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Abstract Regional gravity field modelling by means of

remove-compute-restore procedure is nowadays widely

applied in different contexts: it is the most used technique

for regional gravimetric geoid determination, and it is also

used in exploration geophysics to predict grids of gravity

anomalies (Bouguer, free-air, isostatic, etc.), which are use-

ful to understand and map geological structures in a specific

region. Considering this last application, due to the required

accuracy and resolution, airborne gravity observations are

usually adopted. However, due to the relatively high acqui-

sition velocity, presence of atmospheric turbulence, aircraft

vibration, instrumental drift, etc., airborne data are usually

contaminated by a very high observation error. For this rea-

son, a proper procedure to filter the raw observations in both

the low and high frequencies should be applied to recover

valuable information. In this work, a software to filter and

grid raw airborne observations is presented: the proposed

solution consists in a combination of an along-track Wiener

filter and a classical Least Squares Collocation technique.

Basically, the proposed procedure is an adaptation to air-

borne gravimetry of the Space-Wise approach, developed by

Politecnico di Milano to process data coming from the ESA

satellite mission GOCE. Among the main differences with

respect to the satellite application of this approach, there is

B D. Sampietro

daniele.sampietro@g-red.eu

1 GReD s.r.l. c/o ComoNExT, Via Cavour 2,

22074 Lomazzo, CO, Italy

2 DICA, Politecnico di Milano, Piazza Leonardo da Vinci 32,

20133 Milano, MI, Italy

3 Eni s.p.a., via Emilia 1, 20097 San Donato Milanese, MI, Italy

the fact that, while in processing GOCE data the stochas-

tic characteristics of the observation error can be considered

a-priori well known, in airborne gravimetry, due to the com-

plex environment in which the observations are acquired,

these characteristics are unknown and should be retrieved

from the dataset itself. The presented solution is suited for

airborne data analysis in order to be able to quickly filter and

grid gravity observations in an easy way. Some innovative

theoretical aspects focusing in particular on the theoretical

covariance modelling are presented too. In the end, the good-

ness of the procedure is evaluated by means of a test on real

data retrieving the gravitational signal with a predicted accu-

racy of about 0.4 mGal.

Keywords Gravity · Airborne gravimetry · Remove-

compute-restore procedure · Covariance modelling ·

Space-Wise approach

1 Introduction

The improvements in satellite geodesy and Earth’s global

gravity models (GGM) of the last years have nowadays

opened the way for important applications such as accu-

rate determination of the actual shape of the Earth, i.e.

the geoid (Sansó and Sideris 2013), or global crust-mantle

boundary determination (Reguzzoni and Sampietro 2015;

Boumann et al. 2015; Mariani et al. 2013), post-glacial

rebound (Vermeersen 2003), and geostrophic currents mod-

elling (Knudsen et al. 2011; Gilardoni et al. 2013; Menna

et al. 2013). However, applications such as resource explo-

ration still demand a much higher resolution than the one

obtained by satellite-only observations and a much higher

accuracy than that obtained from GGM.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00190-016-0981-y&domain=pdf
http://orcid.org/0000-0001-9747-8497


536 D. Sampietro et al.

On the one hand, even data from the ESA GOCE satellite

mission (Drinkwater et al. 2003), one of the most important

gravity missions of the last years which had homogeneously

observed the Earth gravitational field exploiting direct satel-

lite gradiometry, have been able to resolve the gravitational

field with accuracies better than 1 mGal (1 mGal =

10−5 m/s2) at a spatial resolution of about 100 km (Brock-

mann et al. 2014; Voigt and Denke 2015). As well known, this

is not enough for exploration geophysics where similar, or

even better, accuracies are required up to a spatial resolution

of about 1 km (Hinze et al. 2013).

On the other hand, also the most accurate GGM, such as

EGM2008 (Pavlis et al. 2012), contains non-homogeneous

terrestrial datasets that are reflected in biases and distortions

in the final gravity field model (Gatti et al. 2013). Even

the integration of GOCE data in high-degree GGM, as in

the EIGEN-6C4 (Förste et al. 2014) or in the GECO model

(Gilardoni et al. 2016) solves the problem only partially, leav-

ing unchanged possible inconsistencies of the GGM within

the medium high frequencies. As a consequence, for resource

exploration purposes, other means have to be found to resolve

high frequencies, which can potentially provide important

information on the upper crustal structure. Observations

collected closer to the Earth’s surface, such as airborne,

shipborne and terrestrial gravity data, represent attractive

complementary information to estimate these high frequen-

cies. However, these measurements are limited in their spatial

extent and, due to the characteristics of modern gravimeters,

can contain systematic errors in the low frequencies. How-

ever, at the same time, they can significantly contribute to

the determination of the medium to high frequencies of the

gravity field. Airborne gravimetry and shipborne gravimetry

are of particular interest to resolve these frequencies since

they provide gravity measurements in a cost-effective way.

Of course, solving these medium to high frequencies of the

gravity field can give important benefits also to other applica-

tions, such as local and regional geological studies (e.g. Bell

et al. 1999) or geoid determination (e.g. Forsberg et al. 2000).

Nevertheless, in the present work we will mainly focus on

exploration geophysics applications. For further details on

airborne and shipborne gravimetry and their characteristics,

the interested reader can refer to the literature (Schwarz and

Li 1996, 1997; Glennie et al. 2000; Bruton 2000; Térmens

and Colomina 2005). We would just mention here the fact

that typical aero-gravimetric data for geophysical exploration

cover areas of around 100 km×100 km (see for instance Car-

bonNet Project 2012), so that significant gravimetric data

are contained in the observations with a spatial resolution

of about 60 km. The standard geophysical processing algo-

rithms address in fact wavelengths between 1 and 50 km, or

even less.

In the following, an analysis of the prediction of a grid

or a set of filtered along-track gravity anomalies obtained by

merging GGM and airborne dataset, based on a combination

of along-track Wiener filter and Least Squares Collocation

adjustment, is presented. In this framework, we will call

“processing” the calculations done to convert “raw aero-

gravimetric data” into a set of predicted gravity disturbances

or gravity anomalies. The “raw aero-gravimetric data” is, in

this contest, the accelerations resulting from direct gravi-

metric measurements minus inertial accelerations derived

from GNSS (Global Navigation Satellite System) and IMU

(Inertial Measurement Unit) data as well as all the other

deterministic effects, such as the Eötvös (Harlan 1968) and

the lever arm effects (Saint-Jean et al. 2007). The result is a

sequence, along the aircraft trajectory, of the vertical compo-

nent (referring to a terrestrial reference system) of the gravity

plus all the biases and random errors inherited from the grav-

ity measurements and the inertial data processing.

The topic of airborne gravimetry “processing” has been

tackled and solved in several ways in geodetic literature, here

we mention first the Calgary approach (Schwarz et al. 1990)

and the collocation approach (Tscherning et al. 1998), par-

ticularly interesting to change from the observed functional

of the anomalous gravitational potential to another predicted

functional. The main problems to be faced in filtering air-

borne observations, as always with gravity, are to disentangle

the long wavelength signal from the observation coloured

noise and to properly filter the high frequencies. The former

can be tackled, nowadays, by exploiting information derived

from satellite gravimetry/gradiometry and radar altimetry

combined with surface data in GGMs. In the following, a

solution of what we call “processing”, i.e. basically a filter-

ing and gridding procedure, is presented.

2 Theoretical aspects

As pointed out in the introduction, the problem of filtering

raw airborne gravity observations consists basically in the

separation of the observation coloured noise from the actual

gravitational signal. In the present work, we propose a solu-

tion scheme, for this issue, similar to the one used in the

GOCE Space-Wise solution (Reguzzoni and Tselfes 2009),

but adapted of course to the airborne gravimetry. Among

the main differences with respect to the GOCE Space-Wise

solution, we would like to point out the fact that while in the

case of GOCE, the gradiometer observation error had been

studied for a long time and therefore it can be considered

well known (Smit et al. 2000) (at least in terms of spectral

properties), in the case of airborne gravimetry the gravime-

ter observation error is usually unknown. Consequently, it

should be recovered from the observations themselves and

from the knowledge of the actual gravitational field. Another

difference is that for the official GOCE solutions the final
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product should be independent from external data, while for

airborne data processing this is not required.

The implemented procedure that processes raw aero-

gravimetric data in order to get a grid of predicted gravity

disturbances (or along-track filtered observations) can be

summarized as follows:

1. first a reference signal, called δgref is created along one

track from existing global models (e.g. EIGEN-6C4 or

GECO including GRACE and GOCE products) adding

to it the residual terrain correction (RTC):

δgref = δgGGM + δgRTC (1)

where δgGGM is the spherical harmonic synthesis of the

GGM up to its maximum degree/order Lmax computed

along the aircraft trajectory, while δgRTC is the RTC

computed on the same points. Terrain corrections are

computed, exploiting fast Fourier transform algorithms,

by means of the GTE software (Sampietro et al. 2016).

Note that in order to perform the RTC the digital eleva-

tion model is smoothed using a moving average window,

with a spatial resolution that depends on Lmax, given by

Lambeck (1990):

λ =
40.000 km

Lmax + 0.5
. (2)

2. We subtract the contribution of the global model used to

generate the reference signal itself up to some interme-

diate degree Lcut (e.g. 360) from the observations of the

considered track δgobs, as well as from δgref. Moreover,

the effect of a coarse global terrain correction (from the

same degree Lcut) is removed too, by exploiting global

gravity field model related to topography such as dV_-

ELL_RET2012 (Hirt et al. 2012). If required, a linear

trend for each reduced flight line is also removed. This

operation is justified by the fact that the gravimeter obser-

vations, and more in general the inertial observations, are

usually contaminated by drifts and biases (Hamilton and

Brul 1967). The above procedure represents our remove

step that leaves the reduced observations δgred
obs and the

reduced reference signal δgred
ref with zero mean, smaller

amplitude and spatial correlation with respect to the orig-

inal ones.

3. δgred
obs are now Wiener-filtered track-by-track and the lin-

ear trend coming from the reference signal is added back,

thus obtaining a number of regularly sampled tracks of

the filtered residual gravity disturbances δgred
fil ;

4. an analysis of the residuals at the crossovers, i.e. at the

intersection between two different tracks, is performed,

thus obtaining an empirical estimate of the noise stochas-

tic properties along the aircraft track of δgred
fil ;

5. the signal covariance function is then estimated and mod-

elled as a linear combination of a set of Bessel functions

of the first order and zero degree (Watson 1995). This

step can be performed automatically either by means of

an innovative algorithm in the frequency domain, exploit-

ing the well-known relation between 2D power spectral

densities and Bessel functions (Kreh 2012), or by means

of a non-negative Least Squares adjustment (Lawson and

Hanson 1974);

6. a grid of δgred
obs (or a set of along-track filtered data) and a

grid of its corresponding errors are generated by a Least

Squares Collocation solution;

7. finally, the signals removed at point 2 are restored back,

thus obtaining the desired grid.

The whole procedure is summarized in Fig. 1, while more

details on each step are discussed in the following.

As it can be notice from the presented procedure,

the upward/downward continuation of the reduced grav-

itational field has been neglected here. This is justified

by a numerical experiment performed in the Alpine area

(8◦ 30′E − 9◦ 30′E, 45◦ 30′N − 46◦ 30′N). Basically, we

simulated the upward/downward continuation of the reduced

field by performing a residual terrain correction (with a sig-

nal amplitude of about ±50 mGal) of the region on the

DTM surface and at different altitudes. Results show that

for height differences smaller than 1000 m neglecting the

upward/downward continuation entails errors of the order

of 0.5 mGal (standard deviation). Note that the Alpine area,

considered in this simple test, is among the most extreme

regions (from the topographical point of view) of the world

and therefore less dramatic conditions are in general inves-

tigated for exploration purposes (see for instance the real

airborne acquisition presented in Sect. 3) thus justifying, at

least numerically, the proposed procedure.

2.1 The Wiener filter

The first step of the whole procedure consists in computing

the reference signal δgref, i.e. a signal as close as pos-

sible to the actual field without using the airborne data.

This can be done by means of a high-degree global model

(such as EIGEN-6C4 or GECO model) up to the its maxi-

mum degree/order (e.g. 2190) and adding the missing high

frequencies by summing a residual terrain correction con-

tribution. Practically, δgref will be used to retrieve the low

frequencies of the final filtered field (using a GGM that in

principle fully exploits GRACE as well as GOCE data, this

low frequencies are expected to be more reliable or at least

better sampled than those derived from airborne observa-

tions) and to estimate the stochastic properties of the residual

field. After that, both the observations and the reference sig-

nal are reduced for the low and medium-high frequencies.
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Fig. 1 Flow chart of the

procedure implemented to filter

and grid raw aero-gravimetric

data (here it is assumed that the

signal covariance is estimated

from observation points)

The former is done by subtracting the synthesis of the low

harmonic degrees (up to a certain degree Lcut for instance

equal to 360) of the same model used to generate the refer-

ence signal itself, while the latter is fulfilled by subtracting

the synthesis of the high degrees of a global model related to

topography (e.g. dV_ELL_RET2012).

This operation will leave a reference signal with zeroed

low frequencies and reduced medium-high frequencies. The

linear trend is also removed from the reference signal as well

as from the observations. Once the data have been reduced,

the track-by-track Wiener filter, G, in the frequency domain

can be applied (Wiener 1949). Namely, the filter is computed

as:

G =

(

Sδg

Sδg + Sν

)
1
2

, (3)

where Sδg and Sν are the power spectral densities of the

reduced signal and the observation noise, respectively. The

former is simply computed from the reduced reference signal

δgred
ref , while the denominator is retrieved from the reduced

observations:

Sδg =

∣

∣

∣
δĝred

ref

∣

∣

∣

2
(4)

Sν =

∣

∣

∣
δĝred

obs

∣

∣

∣

2
− Sδg (5)
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where •̂ represents the Fourier transform of the quantity •.

Note that, since the reference signal does not contain the low

frequencies, Sδg will be 0 up to a certain frequency implicitly

defined by Lcut. Consequently, the Wiener filter will replace

the low frequencies of the airborne gravity data (which are

known to be at least bad sampled) with the GGM ones, which,

as said before, are expected to be more reliable. The only open

point is how to choose the proper Lcut; however, it can been

empirically fixed on the basis of the formal GGM error, e.g.

by selecting Lcut in such a way that the GGM cumulative

error is smaller than a given threshold or as a function of the

dimension of the investigated area (e.g. up to degree 360 for

regions of about 1◦ × 1◦ like in the numerical test reported

in Sect. 3). Finally, after the Wiener filtering, the linear trend

of each track, estimated from the reduced reference signal, is

added back, obtaining as output a number of regularly sam-

pled tracks of the reduced gravity disturbances δgred
fil . Note

that, within this filtering, the topography is used for two dif-

ferent independent purposes: it is in fact used in order to

estimate the high frequency part of the signal spectrum Sδg

and also to reduce the amplitude of the signal at intermediate

frequencies in a remove-restore fashion. While in the former,

as already stated, it is computed by means of high-resolution

local residual terrain effect calculation, basically trying to

add to the reference model the very high frequencies (i.e.

from degree Lmax to +∞), in the latter it is computed from

a global model (from degree Lcut to degree Lmax).

2.2 Crossover analysis

At this point, a crossover analysis is performed to retrieve

information on the δgred
f il error. It should be observed that,

in principle, it is possible to compute the spectrum of the

estimation error of the filtered observations just propagating

those of the observation error within the Wiener filter as:

Sǫδg = G2Sν . (6)

However, since both the filter G and the error spectrum Sν

depend on the GGM used, we prefer to directly consider

the filtered data and evaluate their accuracies empirically.

Basically, this is done by means of the crossover analy-

sis. Note that in the classical airborne gravity data filtering

(see for instance the technical documentation related to the

dataset used for the numerical test CarbonNet Project 2012) a

crossover adjustment, in which low frequencies of the grav-

itational field are retrieved on the basis of the crossovers,

is usually performed. In our analysis, we use crossovers, as

already stated, only to empirically retrieve the along-track

observation error covariance.

In details, this analysis consists of modelling each air-

craft track as a straight line, which parameters are estimated

by means of Least Squares Adjustments, and subsequently

Fig. 2 Geometry of the crossover analysis

computing the gravitational field at the intersections of each

couple of lines. For this purpose, the flight lines are divided,

according to their flying direction, into two sets: namely tra-

verse lines and control lines. For each crossover, i.e. for each

intersection between a traverse and a control line, we sepa-

rately interpolate the gravity field from the traverse line only

and from the control line only (see Fig. 2).

This is done by firstly applying a Lagrangian interpolation

(Davis 1975) to predict the gravity value on the modelled

line in correspondence to the intersection point and, after

that, by moving the estimated values in the vertical direction.

This last step is performed by linearizing the problem and

computing the second radial derivative of the gravity field

from the reference model. It should be observed that the effect

of both these “movements” is, in general, quite limited. In

fact, considering for instance the real acquisition treated in

the next section, the maximum along-track shift results to be

smaller than 4 m, while in the vertical direction we found

a maximum distance between two tracks at the crossover of

only 1.5 m, which is negligible when dealing with the reduced

signal.

The above procedure allows to estimate a set of differences

between the gravitational field at the same observed point

from couples of different tracks or, in other terms, it allows to

evaluate on a set of points the error of the filtered gravity dis-

turbances. We consider for each control line the whole set of

estimated errors at the crossovers and compute the empirical

along-track error covariances. Assuming that the along-track

error is stationary, we can average the error covariances

of each single control line and finally estimate a theoreti-

cal along-track error covariance function. Finally, this error

covariance can be interpolated by means of a proper theoret-

ical covariance function Cνν (ψ) (where ψ is the spherical

distance along the aircraft track) to be used in the subsequent

Least Squares Collocation.

This crossover analysis does not only permit to model the

error covariance function Cνν (ψ) but also allows to have
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some indications on the goodness of the previous Wiener

filtering procedure.

2.3 Covariance function estimate and least squares

collocation

In order to compute the final grid (or the final δg along track),

the covariance function of the reduced gravitational signal is

required. In the proposed solution, this information can be

retrieved in two different ways. In the former method, a grid

of δgref values at a constant height is generated from the initial

reference global gravity model. The reference reduced grid

of δgred
ref is used to generate the empirical covariance function,

which is fit with a set of n Bessel functions of the first order

and zero degree (Kreh 2012). The covariance function is built

as a linear combination (with positive coefficients) of these

Bessel functions. The fitting step is performed automatically

in the frequency domain exploiting the well-known relation

between the 2D power spectral densities and Bessel functions

(Watson 1995). Details on the theoretical aspects related to

this procedure are reported in “Appendix 1”.

The latter method to model the signal covariance function

consists in empirically computing it from the along-track

filtered reduced signal and subsequently modelling it with a

linear combination of Bessel functions, coefficients of which

are estimated by means of a non-negative Least Squares

Adjustment. The main differences between the two solutions

are that while the former estimates the covariance from exter-

nal data, the latter uses only the filtered airborne signal. In

both methods, the empirical covariance can be zeroed for dis-

tances larger than a certain threshold avoiding the covariance

function to have significant oscillations and simplifying the

Least Squares Collocation.

Whatever method is chosen, once the theoretical covari-

ance function is estimated it can be used to build the

covariance matrix required in order to compute the final

result. Note that at this stage we have a set of along-track fil-

tered and reduced observations δgred
fil characterized by having

independent (line by line) and stationary noise with known

stochastic characteristics retrieved by the crossovers analysis

and a spatially correlated signal due to the gravitational field

only. In this step, the combination between the GGM grid

and the along-track aero-gravimetric data can be easily per-

formed if an estimate of the GGM error is available. Finally,

in order to obtain the full gravitational signal, all the frequen-

cies removed before the Least Square Collocation adjustment

are restored.

3 Numerical test

The algorithm presented in the previous sections has been

implemented into a software called SWAG (Space-Wise for

Fig. 3 Along-track flight altitude (the turns of the aircraft are omitted

for the sake of readability). Black line represents the coastline; unit (m)

Airborne Gravity) and tested on a real airborne acquisition

performed in the framework of the CarbonNet Project (2012).

The dataset is made of 404384 aero-gravimetric observa-

tions acquired in 2011 by Sander Geophysics Ltd. (SGL)

to provide a better understanding of the onshore, nearshore

and immediate offshore geology of the Gippsland Basin, a

sedimentary basin situated in south-eastern Australia, about

200 km east of the city of Melbourne. The survey was con-

ducted using SGLs AIRGrav system mounted on a Cessna

Grand Caravan 208B. In details, more than 10000 km length

of data were acquired along flight lines oriented northeast and

southwest with 1 km line spacing. Moreover, a 9 km wide

strip along the coast was flown at 500 m line spacing. Tie lines

were flown on the northwest southeast direction at 10 km

line spacing. The survey was flown at an average ground

speed of about 50 ms−1 at an altitude of 160–170 m offshore

and with a minimum clearance of 305 m above towns (see

Fig. 3 where the flight tracks, the turns of the aeroplane,

as well as flight altitude are shown). The dataset includes,

among the others, unfiltered raw-gravitational observations

as well as 50 s (corresponding to about 2.5 km) half wave-

length filtered free-air anomaly sampled at 2 Hz (correspond-

ing to about 25 m).

All the tests have been performed on a single node of

a supercomputer equipped with two 8-cores Intel Haswell

2.40 GHz processors (for a total of 16 cores) with 128 GB

RAM.

In the current numerical test, the along-track raw gravity

observations are computed by SGL by subtracting the GPS-

derived aircraft accelerations from the inertial ones, applying

the Eötvös correction and removing the normal gravity effect.

As expected, the anomalous gravitational signal is largely

dominated by the noise. It can also be observed that the
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noise has both low and high frequencies components, thus

making the filtering process a complex problem. Moreover,

as stated in the Introduction, no information on the stochas-

tic characteristics of the observation noise is available. As

explain in Sect. 2, the first step of the developed filtering

procedure consists in computing the reference signal on the

404384 observation points. This is done by synthesizing the

gravity disturbance from the GECO model up to its maxi-

mum degree/order (i.e. Lmax = 2190), and adding to this

quantity a residual terrain correction. The former is done

by an ad-hoc software developed in parallel C language.

The computation of this harmonic synthesis up to degree

and order 2190 on the 404384 points takes about 20 min;

however, the software is able to properly down-sample the

observations according to the GGM maximum degree and the

distance between two points on the same line, thus reducing

the computational time up to 10 times. As for the latter, i.e.

the residual terrain correction, we used, as said before, the

GTE software (Sampietro et al. 2016). In details, the resid-

ual terrain correction is computed as the difference between a

full-resolution digital elevation model (Whiteway 2009) and

a smoothed elevation model obtained by applying a mov-

ing average window, according to Eq. 2, of about 20 km to

the full-resolution one. The second step of the filtering pro-

cedure consists in reducing, both the observations and the

reference signal, for the low frequency, which are known

to be very well estimated in the GECO model due to the

combination of EGM2008 (containing GRACE data) and

GOCE observations, while they are badly retrievable from

the airborne gravimetric data. This is done again by syn-

thesising the gravity disturbances up to a maximum degree

and order of Lcut = 360 (corresponding to a wavelength of

about 100 km) using the GECO model and synthesising the

medium-high frequencies in the range between Lcut = 360

and Lmax = 2190 using dV_ELL_RET2012 model. As an

example, some details of the Wiener filtering of one flight

track (namely track number 204800) are reported in the fol-

lowing. From the computational point of view, the Wiener

filtering, exploiting the properties of the FFT, requires about

1 second for each flight line for a total of less than 2 min for

the whole dataset.

In Fig. 4 the observed gravitational field, together with

the synthesis from the GECO model up to degree/order

2190 and the reference signal (i.e. the GECO derived sig-

nal plus the RTC), for line 204800 is shown. Again, it

can be observed how the signal is completely dominated

by the observations error which contains very powerful

high frequencies but also trends and biases. In Fig. 5,

the filtered reduced signal, once the linear trend has been

restored, is compared to the reference one thus show-

ing the improvements, due to the airborne observations,

to the initial GGM-based reference signal. The order of

magnitude of this improvement is of 2.65 mGal (stan-

Fig. 4 Along-track reference, GMM and observed gravity distur-

bances for line 204800; unit (mGal)

Fig. 5 Along-track reference and filtered gravity disturbances for line

204800; unit (mGal)

Table 1 Statistics of the residuals between different lines of the filtered

gravity disturbances at the crossovers

Mean (mGal) SD (mGal) Min (mGal) Max (mGal)

0.036 1.01 −2.83 4.80

dard deviation), for the considered flight track, which

is coherent with the expected accuracy of the GECO

model.

After applying the Wiener filtering on the reduced sig-

nal, the crossover analysis is then applied. A total of 1479

crossovers has been identified and analysed by the algorithm

described in Sect. 2.2 highlighting an along-track coloured

noise with a standard deviation of 1.01 mGal and a correla-

tion length of about 2 km (statistics on the residuals obtained

by the crossover analysis are reported in Table 1).

As for the covariance of the reduced signal, it has been

computed by means of the two methods described in the

previous section and it is shown in Fig. 6.

Actually, the main differences between the two covari-

ances are due to the fact that the two methods use different

inputs (filtered airborne along-track observations and grid

of the reference model, respectively) and use also differ-

ent regions to estimate the signal covariance. In order to

compute the final result by means of the Least Squares Col-

location algorithm, the dataset is down-sampled by a factor
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10 reducing the number of the observations to about 40000

points. This is justified by the fact that the initial dataset

is sampled at 25 m and it is corrupted by a noise with

approximate correlation length of about 2 km. As a conse-

quence, the contribution to the final estimate of points closer

that 250 m can be assumed to be quite limited. The Least

Squares Collocation algorithm, together with the covariance

function estimation and modelling, takes about 45 min to

compute the final gravitational field on the 404384 obser-

vation points.

The final results in terms of along-track reduced gravity

disturbances, and their predicted errors are shown in Fig. 7,

where it can be seen that the predicted error (referred to the

data at flight altitude or to the grid at mean flight level) is

of the order of 0.6 mGal, decreasing to only 0.4 mGal when

the distance between two any consecutive flight tracks is of

500 m.

Fig. 6 Covariances; unit (mGal)

The proposed along-track solution has been compared

with the published SGL solution funding differences with a

standard deviation of 2.5 mGal decreasing to 1.8 mGal (see

Fig. 8) when only the central part of region is considered

(thus avoiding potential border effects). These differences

are basically due to the difference in the low frequencies

estimation (SGL used ground gravity benchmarks, while in

the proposed solution low frequencies are retrieved by GOCE

and GRACE satellites observations) and in the different high

frequencies filtering (i.e. 3 km half wavelength filtered versus

Least Squares Collocation). As for the border effect, it should

be underlined that the proposed procedure, being based on a

remove-restore procedure, greatly reduces, in the data reduc-

tion step, the border effect using information coming from

GGM which is not the case in the SGL solution.

Fig. 8 Differences between the proposed and SGL (3 km half wave-

length filtered) solutions; unit (mGal)

Fig. 7 Estimated corrections to

the reference signal (left panels)

and corresponding accuracies

(rights panels) for gridded (up)

and along-track points (down).

Red dotted line represents the

contour of the flight area; unit

(mGal)
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4 Conclusions

In this paper, a software, called SWAG, to filter and grid

raw aero-gravimetric observation has been presented. The

proposed solution is based on the classical remove-compute-

restore procedure and consists in a combination of a Wiener

filter along the aircraft trajectory followed by a Least Squares

Collocation adjustment for the prediction of grids (or set of

points) of filtered gravity anomalies.

To solve the main problems related to the filtering of

gravity observations, which are connected to the fact that

the coloured observation noise is in general unknown when

dealing with airborne gravimetry, a solution that exploits

information from GGM has been developed. This solution

allows to exploit both satellite and surface gravity data which

are contained in the GGM to replace the low frequencies of

the signal, which are known to be bad sampled by airborne

gravimetry, and to stochastically separate the observation

error from the expected gravitational signal.

As an indicator of the goodness of the Wiener filtering

procedure and to estimate the error covariance function of the

filtered observation, a crossover analysis has been developed

too.

In order to use the Least Square Collocation to compute

the final grid of gravity disturbances, an innovative method

for the estimation of the covariance function, modelled with

a linear combination of Bessel functions, has been applied.

The whole procedure has been thought for geophysi-

cal applications such as resource exploration, which require

high accuracy and resolution not achievable with GGM and

satellite-only data. A numerical tests on a real airborne

dataset have been conducted to evaluate the goodness of the

entire procedure implemented in SWAG software. The results

show that the along-track Wiener filter allows to recover a

signal with an accuracy of about 1 mGal from observations

characterized by a signal-to-noise ratio smaller than 1%.

Moreover, the subsequent Least Squares Collocation further

filters the data exploiting the stochastic property of the resid-

ual gravitational field, which is suppose to be homogeneous

and isotropic in the space, and those of the observation error

which is considered isotropic and homogeneous along each

single flight line but independent line by line. The whole pro-

cedure, applied on about 400000 points, takes about 120 min

and gives a final predicted accuracy of the order of 0.6 mGal

decreasing up to 0.4 mGal when the distance between two

any consecutive flight tracks is of 500 m.
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Appendix 1

The algorithm implemented to compute the covariance func-

tion from a grid of the reduced reference gravitational signal

is briefly explained. We will suppose here to have a reduced

grid δg
(

x
)

with zero mean and with homogeneous and

isotropic behaviours. Here, x represents the two planar coor-

dinates of the grid. The first operation performed consists in

computing the bi-dimensional fast Fourier transform δĝ
(

p
)

of δg, where p represents the frequencies in the directions

defined by the
(

x
)

axis. We now consider N bins, and for

each bin i we compute the following average:

Si (p) =
∑

p∈Ωpi

∣

∣

∣
δĝ

(

p
)
∣

∣

∣

2

n
(7)

where p =

∣

∣

∣
p

∣

∣

∣
, n is the number of values included within

the i-th bin, and Ωp is defined as:

Ωpi
= p̄i ≤ p ≤ p̄i + �p (8)

with p̄i a set of values ranging from 0 to the maximum p with

an increment given by
max

∣

∣

∣
p

∣

∣

∣

N−1
. Note that the final Si (p) is a

step function that depends only on the radial coordinate p of

the plane p. It should be also observed that if we are interested

in a covariance, which is a function on distances between

points r only, and this is always the case if the field is consid-

ered homogeneous and isotropic, then the covariance C (r)

can be simply inferred from the inverse Fourier transform of

Si (p). Due to the relation between the bi-dimensional radi-

ally symmetric Fourier transform and Hankel transform, we

have:

S (p) =

∫ +∞

0

J̄0 (pr) C (r) dr (9)

where the J̄0 function is related to the classical Bessel func-

tion of 0 order by the following relation:

J̄0 (pr) = 2π J0 (2πpr) (10)

Of course C (r) can be obtained by performing the inverse

Henkel transform of eq. 9:

C (r) =

∫ +∞

0

J̄0 (pr) S (p) dp. (11)
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We shall also need the following formula (Watson 1995):

∫ +∞

0

J0 (ar)
J1 (br)

r
rdr =

{

0 a > b
1
b

a < b
. (12)

If we consider a = 2πp, b = 2π p̄, J̄0 (pr) = 2π J0 (pr),

and J̄1 (pr) = 2π J1 (pr) we have:

p̄

2π

∫ +∞

0

J̄0 (pr)
J̄1 ( p̄r)

r
rdr =

{

0 p > p̄

1 p < p̄
. (13)

Therefore, combining Eq. 11 and Eq. 13 we have:

C (r) =

n
∑

i=0

Si

[

(i + 1) �p

2π

J̄1 ((i + 1) �r)

r

−
i�p

2π

J̄1 (i�r)

r

]

. (14)

This allows to estimate a covariance function corresponding

to a power spectrum described in terms of linear combination

of step functions as a linear combination of n Bessel functions

of the first order and zero degree.
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