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Abstract—Ultrasound images are very noisy. Along with system noise, a significant noise source is the speckle
phenomenon caused by interference in the viewed object. Most of the past approaches for denoising ultrasound
images essentially blur the image and they do not handle attenuation. We discuss an approach that does not blur
the image and handles attenuation. It is based on frequency compounding, in which images of the same object
are acquired in different acoustic frequencies and, then, compounded. Existing frequency compounding methods
have been based on simple averaging, and have achieved only limited enhancement. The reason is that the
statistical and physical characteristics of the signal and noise vary with depth, and the noise is correlated between
acoustic frequencies. Hence, we suggest two spatially varying frequency compounding methods, based on the
understanding of these characteristics. As demonstrated in experiments, the proposed approaches suppress
various noise sources and also recover attenuated objects while maintaining a high resolution. (E-mail:
yaele@il.ibm.com) © 2008 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION AND LITERATURE

Ultrasound is an imaging technique that uses high fre-

quency acoustic waves (Meire and Farrant 1995). It is

safe, suitable for many applications and is relatively

affordable. It is used in sonar, medical imaging and

material science work. However, there are problems that

interfere with diagnosis based on such images. Figure 1

illustrates some of these problems. The most prominent

one, which distinguishes ultrasound from most imaging

techniques, is the strong speckle noise. Speckles appear

as grains of different sizes and intensities that result from

the coherent nature of the ultrasound radiation (Angelsen

2000; Webb 1988). The speckle image is signal depen-

dent. It is time invariant and, thus, cannot be suppressed

by temporal averaging. A second problem is attenuation.

The acoustic signal propagating in the medium is scat-

tered and absorbed (Angelsen 2000) and, hence, attenu-

ated. This phenomenon is more pronounced in high

acoustic frequencies. When the attenuated signal is am-

plified, it is accompanied by the amplification of system

noise, which is signal independent. Below a certain level

of signal-to-noise ratio (SNR), objects are overwhelmed

by system noise, thus, amplification in postprocessing

inhibits reconstruction of these objects.

Most of the past approaches for denoising ultra-

sound images have used standard image enhancement

tools, such as weighted median filter (Loupas et al.

1989), wavelet based methods (Cincotti et al. 2001;

Gupta et al. 2004), Gaussian non-linear filters (Aurich

and Weule 1995) and anisotropic diffusion (Weickert

1997). All these methods essentially blur the image.

Moreover, most of them do not handle spatially varying

physical effects, such as attenuation. It is worth noting,

that some studies based on a single frequency band

spatially adapt the denoising filter (Busse et al. 1995).

Another approach is compounding, in which images of

an object are acquired in different conditions, and then

compounded (Burckhardt 1978; Magnin et al. 1982).

Common compounding methods are spatial compound-

ing and frequency compounding. In spatial compound-

ing, images of the same region are acquired from differ-

ent viewpoints. The change of viewpoint induces a com-

plex registration problem, since the object is three

dimensional while only a two-dimensional (2D) slice is

seen. In frequency compounding, the frames are acquired

in different acoustic frequencies. Existing compounding

methods (Amir et al. 1986) have used simple processing
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methods such as point-wise arithmetic averaging and

have achieved only limited enhancement.

In this article, we present two new methods that are

based on frequency compounding: depth-dependent av-

eraging and stocahstic reconstruction. Both methods are

spatially varying and they are based on physical charac-

teristics of the signal and noise as a function of depth and

acoustic frequency (AF). The depth-dependent averaging

reconstructs deep objects and bypasses resolution loss. It

can easily be performed on the fly. The stochastic de-

noising is based on understanding of noise statistics.

Hence, we compare current models of noise statistics

with empirical noise estimation. We show that the cur-

rent models do not match the real measurements well.

Thus, we explore the statistics based on empirical esti-

mations. The stochastic reconstruction shows significant

speckle reduction, with no apparent resolution loss,

while deep objects are reconstructed too. Partial prelim-

inary results appeared in (Erez et al. 2006).

In the following parts of this section, we define the

variables used in this article and briefly overview the

relevant models of image formation and noise models

from the literature. In subsequent sections, we describe

the mathematical methods we use for image analysis, as

well as experiments.

Image formation

Consider ultrasound images as 2D fields, given in

polar coordinates (r, �). The r coordinate (radial axis) is

the axis of wave propagation, and � (lateral axis) repre-

sents a serial scan of the direction of the radiating ultra-

sound beam. The 2D signal measured by the system is

the result of natural filtering of the volumetric object

Fig. 1. Problems that disrupt interpretations of ultrasound images. The depth range is 0–12 cm.

Fig. 2. Attenuation phenomena. (a) Absolute value of the radial
transfer function for different distances from the probe. The
farther the probe is from the measurement point, the lower is
the dominant AF. (b) Bandwidth at different distances from the
probe. The farther the probe is from the measurement point, the

narrower the band is.
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reflectivity function a0(r, �) with a 2D point spread

function (PSF). This PSF is space variant. In particular,

its lateral support changes with the depth r: the acoustic

beam is focused at a certain depth, where the lateral PSF

is narrowest, while at other depths this PSF gradually

widens. Yet, in small regions we can assume this filter to

be space invariant. There, the measured signal, account-

ing for blur, is

aRF(r, �) � a0(r, �) * h(r, �), (1)

where h(r, �) is the PSF, disregarding attenuation. Fol-

lowing (Wagner et al, 1983), it is reasonable to assume

the PSF to be separable. The PSF also depends on the

system properties (such as the relation between AF and

resolution (Angelsen 2000)) and somewhat also on the

tissue properties (Angelsen 2000).

Image formation is also affected by attenuation of

ultrasound in the medium (Angelsen 2000; Kristoffersen

et al. 1998). A general simple and effective model of the

amplitude of the signal is

aRF(r, �) � e�2�rfacoustica0(r, �) * h(r, �), (2)

where � is the attenuation coefficient of the acoustic

amplitude, and facoustic is the AF. A rule of thumb (An-

gelsen 2000) is: attenuation in tissue is approximately

1dB/(cm · MHz), for a signal going from a probe to the

object and then returning. It is clear from eqn. 2 that

attenuation depends on the AF: high AFs suffer from

stronger attenuation and thus a lower SNR, particularly

at large depths. This is evident in Fig. 1.

Note that the dependency of the attenuation on the

AF changes the acoustic spectrum of the signal. Figure 2

presents the Fourier envelope of a temporal signal, as it

is multiplied by an exponential attenuation. The plot

illustrates this product near the probe (1 cm) and far from

it (5 cm). It also represents the bandwidth at different

depths. The farther the probe is from the measurement

point, the lower is the dominant AF, and the narrower is

the acoustic band.

In ultrasound systems, the measured signal aRF un-

dergoes several standard conversion steps. First, attenu-

ation is compensated for. Then, the acoustic modulation

is extracted: note that aRF is a high-frequency (MHz)

signal, which is modulated by the tissue reflectivity func-

tion. To extract the tissue information, the envelope of

the attenuation-compensated aRF is detected (Oppenheim

and Schafer 1975), yielding

aenvelope(r, �) � envelope�e2�rfacoustic · aRF(r, �)], (3)

where envelope [g(r)] is an operator (Angelsen, 2000)

that extracts the envelope of a modulated wave g(r). The

envelope is complex, in general, yet the operation

amagnitude(r, �) � �aenvelope(r, �)� (4)

derives its modulus.

Speckle noise

Speckle noise has a granular texture, as presented in

Fig. 3. Speckles degrade the ability to resolve details and

Fig. 3. Speckle appearance of the same tissue in different AFs. High AF speckles (a) are smaller than the low AF
speckles (b).
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detect objects with a size comparable to their own. They

stem from point scatterers that cannot be resolved by the

ultrasound system. These point scatterers, which are

smaller than the ultrasound wavelength, may be very

close to one another. Two or more waves travelling to the

probe from such scatterers may interfere with each other,

constructively or destructively, creating bright and dark

spots, termed speckles. For interference, the backscat-

tered signal from the scatterers should overlap in time

and space. This happens when the distance between them

is within the PSF (radially and laterally) support. This is

an important point to remember: the speckle typical size

is similar to the PSF support. Since the PSF changes with

depth, the statistics of this noise source are space (depth)-

variant. Furthermore, they change when the AF used to

acquire the image changes, as shown in Fig. 3, as does

the PSF. In this article, we exploit these properties.

Speckle is generally modelled as multiplicative

noise (Jain 1989). The overall detected magnitude is

atotal(r, �) � amagnitude(r, �) · smagnitude(r, �) � �(r, �), (5)

where the real number smagnitude represents nonnegative

speckle noise at a certain coordinate and � represents the

system noise there. The system noise increases with

depth, due to the attenuation compensation done in eqn

3. Still, assume for a moment that the additive noise is

sufficiently small compared to the multiplicative noise.

Then, a log operation on eqn 5 transforms speckles to

additive noise

log�atotal�
alog

� log�amagnitude�
log(amagnitude)

� log�smagnitude�
slog

. (6)

We note that the logarithm operation is standard for

displaying ultrasound images on a computer screen (An-

gelsen 2000), since the dynamic range of atotal is very

large (Angelsen 2000), thus the logarithm enables image

display. Therefore, in the image used for display, the

speckle noise is already additive.

Prior models for noise statistics

It is common to model the additive noise in eqn 6

as white (Abd-Elmoniem et al. 2002) or stationary

(Cincotti et al. 2001), although neither is true. There

are, however, more accurate models. Here we survey

prior models drawn from the literature of ultrasound

(Angelsen 2000) as well as of optics (Goodman 1995),

image processing (Jain 1989) and laser (Dainty 1975)

(Note that optical detectors measure the average in-

tensity during the exposure time, and not the phase. In

contrast, an ultrasonic detector can detect the time

varying complex amplitude. Hence, the information it

yields about speckles is richer and one can notice

interference phenomena even when the signal is wide-

band). We mainly deal here with statistics that char-

acterize media with an homogenous distribution of

small scatterers.

Wagner et al. (1983) showed that under several as-

sumptions, the auto-correlation of the speckle envelope is

Renvelope(�r, ��) � �as�2h(��r, ���) * h∗(�r, ��),

(7)

where (�r, ��) is the lag between image points and as is

a constant that depends on the viewed object. Wagner et

al. (1983) also used the separability property of the PSF

to write the auto-correlation as a product of radial and

angular auto-correlations:

Renvelope(�r, ��) � Rradial
envelope(�r) · Rlateral

envelope(��), (8)

Assuming the PSF to be an even function, Wagner et

al. (1983) derived the speckle magnitude auto-correlation

Rmagnitude(�r, ��)

� (	2)(2F1)��
1

2
, �

1

2
;1;�Renvelope(�r, ��)

Renvelope(0, 0) �2�, (9)

where 	2 is a normalization factor and (2F1) is Gauss’s

hypergeometric function.

In frequency compounding, images of the same

scene are acquired in different PSFs. This brings up a

question: what is the cross-correlation between corre-

sponding pixels in such images? Walker and Trahey

(1998) computed the cross-correlation between images

acquired by different imaging systems. They showed that

the cross-correlation coefficient of speckle envelopes is


envelope �� 	
��

�
H1(f t)H2

∗(f t)df t


	
��

�

�H1(f t)�2df t	
��

�

�H2(f t)�2df t�
2

,

(10)

where H1 and H2 are the transfer functions of the systems.

From eqn 10, the cross-correlation between the speckle

envelopes is computed as the square of the cross-correlation

coefficient between the transfer functions that are used for

signal acquisition. Hence, the cross-correlation coefficient

depends on the overlap of the Fourier transforms of the

PSFs. This result applies only to corresponding pixels. A

more general model should include lag between pixels, i.e.,

�r � 0 and �� � 0.

MATERIALS AND METHODS

Experimental set-up

We conducted experiments using a commercial med-

ical ultrasonic system, the GE Vivid 3. The electronic signal
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generated by this system is a square burst with duration of

three half periods. The probes used are phased arrays

named 3s and 5s (by GE Medical Systems, Milwaukee, WI,

USA). The data was obtained from a tissue-mimicking

phantom, for controlled and repeatable setups. Fat was

placed on top of the phantom to demonstrate an attenuating

layer. Different AFs were used to acquire images. We have

direct access to aRF, received in MHz from the medium.

From here, we directly apply sampling, attenuation com-

pensation, envelope detection and magnitude to produce

amagnitude and, then, a log operation yields alog.

Estimation of noise statistics

In a previous section, prior models of noise statistics

in ultrasound images were detailed. We wish to compare

these models with empirical measurements. The noise

consists of speckle noise as well as system noise. We

estimate the noise within areas that have no strong re-

flectors. Therefore, the area is dominated by the two

noise sources. When empirically estimating the noise

statistics, it is important to note that speckle statistics

vary radially since the PSF changes with the distance

from the transducer. �We, thus, apply empirical analysis

to small blocks. In addition, radial and lateral correla-

tions differ. In the radial direction, the signals sk and si

acquired in different AFs are one dimensional. Their

estimated cross-correlation (Papoulis 1965) is

R̂sksi

radial(�r) �
1

L � �r�l�0

L��r�1
{Sk[l]

�̂sk
}{Si[l � �r] � �̂sk

}, 0  �r � L, (11)

where �r is the radial lag between pixels, �̂s is the

estimated mean of a signal s, and L is the number of

samples in the radial segment. To increase the reliability

of this estimation we averaged its value over a range of

� in a 2D block. When k � i, eqn 11 degenerates to an

auto-correlation estimate

R̂sk

radial(�r) �
1

L � �r �l�0
L��r�1{Sk[l] � �̂sk

} ·

{sk[l � �r] � �̂sk
}, 0  �r � L. (12)

The correlation in the lateral direction R̂sksi

lateral (��) is

estimated in a very similar way, where the lag between

pixels is in the lateral direction, rather than in the radial

one.

In the Empirical noise statistics section, we explore

the auto-correlation and the cross-correlation both in the

radial and lateral directions. For each of these cases, we

compare the prior models [eqns. 9 and 10] with empirical

noise measurements. For the auto-correlation, the com-

parison is made regarding amagnitude (eqn 4). For cross-

correlation, the comparison is made regarding aenvelope

(eqn 3), since the model in the literature (Walker and

Trahey 1998) exists for the envelope signal. In all the

theoretical calculations made for the comparisons, we

factored the attenuation e�2�rfacoustic (eqn 2) into the PSF,

when using it in eqns 9 and 10. We study empirically the

measurements made in various AFs and various dis-

tances, in order to observe their influence on the corre-

lation functions.

Depth-dependent averaging

We now present our first frequency compounding

method. It is space variant and we term it depth-depen-

dent averaging. It is motivated by some physical princi-

ples characterizing images acquired with different AFs.

Attenuation is different when using different AFs (eqn

2). Hence, for a fixed distance from the probe, noise can

change from speckle in a low AF image, to system noise

in a high AF image. Furthermore, a high AF image has

a better resolution but may suffer from a lower signal-

to-system-noise ratio. Usually, near the probe, where

attenuation is negligible, we should prefer to use high

AFs, while far from the probe, where attenuation is high,

we should prefer to use low AFs.

On one hand, the method should overcome system

noise, in order to reconstruct deep objects. On the other

hand, we aim to avoid loss of resolution associated with

low AFs, when reconstructing objects closer to the trans-

ducer. Compounding by a depth-dependent averaging is,

thus, suggested here. Near the probe, more weight is

given to the high AF images. Far from the probe, more

weight is given to the low AF images. In this way, high
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covariance matrix in three small
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radial coordinate

Fig. 6. Estimating the spatially varying covariance matrix.

Table 1. A reference to the noise statistics analysis.

Radial Lateral

Auto-correlation Sec. III-A.1 Sec. III-A.2
Cross-correlation Sec. III-A.3 Sec. III-A.3
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Fig. 7. Regions in which the radial correlation functions are
estimated.

Fig. 8. Regions in which the lateral correlation functions are
estimated. All regions are at a radial distance of 11 cm.

Fig. 9. Theoretical radial normalized auto-correlation, compared to the estimation, at various radial distances. The model
is similar to the estimation near the probe (a), and is incorrect at other radial distances (b) and (c).

986 Ultrasound in Medicine and Biology Volume 34, Number 6, 2008



resolution is obtained near the probe, and a high ratio of

signal to system-noise is maintained far from the probe.

Compounding two frequencies

When weighting two images, the question is how to

choose the weights? Let �high(r) be a weight function for

the high AF image. Then we set �low(r) � 1 � �high(r)

as the weight of the low AF image. The weights may

satisfy

�high(0) � 1 (13)

�high(Rmax) � 0, (14)

where Rmax is the maximum depth in the compounded

image. Equation 13 enables us to use only the high AF

image near the probe. As stated, near the probe the high

AF image presents no significant attenuation, and has a

better radial resolution. Equation 14 enables us to use

only the low AF image far from the probe, to maintain a

high signal to system-noise ratio.

For example, we used

�high(r) �
e��highr � e��highRmax

1 � e��highRmax
, (15)

The corresponding weights are plotted in Fig. 4.

The parameters �high and requilibrium will be explained

later. These weights are not a result of a mathematical

analysis, yet they have the following characteristics:

● The weight �high is related to r in an exponential way.

This is motivated by the exponential relation between

depth and attenuation presented in eqn 2.

● The parameter requilibrium is the depth where �high(r) �

�low(r). It can be set by the user. By default, one can

assign requilibrium �
Rmax

2
.

● The parameter �high controls the exponential-rate. It is

related to requilibrium. For a given requilibrium one can

find �high which satisfies

Fig. 10. Theoretical radial normalized auto-correlation, compared to the estimation, at various radial distances. Here
facoustic � 3.3 MHz. The model is incorrect at all radial distance.
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requilibrium �
1

�high

ln(
2

1 � e��highRmax
). (16)

Compounding K frequencies

In general, when compounding K images, it is pos-

sible to divide the radial axis into K � 1 consecutive

segments at the most, as in Fig. 5. The kth segment is r �

�Rk
min, Rk

max, where

R1
min � 0

RK�1
max � Rmax

Rk�1
max � Rk

min, k � 1, . . . , K � 1. (17)

We arrange the input images in descending order of

AF. Then, in each segment, only a pair of raw frames are

used, according to their AF: starting with the high reso-

lution images (high AFs) near the probe, and finishing

with images having high signal to system-noise ratio

(lower AFs) far from the probe. In each segment, depth-

dependent averaging of the image pair is done. In the first

segment, we average the first and second images, in the

second segment we average the second and third images,

etc. Based on the example in eqn 15, the weights may be

�high(r) �
e��high(k)r � e��high(k)Rmax(k)

e��high(k)Rmin(k) � e��high(k)Rmax(k), k � 1, . . . , K � 1,

(18)

The transition between segments is seamless. The

reason is that a frame that is used in consecutive seg-

ments is weighted continuously across segments, while

the other frames have a zero weight in the segment-seam.

Here the main degrees of freedom are the transition

depths �Rk
max�k�1

K�1. Given them, the choise of requilibrium and

�high is not critical. How are the transition depths cho-

sen? One option is to let the physician choose them.

Another option is to pre-set them according to empirical

experience, and allow the operator/physician to fine tune

the settings. We chose �Rk
max�k�1

K�1 according to our expe-

rience. Yet, since this matter depends on the inspected

tissue, it deserves further research.

Fig. 11. Radial normalized auto-correlation at different radial distances, for various AFs. The correlation width tends to
get narrower with radial distance.
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Stochastic reconstruction

The depth-dependent averaging method described in

previous section implicitly assumes that noise is uncorre-

lated. Furthermore, that method is point-wise, thus, adjacent

pixels are not exploited. In this section we seek a different

method, that alleviates this assumption. It exploits the noise

correlation functions, whose characteristics are described

later in Sec. Empirical Noise Statistics. The method is

spatially varying, based on the best linear unbiased estima-

tor (BLUE), also known as Gauss-Markov or weighted

least squares (Kay 1993). Our stochastic reconstruction is

based on the following principles

● The compounding should be space (depth) variant,

since the statistics of noise changes with the depth r, as

the PSF.

● In speckles, adjacent pixels are correlated (Wagner et

al. 1983). Therefore, it is desirable that the compound-

ing will not be pointwise. On the contrary, it should

account for this spatial correlation.

● Speckles are correlated when acquired with different AFs

(Walker and Trahey 1998). Therefore, simple averaging

is not very efficient for speckle reduction. Instead, com-

pounding needs to account for the cross-correlation be-

tween images taken in different AFs.

● The method is not intended for sharpening. Therefore,

it does not include de-blurring. Nevertheless, we do

not want to further blur existing information.

Fig. 12. Theoretical lateral normalized auto-correlation, compared to the measured one, for various AFs, at r � 11 cm.
Existing models for lateral auto-correlation are consistent with measurements only at low AFs (a).

Fig. 13. Lateral auto-correlation in different lateral distances
from the main axis. It is reasonable to assume that the auto-

correlation is laterally invariant.
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In the following we detail our solution.

Matrix formulation

From now on, we refer to the signals amagnitude and

alog as discrete N � 1 vectors. Let us acquire K images

in different AFs. Based on eqn 6,

�
a1

log

a2
log

É

aK
log
���

loga1
magnitude

loga2
magnitude

É

logaK
magnitude

���
s1

log

s2
log

É

sK
log
�. (19)

At this point, we use the principle mentioned

above, of not attempting to invert blur. Thus, we do

not consider the blur h when we reconstruct the object

(in the discussion and summary section we discuss a

de-blurring option). Rather, we use a � function for h

in eqn 2. This yields â0(r,�) � e2�r facoustic aRF(r,�).

Therefore, we set

ak
magnitude � �envelope(â0)�, (20)

for all k. Since all frames include a similar object content,

we set

a1
magnitude � a2

magnitude � aK
magnitude � · · · � amagnitude. (21)

Nevertheless, each frame ak
log has different noise, es-

pecially speckle noise. Equation 19 then degenerates to

�
a1

log

a2
log

É

aK
log
���

I

I

É

I
�log(amagnitude) ��

s1
log

s2
log

É

sK
log
�, (22)

where I is the identity matrix.

BLUE

Consider data adata in the general linear model

adata � Ha � n, (23)

where H is a known KN � N matrix (operator), a is an

N � 1 vector of variables to be estimated, and n is an

N � 1 noise vector with zero mean and covariance C.

The Gauss-Markov theorem (Kay 1993) states that the

best linear unbiased estimator (BLUE) of a is

â � (HTC�1H)�1HTC�1adata, (24)

where T denotes transposition.

Fig. 14. Lateral normalized auto-correlation at different AFs, at various radial distances. The higher the AF is, the
narrower the auto-correlation function is. This represents an image with higher resolution in the lateral direction, along

with more dominant system noise.

990 Ultrasound in Medicine and Biology Volume 34, Number 6, 2008



Applying the BLUE on eqn 22 is possible. We

substitute a � log (amagnitude) in eqns 23 and 24, while

adata represents the vector on the left-hand-side of eqn 22.

The noise covariance matrix C used in eqn 24 has the

form

C ��
Cs1

log
s2

log Cs1
log

s2
log · · · Cs1

log
sK

log

Cs2
log

s1
log Cs2

log
s2

log · · · Cs2
log

sK

log

É Ì

Csk

log
s1

log CsK

log
s2

log · · · CsK

log
sK

log
�, (25)

where Csk

log
si

log is the cross-covariance matrix between two

speckle images sk
log and si

log in different AFs. From eqn

24, we see that the BLUE performs a linear combination

of all the data adata (all pixels in all images) in order to

estimate the value in each pixel of â. Therefore, the

BLUE may potentially be extended to perform deconvo-

lution (deblurring), in addition to noise-reducing averag-

ing, or be used for noise whitening. Nevertheless, in our

case

H � (I, I, · · · , I)T, (26)

since we do not attempt deblurring. The BLUE exploits

the correlation between variables. This enables denoising

based on partially correlated variables. This is contrary to

a simple average, which implicitly assumes uncorrelated

variables.

Spatially varying BLUE

To use the BLUE, we need to know the noise mean

and covariance (statistics), in the set of raw frames we

use. Let us first examine a certain block in the image. We

can assume stationarity within this block. However, the

statistics change in different image regions. Is there a

need to divide the whole image to blocks, and measure

the statistics within each of them? Practically, the answer

is no. Since the statistics change gradually, it is possible

to examine a few blocks in the field of view (FOV) as

illustrated in the left side of Fig. 6, and measure the noise

statistics only within them. This processing is applied in

the polar coordinate domain, as illustrated in Fig. 6.

Then, the speckle statistics around any point in the FOV

can be deduced. The measurement of the statistics in

these few selected blocks is described in Sec. Estimation

of noise statistics. The BLUE uses the cross-correlation

between different channels. As any cross-correlation

function, it depends on the lag (�r, ��) between pixels.

The size of the covariance matrix depends on the max-

imum lag in the radial direction and on the maximum lag

in the lateral direction. Empirical measurements that we

performed in several images showed a fast decrease in

Fig. 15. Radial normalized cross-correlation model vs. empirical measurements. The model is higher than the
measurements, and in an opposite trend. This phenomenon is more pronounced in high AFs.

Fig. 16. Radial normalized cross-correlation at various radial
distances. The signals lose cross-correlation at r � 15 cm due

to a low SNR.
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the off-diagonal elements of the covariance matrix. We

conclude that the lengths of the spatial correlation are

short. Hence, small lags are sufficient to express the

statistics. We are thus allowed to use small regions, for

which the maximum �r is � 40 pixels corresponding to

� 1.5 mm in our system.

We now have the statistics in a few blocks. Then,

using interpolation, we infer the statistics in any region

centered on any pixel in the FOV. Subsequently, we can

apply the BLUE around each pixel in the image. In other

words, around each pixel, we define a small region, and

since the noise statistics in this region has been estimated

in the previous steps, we can apply the BLUE for this

pixel.

RESULTS

Empirical noise statistics

The current models described in the Prior models

for noise statistics section are not sufficiently accurate,

since they do not take into account the spatial depen-

dency of the statistics, and they assume system noise to

be negligible. Here we empirically explore various cor-

relation functions of the noise. A few words about the

figures and terms used in this section. For display pur-

poses, we plot the normalized correlations, and all im-

ages are displayed in their polar coordinates. Hence,

pixels in each row are in the same depth, and pixels in

any specific column are in the same lateral angle. When

using the term auto-correlation, we refer to the auto-

correlation between pixels in a single image (acquired

with one AF), at different coordinates e.g. R̂sk
(�r)

R̂sk
(��). When using the term cross-correlation, we refer

to pixels in different AFs (yet the same object), at dif-

ferent coordinates e.g. R̂sksi
(�r, ��). In this section, we

explore the auto-correlation and the cross-correlation

both in the radial and lateral directions, as summarized in

Table 1. The AFs used here are 1.5 MHz, 2.5 MHz and

3.3 MHz. They are referred to as the low, middle and

high AFs, respectively. The various radial distances are

illustrated in Fig. 7. The various lateral distances from

the main axis are presented in Fig. 8.

Radial auto-correlation

Figure 9 compares the estimation R̂sk

radial (�r) with

the model of the radial auto-correlation (eqn 9), for a low

AF image, at different radial distances r. At r � 7 cm, the

model is similar to the empirical data. At r � 11 cm,

R̂sk

radial (�r) is wider than predicted by the model. This can

be explained by a bandwidth decrease due to attenuation,

which is stronger than in the model: a smaller bandwidth

broadens the radial PSF, which in turn increases the

correlation range of speckles. In contrast, at r � 15 cm,

R̂sk

radial (�r) is much narrower than the theoretical Rsk

radial

(�r), due to the dominant system noise.

Figure 10 plots the results for the high AF image, at

Fig. 17. Model of lateral cross-correlation vs. estimation. The model is higher than the estimation and is not
depth-dependent.

Fig. 18. Lateral cross-correlation. The cross-correlation is lost
at r � 15 cm, due to low SNR.
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different radial distances. At all distances, R̂sk

radial (�r) is

much narrower than Rsk

radial (�r), and it resembles a delta

function. Hence, system noise is dominant in all dis-

tances. From these plots, we conclude that the existing

model for Rsk

radial (�r) is accurate mainly at short distances

and low AFs.

Now, we further explore R̂sk

radial (�r). Figure 11 com-

pares it at different radial distances for various AFs. It is

symmetric, as excepted, and its width depends on the

radial distance r. We note again that at r � 11 cm,

R̂sk

radial (�r) is wider than at 7 cm. Far from the probe (r �

15 cm), the auto-correlation for all AFs becomes very

narrow. This is typical for white noise, associated with

system noise, which dominates the signal in that depth.

Another way to look at it is that, the higher the AF, the

narrower the auto-correlation function. This represents

an image with higher radial resolution, along with more

dominant system noise.

Lateral auto-correlation

Figure 12 compares the estimation R̂sk

lateral (��)

with the model of the lateral auto-correlation Rsk

lateral

(��). The plots present the results at r � 11cm, for

different AFs. Note that the variance of R̂sk

lateral (��)

decreases with the AF, and theoretically Rsk

lateral (��)

narrows with the AF as well. Yet, R̂sk

lateral (��) narrows

faster. This may be caused by the increased dominance

of system noise, which is not accounted for in the

theoretical model of eqn 9. As in the radial case, we

conclude that existing models for lateral auto-correla-

tion are accurate mainly at low AFs. We now study

further R̂sk

lateral (��). Figure 13 shows that R̂sk

lateral (��) is

rather insensitive to the lateral position. Hence, it is

reasonable to assume that the auto-correlation is prac-

tically laterally invariant. Figure 14 compares the lat-

eral auto-correlation when using different AFs. The

functions R̂sk

lateral (��) at r � 11 cm is wider than the one

at r � 7 cm, since we are out of focus at r � 11 cm.

Generally, the width of the auto-correlation depends

on the AF. The higher the AF, the narrower R̂sk

lateral (��)

is, which represents an image with higher resolution in

the lateral direction, along with more dominant system

noise.

Cross-correlation

In the radial auto-correlation and lateral auto-corre-

lation section, we explored the correlation within a single

image. In this section, we look at the correlation coeffi-

Fig. 19. (a) and (b) Input images. (c) Result of depth-dependent averaging. (d) Result of arithmetic mean of the
two frames.
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cient between different images of the same object


sksi
(�r,��) and 
̂sksi

(�r,��) [normalized Rsksi
(�r,��) and

R̂sksi
(�r,��), respectively]. Note that the theoretical

model in the prior models for noise statistics section is

limited to corresponding pixels in two different images

of the same object (�r � �� � 0). Our empirical study

includes �r � 0 as well. Figure 15 compares the esti-

mation 
̂sksi

radial (�r) vs. the model of the cross-correlation

coefficient value as in eqn 10, at different radial distances

r. The function 
sksi

radial (�r � 0) is much higher than 
̂sksi

radial

(�r). Moreover, 
sksi

radial (�r � 0) increases with r, due to

attenuation-driven bandwidth decrease (detailed in the

image formation section). In contrast, practically 
̂sksi

radial

(�r) decreases with r, due to an increased dominance of

the system noise. This phenomenon is more pronounced

in high AFs. From these plots, we conclude that existing

models for radial cross-correlation do not describe well

the empirical data in the radial distances and AFs used in

our estimations.

Figure 16 compares 
̂sksi

radial (�r) in the low and

middle AFs. At r � 7 cm (where the SNR is high),

both signals are correlated. The same applies to r � 11

cm. At r � 15 cm (where the SNR is low) 
̂sksi

radial (�r) is

practically zero.

Similar conclusions are observed regarding


̂sksi

lateral (��). Figure 17 compares the estimation 
̂sksi

lateral

(��) with the model of the lateral cross-correlation at

different radial distances. As for 
̂sksi

radial (�r), it can be

noticed that the theoretical cross-correlation is higher

than the estimation. The function 
sksi

lateral (��) does not

change with the radial distance, although 
̂sksi

lateral (��)

decreases with depth, due to a more dominant system

noise. Figure 18 compares the lateral cross-correlation

at different AFs. It is generally significant at short

lags. However, at r � 15 cm (where the SNR is low),


̂sksi

lateral (��) is practically zero. This phenomenon is

more pronounced when using higher AFs.

From the empirical results presented above, we

conclude that current models are inaccurate for large

radial distances and/or high AFs. Thus, until accurate

models are developed, correlation functions should be

estimated from the data empirically if they are to be

used effectively in recovery methods as the one de-

scribed in Stochastic reconstruction section. Anyway,

they vary with r, and the AF, but they are rather

insensitive to �.

Depth-dependent averaging

Depth-dependent averaging was applied to an im-

age pair shown in Fig. 19. One image was acquired with

Fig. 20. Zoom on a scatterer near the probe, extracted from Fig. 19. Both depth-dependent averaging (c) and arithmetic
mean (d) preserve the high resolution of the high AF image (b).

994 Ultrasound in Medicine and Biology Volume 34, Number 6, 2008



Fig. 21. Zoom on a scatterer far from the probe, extracted from Fig. 19. The three scatterers are hardly distinguished
in the arithmetic mean image (d) contrary to depth-dependent averaging (c).

Fig. 22. A radial profile across three adjacent scatterers, extracted from Fig. 21. (a) The depth-dependent averaging
distinguishes between adjacent scatterers. (b) The arithmetic mean hardly distinguishes between adjacent scatterers due

to noise.
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Fig. 23. (a) and (b) Input images. (c) Result of depth-dependent averaging. (d) Result of arithmetic mean.

Fig. 24. Zoom on the scatterers far from the probe, extracted from Fig. 23. Depth-dependent averaging (c) distinguishes
between them more clearly than arithmetic mean (d).
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AF of 1.6 MHz (referred to as a low AF image). The

second image was acquired with AF of 3.3 MHz (referred

to as a high AF image). The weights used follow Equa-

tion 15 with requilibrium � 6.8 cm. We used �ak
log�k�1

2 as

input. The result is compared with an arithmetic mean of

�ak
log�k�1

2 in Fig. 19. In Figure 20 we zoom on a scatterer

that is nearest to the probe. In this case, both methods

preserve the high resolution of the high AF image. Nev-

ertheless, there is a difference in the long range. In Fig.

21, we zoom on a scatterer, that is furthest from the

probe, and the three adjacent scatterers on its left. Figure

22 plots a radial profile in these resulting images, corre-

sponding to these three scatterers. It is difficult to distin-

guish between adjacent scatterers when looking at the

arithmetic mean. However, the depth-dependent aver-

aged image allows a clearer distinction of the scatterers.

The same process was applied to another image pair,

shown in Fig. 23. Figure 24 zooms on scatterers that are

furthest from the probe. The arithmetic mean image is

very noisy and it is difficult to distinguish between the

scatterers, contrary to depth-dependent averaging.

Stochastic reconstruction

A raw image pair �ak
log�k�1

2 is shown in Fig. 1. The

low AF is 1.6 MHz, while the high AF is 3.3 MHz. The

stochastic reconstruction was applied to the two images.

The results are shown in Fig. 25. The speckle noise is

significantly reduced, while high spatial resolution is

maintained and deep objects are reconstructed. Figure 26

zooms on a region having three adjacent point targets,

near the probe. The stochastic reconstruction reduces

speckles around the scatterers, and the resolution is as in

the high AF image. The peak signal to noise ratio

(PSNR) of the two results is presented in Table 2. To

estimate the PSNR, the signal is taken as the highest

value of the scatterer and the noise value is taken as the

standard deviation in the speckle area near that scatterer.

Stochastic reconstruction yields a higher PSNR in all

depths.

A similar process was applied to another image pair

shown in Fig. 27. Here, the low AF is 1.6 MHz and the

high AF is 2.6 MHz. The resolution of both input images

is similar, and is maintained in the output. Nevertheless,

the stochastic reconstruction reduces speckles without

blurring of features.

DISCUSSION AND SUMMARY

We explored noise statistics in ultrasound images.

Comparison of current statistical models with empir-

ical data, indicates that there is some quantitative

inconsistency. This occurs, we believe, since the mod-

els do not account for system noise, which is espe-

cially significant in large depths and high acoustic

Fig. 25. Stochastic reconstruction (b) vs. simple averaging (a), based on the frames shown in Fig. 1. Stochastic
reconstruction demonstrates reduced speckles, high spatial resolution and reconstruction of deep objects.
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frequencies. Also, we empirically looked at the auto-

correlation and cross-correlation of images acquired

towards frequency compounding. While we may as-

sume that the covariance functions are insensitive to �,

they strongly depend on the depth r and on the AF.

This is due to the relation between AF and resolution,

as well as to the relation between AF, depth and

attenuation. These empirical results along with the

limited model of the cross-correlation to �r � �� � 0

suggest that there would be important benefits to new,

revised theoretical analysis of ultrasound noise statis-

tics. Such analysis needs to theoretically address both

the spatial variations, and the combined effect of sys-

tem and speckle noise.

We then considered frequency compounding. A

prior compounding method is based on simple arith-

metic mean, which is space invariant, and does not

take into account the noise statistics. Thus, two new

compounding methods were considered, which better

account for the spatial variations of the source signals.

These methods are depth-dependent averaging and

stochastic reconstruction. Depth-dependent averaging

is very simple to implement, and it can be performed

on the fly, maintaining real time imaging. The stochas-

tic algorithm is also depth-dependent. If the signals

were uncorrelated, it would have been similar to the

depth-dependent averaging. However, the stochastic

method is more general, as it accounts for spatial and

inter-frequency correlations. It thus enables further

noise reduction.

Practical frequency compounding would rely on

fast acquisition in two or more AFs. There exists en-

abling technology (Bouakaz et al. 2004; Forsberg et al.

2004; Xuecheng et al. 1998) allowing for that. Once this

technology becomes mature, we believe that our algo-

rithms can be used as a basis for exploiting frequency

compounding. Future research can focus on the acquisi-

tion process as well as on the processing. In particular, it

Fig. 26. Zoom on a section having point targets, extracted from Figs. 1 and 25.

Table 2. PSNR obtained by arithmetic mean and stochastic
reconstruction in several depths.

Depth (cm) Arithmetic mean Stochastic reconstruction

6 66:1 117:1
7 72:1 133:1
8 48:1 73:1
9 61:1 83:1

10 78:1 124:1
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is worth studying which AFs are optimal in this para-

digm. We suggested de-blurring to be a complementary

operation. Improved estimators may handle blur (per-

form deconvolution implicitly). Note that in this case, the

theoretical model in eqn 23 involves a non-linear oper-

ation (eqn 3), which makes deconvolution more chal-

lenging.
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