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Spaceborne synthetic aperture radar (SAR) imaging enters an

era where increasingly short revisit times, or large swath widths,

respectively, and high spatial resolutions are requested. These

requirements impose contradicting constraints on conventional

SAR systems using analog beamforming technology. The

development for future radar satellites is therefore towards

digital beamforming (DBF) systems where the analogous receiver

hardware is replaced by digital components. Concerning the SAR

antenna the innovative concept of a parabolic mesh reflector in

conjunction with a digital feed array is becoming a promising

architecture for this new SAR system generation. These antennas,

already a mature technique for communication satellites, have the

potential to outperform planar array antennas in terms of gain

at a moderate hardware effort. This article provides a hardware

concept study based on a design in X-band. Focus is put on DBF

algorithms adopted to the SAR case and important performance

figures are derived.
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I. INTRODUCTION

Radar remote sensing is a technique which has
been vastly exploited in spaceborne Earth observation
applications in the last decades. With synthetic
aperture radar (SAR) systems information about
the reflectivity of distant objects can be retrieved.
Those imaging radar systems typically consist of a
transmitter which illuminates a certain part of the
Earth surface, the footprint, and a receiver which
collects the scattered electromagnetic energy. This
signal is digitized and downlinked to a ground station.
Future applications like Earth system dynamics

monitoring [1] require a short revisit time which
in turn rises the need of large swath widths. At the
same time operators and investigators are interested
in a high information content of the SAR signal.
This is traditionally achieved by increasing the signal
bandwidth resulting in a higher resolution of the SAR
images. Large swath widths and high resolutions are
contradicting requirements for conventional SAR
systems. Since spaceborne SAR systems demand
a very high isolation between the transmit- and
receive-channel, they cannot be implemented as CW
radars on a single platform. This technical constraint
leaves as the only option pulsed radar systems
which are subject to a stringent timing of transmit
and receive events. Aiming at high resolutions a
broad footprint or, respectively, a broad antenna
beam is required. In order to sample the received
signal adequately, a sufficiently high pulse repetition
frequency (PRF) has to be used. The high PRF in turn
limits the swath width.
One possibility to overcome this restriction is to

transmit a signal using a broad beam and to record
with multiple receivers. These individual receiver
signals are then processed in order to reconstruct
the high resolution image. In terms of system theory
such a SAR configuration would be a single input
multiple output (SIMO) system. Classical approaches
employ planar array antennas where the aperture
is split on receive into multiple subapertures [2].
The performance for a spaceborne SAR system
consisting of several formation-flying small satellites
and the implications on signal processing have been
investigated in [3]. The novel concept of combining a
reflector antenna with a feed array, where the signal
is digitized almost immediately after the receiver,
was first proposed in [4] and further investigated in
[5]—[10]. It was demonstrated that such systems have
the potential to outperform conventional planar SAR
systems. Reflector antenna based systems are already
a mature technique for communication satellites.
Generally reflector antennas inherently generate
a shaped beam due to the mechanical molding of
the reflector dish. That means for any given feed
position only a certain solid angle can be illuminated.
Therefore a set of multiple feed elements is required
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in order to cover the complete region of interest.
By moving the analog-to-digital converters (ADCs)
closer to the RF front end, it is possible to form
beams by means of digital signal processing avoiding
a costly analog receiver chain. It is the objective
of this article to present a detailed analysis of this
innovative hardware concept in the context of SAR
and to discuss the performance of such systems.
Emphasis is laid on digital beamforming (DBF)
procedures which improve or balance the system
performance.
The article is organized as follows. Starting with

an overview of the system hardware concept in
Section II-A, the reflector antenna design with feed
array is presented in Section II-B and the system
operation is outlined in Section III. Based on the
SAR signal model presented in Section IV-A the
DBF concepts are divided in elevation and azimuth.
The corresponding DBF algorithms are derived
in Sections IV-B and IV-C, respectively. These
beamforming procedures are demonstrated by means
of numerical simulations in Sections V-A and V-B.
Conclusions are presented in Section VI.

II. THE SAR SYSTEM

In the following sections the basic hardware
concepts of multi-channel reflector SAR systems are
presented. In more detail the idea of combining a
reflector antenna with a digital feed array, based on
a design in X-band, is discussed.

A. Hardware Architecture

SAR systems employing a parabolic reflector
antenna in conjunction with a feed array are an
interesting alternative to conventional planar array
antenna concepts. Parabolic reflector antennas differ
from planar arrays insofar as they focus an incident
plane wave in a compact zone, while planar arrays are
illuminated homogeneously. Consequently, depending
on the incidence angle of the wave, the energy has
to be collected by means of a feed array. The main
advantage over planar array antennas is the fact that
high gain antennas can be easily realized by means of
large light-weight foldable mesh reflectors. Figure 1
shows the basic concept of such a reflector-based
SAR system [4]. The sensor flight direction is
associated with the azimuth dimension in SAR
coordinates. The elevation direction is in the paper
plane associated with slant range. The lower part of
the image shows the feed array. Every feed element,
connected with a transmit/receive (T/R) module on
transmit (Tx), illuminates, after reflection from the
reflector, a certain slightly overlapping angular domain
in elevation. The received signals ui are digitized with
ADCs and further processed in the DBF unit. Here
hardware components such as low noise amplifiers
(LNAs), T/R modules, mixers, filters, etc. are not

Fig. 1. Architecture for reflector system; some components such

as LNAs, T/R modules, mixers, filters etc. are not shown to

maintain clear representation.

shown. In order to facilitate DBF techniques in the
azimuth dimension, with the goal of high resolution
SAR imagery, the feed array is extended in both range
and azimuth. This means that the feed array hardware
is in principle repeated for every azimuth channel.
The overall number of channels is then the number
of elevation channels Nx times the number of azimuth
channels Ny.

B. Reflector Antenna and Feed Array Design

The antenna design presented in this article is for
an X-band SAR system with a center frequency of
9.65 GHz orbiting 785 km above the Earth surface.
The swath width X is 100 km starting at an incidence
angle μi of 30:5

± with an azimuth resolution ¢y better
than 1 m. The reflector design is of parabolic shape
combined with a planar feed array with the parameters
listed in Table I. The reflector patterns have been
simulated using the reflector antenna analysis software
TICRA GRASP9 [11]. Figure 2 shows the geometrical
alignment of the reflector and the feed array. The
diameter D refers to the orthogonal projection of the
reflector rim in the x0r-y

0
r-plane of the local reflector

coordinate system [x0r,y
0
r,z

0
r]. The focal length of

4.9 m results in an F over D ratio of 0.7 and the
offset is the distance between the axes z0r and zr,
where zr is the rotational axis of the paraboloid.
In contrast to the local antenna coordinate system
[x0r,y

0
r,z

0
r] the coordinate system [xr,yr,zr] only serves
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Fig. 2. Reflector and feed array geometry.

TABLE I

Reflector and Feed Design Parameters

Parameter Symbol Value

diameter D 7 m

focal length F 4.9 m

offset O 0.5 m

elevation feed element spacing ¢x 0:6¸

azimuth feed element spacing ¢y 0:6¸

no. of elevation feed elements Nx 27

no. of azimuth feed elements Ny 6

for the definition of the parabolic reflector with its

minimum in the origin of this coordinate system. The

element spacing within the planar feed array is in

multiples of the wavelength ¸ at the center frequency
of 9.65 GHz. The feed element patterns are modeled

as Gaussian beams with an edge taper of ¡12 dB. The
feed array has an overall length in the xf-direction
of approximately 0.5 m and a width in the azimuth

direction of 0.1 m in the local feed coordinate system.

In order to illuminate the reflector properly the feed

array is tilted to the center of the local reflector

coordinate system.

To cover the ground swath of 100 km the antenna

beamwidth on transmit in elevation is approximately

5:2± while the azimuth resolution requires an azimuth
half power beamwidth of 0:89±. The polar gain pattern
plot, where all feed elements are activated, is depicted

in Fig. 3 showing a distinct rectangular shape.

Fig. 3. Gain pattern on transmit.

As examples the gain patterns on receive for a

center feed element and an off-focus element are

presented in Fig. 4 and in Fig. 5, respectively. Clearly

the off-focus feed element produces a broader pattern

with slightly reduced gain compared with the center

element. Additionally the sidelobe level increases,

which results in a degraded azimuth performance.

This can especially be observed in the corresponding

cut plots in Fig. 6 and Fig. 7. An interesting effect

can be observed in Fig. 6 on the most left pattern,

where the sidelobes have an asymmetric level. These

sidelobes are called coma lobes [12] and have been
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Fig. 4. Gain pattern on receive for center element.

Fig. 5. Gain pattern on receive for off-focus element.

investigated for an off-focus reflector antenna for
example in [13]. For radar systems without DBF
coma lobes can be critical, because the system
might become sensitive to spatial interference.
However, with DBF interferences can be suppressed.
Interpreting the channel patterns as spatial filters, the
typical bandpass character in the case of reflector
antennas becomes obvious. This means every channel
sees a different part of the spatial spectrum, which
is in contrast to planar array antennas, where all
channels see the same spectral domain. Another
important feature of reflector antennas is the low
peak-to-sidelobe ratio varying between 13 dB for
the off-focus elements and 30.5 dB for the center
elements.

III. SYSTEM OPERATION

On transmit, all feed elements are active in order
to illuminate the complete swath as indicated by the
yellow beam in Fig. 8. The emitted waveform is a
chirp signal of duration ¿p. When the pulse hits the
ground it moves from the near to the far end of the

Fig. 6. Cut for 27 channel patterns in elevation.

Fig. 7. Cut for 6 channel patterns in azimuth in center of array.

swath. This requires the receive beam to follow the
echo on ground. This mode of operation is known as
SCORE, first suggested by [14] and further developed
by [15]—[17].
Since the chirp signal is a linearly modulated

waveform, different spectral parts, symbolized by the
rainbow colors in Fig. 8, will arrive at different time
instances at the sensor. This peculiarity asks for more
sophisticated beamforming techniques, where not only
spatial DBF methods but also temporal beamforming
approaches have to be taken into account. This is
elaborated in detail in the next sections.

IV. DIGITAL BEAMFORMING CONCEPTS

The next sections cover the digital signal
processing strategies based upon a SAR signal
model. The beamforming techniques are separated in
elevation and azimuth.

A. SAR Signal Model

Essential for the following studies is the
underlying physical SAR system model. SAR imaging
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Fig. 8. System operation.

is an electromagnetic scattering problem which is

covered by the Helmholtz equation. The solution

based on Green’s law in the context of SAR is known

as imaging equation. This solution adapted to the

SIMO problem for a monostatic setup for the ith
receive channel can be expressed according to (1).

Here the received SAR raw data signal is denoted by

ui as a function of the sensor location vector rs, as
indicated in Fig. 9, and time t. Commonly the sensor
position variable is associated with azimuth and time

with elevation or range. Within the first integrand on

the right side f is the target reflectivity as a function
of the target location vector r= [x0 y0 z0]T. ai denotes
the complex two-way amplitude pattern as given

in (2) as a function of the spherical variables (#,')
(see Fig. 2) in the local antenna coordinate system. g
given in (3) is the product of the transmitted signal of

amplitude pTx and the Green’s function describing
the expansion of the waveform from the sensor

location rs = [x y z]
T to the target and back to the

receiver. Here ¿ is the delay time as defined in (7),
¿p is the pulse duration, and B denotes the signal
bandwidth. The sum of integrals in (1), subscripted

by j, describes the contributions of preceding
and succeeding pulses which are known as range

ambiguous returns. The raw signal is superimposed

by bandlimited thermal receiver noise vi.

ui(rs, t) =

Z Z Z

r

f(r)ai(#,')g(rs,r, t)dr+

1X

j=¡1
j 6=0

Z Z Z

rj

f(rj)ai(#j ,'j)g(rs,rj , t)drj + vi(t) (1)

ai(#,') = gTx(#,')gRx,i(#,')

r
¸2

4¼
(2)

g(rs,r, t) = pTxrect

Ã
t¡ ¿ ¡ ¿p=2

¿p

!
exp[ j¼(B=¿p)(t¡ ¿ ¡ ¿p=2)

2]

| {z }
transmitted waveform

e j2¼fc(t¡¿ )

(4¼)2krs¡ rk
2

| {z }
Green’s function

: (3)

Clearly the task of DBF in this paper is not the
reconstruction of the SAR reflectivity function f. The
DBF concepts derived here try to combine the raw
data channels ui to a single output signal in a way that
classical SAR focusing routines can be applied.
Principally all elevation and azimuth channels

could be downlinked and processed on ground.
Nevertheless the limiting factor is the data rate R,
which can be written for a multi-channel system as

R =Nchan ¢ 2 ¢fs ¢Nb ¢EWL ¢PRF (4)

where Nchan is the number of digital channels, fs is the
sampling frequency, Nb is the number of bits used for
quantization and, EWL is the echo window length.
The factor 2 accounts for in-phase and quadrature
channel after complex demodulation.
Therefore it is crucial to perform as much of

digital signal processing onboard the spacecraft
as possible. The feed array architecture suggests a
separation in elevation and azimuth. In order to avoid
large onboard mass memories a good compromise
is to perform DBF in elevation on board and to
downlink the resulting azimuth channel signals.

B. Digital Beamforming in Elevation

For pulsed radar systems the time interval between
two succeeding pulses is pulse repetition interval
(PRI). Consequently all digital signal processing
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Fig. 9. Imaging geometry for reflector SAR system.

in elevation takes place in a time smaller than this
interval. Even for simple beamforming algorithms the
computational power required may exceed those of
software based processors. Commonly for broadband
applications field programmable gate arrays (FPGA)
are used. In contrast to stationary systems, the filters
to be implemented are time variant since the signal
of interest varies its direction of arrival (DOA) over
time as the pulse travels over ground (see Fig. 8). It
is important to mention that the DOA for a specific
target is constant. But since there are many targets
making up the swath, the beamformer has to be
adjusted to every target during one PRI. These
time-variant filter coefficients can be read from a
lookup table. The continuous time domain output of
the digital beamformer at a fixed azimuth position can
then be written as

uDBF(rs, t) =
X

i

Z

t0
ui(rs, t¡ t

0)hi(t, t
0)dt0 (5)

with ui(rs, t) from (1). Important for the derivation
of the filters hi is the fact that there exists a unique
functional relationship between the target reflectivity
coordinates r, the antenna angle #, and the delay
time ¿ . Note, here # refers to elevation in the
context of elevation beamforming ('= 0±). The
target coordinates are related to the antenna angle
according to

cos#=
nTs (r¡ rs)

knsk ¢ kr¡ rsk
(6)

with k:k the 2-norm. Here the antenna normal
vector ns is associated with the z

0
r-axis of the local

reflector coordinate system (see Fig. 2). Here the
target position r is assumed to be known, since the

problem of DOA estimation is out of the scope of
this paper. In practice the knowledge of the orbit
as well as a coarse digital elevation model (DEM)
would be helpful or even required. The impact of
imprecise DOA knowledge has been analyzed in [6]
and adaptive DBF techniques in the frame of SAR
have been studied in [18]. The delay time ¿ is related
to the target coordinates r via

¿ = 2krs¡ rk=c (7)

with c the velocity of light. Even more important for
the filter design is the characteristic of the transmitted
waveform. Using a chirp signal the instantaneous
frequency f depends linearly on the time t

f = (B=¿p)(t¡ ¿ ¡ ¿p=2)+fc: (8)

The reason why temporal beamforming is required
can be clarified with Fig. 10. Consider two point
targets received at different time instances, but
partially overlapping in time domain, in the ith
elevation channel. Consequently these two point
targets are also seen under different aspect angles
and therefore weighted with different parts of the
pattern. Clearly the problem is now that at any time
instance in the temporal overlap the beamforming can
only match one point target or the other. A possible
solution to discriminate the two targets is to expand
the signal into the time-frequency domain as shown in
Fig. 10. Now the two targets can be weighted properly
in the beamforming process.
With the above identities the basic idea of the

filtering approaches presented here is to decompose
the received signal into multiple frequency bands and
to apply a specific filter on each of these individual

3478 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



Fig. 10. Time-frequency domain representation of ith raw data signal divided into subbands.

Fig. 11. FIR filter with time-variant coefficients.

subbands as sketched in Fig. 10. To each subband
a bandpass filter (see (15)) and a weight is applied
which is derived from its corresponding channel
pattern. These individual bandpass filters are then
combined to a single filter (see (10)) as presented in
Fig. 11.
The time discrete (t! n) beamformer output,

dropping the azimuth position rs, writes

uDBF(n) =
X

i2Zact(n)

Ncoef¡1X

n0=0

ui(n¡ n
0)hi(n,n

0) (9)

with

hi(n,n
0) =

M¡1X

m=0

wi(n,m)h̄(n
0,m): (10)

Zact(n) is the set of activated channels. Typically, this
set comprises neighboring feed elements. Ncoef is
the number of filter coefficients for a finite impulse
response (FIR) filter of order Ncoef¡ 1 and M is
the number of subbands. Figure 11 shows a block
diagram of such a filter with delay elements denoted
by the clock period T = 1=fs. The filter design for h̄
is based on a Fourier analysis of a bandpass transfer

function of rectangular shape with cutoff frequencies

−c1 and −c2. Then the Fourier series coefficients are

h̄(n,m) =
1

2¼

Z −c2

−c1

e jn−d−, − = 2¼
f

fs
(11)

resulting in

h̄(n,m) =
−c2¡−c1
2¼

¢ sinc

μ
n
−c2¡−c1

2

¶

£ exp

·
jn(−c1+−c2)

2

¸
: (12)

Dividing the design bandwidth B̄ into M subbands of

equal width, the cutoff frequencies are given as

−c1 = 2¼

μ
m

M
¡
1

2

¶
B̄

fs
,

m 2 [0,M ¡ 1] (13)

−c2 = 2¼

μ
m+1

M
¡
1

2

¶
B̄

fs
,

m 2 [0,M ¡1]: (14)
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Fig. 12. FIR filter bank with nine subbands and after ideal

reconstruction (constant curve).

The resulting filter coefficients equate

h̄(n,m) =
B̄

Mfs
¢ sinc

Ã
n¼

B̄

Mfs

!

£ exp

"
jn¼((2m+1)=M ¡ 1)B̄

fs

#
: (15)

For the filter bank design it has to be ensured that
the signal after combining the single filter outputs
reconstructs the input signal. From (10) with the
above definitions it can be shown that

M¡1X

m=0

wi(n,m)h̄(n,m) =
B̄

fs
sinc

Ã
n¼
B̄

fs

!
(16)

assuming unity weights wi(n,m). In order to avoid
aliasing, the sampling frequency fs must be equal or
larger than the signal bandwidth B. Consequently it
would be sufficient to restrict the design bandwidth
B̄ to the signal bandwidth. However, setting B̄ to fs
offers

B̄

fs
sinc

Ã
n¼
B̄

fs

!
= sinc(n¼) = ±(n): (17)

From this result it can be concluded that the
reconstruction is ideal and independent from the
number of filter coefficients Ncoef for wi(n,m) = 1.
Figure 12 shows the transfer functions for a filter
bank with nine subbands and 31 coefficients, which
are used in the performance analysis in Section V-A.
The constant curve represents the transfer function
after ideal reconstruction given by (17). The low
signal bandwidth of 40 MHz has been chosen in order
to reduce the computational load.
Due to the linear time-frequency relationship

of chirp signals every subspectrum enters a feed
element at a defined time for a given direction. Since
the chirp spectrum is divided into M subbands the
time-dependent weights are taken at the center of each

subspectrum. Introducing the subband specific delay
nm the weights in (10) can be rewritten as

wi(n,m) = wi(n¡ nm) (18)

with

nm = nint

½
2m+1

2M
¿pfs

¾
(19)

with nintf:g the nearest integer function.
Another important issue, which is only briefly

addressed, has been analyzed in [19] for an L-band
reflector antenna. The patterns show a strong
dependency on the transmitted frequency. That means
the signal is modulated over the frequency band of
interest. This can be accounted for in the time-variant
beamforming approach, simply by using the
corresponding patterns for the individual subbands.
The weights wi(n,m) would then additionally become
a function of the frequency wi(n,m,f). However, in
the frame of the following investigations the patterns
are assumed to be constant over the frequency band
under consideration.
Having derived the time-variant filters, in the

following the most important performance figures
for different beamforming approaches are discussed.
The fundamental performance parameter for any
radar system is the signal-to-noise ratio (SNR).
Assuming zero mean circular complex Gaussian
random processes for the backscatter as well as for
the noise, the discrete time-dependent expression for
the SNR can be shown to be (see the Appendix)

SNR(n)¼

¯̄
¯
Pn+Np
n

p
Ps(n)

¯̄
¯
2

Pn+Np
n Pv(n)

(20)

with the signal power

Ps(n) = ¾
2
f(#)ja

T(#)
X

n0

g(#,n¡ n0)h(n,n0)j2 (21)

and the noise power

Pv(n) =
X

n0

hT(n,n0)Rv(n¡ n
0)h¤(n,n0) (22)

where (:)¤ means conjugate complex. Here Np =
nintf¿p ¢fsg is the number of samples per pulse. The

backscatter radar cross section represented by ¾2f is
the product of the backscatter coefficient ¾0 and the
resolution cell Acell. a(#) = [a1(#) a2(#) ¢ ¢ ¢aNx(#)]

T

is the antenna steering vector, which contains the
individual complex element patterns. The term
g(#,n¡ n0) uses (6) to substitute rs and r (compare
with left side of (3)). Important to mention is that in
this SNR formula the so-called azimuth compression
gain is not taken into account. Nevertheless (20)
serves as basis for the comparison of different
beamformers which are presented in the following.
The most rudimental beamforming approach is

simply to turn on those channels which receive signal
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power from the pulse traveling over ground. In the
reflector case this implies that only a subset of feed
elements Nact is activated at a time instance. For a
single band filter (M = 1) the filter impulse response
vector h(n,n0) is

h(n,n0) =w(n)±(n0): (23)

The weight vector w at a time instance n would, for
example, look like this:

w(n) = [0 1 1 1 0 ¢ ¢ ¢0]T (24)

where the number of activated elements is three in this
example. The corresponding SNR analogous to (20) is
then

SNR(n) =

¯̄
¯
P

Np

q
¾2f(#)jg(#,n)j

2jaT(#)w(n)j2
¯̄
¯
2

P
Np
wT(n)Rv(n)w

¤(n)
:

(25)

Assuming Rv(n) = ¾
2
v (n)I, with I the identity matrix, it

becomes clear that the SNR for this beamformer drops
proportional to the number of activated channels Nact.

SNR(n) =

¯̄
¯
P

Np

q
¾2f(#)jg(#,n)j

2jaT(#)w(n)j2
¯̄
¯
2

P
Np
¾2v (n)Nact

:

(26)

This is due to the fact that most channels contribute
only with noise on receive. Nevertheless this
beamformer is justified by the fact that it is technically
easy and cost effective to implement. Moreover this
beamformer is robust in terms of coefficient stability,
because no filter design incorporating knowledge of
the complex amplitude antenna pattern is required.
Beamformer (24) is denoted as unity beamformer
throughout this article. In the following the variables #
and n are dropped for notational simplicity.
A second class of beamformers is known as

minimum variance distortionless response (MVDR)
beamformer [20] which is based on Capon’s method
[21]. This method preserves the signal of interest
while minimizing contributions to the beamformer
output due to interference from other directions than
the direction of interest and noise. This approach
can be understood as a spatial matched filter. It is
optimal with respect to the SNR. The cost function
of minimizing the variance of the beamformer output
subject to the constraint writes

minimize wTRuw
¤ (27)

subject to aTw= 1: (28)

Since the noise covariance matrix Rv is typically
unknown it is replaced by the channel covariance
matrix Ru. The optimum conjugate complex weight
vector w¤ in closed form is given as

w¤ =
R¡1u a

aHR¡1u a
(29)

with Ru to be estimated from N recently received
samples.

Ru(n) =
1

N

nX

n0=n¡N+1

u(n0)uH(n0) 2 CNact£Nact (30)

where (:)H means conjugate transpose (Hermitian).
Again for a single band filter (M = 1) and Ru
assumed to be ¾2uI and Rv = ¾

2
v I the SNR for the

MVDR beamformer according to (20) yields

SNR=

¯̄
¯
P

Np

q
¾2f jgj

2
¯̄
¯
2

P
Np
¾2v (a

Ta¤)¡1
: (31)

In principle the MVDR beamformer allows to activate
all channels on receive simultaneously. Those channels
contributing predominantly with noise are quasi
nulled with small magnitude weights. Since the
signals are also combined according to their phase,
the high receive gain can be reconstructed at every
time instance. However it is advisable to restrict the
activated feed elements to those where the complex
amplitude pattern is accurately known. Otherwise the
spatial filter is mismatched and the SNR will degrade
slightly. This also applies to the beamformer presented
in the following.
Pulsed SAR systems generally suffer from

preceding and succeeding pulse echoes arriving at
the same time at the sensor as the signal of interest.
Those echoes are called range ambiguities since they
enter the system under different elevation angles. One
possibility to suppress those ambiguous directions is
by means of a spatial filter. A method known as linear
constraint minimum variance (LCMV) beamforming
[20] provides an analytic solution to this problem. The
problem is stated as follows

minimize wTRuw
¤ (32)

subject to ATw= c (33)

with the array response matrix

A= [a(#) ¢ ¢ ¢a(#¡1) a(#1) ¢ ¢ ¢] 2 C
Nact£Ndir (34)

and the constraint vector c= [1 0 ¢ ¢ ¢0]T 2 CNact£1. Ndir
denotes the number of directions under consideration.
The closed-form solution is

w¤ =R¡1u A(A
HR¡1u A)

¡1c: (35)

Equation (35) represents the least squares solution to
a quadratic optimization problem. The key step in the
numerical evaluation of (35) is the computation of
the inverse of AHR¡1u A. Even if the channels are well
balanced (R¡1u » I) and the number of directions to
be suppressed is lower than the number of channels,
this matrix can become ill posed quickly. This is
because of the strong focussing effect of the reflector
pattern where every channel illuminates a different
solid angle. That means that one or more directions
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only contribute with small magnitudes and the matrix
becomes rank deficient. A possible way to solve
such an inversion problem is by means of eigenvalue
thresholding techniques [22]. In analogy to the
previous beamformers the SNR can be computed
using (25) and (35).
The performance figure measuring the amount of

ambiguous signal power superimposing the signal of
interest is the range-ambiguity-to-signal ratio (RASR).
This quotient can be expressed for a point target
according to

RASR(n) =
Pa(n)

Ps(n)
(36)

with the signal power Ps(n)

Ps(n) = ¾
2
f(r)

jaT(#)w(n)j2

krs¡ rk
3 sinμi

(37)

and the ambiguous power Pa(n)

Pa(n) =
1X

j=¡1
j 6=0

¾2f(rj)
jaT(#j)w(n)j

2

krs¡ rjk
3 sinμi,j

: (38)

The distance from the sensor to the ambiguous
regions rj is

krs¡ rjk= krs¡ rk+ j
c

2PRF
: (39)

C. Digital Beamforming in Azimuth

Conventional pulsed SAR systems, specifically
single-channel systems, are inherently restricted with
respect to their imaging capability. With these systems
it is not possible to achieve a large swath width and a
high azimuth resolution at the same time [23]. A high
resolution requires a broad beam, which needs a large
PRF in order to sample adequately (Nyquist). The
high PRF in turn limits the swath width. The swath
width X and the azimuth resolution ¢y can be shown
to be related [24] according to

X

¢y
·

c

2v sinμi
(40)

where c and v are the velocities of light and the
sensor, respectively, and μi is the incidence angle
(see Fig. 9). This quotient only depends on physical
constants except for the imaging geometry.
One possibility to overcome this restriction is to

transmit a signal using a broad beam and to collect the
scattered signal with multiple receivers. The individual
signals are then processed in order to reconstruct the
high resolution image. A simple way to implement
such a system using a reflector antenna is to extend
the digital feed array in the azimuth dimension [4, 5].
DBF in azimuth principally applies in the same

way as it does in elevation. A set of channels in
azimuth is used to reconstruct a single high gain
signal subject to certain constraints.

The underlying signal model is again based on
(1), (2), and (3), except that the time dependence
is ignored and the equations are evaluated over the
spatial azimuth variable y, which is contained in the
sensor flight trajectory rs(y). Equation (3) is then
simply

g(rs(y)) =
e¡j2¼fc¿

(4¼)2krs¡ rk
2
: (41)

The spherical antenna coordinate # now refers to the
azimuthal plane ('= 90±) (see Fig. 2).
A compact way to relate space, represented

by #, and Doppler frequency fy is by means of
wavenumbers. The azimuth wavenumber ky can be
written for a monostatic setup and a linear flight
trajectory as

ky =¡2k sin#, k =
2¼

¸
(42)

with ¸ the wavelength. The Doppler frequency fy
and the PRF are related to the Doppler wavenumber
ky and the sampling wavenumber Ky , respectively,
according to

ky = 2¼
fy
v
, Ky = 2¼

PRF

v
: (43)

The DBF approach presented here is based on a
wavenumber analysis of the azimuth signal. That
means any DBF algorithms are applied in the
wavenumber domain. The ith azimuth channel raw
signal in the continuous wavenumber domain writes

Ui(ky) =
1

v

Z 1

¡1
ui(y)e

¡jkyydy: (44)

Since the azimuth signal is naturally a discrete signal,
sampled with Ky or PRF, respectively, the problem
of aliasing arises. As stated before it is the aim
to achieve a high azimuth resolution and a large
swath width. Since the data rate imposes a stringent
constraint, Ky has to be chosen as low as possible.
However, the minimum possible Ky is determined by
what is called in [2] the diffraction limit. This means
that in the DBF process a minimum beamwidth can
be reconstructed which is determined by the physical
length of the antenna. For small azimuth half power
beamwidths #3dB ¼ 1:22¸=D [12] the lower bound for
Ky can be shown to be

Ky ¸ 4k sin

μ
#3dB
2

¶
¼ 1:22

4¼

D
(45)

with D the reflector antenna diameter. This means that
every azimuth channel is undersampled and therefore
subject to aliasing. The azimuth processing approach
can therefore be characterized as a two-stage process.
First, in order to form the high resolution image, the
individual azimuth channels have to be reconstructed
on a common grid with a high sampling rate K 0y. And
secondly beamforming concepts have to be applied
to suppress the aliased azimuth signal energy. The
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Fig. 13. Wavenumber domain representation of sampled signal.

approach presented here is based on the discrete

version of (44) over a finite domain

Ui(m¢ky)

=
¢y

v

N¡1X

n=0

ui(y(n¢y))exp[¡jky(m¢ky)y(n¢y)]

(46)

with the wavenumber sampling increment ¢ky

¢ky =
2¼

Y
=

2¼

M¢y0
=
K 0y
M
, ky 2

·
¡
K 0y
2
,
K 0y
2

¸

(47)

and

N =
Y

¢y
, M =

Y

¢y0
: (48)

Here Y is the complete integration path length. N is

the number of samples of the undersampled channel

signals and M is the number of samples of the high

resolution signal. ¢y and ¢y0 are the corresponding
spatial sampling increments. Figure 13 illustrates the

evaluation of (46). In the upper part the magnitude of

the ith azimuth signal ui(y) is depicted. The shape is
due to the two-way channel pattern described by (2).

By taking the discrete Fourier transform according

to (46) not only the principal interval, restricted to

§Ky=2, becomes visible but also additional replicas of
the spectrum beyond the baseband as can be observed

in the lower part of Fig. 13. Here the first left and first

right ambiguous spectrum is plotted (dashed curves).

In fact (46) is evaluated over the desired wavenumber

domain §K 0y=2. Evidently this procedure can be
implemented in a computationally more efficient way

by using the fast Fourier transform (FFT), where the

spectra are juxtaposed and limited to the bandwidth

K 0y. From an information theoretical point of view it

is enough to just use the principal Doppler band Ky ,
because no new information is generated.

The second step in the azimuth processing is the

combination of the individual channel spectra Ui(ky)

by means of weights

UDBF(ky) =w
T(ky)U(ky): (49)

Again an SNR expression as function of the azimuth
variable y0 for a point target similar to (20) can be
derived as

SNR(y0) =

¯̄
¯
R
K 0y
jwT(ky)s(y

0,ky)jdky

¯̄
¯
2

R
K 0y
wT(ky)Rv(ky)w

¤(ky)dky
(50)

with the point target signal spectrum

s(y0,ky) =
1

v

Z 1

¡1
f(y0)a(#)g(y¡ y0)e¡jkyydy (51)

¼
1

v
f(y0)a(#)

Z 1

¡1
g(y¡ y0)e¡jkyydy: (52)

Here an azimuth compression filter of rectangular
shape is assumed. Remember that y is related to # via
(6). The approximation in (52) is justified by the fact
that the phase of the integrand is determined by the
high frequency Doppler signal g(y¡ y0). The antenna
pattern a(#) can therefore be regarded as constant and
drawn in front of the integral.
The choice of the weight vector w is restricted

to the beamforming approaches already presented in
Section IV-B.
The DBF method according to (24) can be adapted

to the azimuth case by putting a “1” to the channel of
interest and setting every other channel to zero, giving
for example

w(ky) = [1 0 : : :0]T: (53)

This is repeated for every azimuth wavenumber
ky. Consequently the azimuth signal spectrum is
modulated according to the envelope of the azimuth
patterns, as presented in Fig. 24. Of course this
spectrum is superimposed by the ambiguous signal
spectra. Considering this approach it makes no
sense to use more than one channel since the other
channels would contaminate the signal of interest with
ambiguous signal power for low azimuth sampling
wavenumbers Ky.
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The second method is the MVDR beamformer
according to (29)

w¤(ky) =
R¡1u (ky)a(#)

aH(#)R¡1u (ky)a(#)
: (54)

The angle # is related to the azimuth wavenumber
ky via (42). This beamformer minimizes the additive
noise contributions over the wavenumber spectrum
generating therefore the optimal SNR. However,
since this beamformer only considers the direction
of interest, the ambiguous spectra are not suppressed.
In the worst case they might even be amplified.
As indicated by the vertical dotted line in Fig. 13

at a certain wavenumber not only the signal of interest
is present but also ambiguous signals. A possible
way to suppress these ambiguities is the LCMV
beamformer (35) as a function of the wavenumbers

w¤(ky) = (R
¡1
u A(A

HR¡1u A)
¡1c)(ky): (55)

The ambiguous directions #j are dictated by the
integer multiples of the sampling wavenumber Ky

ky + jKy =¡2k sin#j , j 2 Z n f0g: (56)

The number of constraints is limited to the number of
feed elements in azimuth.
The performance figure quantifying the aliasing

effect is the so-called azimuth ambiguity to signal
ratio (AASR). This quotient relates ambiguous signal
power to signal power according to

AASR(Ky) =

P
j2Znf0g

R K 0y=2
¡K 0y=2

(jwTsj2)(ky + jKy)dky
R K 0y=2
¡K 0y=2

(jwTsj2)(ky)dky
:

(57)

The ambiguity expression is independent from the
azimuth position on ground y0, since the reflectivity
function f(y0) cancels out. Often in the literature a
version of the AASR is presented where the signal
spectrum s(ky) is replaced by the antenna pattern a(ky)
[25]. This can be done if the denominator in (41) is
neglected. Therefore, this approximation is a worst
case estimate for the AASR.

V. SYSTEM PERFORMANCE

The following sections are dedicated to the
performance analysis in elevation and in azimuth. The
analysis is based on the reflector system presented in
Section II-B utilizing the DBF algorithms described in
Section IV. The graphs presented in this article are the
results of numerical simulations.

A. Elevation Performance

The main performance figure in elevation is the
SNR according to (20) for the three DBF approaches,
that are the unity weighting method (24), the MVDR
beamformer (29), and the LCMV algorithm (35). In

Fig. 14. DBF gain pattern on receive in elevation for three active

elements at time instance versus scan angle.

Fig. 15. DBF gain pattern on receive in elevation for six active

elements at a time instance.

principle two sources for SNR degradation in the
beamforming process can be identified. The first
source is spatial mismatch which basically occurs
with the unity beamformer (24). What this means
can be observed in Fig. 14 and Fig. 15. Here the
gain on receive after DBF is presented. Note that μ
in the plot is the same as the scan angle #. In Fig. 14
for the unity approach as well as for the MVDR
method always three feed elements are active at a
time instance. Only the LCMV beamformer requires
all available channels in order to suppress range
ambiguities properly. The difference between the
LCMV curve and the MVDR curve or the unity
beamformer curve can be regarded as SNR loss
due to spatial mismatch. Clearly when activating
more channels at a time, as shown in Fig. 15, the
unity beamformer SNR drops proportional to the
number of activated feed elements as predicted by
(26). This is because only two or three channels
contribute with signal power at a time instance. The
additional channels contain noise. In contrast the
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Fig. 16. Unity beamformer output spectrum for point target at

swath center.

Fig. 17. MVDR beamformer output spectrum for point target at

swath center.

MVDR beamformer gains in SNR since more signal
power is combined coherently, while noise-only
channels are damped with small magnitude weights.
In Fig. 15 the LCMV curve overlays the MVDR
curve because using more than six elements at a time
does not improve the gain significantly more. The
discontinuities in the curves for the unity beamformer
are a consequence of the channel switching in order
to follow the pulse on ground. This analysis shows
that for infinitesimal short pulses the SNR loss for the
unity approach is on the order of 0.7 dB assuming
Nact = 3.
The second source of SNR degradation is temporal

mismatch. Any real waveform is extended in time in
order to emit the available energy. Neglecting this fact
by using Dirac-like filters (23) will have a significant
impact especially on long duration pulses. Figure 16
and Fig. 17 show the simulated beamformer output
spectra of a point target in the swath center (#= 0±).
Due to the linear time-frequency dependency of chirp
signals the channel switching can be clearly observed

Fig. 18. MVDR beamformer output spectrum using a FIR filter

with nine subbands and 31 coefficients.

TABLE II

SNR Loss for the DBF Approaches

DBF Method Dirac-Like Filter FIR Filter

unity 4.014 dB 0.679 dB

MVDR 4.497 dB 0.005 dB

LCMV 4.554 dB 0.001 dB

in the spectra. The spatial weights w are matched
to the pulse center. The loss of signal power is even
more severe with the MVDR approach as well as the
LCMV beamformer since the low and high frequency
parts of the spectra are weighted with small weights.
Generally the SNR loss is affected by both error

sources, spatial and temporal mismatch. Table II lists
the total SNR losses for the three DBF approaches
for the Dirac-like filtering in the middle column and
for a FIR filter architecture with M = 9 subbands and
Ncoef = 31 coefficients in the right column. The pulse
length ¿p is 50 ¹s. The loss is relative to the maximum
SNR, which is produced by the MVDR beamformer
using all channels. The numbers suggest that the SNR
loss is mainly driven by temporal mismatch. Using an
appropriate FIR filter structure allows to reduce the
SNR loss as can be seen in Fig. 18. A slight ripple
with nine bumps on the signal spectrum caused by the
partition into subbands can be observed. This might
be mitigated to a certain degree by increasing the
number of subbands. But this will require filters with
more coefficients which in turn results in a poorer
resolution of the frequencies in time domain. This
effect is covered by the uncertainty principle

¢t ¢¢f ¸ 1: (58)

Increasing the bandwidth ¢f results in a finer time
domain resolution ¢t and vice versa. The uncertainty
principle in the space-wavenumber domain is

¢y ¢¢ky ¸ 2¼: (59)
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Fig. 19. Upper left: focused point target using MVDR beamformer with Dirac-like filter. Upper right: focused MVDR output using

FIR filter with nine subbands and 31 coefficients. Lower row: corresponding simulation to upper row with two adjacent point targets.

The ripple on the signal spectrum could be avoided
completely by range compressing the signal prior
to spatial weighting. However this approach is
computationally most intensive, since filters with
thousands of coefficients would be required. But
already filters with a relatively low number of
coefficients and subbands generate a signal output
with consistent gain as demonstrated in Fig. 18.
Figure 19 shows point target simulations using

the MVDR beamformer. In the upper left plot a
focused point target, with the corresponding spectrum
shown in Fig. 17, applying no temporal filtering, is
depicted. Clearly the broadening of the mainlobe and
the decrease of the sidelobes due to the taper can
be observed. In the upper right image a FIR filter
with nine subbands and 31 coefficients was used.
The corresponding point target spectrum is shown in
Fig. 18. In the lower row the simulation results for
two point targets in close vicinity are presented. In
the lower left image the point targets can hardly be
discriminated.
Another important performance measure for a

SAR system in elevation is the RASR (36). Since
the reflector is quite large in diameter the sidelobes

drop quickly moving away from the main beam.
This means such a reflector system will inherently
have a very good range ambiguity suppression.
Therefore it is possible to relax the requirements in
the antenna design. For example the elevation height
of the antenna could be reduced by employing an
elliptical reflector. In the following figures the RASR
as a function of the PRF and over the elevation scan
angle for the three DBF approaches is presented. Here
timing issues are neglected, since emphasis is laid on
the beamformer performance. In a real application
the timing constraints will display certain PRFs and
certain scan angles inaccessible. Figure 20 shows the
RASR for the unity beamformer revealing the typical
discontinuities in elevation due to the switching. The
dynamic range is roughly between ¡8 dB and ¡88 dB
for most PRFs. The MVDR method, depicted in
Fig. 21, amplifies range ambiguities for certain scan
angles and PRFs. Comparing the MVDR RASR to
the unity beamforming result, the shape of the plot
seems to be preserved. However the RASR for the
LCMV method is improved substantially as can be
seen in Fig. 22. This becomes evident in the DBF
receive pattern plot shown in Fig. 23. Here a high
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Fig. 20. RASR for unity beamformer.

Fig. 21. RASR for MVDR beamformer.

PRF of 13.5 kHz is chosen in order to demonstrate
the capabilities of the LCMV beamformer. There is of
course an absolute limit where the LCMV beamformer
will work, that is the minimum beamwidth to be
generated with this antenna. Ambiguous directions
cannot be suppressed if they enter the main beam.
The scan angle for the signal of interest, marked by
the vertical dashed line, is 1:36±. At this angle the
RASR for the unity beamformer as well as the MVDR
approach is relatively poor. The ambiguous directions,
indicated by the vertical solid lines in Fig. 23 are
damped quite well with the LCMV method while the
gain loss is negligible.
In some cases the range ambiguities are not

suppressed well. This is a result of an improper
selection of the aforementioned eigenvalue threshold
parameter.

B. Azimuth Performance

The performance in azimuth is characterized by
the SNR given with (50) and the AASR defined in
(57). The SNR is evaluated in the same manner as
in the elevation case. A point target was simulated

Fig. 22. RASR for LCMV beamformer.

Fig. 23. DBF receive pattern in elevation for the three

beamformers with position of signal (vertical dashed line) and

position of the range ambiguities (vertical solid lines).

TABLE III

SNR Loss for DBF Approaches

DBF Method SNR Loss

unity 3.06 dB

MVDR 0.00 dB

LCMV 1.39 dB

in the swath center and processed using the three
DBF approaches. Beamforming in azimuth is
simpler insofar as no temporal filtering is required.
Table III summarizes the SNR losses with respect
to the optimal beamformer, which is the MVDR
beamformer. Since the unity beamformer uses only
one channel per Doppler wavenumber, which is
basically the channel with the highest gain, the loss
is 3 dB. This can be clarified via the channel patterns
in Fig. 24 at wavenumber zero. Only one of the
two center beams is used which means a signal loss
of 3 dB. From this plot the maximum achievable
azimuth resolution can be found with (59) to be on
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Fig. 24. Azimuth channel pattern versus wavenumber.

the order of 0.67 m using the full 3 dB bandwidth
of 9:4 m¡1. However for this simulation a processed
azimuth bandwidth By of 10 kHz, corresponding

to K 0y = 8:4 m
¡1, was used, yielding a resolution of

approximately 0.75 m. Figure 25 shows the results of

Fig. 25. Upper left: focused point target using unity DBF. Upper right: focused point target using MVDR DBF. Lower image: focused

point target using LCMV DBF.

point target simulations for the three beamformers. All
DBF approaches result in the typical sinus cardinalis
shape of the point target response with the predicted
resolutions.
The azimuth bandwidth impacts directly the

AASR. Figure 26 shows the AASR as a function
of the PRF. The curve for the LCMV beamformer
starts at a PRF of ca. 2.6 kHz, since for lower
PRFs the azimuth ambiguities enter the main beam.
Obviously the MVDR beamformer amplifies azimuth
ambiguities for a wide range of PRFs. This effect
can be observed in the corresponding pattern plot in
Fig. 27. The signal, marked by the vertical dashed
line, is at Doppler frequency zero. The ambiguous
Doppler frequencies, indicated by the vertical solid
lines, occur at multiples of the PRF away from the
signal frequency. The unity beamformer uses a single
channel receiving the main amount of ambiguous
signal power from the Doppler frequency 3 kHz.
The MVDR beamformer produces the highest gain
at the cost of ambiguous signal power from Doppler
frequency §3 kHz. Only the LCMV beamformer is
able to suppress both ambiguities efficiently.
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Fig. 26. AASR for the three DBF approaches versus PRF taken

at swath center.

Fig. 27. Rx gain pattern in azimuth Doppler frequency domain

with position of signal (vertical dashed line) and position of

azimuth ambiguities (vertical solid lines).

VI. CONCLUSION

In the frame of SAR imaging a detailed analysis
of the innovative concept of combining a parabolic
reflector with a digital feed array was presented. The
inherent focusing capabilities of reflector antennas
provide an excellent performance especially in
elevation. However in order to operate such systems
with long duration pulses, more sophisticated
beamforming approaches are of vital importance.
It was shown that with FIR filter structures in
conjunction with spatially matched coefficients,
that is the MVDR beamformer, the SNR loss can
be drastically reduced. In the presence of range
ambiguities the LCMV beamformer offers the
opportunity to improve the SAR image quality further.
The LCMV beamformer shows its full potential
when going for high azimuth resolution imagery. The
AASR, being the main source of degradation, was
improved significantly.

The investigations in this article are based on

perfect knowledge of all parameters involved in the

beamforming concepts. The most important parameter

is definitely the complex antenna pattern. Since the

DOA is only known to a certain degree and the

pattern measurements are subject to various error

sources, the performance can be expected to degrade.

Therefore in future investigations the impact of these

error sources will be investigated with the goal of

improving the robustness of potential beamforming

methods.

APPENDIX. SIGNAL-TO-NOISE RATIO

The SNR is derived in time domain with the

discrete time variable n. Rewriting the beamformer
output for a point target gives

uDBF(n) =
X

i

X

n0

ui(n¡n
0)hi(n,n

0) (60)

=
X

i

X

n0

f(#)ai(#)g(#,n¡ n
0)hi(n,n

0)

+
X

i

X

n0

vi(n¡ n
0)hi(n,n

0): (61)

Note that f as well as vi are complex random
processes. If we assume uniform and independent

Gaussian random variables for the real part and the

imaginary part with zero mean, respectively, the

processes are characterized by their variances ¾2f
and ¾2vi . Assuming uncorrelated noise and signal, the
power of the beamformer output is

PuDBF (n) =EfjuDBF(n)j
2g (62)

=E

8
<
:

¯̄
¯̄
¯̄
X

i

X

n0

f(#)ai(#)g(#,n¡ n
0)£ hi(n,n

0)

¯̄
¯̄
¯

2)

+E

8
<
:

¯̄
¯̄
¯
X

i

X

n0

vi(n¡ n
0)hi(n,n

0)

¯̄
¯̄
¯

2
9
=
; (63)

= Ps(n) +Pv(n) (64)

with Ef:g the expectation operator. In principle
the SNR can already be computed. However this

expression is difficult to interpret in the traditional

sense of DBF. Exchanging the summation between n0

and i the signal power Ps(n) can be written in vector

notation as

Ps(n) = E

8
<
:

¯̄
¯̄
¯̄
X

n0

f(#)g(#,n¡ n0)£ aT(#)h(n,n0)

¯̄
¯̄
¯

2)

(65)

= ¾2f(#)ja
T(#)

X

n0

g(#,n¡ n0)h(n,n0)j2: (66)
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Similarly the noise power Pv(n) can be expressed as

Pv(n) = E

8
<
:

¯̄
¯̄
¯
X

n0

hT(n,n0)v(n¡n0)

¯̄
¯̄
¯

2
9
=
; : (67)

In order to account for all combinations when
evaluating the squared expression j:j2 in (67) another
variable m0 2 [0,Ncoef¡ 1] is introduced. This gives

Pv(n) =
X

n0

X

m0

hT(n,n0)Efv(n¡n0)

£ vH(n¡m0)gh¤(n,m0) (68)

=
X

n0

X

m0

hT(n,n0)

£Rv(n¡n
0,n¡m0)h¤(n,m0): (69)

A simplification can be introduced if one assumes
that the samples of the random processes are mutually
independent. Then the covariance matrices become the
zero matrices for n0 6=m0 and the noise power is

Pv(n) =
X

n0

hT(n,n0)Rv(n¡ n
0)h¤(n,n0): (70)

For a Dirac impulse response function hi(n,n
0) =

wi(n)±(n
0) this is the well-known expression of the

noise power for a multi-channel beamformer. Finally
this expression can be further simplified, if channels
with cross powers zero are assumed, yielding

Pv(n) =
X

i

¾2vi

X

n0

jhi(n,n
0)j2: (71)

The SNR for the compressed SAR signal can then be
computed as

SNR(n)¼

¯̄
¯
Pn+Np
n

p
Ps(n)

¯̄
¯
2

Pn+Np
n Pv(n)

(72)

substituting (66) for the signal power and either (69),
(70), or (71) for the noise power.
It is important to mention that the SNR expression

(72) is only valid if the sampling frequency fs
is smaller than the signal bandwidth B. If the
sampling frequency is larger than the bandwidth
the noise samples become dependent and combine
therefore coherently as is the case for the signal
samples. Principally the SNR cannot be improved by
oversampling.

REFERENCES

[1] Krieger, G., et al.

Tandem-L: An innovative interferometric and polarimetric

SAR mission to monitor Earth system dynamics with

high resolution.

In Proceedings of the IEEE Geoscience and Remote

Sensing Symposium (IGARSS), July 2010, pp. 253—256.

[2] Currie, A. and Brown, M.

Wide-swath SAR.

IEE Proceedings–F Radar and Signal Processing, 139, 2

(Apr. 1992), 122—135.

[3] Li, Z., et al.

Performance improvement for constellation SAR using

signal processing techniques.

IEEE Transactions on Aerospace and Electronic Systems,

42, 2 (Apr. 2006), 436—452.

[4] Krieger, G., et al.

Advanced concepts for ultra-wide-swath SAR imaging.

In Proceedings of the European Conference on Synthetic

Aperture Radar (EUSAR), vol. 2, June 2008, pp. 31—34.

[5] Krieger, G., et al.

Advanced synthetic aperture radar based on digital

beamforming and waveform diversity.

In Proceedings of the IEEE Radar Conference (RADAR),

May 2008, pp. 767—772.

[6] Younis, M., et al.

Performance comparison of reflector- and planar-antenna

based digital beam-forming SAR.

International Journal of Antennas and Propagation, 2009

(June 2009), 1—14.

[7] Freeman, A., et al.

SweepSAR: Beamforming on receive using a

reflector-phased array feed combination for spaceborne

SAR.

In Proceedings of the IEEE Radar Conference (RadarCon),

May 2009.

[8] Huber, S., et al.

A novel digital beam-forming concept for spaceborne

reflector SAR systems.

In Proceedings of the European Radar Conference

(EuRAD), Oct. 2009, pp. 238—241.

[9] Huber, S., et al.

Digital beam forming concepts with application to

spaceborne reflector SAR systems.

In Proceedings of the International Radar Symposium

(IRS), June 2010, pp. 1—4.

[10] Huber, S., et al.

Digital beam forming techniques for spaceborne reflector

SAR systems.

In Proceedings of the 8th European Conference on

Synthetic Aperture Radar (EUSAR), June 2010, pp.

962—965.

[11] General reflector and antenna farm analysis software (Aug.

2011).

[Online], available: http://www.ticra.com/.

[12] Milligan, T. A.

Modern Antenna Design (2nd ed.).

Hoboken, NJ: Wiley, 2005.

[13] von Hoerner, S.

Strong coma lobes from small gravitational deformations.

IEEE Transactions on Antennas and Propagation, AP-28, 5

(Sept. 1980), 652—657.

[14] Blythe, J. H.

Radar systems.

U.S. Patent 4 253 098, Feb. 1981.

[15] Kare, J. T.

Moving receive beam method and apparatus for synthetic

aperture radar.

U.S. Patent 6 175 326, Jan. 2001.

[16] Suess, M., Grafmueller, B., and Zahn, R.

A novel high resolution, wide swath SAR.

In Proceedings of the IEEE 2001 International Geoscience

and Remote Sensing Symposium (IGARSS), vol. 3, 2001,

pp. 1013—1015.

[17] Suess, M. and Wiesbeck, W.

Side-looking synthetic aperture radar system.

European Patent EP 1 241 487, Sept. 2002.

3490 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



[18] Bordoni, F., et al.

Adaptive scan-on-receive based on spatial spectral

estimation for high-resolution, wide-swath synthetic

aperture radar.

In Proceedings of the IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), vol. 1, July 2009,

pp. 64—67.

[19] Patyuchenko, A., et al.

Performance optimization of the reflector antenna for the

digital beam-forming SAR system.

In Proceedings of Advanced RF Sensors and Remote

Sensing Instruments (ARSI), 2009.

[20] Trees, H. L. V.

Optimum Array Processing.

Hoboken, NJ: Wiley, 2002.

[21] Capon, J.

High-resolution frequency-wavenumber spectrum

analysis.

Proceedings of the IEEE, 57, 8 (Aug. 1969), 1408—1418.

Sigurd Huber received the Dipl.-Ing. (M.S.) degree in electrical and
communication engineering from the Technical University of Munich (TUM),
Germany, in 2005.
Since 2005 he has worked as a scientist at the Microwaves and Radar Institute

of the German Aerospace Center (DLR), Oberpfaffenhofen, Germany. He is
involved in national and international projects in the field of synthetic aperture
radar, encompassing cooperations with industry partners (EADS Astrium), as well
as research organizations (ESA, NASA/JPL). His research interests include digital
signal processing, electromagnetic field theory and inverse problems.
Mr. Huber has contributed as author and coauthor in more than 30 conference

papers and four peer reviewed journal articles.

Marwan Younis (S’1995–M’2005–SM’2008) was born in Las Cruces, NM,
in 1970. He received his B.Sc. in electrical engineering from the University of
Baghdad, Iraq in 1992 and the Dipl.-Ing. (M.Sc.) and Dr.-Ing. (Ph.D.) degree in
electrical engineering from the Universität Karlsruhe (TH), Germany, in 1997 and
2004, respectively.
From 1998 to 2004, he was a research scientist with the Institut für
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