 A spatial multiplexing gain r and a diversity gain d are said

to be simultaneously achievable if there exists a sequence of (2TR(SNR),SNR)
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codes, satisfying (1.4) and the error probability Pe(SNR) satisfying

lim
SNR→∞

log Pe(SNR)

log SNR
= −d (1.5)

For future convenience, we rewrite (1.5) as Pe(SNR)
.
= SNR

−d with
.
= de-

noting exponential equality.†
Before proceeding, note that the two gains concern inherently different

aspects of the channel, and thus two channels with the same multiplexing

gain may support vastly different diversity gains. As an illustration, con-

sider a pair of parallel scalar ergodic fading channels, with channel gains

h1 and h2 that are each equally likely to be 0 or 1. Such channels have an

ergodic capacity of log SNR at high SNR, corresponding to unit multiplexing

gain. However, if h2 = h1, i.e., the two channels fade in unison, the error

probability is 1/2 when coding over a single block, corresponding to zero

diversity gain. By contrast, if h0 = 1 − h1, a simple repetition scheme over

the single block can achieve the Gaussian channel error probability, which

decays exponentially in SNR, and therefore has an infinite diversity gain,

according to Definition 2.

Our focus in this chapter is to study the ability of the multiple antenna

channels to provide combinations of the diversity and the spatial multiplex-

ing gains and explore the fundamental tradeoff between how much each type

of gain one can achieve. As one extreme point, the maximum diversity gain

one can achieve is dmax = NtNr. This can be achieved when transmitting at

a fixed data rate, corresponding to a multiplexing gain r = 0. On the other

hand, from our earlier discussion the maximum spatial multiplexing gain

is rmax = min{Nt, Nr}. Communicating at a rate so close to the ergodic

capacity results in large error probability, corresponding to a diversity gain

d = 0. In the sequel, we explore the achievable (r, d) pairs between these

two extremes.

One can interpret the diversity-multiplexing tradeoff in the context of

traditional rate-reliability tradeoffs in communication theory. In particular,

while in traditional communication theory one examines achievable rate at

fixed SNR in the limit of large block lengths [Cover and Thomas, 1991],

in this case we are examining achievable rate at a fixed block length in

the limit of high SNR. Accordingly, we refer to the sequence of codes in

† Formally, we write f(SNR)
.
= SNR

b when

lim
SNR→∞

log f(SNR)

log SNR
= b.

The symbols
.

≥ and
.

≤ are similarly defined.
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the above definition, indexed by SNR, with 2Tr log SNR codeword in each

code, as a scheme. By studying the performance of a scheme, we focus

not on the design of specific codes, but rather on the structure of MIMO

codes. Examples of such schemes include random codes with the number

of codewords increasing with SNR, algebraic codes over QAM symbols with

the size of the QAM constellation increasing with SNR, etc.

With this interpretation, the multiplexing gain can be viewed as the num-

ber of bits reliably conveyed per dB of the SNR, where reliable means the

error probability can be driven to zero with increasing log SNR rather than

the block length L. Thus, while traditional communication theory examines

the exponential decay of error probability with blocklength, here we exam-

ine the exponential decay of error probability with log SNR. Furthermore,

the number of bits that can be conveyed is linear in log SNR just as it is in

block length L.

In our setup, we focus on transmitting at a fixed fraction of the maximum

multiplexing gain and examine the exponent in the decay of error probability

with log SNR for a fixed block length. By comparison, the traditional error

exponent analysis of Gallager focusses on transmitting at a fixed fraction of

capacity and examines the exponent in the decay of error probability with

blocklength L. Thus, there is a natural connection to traditional capacity

and error exponent analysis in communication theory; further discussion can

be found in, e.g., [Zheng and Tse, 2003].

Before proceeding, we should emphasize at this point that the measures

of reliability and rate provided by the definitions are rather coarse in some

respects. In particular, the reliability measure is invariant to changes in

coding gain, which scales the SNR inside the logarithm, and other such

constant factors. As such, two systems that achieve a particular diversity-

multiplexing operating point may not be equally attractive when subjected

to a finer scale analysis in which the effects of factors like coding gain man-

ifest themselves.

1.2.2 System Outage Characteristics

When the transmitter does not know the channel matrix and is coding within

the coherence time of the channel, two types of errors are possible at the

receiver. One type is due to noise realization, and the other due to the

channel realization. As we now develop, it is the latter that dominates the

error behavior in our scenario of interest.

Errors due to the channel realization occur as follows. Because the trans-

mitter must choose a transmission rate without knowledge of the channel
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Fig. 1.1. (a)Family of outage probability curves as functions of SNR for various
target rates R in the Nt = Nr = 2 case. (b) Tradeoff between increasing the data
rate and decreasing the error probability

matrix, it may choose a rate that even with the best possible coding and long

coherence times cannot be supported by the channel. This corresponds to

the rate R being higher than the mutual information of the realized channel,

and the corresponding error event, termed outage, is defined via

{I(x ; y |H) < R} (1.6)

Since the channel mutual information is a random variable I = I(x ; y |H),

there is a probability associated with this error event, which we denote using

Pout(R,SNR).

The overall error probability can be expressed in terms of the outage

probability according to

Pe(SNR) = P (error|outage)Pout(R,SNR)

+ P (error|no outage)(1 − Pout(R,SNR))

Conditioned on the outage event, the error probability is necessarily close

to one and thus the outage probability is an asymptotic lower bound on

the error probability, i.e., Pe(SNR)
.
≥ Pout(R,SNR). It is for this reason

that traditional space-time code design focusses on approaching the outage

behavior as closely as possible.

We can visualize the relationship between SNR, rate, and outage prob-

ability by plotting Pout as a function of SNR for various rates R. This is

depicted in Figure 1.1(a) for the case of two transmit and two receive an-

tennas. Each curve represents how outage probability decays with SNR for

a fixed rate R.

Observe that for each curve, corresponding to a fixed rate, at sufficiently
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high SNR the slope of the curve approaches 4, i.e., the outage probability

decreases by 104 for every 10 dB increase in SNR. This corresponds to the

maximum diversity gain of dmax = 4 available from the channel. Following

an individual curve corresponds to using increases in SNR exclusively for

improving the reliability of the link while keeping the data rate fixed. On

the other hand, for a fixed outage probability, increases in R move the

curves toward higher SNR. At sufficiently high SNR, the gaps between the

curves approaches 3 dB, i.e, the rate can increase by 2 b/s/Hz for every 3

dB increase in SNR. This corresponds to the maximum multiplexing gain

of rmax = 2 available from the channel. This horizontal transecting of the

curves corresponds to using increases in SNR exclusively for increasing the

data rate, while keeping the outage probability fixed.

More generally, we are interested in transecting these curves not horizon-

tally, but with some downward slope. Indeed, a coding scheme in our par-

lance corresponds to the resulting sequence of points on these plots whereby

as the SNR increases, the data rate increased and the error probability is

decreased so as to achieve both diversity and multiplexing gains simultane-

ously. Figure 1.1(b) shows these cross-cutting curves of various downward

slopes. As the figure reflects, there is a tradeoff between how much of each

type of gain can be obtained: a higher multiplexing gain, corresponding to

increase the data rate faster with SNR, will result in a lower diversity gain,

and vice versa.

1.2.3 The Efficient Frontier

The optimal tradeoff between the diversity gain and the multiplexing gain is

described by a function d∗(·) whereby d∗(r) gives the maximum achievable

diversity gain at each multiplexing gain r.

The optimal tradeoff in the case of independent, identically-distributed

Rayleigh fading between each pair of antennas, and sufficiently large coher-

ence times, i.e., T ≥ Nt +Nr −1, is developed in [Zheng and Tse, 2003]. For

this case, the tradeoff is given by the convex hull of the points (k, d∗(k)),

k = 0, 1, · · · ,min(Nt, Nr), where

d∗(k) = (Nt − k)(Nr − k). (1.7)

The function d∗(r) is plotted in Figure 1.2(a).

Before proceeding, it is worth noting that it is also shown that at any r,

the optimum achievable diversity gain d∗(r) is the same as the SNR exponent

of the outage probability, i.e., for any r,

Pe(SNR)
.
= Pout(R = r log SNR,SNR)

.
= SNR

−d∗(r). (1.8)
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Fig. 1.2. (a) The efficient frontier d∗(r) of diversity-multiplexing tradeoffs for a sys-

tem with Nt transmit antennas and Nr receive antennas, where K
def
= min(Nt, Nr).

(b) The efficient frontier for Nt = Nr = 2.

This means that the upper limit of the performance given by the outage

probability can actually be achieved. While this is not surpising in the limit

of infinite coherence time since one can drive noise-induced errors to zero

using good long codes, it is noteworthy that it also holds for finite coherence

times. In essence, it tells us that when using good signaling schemes, the

probability of error is asymptotically dominated by the outage probability,

and that the typical way of making an error in the MIMO fading channel is

from the channel being in a deep fade. In the sequel, we will develop some

intuition for this result. For this purpose, it will be sufficient to focus on

the 2 × 2 system, for which the optimal tradeoff curve is plotted in Figure

1.2(b).

We begin by relating the shape of the frontier to the dependence of error

probability on rate and SNR for optimal systems. To this end, in Figure

1.3(a) we plot the outage probability (1.8) as a function of SNR for different

values of r. To facilitate its interpretation, the curves of Figure 1.1(a) are

overlaid as gray lines. Dashed lines with slopes d∗(r) are also drawn to show

the match between the asymptotic expression (1.8) and the exact outage

probability.

The asymptotes corresponding to outage probability (1.8) are depicted

in the Bode-style plot of Figure 1.3(b). Such a plot reveals two distinct

regions of operation. The case where the rate is high relative to the SNR

corresponds to a heavily-loaded system, and its performance is captured by

the region of the plot above and to the right of the dashed line. Here the

slopes of the outage probability curves are flatter. By constrast, performance
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Fig. 1.3. (a) As rate grows with SNR, i.e., R = r log2(SNR), outage probability
Pout(R, SNR) decays with SNR with slope d∗(r). (b) Linearized approximation of
Figure 1.1(a), which emphasizes the two distinct regions of the Pout-SNR space
with differing curve slopes and horizontal spacings.

in the lightly-loaded regime is captured by the region below and to the left

of the dashed line. Here the slopes of the outage curves are steeper. The

dashed boundary is the line with Pout = SNR
−1, and corresponds to the

(1, 1) point of the frontier curve in Figure 1.2(b). More generally, there

are min{Nt, Nr} distinct regions of operation, one corresponding to each

piecewise linear segment of the frontier d∗(r).

Note that associated with each of these regions is a set of inherently

different local tradeoffs around each operating point in the region. To see

this, observe from Figure 1.3(b) that in the heavily-loaded region, the lines

have slope 2 and spacing of 1.5 dB for every 1 b/s/Hz increment in rate.

Thus 3 dB of additional SNR can be used to either increase rate by 2 b/s/Hz

or reduce error probability by a factor of (1/2)2. More generally, one can

achieve any linear combination of the two, i.e., for any α ∈ (0, 1), increase

rate by 2α b/s/Hz while decreasing the error probability by (1/2)2(1−α).

In terms of Figure 1.2(b), this local tradeoff corresponds to a straight line

connecting (r, d) = (0, 2) and (2, 0), which is an extension of the lower

segment of the frontier down to r = 0. As we would expect, the maximum

diversity gain of 4 is not achievable in this heavily-loaded region. Similarly,

when we operate in the lightly-loaded region, the local tradeoff corresponds

to an extension of the upper segment of the frontier down to d = 0, i.e., the

straight line connecting (0, 4) and (4/3, 0). In this region, it is the maximum

multiplexing gain of 2 that is not achieved.

To understand why the efficient frontier of diversity-multiplexing tradeoffs

takes the particular form it does, it is convenient to rewrite the outage event
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(1.6) in the form







min{Nt,Nr}
∏

i=1

(1 + SNR/Nt · λi)
.
< SNR

r







. (1.9)

If all the eigenvalues λi are large relative to the noise threshold, then each

corresponding spatial subchannel is operating in the high-SNR regime, con-

tributing a factor SNR to the lefthand side of (1.9), and no outage occurs.

However, if some of the eigenvalues are small relative to the noise threshold,

then those subchannels are operating in the low-SNR regime and do not

contribute a factor of SNR. Thus, if there are not at least r large eigen-

values, outage occurs. From this perspective, the piecewise linear nature of

the diversity-multiplexing frontier reflects that eigenvalues of HH† are gen-

erally not all equal, i.e, that the corresponding spatial subchannels are not

all equally strong.

This behavior underlies the distinct operating regions in Figure 1.3(b).

In particular, in this case, when the eigenvalues are ordered according to

λ1 ≥ λ2, the smaller eigenvalue λ2 takes values close to zero with a much

larger probability than λ1 does. Consequently, when the system is heavily-

loaded (r ≥ 1), the tradeoff curve is flatter since an outage occurs whenever

λ2 alone is small. By contrast, when the system is lightly-loaded (r ≤ 1),

both λ1 and λ2 must be small to get an outage, thus the tradeoff curve is

steeper. While this can be quantified by deriving the joint distribution of

ordered eigenvalues [Zheng and Tse, 2003], in the sequel we make use of a

different decomposition of the channel instead, which also provides useful

insights into code design.

For a 2 × 2 system, the mutual information (1.2) of the realized channel

can be rewritten as

I(x ; y |H) = log
(

1 + ρ‖H‖2 + ρ2|det(H)|2
)

. (1.10)

From this we see that det(H) being large relative to the noise is sufficient

for both spatial subchannels to be in the high SNR regime (enabling a mul-

tiplexing gain of two), and that ‖H‖ being large relative to the noise is suf-

ficient for at least one subchannel to be in the high SNR regime (enabling a

multiplexing gain of one).

Using the factorization H = QR, where Q is unitary and

R =

[

r11 r12
0 r22

]

, (1.11)
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we see

‖H‖2 = r2
11 + |r12|2 + r2

22 and |det(H)|2 = r2
11r

2
22. (1.12)

Letting h1 and h2 denote the columns of H, and h2‖1 and h2⊥1 denote the

components of h2 in the direction along and perpendicular to h1, we see

that

r2
11 = ‖h1‖2 and |r12|2 = ‖h2‖1‖2 and r2

22 = ‖h2⊥1‖2 (1.13)

Thus for the case of interest where H has independent identically distributed

circularly symmetric complex Gaussian entries, r2
11, |r12|2, and r2

22 are chi-

squared random variables of order 4, 2, and 2, respectively. Since for α < 1

we have Pr[χ < α]
.
= αk/2 when χ is chi-squared of order k, having a small

r2
11 is less likely than having either small |r12|2 or r2

22. Therefore, all of r2
11,

|r12|2, and r2
22 need to be small in order for ‖H‖2 to be small, while |det(H)|2

being small is most likely due to r2
22 being small.

Now we are ready to observe the difference between the typical outage

events for the cases r > 1 and r < 1, the heavily loaded and the lightly

loaded regimes, respectively. For r > 1, the outage event

{

log
(

1 + ρ ‖H‖2 + ρ2r2
11r

2
22

)

≤ r log ρ
}

occurs when ρ2r2
11r

2
22 ≤ ρr. This happens typically when r2

22 is as small as

ρ−(2−r), with a probability of the order ρ−(2−r). Intuitively, when h1 and

h2 are closely aligned with each other, i.e., ‖h2⊥1‖2 = r2
22 is abnormally

small, the channel matrix H becomes close to singular, and less rate is

supported by the weaker spatial channel. In the extreme, when r2
22

.
= ρ−1,

with a probability ρ−1, the weaker spatial channel supports zero multiplexing

gain, and can be viewed as completely shut off. For even lower rate r <

1, the outage event occurs only if both ρ ‖H‖2 and ρ2r2
11r

2
22 are less than

ρr. Typically, this happens when the weaker spatial channel is shut off,

r2
22

.
= ρ−1, and the stronger spatial channel can barely support the rate,

r2
11 + |r12|2 .

= ρ−(1−r). Since the stronger channel is better protected, there

is a steeper slope in the tradeoff curve when r < 1.

For a general Nt × Nr channel, the tradeoff result suggests that k spatial

subchannels are operating in the high SNR regime, supporting a multiplex-

ing gain of r = k, with probability SNR
−(Nr−k)(Nt−k), corresponding to the

typical outage event that the min{Nt,Nr} − k smallest eigenvalues of HH†

are all of the same order as the noise.
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1.3 Achieving Diversity-Multiplexing Frontier

To develop additional insights into diversity-multiplexing tradeoffs, we now

turn our attention to developing MIMO coding schemes that achieve differ-

ent portions of the efficient frontier. In the process we see how the structure

of the associated schemes determines their diversity-multiplexing character-

istics. While this section focuses on the two-transmit two-receive antenna

case, many of the design principles apply to larger systems.

1.3.1 Achieving Full Diversity Gain or Full Multiplexing Gain

This section examines two well-known low-complexity MIMO coding schemes,

each achieving exactly one point of the diversity-multiplexing frontier. One

achieves the full multiplexing gain, while the other achieves full diversity.

1.3.1.1 Achieving Full Diversity Gain

The Orthogonal Space Time Block Code (OSTBC) [Alamouti, 1998] em-

ploys a smart repetition to achieve the full diversity gain. It only applies to

systems with two transmit antennas. It encodes two independent informa-

tion symbols, s1 and s2, into the transmit signal matrix X using,

X =

[

s1 −s∗2
s2 s∗1

]

, (1.14)

where (·)∗ indicates conjugation. The OSTBC effectively transforms a 2× 2

MIMO channel to a scalar channels with channel gain ‖H‖. When OSTBC

is combined with capacity-achieving error correction codes (ECC) designed

for scalar channels, it is possible to communicate at rates

R < log2

(

1 + ρ‖H‖2
)

. (1.15)

The associated diversity-multiplexing tradeoff can be derived using

Pe = Pr
[

log2

(

1 + ρ‖H‖2
)

< R = r log2 ρ
]

=̇ Pr
[

‖H‖2 < ρr−1
]

= ρ4(r−1) = ρ−d(r). (1.16)

Therefore, the tradeoff achieved is d(r) = 4(1−r), i.e., a straight line between

(0, 4) and (1, 0), which is plotted in Fig. 1.4(a). It shows that only the full

diversity point of the frontier is achieved. The lesson is that by transmitting

each information symbol twice using different antennas at different times,

each symbol interacts with all entries of the channel matrix H. As a result,

the dominant error event is when all entries of H are small. Thus, the full

diversity gain is achieved. This is true even when there are more than two
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Fig. 1.4. (a) Diversity-multiplexing tradeoff achieved by OSTBC. (b) Comparison
of the OSTBC error probability curves (dashed) and the channel outage probability
curves (thin solid) as functions of SNR for rates 1, 4, 8, 12, and 16 b/s/Hz.

receive antennas. The drawback of OSTBC is that the maximum multiplex-

ing gain achieved is only 1 since only one symbol is effectively transmitted

at a time due to the repetition. It is only in the two-transmit one-receive an-

tenna case that OSTBC achieves the optimal diversity-multiplexing tradeoff

[Zheng and Tse, 2003].

The error probability performance of OSTBC can be visualized by plotting

Pr
[

log2

(

1 + ρ‖H‖2
)

< R
]

as functions of SNR for various R, via Monte-

Carlo simulation, as shown in Fig. 1.4(b) with dashed lines. These curves

approximately form a set of parallel lines with slopes of 4 and horizontal

gaps of 12 dB per 4 b/s/Hz, i.e., 1 b/s/Hz for every 3 dB. The slopes and

gaps are consistent with the tradeoff points (0, 4) and (1, 0).

The channel outage probability curves are also plotted in Fig. 1.4(b) as

thin solid lines for comparison. Below R = 4 b/s/Hz, the OSTBC curves

are actually very close to the outage performance limit. This is because

(1.15) differs from the channel capacity expression in (1.10) only by missing

the second order term, which is negligible at low SNR. However, as rate

increases, the performance gaps increase indefinitely.

1.3.1.2 Achieving Full Multiplexing Gain

The vertical Bell LAbs LAyered Space Time (V-BLAST) code transmits two

independently encoded codewords simultaneously using the two antennas as

depicted in Fig. 1.5. By transmitting two independent symbols per channel

use, it achieves the full multiplexing gain. Unlike OSTBC, V-BLAST applies

to systems with any number of transmit antennas.

The basic form of V-BLAST scheme employs a low-complexity nulling
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antenna 2

Time

antenna 1 codeword 1

codeword 2

Fig. 1.5. V-BLAST, where coding is restricted to one row of the transmitted signal
matrix.

and cancellation decoding. We refer to this scheme as V-BLAST-nulling.

The received vector y is multiplied with the Q† matrix in (1.11), making the

effective channel matrix Q†H = R upper triangular. Consequently, codeword

2 experiences no interference and can be decoded first with channel gain r2
22.

Assuming codeword 2 is correctly decoded, its interference on codeword 1

can then be canceled, and codeword 1 can be decoded with channel gain

r2
11. Therefore, V-BLAST-nulling transforms a 2 × 2 MIMO channel to two

parallel scalar channels with channel gains r2
11 and r2

22, respectively.

Assuming the data rate R is split evenly between the two codewords and

the codes are capacity achieving, the necessary and sufficient condition for

successful decoding is that both subchannels can support rate R/2, i.e.,

R

2
< log2(1 + ρr2

22) and
R

2
< log2(1 + ρr2

11). (1.17)

The associated diversity-multiplexing tradeoff can be derived using

Pe = Pr

[

log2

(

ρr2
22 + 1

)

<
R

2
or log2

(

ρr2
11 + 1

)

<
R

2

]

=̇ Pr
[

r2
22 < ρ

r

2
−1 or r2

11 < ρ
r

2
−1

]

= ρ
r

2
−1 = ρ−d(r). (1.18)

Therefore, the tradeoff achieved is d(r) = 1−r/2, i.e., a straight line between

(0, 1) and (2, 0), which is plotted in Fig. 1.6(a). It shows that only the

full multiplexing gain point of the frontier is achieved. The drawback of

V-BLAST-nulling is that the maximum diversity gain achieved is only 1,

because r2
22 is distributed like the energy of one entry of H. The dominant

error event is having a small r2
22 and failing to decode the first codeword.

The error probability performance of V-BLAST-nulling can be visualized

by plotting Pr
[

R > 2 log2(1 + ρr2
22) or R > 2 log2(1 + ρr2

11)
]

as functions of

SNR for various R, via Monte-Carlo simulation, as shown in Fig. 1.6(b) with

dashed lines. These curves approximately form a set of parallel lines with

slopes of 1 and horizontal gaps of 6 dB per 4 b/s/Hz, i.e., 2 b/s/Hz for every

3 dB. The slopes and gaps are consistent with the tradeoff points (0, 1) and

(2, 0). Comparing to the channel outage probability curves plotted with thin



Perspectives on the Diversity-Multiplexing Tradeoff in MIMO Systems 17

0 1 2
0

2

4

Multiplexing Gain

D
iv

er
si

ty
 G

ai
n

(a)

optimal tradeoff
V−BLAST−nulling

N = N = 2 caset r

0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

transmit SNR over all antennas (dB)

E
rr

or
 P

ro
ba

bi
lit

y

(b)

4 b/s/Hz

6 dB

slope
=1

Fig. 1.6. (a) Diversity-multiplexing tradeoff achieved by V-BLAST encoding with
nulling and cancellation decoding. (b) Comparison of the V-BLAST-nulling error
probability curves (dashed) and the channel outage probability curves (thin solid)
as functions of SNR for rates 4, 8, 12, 16, and 20 b/s/Hz.

solid lines in Fig. 1.6(b), the performance gaps in SNR increase quickly as

the target error rate decreases due to the difference in slopes.

V-BLAST decoding can be improved by choosing the decoding order to

optimize the effective channel gains for each codeword and employing MMSE

decoding rather than nulling. However, these variations do not significantly

affect the diversity-multiplexing tradeoff achieved.

1.3.2 Achieving the High-Multiplexing-Gain or

High-Diversity-Gain Frontiers

This section discusses two coding schemes each achieving one segment of the

diversity-multiplexing frontier in Fig. 1.2(b). We refer to the two segments

as the high-diversity-gain frontier and the high-multiplexing gain frontier.

The high-diversity-gain frontier corresponds to lightly-loaded systems where

the multiplexing gain is less than one and rate is relatively small compared

to SNR. The high-multiplexing gain frontier corresponds to heavily-loaded

systems. We note that while the coding schemes discussed in this section

achieve more points on the frontier than OSTBC and V-BLAST-nulling,

they require higher complexity joint decoding.

1.3.2.1 Achieving the High-Multiplexing-Gain Frontier

The V-BLAST encoding scheme presented in Section 1.3.1.2 when combined

with joint decoding can achieve the high-multiplexing-gain segment of the

diversity-multiplexing frontier by optimally handling the interference be-
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Fig. 1.7. (a) Diversity-multiplexing tradeoffs achieved by V-BLAST encoding with
joint decoding. (b) Comparison of V-BLAST-joint error probability curves (dashed)
and the channel outage probability curves (thin solid) as functions of SNR for rates
4, 8, 12, 16, and 20 b/s/Hz.

tween the codewords. We refer to this scheme as V-BLAST-joint. Again

assuming the data rate R is split evenly between the two separately-encoded

codewords and the codes are capacity achieving, with joint decoding, the

necessary and sufficient condition for successful decoding is that the total

rate can be supported by the channel and that the individual codewords can

be decoded in the absence of interference from the other codeword, i.e,

R < log2(1 + ρ‖H‖2 + ρ2|det(H)|2,
R

2
< log2(1 + ρ‖h1‖2), and

R

2
< log2(1 + ρ‖h2‖2). (1.19)

with h1 and h2 continuing to denote the columns of H. Eq. (1.19) shows

that the dominant error event for V-BLAST-joint is either ‖h1‖2 or ‖h2‖2

being small. The associated diversity-multiplexing tradeoff can be derived

using

Pe =̇ Pr
[

‖h1‖2 < ρ
r

2
−1 or ‖h1‖2 < ρ

r

2
−1

]

= ρ2( r

2
−1) = ρ−d(r). (1.20)

Therefore, the tradeoff achieved is d(r) = 2− r, i.e., a straight line between

(0, 2) and (2, 0), which is plotted in Fig. 1.7(a). It is clear that the high-

multiplexing-gain segment of the frontier is achieved. The key idea is that

with V-BLAST encoding, each transmitted symbol interacts with one col-

umn of the channel matrix H. By fully taking advantage of this with joint

decoding, entire columns of H has to be small for decoding to fail. Since

each column of H has two entries, the maximum diversity gain achieved is

2.
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antenna 1

antenna 2

0 0 ... 0codeword 1 − 1st half

0 0 ... 0 codeword 1 − 2nd half

codeword 2 − 1st half

codeword 2 − 2nd half

Time

Fig. 1.8. D-BLAST encoding with two layers. Two halves of two codewords are
transmitted by a certain antenna at a certain time as indicated. 0 indicates silence.

The error probability performance of V-BLAST-joint can be visualized

by plotting the probability that the condition in (1.19) fails as functions

of SNR for various R, via Monte-Carlo simulation, as shown in Fig. 1.7(b)

with dashed lines. These curves approximately form a set of parallel lines

with slopes of 2 and horizontal gaps of 6 dB per 4 b/s/Hz, i.e., 2 b/s/Hz

for every 3 dB. The slopes and gaps are consistent with the tradeoff points

(0, 2) and (2, 0). Comparing to the channel outage probability curves plotted

with thin solid lines in Fig. 1.7(b), V-BLAST-joint performs quite well in

the region above Pe = SNR
−1. The reason is this region corresponds to the

high-multiplexing segment of the tradeoff curve.

1.3.2.2 Achieving the High-Diversity-Gain Frontier

The high-diversity-gain segment of the diversity-multiplexing frontier can

be achieved with a two-layer diagonal-BLAST (D-BLAST) encoding scheme

with joint decoding. We refer to it as 2L-D-BLAST-joint. While V-BLAST

places separately encoded codewords on different antennas, D-BLAST trans-

mits each codeword using different antennas at different times as illustrated

in Fig. 1.8 for the two-layer case. Note that the antennas are sometimes

silent. Similar to the V-BLAST case, the codewords are assumed to be ca-

pacity achieving and have equal rate. Although decoding can be done one

codeword at a time via successive cancellation, we consider joint decoding

in this section, since successive-cancellation decoding does not achieve the

high-diversity-gain segment of the frontier.

The necessary and sufficient condition for successful joint decoding is that

the total rate can be supported by the channel and the individual codeword

can be decoded in the absence of interference from the other codeword, i.e,

3R< log2

(

1+ρ‖h1‖2
)

+log2

(

1+ρ‖H‖2+ρ2|det(H)|2
)

+log2

(

1+ρ‖h2‖2
)

(1.21)

and
3R

2
< log2

(

1+ρ‖h1‖2
)

+ log2

(

1+ρ‖h2‖2
)

. (1.22)

Since log2(1+ρ‖H‖2 +ρ2|det(H)|2) < log2(1+ρ‖h1‖2) + log2(1+ρ‖h2‖2),

(1.22) is always satisfied when (1.21) is. Therefore, (1.21) by itself is the

necessary and sufficient condition for successful decoding.



20 H. Yao, L. Zheng, and G. W. Wornell

0 1 2
0

2

4

Multiplexing Gain

D
iv

er
si

ty
 G

ai
n

(a)

optimal tradeoff
2L−D−BLAST−joint

N = N = 2 caset r

0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

transmit SNR over all antennas (dB)

E
rr

or
 P

ro
ba

bi
lit

y

(b)

4 b/s/Hz

9 dB

slope
=4

9 dB

slope
=4

Fig. 1.9. (a) Diversity-multiplexing tradeoffs achieved by two-layer D-BLAST en-
coding with joint decoding. (b) Comparison of 2L-D-BLAST-joint error probability
curves (dashed) and the channel outage probability curves (thin solid) as functions
of SNR for rates 4, 8, 12, 16, and 20 b/s/Hz.

The dominant event for the condition in (1.21) to fail is ‖H‖2 < ρ
3

4
r−1,

which implies that all of ‖h1‖2, ‖h2‖2, and |det(H)| are just as small. The

associated diversity-multiplexing tradeoff can be derived using

Pe =̇ Pr
[

‖H‖2 < ρ
3

4
r−1

]

= ρ4( 3

4
r−1) = ρ−d(r). (1.23)

Therefore, the tradeoff achieved is d(r) = 4−3r, i.e., a straight line between

(0, 4) and (4/3, 0), which is plotted in Fig. 1.9(a). It is clear that the high-

diversity-gain segment of the frontier is achieved. The 2L-D-BLAST-joint

scheme achieves the full diversity gain because each codeword interacts with

all entries of the channel matrix H, just like in OSTBC. Furthermore, the

encoding structure is such that four information symbols are transmitted in

three channel uses, which results in the maximum multiplexing gain of 4/3.

The error probability performance of 2L-D-BLAST-joint can be visualized

by plotting the probability that the condition in (1.21) fails as functions of

SNR for various R, via Monte-Carlo simulation, as shown in Fig. 1.9(b) with

dashed lines. These curves approximately form a set of parallel lines with

slopes of 4 and horizontal gaps of 9 dB per 4 b/s/Hz, i.e., 4/3 b/s/Hz per

3 dB. The slopes and gaps are consistent with the tradeoff points (0, 4) and

(4/3, 0). Compared to the channel outage probability curves plotted with

thin solid lines in Fig. 1.9(b), 2L-D-BLAST-joint performs quite well in the

region below Pe = SNR
−1. The reason is this region corresponds to the

high-diversity segment of the tradeoff curve as discussed in Section 1.2.3.
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Fig. 1.10. (a) A hypothetical diversity-multiplexing tradeoff that only meets the
optimal tradeoff at the end points, d(r) = max(4 − 4r, 1 − r/2). (b) A family of
error probability curves consistent with the tradeoff for rates 4, 8, · · ·36 b/s/Hz.

1.3.3 Full-Diversity Full-Multiplexing Schemes

We next examine the implications of code constructions where both the full

diversity gain and the full multiplexing gain are achieved, but not the rest

of the frontier. Our focus in this section is not on the description of schemes

with this property. Rather, it is to demonstrate how performance can de-

grade rather severely relative to schemes that achieve the entire frontier, to

help code and system designers understand the underlying issues.

Let us consider the tradeoff d(r) = max(4− 4r, 1− r/2), 0 ≤ r ≤ 2, which

is suboptimal everywhere except at the end points, as shown in Fig. 1.10(a).

The error probability function that is consistent with this tradeoff curve

is Pe(R,SNR) = SNR−d(R/ log2(SNR)), which is plotted in Fig. 1.10(b) for a

range of R and SNR, similar to Fig. 1.3(b) for the optimal tradeoff.

Corresponding to the two segments of the tradeoff curve, there are two

regions in the Pe(R,SNR) plot. The boundary Pe = SNR−4/7, marked with

a dashed line, corresponds to the knee in the tradeoff. The slopes of and the

gaps between the curves in each region are labeled in the figure. They agree

with the intercepts of the two tradeoff segments with the axes. Compared

to Fig. 1.3(b) for the optimal tradeoff, the slopes in the upper region are

less and the gaps in the lower region are wider. These deficiencies lead to

increasing performance gaps as SNR increases.

1.3.4 Achieving the Entire Frontier Using Rotation-Based Codes

In this section, we identify code properties that enable the full efficient fron-

tier of diversity-multiplexing tradeoffs to be achieved. Then, as an illustra-
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tion, we construct a particular tilted-QAM code that meet these conditions

and examine its performance characteristics more generally to develop ad-

ditional insights.

Tilted-QAM codes are code designs based on applying unitary transfor-

mations to multidimentional QAM constellations. Such designs have a rich

history, going back at least as far as [Lang, 1963]. In the more recent wireless

literature, such codes were used in, e.g., [Boulle and Belfiore, 1992; Wor-

nell, 1995; Boutros et al., 1996; Giraud et al., 1997; Bayer-Fluckiger et al.,

2004] for single-antenna communication over multiple fades. More recently

still they have been considered as space-time code candidates for multiple-

antenna communication within a single fade. For example, in [Sethuraman

et al., 2003; Sharma and Papadias, 2004] such codes are used to obtain the

maximum diversity subject to a multiplexing gain constraint of unity. As an-

other set of examples, [Damen et al., 2002; Ma and Giannakis, 2003] focus on

using such codes to achieve the two end-points of the diversity-multiplexing

frontier. Finally, [Yao and Wornell, 2003; Dayal and Varanasi, 2003; Belfiore

et al., 2004; Elia et al., 2004] develop the role of such codes in achieving the

entire tradeoff frontier, as is of interest in this section, particularly in the

two-transmit two-receive antenna case.

We begin with a natural sufficient condition for achieving the entire fron-

tier. This condition is encapsulated in the following theorem [Yao, 2003]:

Theorem 1 For a system with two transmit and at least two receive anten-

nas and code-length T ≥ 2, consider a family of codebooks indexed by rate R

that is scaled such that the peak and average codeword energy grow with R

as Es =̇ max
X
‖X‖2 =̇ 2R/2. Then a sufficient condition for achieving the

diversity-multiplexing frontier is

min
X1 6=X2

|det(X1 − X2)| ≥̇ 1. (1.24)

Eq. (1.24) means that either the worst-case codeword-difference determi-

nants do not decay to zero with rate or decay at most sub-exponentially.

As we now develop, a tilted-QAM code can indeed achieve a constant

worst-case determinant. A construction is as follows. Given a transmission

rate R = r log2(SNR), a constellation of size M2 = 2R/2 = SNRr/2 is carved

from Z + Zj. Four information symbols are chosen from this constellation
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and encoded into a codeword matrix X =

[

x11 x12

x21 x22

]

via two rotations,

[

x11

x22

]

=

[

cos(θ1) − sin(θ1)

sin(θ1) cos(θ1)

] [

s11

s22

]

,

[

x21

x12

]

=

[

cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

] [

s21

s12

]

,

(1.25)

where (θ1, θ2) =
(

1
2 arctan(1

2), 1
2 arctan(2)

)

. Like OSTBC, each information

symbol sij effectively appears in both rows and columns of the codeword

matrix X, which is essential for achieving the full diversity gain. Unlike

OSTBC, with rotation instead of repetition, two information symbols are

transmitted per channel use, so there is no sacrifice of multiplexing gain. It

is shown in [Yao, 2003] that this tilted-QAM code satisfies Theorem 1. In

particular, the worst-case determinant is 1/(2
√

5) for arbitrarily large rates.

To illustrate some intuition behind why this rotation leads to a constant

worst-case determinant, let us set s12 = s21 = 0 and limit s11 and s22 to

real numbers. In this case, det(X) = x11x22. The rotation of s11 and s22

to obtain x11 and x22 is shown in Fig. 1.11. We first note that since sin(θ1)

and cos(θ1) are irrational numbers, all points except the origin are kept

off the x11 and x22 axes. So the determinant is always non-zero. While a

formal proof of the lower bound on the worst-case determinant appears in

[Yao, 2003], the intuition comes from focusing on a series of points circled in

Fig. 1.11. We see that while the points gets closer and closer to the x11 axis,

they also get further and further away from the x22 axis. As the result, the

product |x11x22| actually remains constant. More generally, when all four

symbols sij are complex integers, the worst-case determinant is still lower

bounded.

Numerical simulations with this tilted-QAM encoding and maximum like-

lihood (ML) decoding, implemented using sphere decoding, are performed

for rates R = 4, 8, 12, · · · , 32 b/s/Hz. The resulting family of block error

rate curves are plotted in Fig. 1.12 with dashed lines. The channel out-

age probability curves for those rates are plotted with thin solid lines for

comparison. We see that the tilted-QAM block error rate curves match the

channel outage probability curves closely, especially at higher rates. Since

diversity-multiplexing tradeoff is a high SNR characteristic, it is possible

for two systems with the same tradeoff to have different low SNR perfor-

mances. The slopes of and the horizontal gaps between the tilted-QAM

block error rate curves above and below the Pout = SNR−1 line are labeled in

Fig. 1.12. They agree with the slopes and gaps labeled in Fig. 1.3(b), which
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Fig. 1.11. Rotate (s11, s22) to obtain (x11, x22). All points except the origin are off
the x11 and x22 axes. Points circled have constant |x11x22| values.
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Fig. 1.12. Comparison of the titled-QAM block error rate curves (dashed) and
the channel outage probability curves (thin solid) as functions of SNR for rates
4, 8, 12, · · ·32 b/s/Hz. They match quite well.

corresponds to the optimal diversity-multiplexing tradeoff. This shows that

the tilted-QAM encoding defined in (1.25) together with ML decoding can

achieve the entire diversity-multiplexing frontier.
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1.4 Summary

The focus of this chapter was on an intuitive development of the diversity-

multiplexing tradeoff inherent in the use of multiple-element antenna arrays

for wireless links. The tradeoff is depicted and interpreted in a variety of

ways that can be used by system designers in the engineering of communi-

cation links, and can guide their selection of various classes of coding and

signal processing algorithms for use in conjunction with such arrays.
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