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Abstract The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for

Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation

dedicated to remotely sense Earth’s atmosphere and ionosphere using a technique called Global Positioning

System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric

temperature and moisture as well as space weather estimates of slant total electron content, electron density

profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan

are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will

ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an

advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global

Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese

BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude

plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low

latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will

also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of

key ionospheric parameters.

Introduction

Radio occultation (RO) is a conceptually simple remote sensing method that employs radio

transmitter/receiver pairs with a signal path that transits a planetary limb (for more discussion see Coster

and Komjathy [2008]). With a Global Positioning System (GPS) receiver on board a low Earth orbiting

satellite, the amplitude and phase of GPS radio signals can be measured very precisely as the GPS satellite

is occulted by Earth’s ionosphere and atmosphere. Figure 1 illustrates the geometry of a RO event. In the 1990s,

the maturing GPS constellation supported advanced RO techniques for sounding Earth’s atmosphere and

ionosphere. Ware et al. [1996] described the first proof-of-concept RO experiment (GPS/Meteorology).

Numerous successful missions subsequently used Global Navigation Satellite System (GNSS) signals for

atmospheric and ionospheric sounding [Yue et al., 2011]. COSMIC (Constellation Observing System for

Meteorology, Ionosphere, and Climate), launched into orbit by the United States Air Force (USAF) from

Vandenberg on 15 April 2006, is the first dedicated satellite constellation employing RO with near real-time data

delivery [Kumar, 2006; Anthes et al., 2008].

Space Weather Parameters From GNSS RO Technique

All GNSS satellites transmit signals at two different L band frequencies to provide a means for making

ionospheric corrections for navigation solutions. In the RO geometry (Figure 1) at ionospheric tangent

altitudes, the total electron content (TEC) along the GNSS raypath can be calculated from phase

measurements of these two frequencies. After various biases and calibration factors have been considered, the

absolute ionospheric TEC can usually be determined to within 2–3 TEC units (TECU, 1 TECU= 1016el/m2)

[Yue et al., 2011]. Space weather users are often interested in the altitudinal electron density profile (EDP),

which is derived through an Abel inversion under the assumption of ionospheric density spherical

symmetry around the ray tangent point [Yue et al., 2013]. Although this assumption is not always satisfied

in the ionosphere, COSMIC RO measurements generally provide the peak ion density of the ionospheric

F layer to within 15% accuracy, and the altitude of the peak to within 20 km. Alternately, the RO TEC
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observations may be ingested directly into assimilative models together with other ground- and space-

based ionospheric measurements to achieve higher-accuracy specifications [Komjathy et al., 2010;

Yue et al., 2012].

The RO GNSS L band signals are also sensitive to ionospheric density irregularities along the raypath. By

analyzing the signal-to-noise ratio (SNR) of the received RO signal, parameters such as the S4 index, which

characterizes scintillation due to F region irregularities, can be derived. SNR fluctuations also reveal the

presence of sharp sporadic E layers. Yue et al. [2013] have summarized most aspects of the RO space weather

data processing including algorithms, assumptions, and error characteristics.

In comparison with other ionospheric monitoring techniques, GNSS RO has the following advantages:

(1) the limb sounding geometry is complementary to ground-based upward looking or space-based

nadir-viewing instruments, (2) high accuracy and precision, (3) high vertical resolution, and (4) full global

coverage. RO data from COSMIC have been widely used to monitor ionospheric variability (e.g., solar

cycle, seasonal, longitude, and altitude), ionospheric weather (e.g., geomagnetic storm response, solar

flare response, and lower atmospheric driving disturbances), and ionospheric irregularities (e.g., sporadic

E layer and scintillation). In addition, the global coverage and high vertical resolution have made the

COSMIC ionospheric observations an important data source for ionospheric data assimilation models

[Scherliess et al., 2009; Komjathy et al., 2010], improving space weather nowcasting and forecasting, as

well as enabling the construction of global four-dimensional (space and time) ionosphere electron

density reanalysis [Yue et al., 2012]. Figure 2 provides an example of reanalyzed monthly global 3-D

electron density and the corresponding peak density (NmF2) and vertical TEC map at 1900 UT during

September 2006.

Figure 1. A demonstration of GNSS RO observational geometry and the corresponding retrieved profiles in ionosphere and atmosphere.
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COSMIC and COSMIC-2

COSMIC consists of six identical microsatellites designed by Orbital Sciences Corporation, integrated, tested,

and operated by Taiwan’s National Space Organization (NSPO), with the science data products generated by

the University Corporation for Atmospheric Research (UCAR). In addition to a RO receiver, each satellite

carries two secondary space weather instruments: a Tiny Ionospheric Photometer (TIP) and Tri-Band-Beacon

(TBB), which synergistically enhance the accuracy and utility of the COSMIC ionospheric observations. The

high precision of the COSMIC RO measurements was verified by comparisons of closely collocated

occultations that were available immediately after the launch of the satellites [Schreiner et al., 2007]. COSMIC

has demonstrated the utility of RO for Numerical Weather Prediction applications, climate studies, and space

weather monitoring via a constellation. In terms of space weather data products, as of October 2014, COSMIC

has provided ~4M ionospheric EDPs, TEC arcs, and S4 index profiles, and more than 17800h of quality

controlled TIP nighttime radiances. Within its nominal mission lifetime of 2 years, COSMIC provided 2000–2500

occultations per day. Although the COSMIC satellites have suffered degradation since launch, they continue to

produce 1000–1500 occultations per day.

The United States and Taiwan are moving forward with a follow-on RO mission (FORMOSAT-7/COSMIC-2)

that will launch six satellites into low-inclination orbits in early 2016, and another six satellites into

high-inclination orbits in early 2019. United States agencies, led by the National Oceanic and Atmospheric

Administration (NOAA) are partnering with Taiwan’s NSPO to execute the COSMIC-2 program [Cook et al.,

2014]. The COSMIC-2 GNSS RO payload, named the TriG GNSS Radio-occultation System (TGRS), is being

developed by the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) under

USAF funding and will be capable of measuring more than 12,000 ionospheric profiles per day after all

12 satellites are fully deployed [Meehan et al., 2012]. The USAF is also providing two space weather payloads

that will fly on each of the first six satellites: an Ultra High Frequency/L band/S band RF Beacon transmitter and

the Ion Velocity Meter (IVM) instrument to measure in situ ion density and three-dimensional plasma drifts

Figure 2. Example of the reanalyzed monthly global 3-D electron density and the corresponding peak density (NmF2) and vertical TEC map at 1900 UT in September 2006.
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[Straus and Betz, 2014]. The COSMIC-2 mission will provide a revolutionary increase in the number of

atmospheric and ionospheric observations that will greatly benefit the research and operational

communities [Fong et al., 2012]. The IVM plasma drift observations, from which Electric Fields can be

derived, will be of particular importance to the ionospheric research community since a significant amount

of ionospheric weather is directly tied to electric field variability. The first six COSMIC-2 satellites will

provide unprecedented spatial/temporal electric field specification at low latitudes. COSMIC-2 data will be

processed and distributed to the research and operational communities free of charge by UCAR COSMIC

Data Analysis and Archive Center (CDAAC).

Figure 3 shows the layout from both the top view and bottom view of the COSMIC-2 satellites, which are

being designed and built by Surrey Satellite Technology Ltd. (SSTL) under a contract from NSPO [da Silva

Curiel et al., 2013]. TGRS employs four antennas—two RO antennas and two POD (Precise Orbit

Determination) antennas, with one of each type facing the ram and antiram directions. The larger RO antenna

is used exclusively for tropospheric measurements and provides signals supporting onboard digital beam

steering to increase measurement quantity in the lower atmosphere. Ionospheric measurements are made

by the two POD antennas, which are canted slightly upward relative to the velocity direction. The IVM sensor

is mounted on the spacecraft ram surface and the RF Beacon antenna is on the nadir deck. The COSMIC-2

space weather products and accuracy requirements are summarized in Table 1. As indicated, COSMIC-2 will

observe a variety of ionospheric parameters, covering both small-scale and large-scale ionospheric

phenomena. In comparison with COSMIC, the COSMIC-2 mission will provide a higher quantity and quality of

space weather data. Figure 4 shows the comparison between the two missions in terms of constellation

Figure 3. Layout of FORMOSAT-7/COSMIC-2 satellite viewed from both the (a) top and (b) bottom (image credit: SSTL).

Table 1. Space Weather Products and Accuracy Requirement for COSMIC-2

Instrument Parameter Observation Range Accuracy

TGRS Relative TEC 0–2000 TECU 0.3 TECU

Absolute TEC 0–2000 TECU 3 TECU

Electron density profile 3 × 10
10
–10

13
el �m

�3
Less than the greater of 10

11
el �m

�3
and 20%

Amplitude scintillation (S4) 0.1 to 1.5 0.1

Phase scintillation (σφ) 0.1 to 20 rad 0.1 rad

IVM Ion density 10
9
–5 × 10

12
m
�3

5%

Ion composition 0–1 5%

Ion velocity Cross track: ±1000m/s; In track: ±1000m/s Cross track: ±5m/s; In track: ±10m/s

RF Beacon Amplitude scintillation (S4) 0.1 to 1.5 0.1

Phase scintillation (σφ) 0.1 to 20 rad 0.1 rad
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configuration, RO data coverage, and key parameters. Lee et al. [2013] and Yue et al. [2014] have performed

observing system simulation experiments based on the COSMIC-2 constellations’ orbit, and the results show

that the COSMIC-2 ionospheric RO measurements will significantly enhance the capability of ionospheric

middle- and large-scale nowcasts and forecasts.
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