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Space Vectors and Pseudo Inverse Matrix Methods

for the Radial Force Control in Bearingless

Multi-Sector Permanent Magnet Machines

G. Sala, G. Valente, A. Formentini, L. Papini, D. Gerada, P. Zanchetta, A. Tani, C. Gerada,

Abstract—Two different approaches to characterize the torque
and radial force production in a Bearingless Multi-Sector Perma-
nent Magnet (BMSPM) machine are presented in this work. The
first method consists of modelling the motor in terms of torque
and force production as a function of the stationary reference
frame α − β currents. The current control reference signals
are then evaluated adopting the Joule losses minimization as
constrain by means of the pseudo inverse matrix. The second
method is based on the control of the magnetic field harmonics
in the airgap through the current Space Vector (SV) technique.
Once the magnetic field harmonics involved in the torque and
force production are determined, the SV transformation can be
defined to obtain the reference current space vectors.
The methods are validated by numerical simulations, Finite
Element Analysis (FEA) and experimental tests. The differences
in terms of two Degrees of Freedom (DOF) levitation performance
and efficiency are highlighted in order to give the reader an in-
depth comparison of the two methods.

Index Terms—Analytical models, Displacement control, Force
control, Machine vector control, Magnetic levitation, Permanent
Magnet machines.

I. INTRODUCTION

The bearing element is one of the most critical component

when dealing with high rotational speed and reliability of

electrical machines [1]. The magnetic levitation would allow

to overcome the aforementioned issues as well as to eliminate

the bearing friction, the maintenance and the monitoring [2].

Nowadays, Active Magnetic Bearings (AMB) are the most

exploited technology for the levitation. They are employed

in several industrial and commercial applications such as

compressors, spindles, flywheels and generators where high

rotation speed is a requirement [3]–[5]. However, magnetic

bearings generally lead to an increased overall length of

the machine, added weight and higher cost of the drive. To

this regard, Bearingless Motors (BMs) offer the advantage to

generate both torque and suspension force in a single machine

structure, consequently maximizing the power to weight and

power to volume ratio. The most exploited method to produce

a controllable suspension force consists of providing the BMs

with two separate windings, one responsible for motoring
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(torque generation) and the other for levitation (force genera-

tion). Several papers can be found in the literature adopting the

two-winding configuration for bearingless operation [6]–[8].

However, the additional winding is still not a completely em-

bedded solution. Therefore, more recently different solutions

have been proposed, among which the multi-phase BM is one

of the most promising since it presents simpler construction,

higher power density and better fault tolerance capabilities [9]–

[12].

Considerable efforts have been made to exploit the multi-

phase technology in different fields such as sensorless drives

[13], on-line diagnosis algorithms [14], [15] and fault tolerant

controls [16], [17]. The development of multiphase machines

suitable for the radial force control is another example of this

technology advancement. The multi-sector winding design of

a permanent magnet machine, where independent three-phase

windings are located in different stator areas (sectors), is a

possible multiphase solution to allow a radial force control.

The complexity of the control of such a system emerges when

a detailed analysis is carried out to allow a radial force control,

as in this work, or if asymmetries and faults are taken into

account in order to avoid performance deterioration [18]–[21].

The main objective of this paper is the validation of two

different radial force and torque control techniques applied to

a MSPM machine. The first one exploits the Moore-Penrose

pseudo inverse of the machine model matrix formulation

to obtain those α − β reference currents that generate the

required force and torque minimizing the Joule losses [22],

[23]. Instead, the second method exploits the SV technique

to generate appropriate magnetic field harmonics in the airgap

responsible for both torque and radial force generation [18],

[19]. Both the methods are employed to achieve a two DOF

bearingless operation.

To start with, a brief theoretical introduction of the two

techniques is provided. Both numerical and FE simulation

results are used to compare the two methods in terms of

efficiency and force control performance. Finally, experimental

tests are performed to validate the proposed techniques for the

prototype machine, consisting of a conventional 18 slot - 6

poles PMSM with a re-arranged winding configuration.
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Fig. 1. Cross section of the 18 slots - 6 poles 3 sectors PM machine.

II. RADIAL FORCE PRODUCTION FOR MULTI-SECTOR

PERMANENT MAGNET MACHINES

A. MSPM machine winding

The cross section of the MSPM machine considered in

this work is shown in Fig. 1. Three three-phase full-pitched

distributed windings with independent star connections are

located 120 deg apart in three stator sectors (ns = 3). The

main machine design parameters are listed in Table I.

TABLE I
MACHINE PARAMETERS

Parameter Value

Pole number (2p) 6
PM material NdFeB
Power rating 1.5 [kW]
Rated Speed (ωm) 3000 [rpm]
Rated torque (Trated) 5 [Nm]
Turns/coil (N ) 22
Phase resistance (Rph) 0.0808 [Ohm]
Line to line voltage constant (kV ) 15.5 [V/krpm]
PM flux of one sector (sΛPM ) 0.0284 [Wb]
Torque constant (KT ) 0.434 [Nm/A]
Outer stator radius 47.5 [mm]
Inner stator diameter 24.75 [mm]
Mid-airgap radius (rg ) 24.25 [mm]
Axial length (la) 90 [mm]
Airgap length (δ0) 1 [mm]
Magnets thickness 4 [mm]

B. Theoretical description of the torque and radial force

control methods

The spatial harmonic orders of the armature and PM flux

density have to be identical in order to produce a net torque

in a permanent magnet machine. The main harmonic order is

usually the one related to the number of pole pairs (p). On the

other hand, the radial force can be produced commanding a

flux density of order p±1. Hence, being p = 3 in the analysed

machine, the interaction of the 3rd permanent magnet flux

density harmonic with the 2nd and 4th armature flux density

harmonics causes the radial force. In the next paragraphs

the two different torque and force control techniques are

presented. Both methods rely on the assumptions of linear

materials and radially centred rotor. As a matter of fact, the

radial position displacement has been taken into account in

[23] introducing the stiffness constant that describes the linear

relationship between x − y axis position and force. Only the

current contribution to the radial force and torque has been

reported in the next paragraphs, while the stiffness term has

been used in the synthesis of the PID position regulator.

1) Pseudo Inverse Matrix Method (PIM): The PIM method

is based on electromagnetic characterization of the machine in

terms of total force (Fx, Fy) and torque (T ) as a function of

the α-β currents of each sth three-phase winding (siα,
siβ).

The matrix formulation of the x − y force components and

torque of the generic sector s can be expressed as follows:

s
W̄E(ϑe,

sγ,
s̄
iαβ) =

s
KE(ϑe,

sγ)
s̄
iαβ (1)

where ϑe = pϑm (being ϑm the mechanical rotor position)

is the electrical angular rotor position and sγ is the angular

position of the sth winding axis with respect to the x−axis,
s
W̄E =

[
sFx

sFy
sT

]T
and

s̄
iαβ = [siα

siβ ]
T . Matrix

s
KE ∈ R

3×2 can be expressed as (2).

s
KE(ϑe,

sγ) =






skx,α(ϑe,
sγ) skx,β(ϑe,

sγ)
sky,α(ϑe,

sγ) sky,β(ϑe,
sγ)

skT,α(ϑe)
skT,β(ϑe)




 (2)

In [22] and [23] the coefficients of the above matrix formu-

lation are calculated for each machine sector. In particular, in

[23] the rotor radial position has been taken into account in

the coefficients expressions showing that, within the maximum

displacement considered, the maximum variation is less than

9%. Therefore, matrix s
KE(ϑe,

sγ) is assumed radial position

independent in this paper.

The total force and torque are evaluated by summing the

contributions of the three sector windings defined by (1) as

follows:

W̄E(ϑe, γ̄, īαβ) =





AFx + BFx + CFx
AFy +

BFy +
CFy

AT + BT + CT



 = KE(ϑe, γ̄)̄iαβ

(3)

where: γ̄ =
[
Aγ Bγ Cγ

]
; KE =

[
A
KE

B
KE

C
KE

]T
;

īαβ =
[
Aiα

Aiβ
Biα

Biβ
Ciα

Ciβ
]T

.

The current reference vector ī∗αβ can be obtained inverting

the matrix KE ∈ R
3×2ns . However, the latter results in a

rectangular matrix since the dimension of W̄E is smaller than

the number of state variables (3 < 2ns), hence the system

is under-determined with an infinite number of solutions.

The minimization of the Joule losses is chosen as problem

constrain leading to the Moore-Penrose pseudo inverse matrix

expression [22]:

K
+

E(ϑe, γ̄) = K
T
E(ϑe, γ̄)

[

KE(ϑe, γ̄)K
T
E(ϑe, γ̄)

]
−1

(4)

The reference current vector needed to produce the desired

mechanical output vector W̄E,ref is evaluated by:

īαβ,ref = K
+

E(ϑe, γ̄) W̄E,ref (5)

Finally, the coefficients of K
+

E are approximated with their

fundamental harmonic waveform in order to reduce the com-

putational efforts of the control platform [22].
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2) Space Vector Method (SV): The SV method considers

the machine as an unique device that can be controlled to

generate appropriate field harmonics in the airgap [18], [19].

The modelling of the radial force in the SV model is based

on the evaluation of the Maxwell stress tensors neglecting the

tangential component of the flux density. Indeed, the Maxwell

stress tensor σ̂rt (r and τ indicate the radial and a tangential

components) in absence of electric field can be expressed as:

σ̂rτ = στ τ̂ + σr r̂ =
BrBτ

µ0

τ̂ +
B2

r −B2
τ

2µ0

r̂ (6)

From the radial and tangential components of the stress tensor,

the overall radial force acting on the rotor of an electrical

machine can be evaluated as:

F̂ =

∫ la

0

∫ 2π

0

(jστ (ϑs, z)e
jϑs + σr(ϑs, z)e

jϑs)rgdϑsdz

(7)

where ϑs identifies the angular position in the stator

reference frame, rg is the middle airgap radius, and la the

machine active length. Substituting the radial and tangential

components of the stress tensor (6) in (7), writing the flux

distribution in its Fourier series coefficients and considering

B = µ0H , yields to the following equation:

F̂ = j
πµ0rgla

2

∞∑

ρ=1

(Ĥr,ρĤ
∗

τ,ρ−1 + Ĥr,ρĤ
∗

τ,ρ+1)+

+
πµ0rgla

4

∞∑

ρ=1

(Ĥr,ρĤ
∗

r,ρ−1 + Ĥr,ρĤ
∗

r,ρ+1)+

−
πµ0rgla

4

∞∑

ρ=1

(Ĥτ,ρĤ
∗

τ,ρ−1 + Ĥτ,ρĤ
∗

τ,ρ+1)

(8)

where the magnetic field harmonics are related to both the

current and the magnet magnetomotive forces.

If the tangential component of the magnetic field in the airgap

is neglected (Ĥτ,h = 0), the formulation of the torque and

radial force (8) as a function of the field harmonics is described

by the following approximated relationship:





F̂p−1

F̂p+1

T



 = kc






ĤM,pĤ
∗

C,p−1e
−jpϑm

ĤM,pĤ
∗

C,p+1e
jpϑm

2δ ℜ{jpĤM,pĤ
∗

C,pe
jpϑm}




 (9)

F̂ = F̂p−1 + F̂p+1 (10)

where F̂ is the resulting force vector (Fx + jFy or Fejϑf ),

while F̂p−1 and F̂p+1 are the main force contributions, related

to the (p − 1)th and (p + 1)th field harmonics. kc is equal

to π
2
µ0rgla, ĤM,p represents the pth harmonic of permanent

magnet field in the rotor reference frame, ĤC,p−1 , ĤC,p and

ĤC,p+1 represent the (p−1)th, pth and (p+1)th harmonics of

the armature field; la is the stator active length; rg is the mid-

airgap radius; δ is the airgap thickness including the magnets.

The relation between the armature field harmonics and the

related currents space vectors, which allows the independent

control of the main field harmonics, is [18]:

ĤC,ρ =
24N sin ρ∆ϕ

2ρπδ
îρ (11)

where N is the number of turns per phase, ∆ϕ is the coil pitch

and îρ is the ρ-th current space vector defined by the following

Clarke transformation, adapted to the analysed machine:

îρ =
2

9

∑

k=18,1,2,6,7,8,12,13,14
︸ ︷︷ ︸

slots

ike
jρϕk (12)

where k is the number of the slot where each phase appears

following the slots clockwise, ik is the current in the kth slot

and ϕk is equal to 2π
18
(k − 1).

The expression of the resultant force vector can be written

as follows, observing (11) and (12), and considering the pole

pairs number of the machine (p = 3):

F̂ = (F2 + F4)e
jϑf = KF2î

∗

2e
j3ϑm +KF4î4e

−j3ϑm . (13)

where ϑf is the angle of the resulting force vector, F2 and

F4 are the contributions of the 2nd and 4th magnetic field

harmonics to the total force production, and the evaluation

of the force constants KF2 and KF4 is presented in [18],

[19]. The values of KF2 and KF4 are 9.60 N/A and 17.85

N/A, respectively. Finally, the current space vectors needed to

generate the torque and radial force are defined by




î2,ref
î4,ref
î3,ref



 =





(F2ref/KF2)e
j3ϑm−ϑf

(F4ref/KF4)e
j3ϑm+ϑf

j(Tref/KT )e
j3ϑm



 (14)

where KT is the torque constant. The SV control algorithm is

based on the three vectorial equations in (14), the first two

are responsible for the force generation and the third one

describes completely the torque production. Because the 2nd

and 4th current space vectors can be controlled independently

by the 3rd one, the control of the force by the SV method

is completely independent from the torque one [18], [19].

Furthermore, each current space vector can be controlled in

a reference frame synchronous with the reference vector as:




î2,syn,ref
î4,syn,ref
î3,syn,ref



 =





(F2pu)Fref/KF2

(1− F2pu)Fref/KF4

jTref/KT



 (15)

where F2pu is the force, in per unit, produced by the 2nd

order harmonic of the armature field. In other words, this new

quantity is the ratio between the contribution of 2nd magnetic

field harmonic to the force and the force magnitude. This

parameter has been introduced as a further degree of freedom

in the control, and its effects on the machine performance are

analysed in the following sections.

It is worth noticing that the assumption of neglecting the

magnetic field tangential component in the SV model leads

to imprecise values of the force constants (KF2 and KF4).

Therefore, the latter should be matched with FEA in order to

take into account for the effect of the tangential component,

and all the field harmonic interactions in (8).

C. Bearingless operation

The block diagram of the BMSPM motor control scheme

is shown in Fig. 2. The two torque and radial force control
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techniques are highlighted using different colours: the PIM

control on the top (green) and the SV control on the bottom

(red). With ”INV Clarke” are named the inverse Clarke trans-

formations needed by the two control algorithms.

The speed control relies on a standard PI regulator. The output

of the speed controller is the reference torque, used as input of

the PIM and SV blocks. The radial rotor position is measured

by two displacement sensors positioned along the x− and

y− axis. The measured radial position is compared with its

reference value and the displacement errors are used as the

inputs of two ( x− and y− axis) PID regulators in order to

determine the reference force.

1) PIM technique: The PIM control technique defines, by

means of (5), the α − β reference currents for each motor

sector once the torque and radial force references are defined.

However, for the purpose of the current control, each α − β
reference current vector is transformed in the d− q axis refer-

ence frame by a standard Park transformation in order to allow

a Field Oriented Control (FOC) for the torque. Standard PI

regulators are used to define the reference voltages in the d−q
reference frame and the back-EMF is compensated in feed-

forward before the Park and Clarke inverse transformations are

applied, as in a three-phase PM machine control. Finally, the

three-phase reference voltages are modulated by a traditional

PWM technique in order to define the gate driver signals for

the control of each inverter.

2) SV technique: The SV control technique exploits the

multi-sector current space vectors to produce the torque and

force related armature field harmonics. Observing (9) it is

straightforward to notice that, in the machine under investiga-

tion, only the 3rd harmonic is related to the torque production

while both the 2nd and the 4th contribute to the force gener-

ation. Therefore, the contribution of the two harmonics to the

force in per unit (F2pu and F4pu = 1 − F2pu respectively)

can be used as a degree of freedom to optimize the control

technique. The machine multi-sector current space vectors are

defined in the reference frames synchronous with the related

field harmonics using (15). This allows obtaining only non

zero d2− and d4−axis reference current components for the

force production and q3−axis reference current component for

the torque production in every working condition.

Furthermore, the back-EMF has to be compensated only for

the 3rd voltage space vector since the permanent magnets do

not generate the 2nd and 4th field harmonics in the airgap if the

eccentricity is neglected. Hence a wrong back-EMF evaluation

affects only the torque control.

Finally, the synchronous voltage space vectors are rotated

to the stationary reference frame by three different Park

transformations, and the phase reference voltages required for

the inverter control are defined using the generalized inverse

Clarke transform for multi-sector machines, as in [18], [19].

III. NUMERICAL SIMULATIONS

The machine control has been verified by simulations in

Matlab-Simulink environment. The machine model is derived

by means of multi-static non-linear FE simulations in MagNet.

The FE model is the one shown in Fig. 1 and the main

parameters are listed in Table I. For each static simulation

the rotor is rotated by a small angle (∆ϑ) and each sector is

fed with current values ranging from −irated ÷ irated (with 1

A steps). The obtained x−y force components and torque are

stored in the form of lookup table in the Simulink model and

a linear method has been used to interpolate the lookup table

elements.

The simulation results shown in Fig. 3 present a force ref-

erence rotating at the same frequency of the rotor and with

magnitude proportional to the square value of the rotating

speed is commanded in open loop. A rotating reference force

can represent for instance, the force required to compensate

an unbalance in the rotor mass once the related dynamic

Fig. 2. Comparison of the two control schemes: the PIM control on the top (green) and the SV control on the bottom (red).
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Fig. 3. Numerical simulation results of a speed transient at no load from 0
to 3000 rpm, followed by a torque step of 5 Nm (at 0.5 s). The radial force is
synchronous with the rotor as in a static unbalance in the rotor mass till 0.8
s, when the force is set to zero again. The speed, torque (a) and force (b), the
dq currents of each sector (c-e) and the dq current space vector components
(f-h) are plotted.

behaviour is known [24]. At first, a speed ramp from 0 to

3000 rpm (rated speed) has been applied. At 0.5 s a load

equal to the rated torque Trated is applied. The reference

force is finally set to zero at 0.8 s. The simulation has been

reported only for the SV control with the F2pu value chosen

as for the PIM method (this assumption is clarified in the next

Section), because, owing to the high dynamic of the control

system, the performances of the two control techniques do

not show significant differences in the numerical simulations.

Instead, the measured currents of the simulation (inputs to

the PI regulators) are reported for both the methods as in the

scheme of Fig. 2. Comparing Fig. 3c-3e with Fig. 3f-3h, it can

be observed that the reference current space vector components

have significantly different waveforms in the two methods.

As a matter of fact, the PIM method produces sinusoidal

d− q reference currents (Fig. 3c-3e) when a sinusoidal force

is commanded. It can be notice that both d− and q−axis

currents take part in the force production, while only DC

q−axis currents are needed to produce torque. On the other

hand, the current references generated by the SV method are

constant in steady state operation, as highlighted by (15). The

above observation allows identifying an important difference

in the two methods under examination. In particular, it is well

known that the performance of a PI regulator deteriorates

when a sinusoidal input is applied; hence, the SV method

allows better control performance in case of synchronous force

control.

IV. FINITE ELEMENT SIMULATIONS

Transient FE simulations have been performed in order

to validate the predicted performance in the computational

environment (MagNet). The machine losses and efficiency are

evaluated using the SV method for different values of the force

produced by the 2nd order harmonic of the armature field in

per unit (F2pu) in order to define which is the value that

optimizes the machine performance. A view of the flux and

the current density in the slots is shown in Fig. 4 for different

F2pu values, spinning the rotor at 3000 rpm and commanding

200 N force on the y− axis and 5 Nm torque. 200 N is around

the rated force of the machine when the torque is zero, and it

is more that 10 times the rotor weight force. Also the results

for rated torque operating condition and no force control are

shown. It can be observed that having F2pu equal to 0.25 and

0.5 results in more uniform current density and flux density

distribution.

1) Joule Losses: Fig. 5 shows the analytical and FE eval-

uation of the stator copper Joule losses at rated torque and

3000 rpm as function of the F2pu parameter.

The minimum Joule losses are reached for about F2pu =
0.25. This result is the same founded by the PIM method.

Because of the importance of this value of F2pu, a simplified

evaluation of the levitating performance (with a 20 N of

reference force, that is almost the rotor weight) is shown,

highlighted with an asterisk, for F2pu = 0.25. It is worth

noticing that a non optimized choice of F2pu also results in a

non homogeneous copper losses distribution among the sector

windings, with localized hot spots in the more stressed sector.

The Joule losses distribution among the sectors is shown in

Fig. 6. The Joule losses as function of the F2pu value and

for a given torque and force are evaluated by the following

equation:

PJ = Rph[(JF,2F22pu + JF,1F2pu + JF,0)F
2 + JTT

2]
(16)

where the related losses parameters are presented in Table III.

The demonstration of (16) is presented in the Appendix. As

expected, the analytical losses evaluation gives the same result

of the FEA (Fig. 5).

2) Iron Losses and Efficiency: The PIM control algorithm

is based on the copper Joule losses minimization. However,

even if the PIM method already optimizes the F2pu value in
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Fig. 4. Views of the flux density and the slots current density at rated torque. On the left there is a view of the machine working without force control. On
the other views the reference force is 200 N and F2pu is varied from 0 to 1.

Fig. 5. Analytical and FEA evaluation of the machine Joule losses at rated
torque varying F2pu.

Fig. 6. Machine copper Joule losses related to the three sector windings, at
rated torque and 200 N force on the y-axis varying F2pu. FEA results.

order to minimize the copper Joule losses, it does not take

into account the iron losses (hysteresis and eddy). However,

the minimum of the iron losses remains the same as the one

that minimizes the Joule losses (F2pu = 0.25). Furthermore,

because the flux in a SPM machine is mainly produced by the

magnets, the iron losses do not change as much as the copper

Fig. 7. Machine efficiency and losses varying F2pu. FEA results.

ones when the phase currents are increased for the radial force

control. The iron losses and the efficiency of the machine are

summarized in Fig. 7 with and without radial force control,

neglecting the extra-losses (as friction and ventilation related

ones) considering that the levitation final goal is also to

significantly reduce them.

It is worth noticing that the electrical efficiency drop related

to the force control is negligible for the considered case study.

Indeed, in case of a force load of about 10 times the rotor

weight the efficiency decreases of about 2.2 % (from 95.91

to 93.79). This result can be considered as a benchmark

to compare the proposed solution with alternative levitation

systems.
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Fig. 8. a) The three three-phase inverters. b) The control board. c) the machine
prototype and test rig. d) the rotor shaft with the displacement sensors.

V. EXPERIMENTAL VALIDATION

A. Description of the Experimental set-up

Fig. 8 details the experimental set-up in all its parts.

Fig. 8a shows the three three-phase inverters, each of them

connected to one of the MSPM motor winding (Fig. 8c).

The inverters, equipped with a standard IGBT power module

with switching frequency Fs = 10 kHz, are independently

controlled by means of a centralized control platform [25]

(Fig. 8b) that communicates with the power modules gate

drives by means of fibre optic cables. In order to realize a

bearingless drive with two mechanical degrees of freedom, the

tilting movement and the axial displacement is constrained by

a self-alignment bearing mounted on one side of the shaft. The

other side is free to only move along the x − y axes within

a certain displacement, given by the clearance of the backup

bearing (150 µm). Fig. 8d shows the two displacement probes

mounted on the backup bearing housing along the x− y axes.

B. Comparison of the PIM and SV methods

The experimental tests have been performed to validate

and compare the two control techniques for a two degrees

of freedom bearingless operation. The tuning of the radial

position and speed regulators is kept identical while testing

the PIM and SV methods.

1) Open loop rotating force: A rotating reference force is

applied in open loop in order to experimentally verify the

numerical simulation results obtained in Section III. Therefore,

the aim of the test is to confirm the difference in the currents

generated by the PIM and SV methods. The experimental

results are shown in Fig. 9. The maximum operating speed

is limited to 600 rpm because the test is performed without

the position control and the shaft position is constrained only

by the backup bearing. The frequency of the rotating force is

equal to the rotor mechanical frequency while the magnitude

increases with the square of the speed, commanding 200 N at

Fig. 9. Experimental results of a speed transient at no load from 0 to 600
rpm. The radial force is synchronous with the rotor as in a static unbalance
in the rotor mass. The speed (a) and force (b), the dq currents of each sector
(c-e) and the dq current space vector components (f-h) are plotted.

600 rpm. In Fig. 9 it is possible to observe that the d− q axes

currents of the three sectors generated by the PIM method

(Fig. 9c-9e) are sinusoidal, while the SV current space vector

components (Fig. 9f-9h) are constant. This is in accordance to

the result obtained by the numerical simulation in Section III.
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Fig. 10. Trajectory of the rotor with a radial position closed loop control and
a partial levitating rotor (one missing bearing) at 3000 rpm speed.

Fig. 11. Radial position of the shaft with a partial levitating rotor (one missing
bearing), the position control is activated at 0.1 s and the speed is increased
from 0 to 3000 rpm (from 0.3 s to 0.5 s). The two control techniques are
compared.

2) Bearingless operation at rated speed: The performance

of the position control at 3000 rpm (rated speed) is shown

in Fig. 10. The outer circumference shown in the figure rep-

resents the backup bearing maximum tolerable displacement

(dmax = 150 µm). It is straightforward to notice that both

the control techniques keep the rotor stably centred with a

maximum displacement smaller that 30 µm, which is less than

20% of the backup bearing clearance.

3) Acceleration tests for bearingless operation: The posi-

tion control with a speed transient is shown in Fig. 11, where

both the PIM and SV controls allow achieving and maintaining

the reference position of the rotor in a similar way. It can be

noticed that the initial rotor position is different in the two

tests. This is due to the big attraction force between rotor

and stator generated by the PMs that tends to push the rotor

in the displacement direction as soon as the radial position

control is disabled. The above mentioned attraction force can

be described by the magnetic stiffness term introduced in [23].

The radial position control is activated at 0.1 s for both the

control techniques. It is possible to observe that the SV control

is slightly more noisy at stand still than the PIM method and

it presents an overshoot during the speed ramp.

VI. CONCLUSIONS

TABLE II
QUALITATIVE COMPARISON

PIM SV

Machine efficiency + +
Simplicity of the model + -
Accuracy of the model + -
Performance of the current PI regulators - +
Position control performance + +

This work aims to compare and experimentally validate

two different radial force and torque control methods: the first

based on the Moore-Penrose pseudo inverse matrix while the

second on the space vector technique. The theoretical aspects

of both techniques were already detailed in [22], [23] and

[18], [19]. A brief theoretical description is provided in the

first part of the manuscript and numerical and FE simulations

are used to compare the control techniques.

Table II presents a qualitative comparison of the control

methods. It results that the PIM method enables a quick and

simple model development and already produces optimized

α − β axes reference currents in terms of Joule losses

minimization. On the other hand, the SV method needs

to define a further parameter, F2pu, in order to calculate

suitable reference current space vectors. The value of F2pu
is a degree of freedom that significantly affects the efficiency

of the radial force production and in this paper its optimum

has been computed through analytical and FE calculations.

Furthermore, the contribution of the tangential component of

the flux density to the force production is neglected in the

SV model in order to simplify its analytical expression. As a

consequence, the force coefficients KF2 and KF4 have to be

calculated with FE simulations. On the other hand, both radial

and tangential components of the flux density are considered

to write the model of the PIM method. Despite the above

mentioned disadvantages, the current PI regulators of the SV

method work with constant reference current vectors when a

rotating force is commanded.

The effectiveness of the PIM and SV methods has been

verified by experimental tests for a prototype bearingless

MSPM motor where two-DOF (x − y axis position) are

successfully controlled. The obtained experimental results

validate the models prediction, showing that a stable rotor

two-DOF levitation can be achieved by both methods with

very similar performance.
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TABLE III
JOULE LOSSES PARAMETERS

Parameter Value

Torque Joule constant (JT ) 24.25 [W/Nm2]

Force Joule constant 0 (JF,0) 0.0148 [W/N2]

Force Joule constant 1 (JF,1) -0.0319 [W/N2]

Force Joule constant 2 (JF,2) 0.0675 [W/N2]

APPENDIX

1) Joule Losses - Analytical Evaluation: The stator Joule

losses related to a triple three-phase machine are:

PJ =
3

2
Rph(i

2
A,d + i2A,q + i2B,d + i2B,q + i2C,d + i2C,q) (17)

written in the d-q rotor reference frame.By means of (12)

and (13) it results that the copper Joule losses equation as

a function of the F2pu constant and of the reference torque

and force is:

PJ =
9

4
Rph(K

2
F,d +K2

F,q)F
2 +

9

2
Rph(

T

KT

)2 (18)

with the following set of machine variable (depending by

F2pu) and constants:

KF,d = C−

m2n4

F2pu
KF2

+ C−

m2n2

1− F2pu
KF4

KF,q = −C+
m2n4

F2pu
KF2

+ C+
m2n2

1− F2pu
KF4

C−

m2n4 = 3
cm2− cn4

cm22 − cn2cn4

C+
m2n4 = 3

cm2 + cn4

cm22 − cn2cn4

C−

m2n2 = 3
cm2− cn2

cm22 − cn2cn4

C+
m2n2 = 3

cm2 + cn2

cm22 − cn2cn4
cm2 = 1− 2cos(8π/9)

cn2 = 1− 2cos(4π/9)

cn4 = 1− 2cos(2π/9)

(19)

In (18) F2pu is explicit and its optimised value is easily found

as:
dPJ

dF2pu
= 0 (20)

resulting in:

F2pu = −
JF,1

2JF,2

= 0.236 (21)

The analytical optimised F2pu value is in good agreement

with the one obtained with FEA.
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