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ABSTRACT 

Many current satellites employ on-off thrusters to accomplish attitude control tasks 

which may include initial acquisition, rotational maneuvers, and on-orbit stabilization. This 

work shows that the use of pulse-width pulse-frequency (PWPF)-modulated thrusters 

provides several important advantages over conventional bang-bang thruster control 

methods, including less thruster activity and closer-to-linear actuation. The PWPF 

modulator is implemented in simulations using the Matrixx/Systembuild software package. 

Simulations assuming a rigid spacecraft are first performed to compare the performance of 

the PWPF-modulated thrust controller with that of conventional bang-bang and time- 

optimal bang-bang controllers. The discussion is then extended to the case of a spacecraft 

with structural flexibility, as is encountered quite often in three-axis stabilized vehicles with 

large fold-out solar arrays. Simulations for comparison of the controllers are performed 

using the flexible spacecraft dynamics model. The control loop design in the presence of 

flexibility and possible interaction with the PWPF modulator nonlinearity are addressed. 

Using a describing function model of the modulator, stability margin with respect to the 

structural mode limit cycle is predicted. Simulations are then conducted to verify the 

predicted stability margin. 
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I. INTRODUCTION 

A. REASON FOR RESEARCH 

This work was performed in support of ongoing research in flexible spacecraft 

dynamics and control being conducted under the direction of Dr. Brij Agrawal. 

Justification is presented for implementing pulse-width pulse-frequency (PWPF) 

modulated thruster control as an alternative to conventional bang-bang control methods. 

The goal was to provide smoother control for improved pointing accuracy with less thruster 

activation and reduced excitation of the elastic modes of vibration. Simulation and analysis 

are presented to illustrate the improvement afforded by PWPF modulation and to address 

the stability issues which arise in the presence of nonlinear actuation. The research 

provides foundation for future thruster control experiments using the Spacecraft Dynamics 

Laboratory facilities. 

B. BACKGROUND 

1.    Attitude Control System Overview 

A satellite attitude control system (ACS) is employed to provide vehicle 

acquisition, rotation maneuvers, and on-orbit stabilization. In acquisition, the control 

system acts to null initial angular velocity errors and bring the spacecraft to its operational 

configuration. This situation is often encountered immediately after spacecraft separation 

from the final launch vehicle stage, whereby the separation event has introduced initial 

angular rates. Rotational (or slewing) maneuvers are sometimes performed to reorient the 

spacecraft to meet mission objectives, or to prepare for translation^ propulsive maneuvers. 

On-orbit stabilization refers to the nominal mode of operation whereby the control system 



typically acts in the regulator mode to maintain a particular pointing attitude with respect to 

the earth. 

An ACS must provide stability under the influence of various types of external 

disturbance torques. These may include the secular disturbance due to thrust misalignment 

during a translational propulsive maneuver, or cyclical environmental torques, e.g. from 

solar pressure or gravity gradient. Internal disturbances are applied by the motion of 

satellite components such as steerable antennas, sensor suites or sun-tracking solar arrays. 

2.    Introduction to Thruster Attitude Control 

Most modern satellite attitude control systems incorporate several types of 

actuators to include both internal momentum exchange devices (e.g. momentum wheels, 

reaction wheels, control moment gyros) along with a complement of thrusters. Thrusters 

are used in situations when disturbance torques exceed the control authority of the 

momentum exchange devices, and are often capable of much faster reorientation 

maneuvers. PWPF-modulated thrusters have been used to maintain stability during 

translational maneuvers [Reference 1]. 

Momentum exchange type actuators can usually be treated as proportional 

devices. On the other hand, thrusters are typically on-off devices, only capable of 

providing a single fixed thrust level. Because this is inherently nonlinear actuation, thruster 

control systems cannot be analyzed in the same systematic and straightforward manner as a 

linear system. Response characteristics are not scalable as with a linear system, but rather 

are highly dependent on input amplitude. By considering the system operation for the 

various attitude control modes (i.e., various levels of error signal amplitude), a general 

understanding of the control system behavior can be obtained. 

The main concern in design of a thruster control system is in performing the 

control operations within the required accuracy, with the least amount of thruster activity. 

Lower thruster activity directly translates into lower propellant consumption and less 



thruster/ valve wear.   Thus mission benefits such as longer mission life and/or more 

available payload weight for the same amount of fuel can be realized. 

3.    The Complication of Flexibility 

Structural flexibility must be addressed in ACS design. In the presence of the 

flexibility, the possibility exists that natural frequencies of the structure can fall within the 

control bandwidth. This can lead to control-structure interaction problems which 

compromise the stability and pointing accuracy objectives (and possibly harm the 

structure). The dominant natural frequencies of vibration must be predicted, which often 

requires finite element modeling of the structure. The nonlinearity of the thruster-actuated 

control system can interact with the flexibility, resulting in self-sustained oscillation of the 

structure and back-and-forth thruster activity. 



H. THRUSTER ATTITUDE CONTROL SYSTEM DESCRIPTION 

A.   SIMPLE BANG-BANG CONTROL SYSTEM 

The block diagram representation of a simple satellite bang-bang control system with 

angular position and rate feedback is shown in Figure 1. The satellite, depicted in 

Figure 2, is modeled as a rigid rotational inertia which is controlled by a complement of 

thrusters which provide either a positive or negative torque of constant magnitude Uor-U 

[adapted from Reference 2]. 

controller & thrusters plant (rigid satellite dynamics) 
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Figure 1. Bang-Bang Attitude Control System 
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Figure 2.    Simple Satellite 



a combination of gained velocity and position error.  For this system the controller is 

defined by 

\U sgn(e(t))   if\e(t)\>a 
*(0:  , ,    , 

[0 if |e(0| < a 

where 

e(t) = dref-6(t)-ae(t) 

and a is the deadband half-width 

(1) 

A phase plane trajectory for the control system of Figure 1, ignoring the deadband for 

now, is shown in Figure 3. Since rate feedback introduces damping to the system, the 

phase plane trajectory shows that the time response decays toward the origin where both 

rate and position are zero. In the absence of rate feedback the system is marginally stable, 

with undamped oscillation occurring with a unique amplitude for each unique initial 

condition. 

start point 

(+) fire 

e + ad<0 

\ -\_      switching line 

0=-(l/a)0 

Figure 3.   Phase Trajectory for Damped Thruster ACS with No Deadband 



Note that the switching line with no deadband passes through the origin of the phase 

space. Each period of constant thrust, from starting point A to switching point B, and from 

point B to switching point C, etc., forms a parabola in the phase space [Reference 3]. 

1.    The Limit Cycle 

A limit cycle can be described as a self-sustained oscillation condition which 

arises in nonlinear systems. Viewed in terms of the phase plane trajectory, a limit cycle is 

a closed path which is approached from a starting condition either from inside the closed 

path (usually with the exception of the origin), or from the outside. The system trajectory 

will continue to trace the limit cycle path ad infinitum (given that it is a stable limit cycle). 

In thruster control, the "rigid body" limit cycle is due to the minimum on-time of the 

thruster (the "structural mode" limit cycle due to the interaction of the nonlinearity with a 

flexible structure is discussed in Chapter V). Consider the phase trajectory of Figure 4, 

the trajectory near the origin of the phase space for the bang-bang controller of Figure 1. 
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Figure 4.   Phase Trajectory in Limit Cycle Region with Dead Band 



The deadband affords periods of coasting which are represented as horizontal 

lines in the phase plot. Each vertical segment (actually a small section of a parabola) 

corresponds to a thruster pulse. Due to the minimum on-time of the thrust, the minimum 

impulse and hence minimum change in rate, Aö^, produces the ladder-step approach 

toward the origin. It is this minimum on-time or minimum impulse of the thrusters which 

produces the limit cycle seen near the origin. Note that a trajectory starting from inside the 

limit cycle boundary will also eventually end up in the limit cycle condition (assuming a 

nonzero rate). The frequency of the limit cycle is of great concern to the thruster control 

system designer because it dictates the fuel usage for the nominal mode of operation which 

is the predominant mode through the life of the satellite. However, the desire for a 

minimum frequency limit cycle is often in conflict with the pointing requirements since a 

tighter requirement on 8 for instance will result in less coast period and hence higher limit 

cycle frequency. Note that in Figure 3, after switching point C the absence of the 

deadband and associated coast periods cause "chatter" in the approach to the origin. This is 

wasteful of fuel, and upon arrival in the region of the origin, the limit cycle is of much 

greater frequency than in the system with the deadband. 

2.   Time-Optimal Bang-Bang Control 

Time-optimal bang-bang control for a rest-to-rest maneuver is accomplished using 

the control law 

u(t) = -Usgn 
w\e 

(2) 

where all terms are defined as in Figure 1. 

For any initial condition the phase plane trajectory consists of two parabolas with a 

single switching point, corresponding to full-on acceleration until the half-time of the 

maneuver, followed by full-on deceleration along the second parabolic trajectory straight to 



the origin. This maneuver has been studied and modified in many reports, since it is the 

most time-efficient approach. 

B. PULSE-WIDTH PULSE-FREQUENCY MODULATION 

Most thrusters used for attitude control are designed for on-off operation. Pulse-width 

pulse-frequency (PWPF) modulation provides a means of producing a variable average 

thrust using a simple on-off thruster, hence an approximation to proportional control is 

achieved. 

A PWPF modulator is depicted in Figure 5. The average output of the pulse train is 

approximately proportional to the demanded torque input. Other forms of pulse 

modulation, for instance pulse width (or pulse frequency) or derived rate modulation are 

used in other applications which are not considered here. 

Schmidt trigger 

demanded 
torque 

+ Km e 

A 

um- 'M 
R eoff    eon 

to thruster 

4 

Figure 5.   PWPF Modulator 

The modulator includes a relay with dead-zone and hysteresis, or Schmidt trigger, and 

an integrator (filter). A limiter after the filter was included in the digital implementation. 

The feedback from the output of the relay is subtracted from the input signal A 2 . The 

formation of pulses can be explained with the aid of Figure 6, which depicts the output of 

the discretized modulator and the filter used in this study, for a constant input. The filter 

8 



integrates the error signal (A2 -A3). Before the formation of a pulse the feedback from the 

relay is zero. So the magnitude of A2 determines the rate of integration, and thus the rate 

of growth of the output of the filter. When the filter output reaches the threshold eon of the 

Schmidt trigger, the relay switches on and turns on the thruster. The feedback signal then 

resets the integrator at a rate proportional to (Um-A2) until the filter output falls below e0ff 

at which time the thruster signal is turned off and the feedback signal is again zeroed out. 

Note that the appearance of the pulses as being other than square is due to the integration 

time step of 10 milliseconds. The first pulse is commanded on at .06 seconds and 

commanded off at .08 seconds. 

1.2 

a- 
3 

fBter output 

PWPFoutgut 

i  i   i  i  I  i  I  I  I  I  I  i  i I   '   '  '  '  I   '   '  '   '   I  '  '  '  '   I  '  '   '  '   I ■  ■  1  i  i  i   i  1 

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 
ttmcsec. 

Figure 6.   PWPF Modulator Output for Constant Input 



Reference 1 notes the modulator tends to contribute control loop gain reduction at low 

frequency and phase lag at higher frequency, and presents design parameters based on 

tradeoffs between phase lag and internal deadband size: 

^=4.5 

r= 0.12976 

«.,=0.45 (3) 

e„=0.15 

The modulator was discretized for digital simulation. Using the signal labels from 

Figure 5, the filter output can be written 

K 
4-0*2   4)1 + 57 

(4) 

Considering the signal at two consecutive time steps n and (n+1), and replacing the Laplace 

variable with its time equivalent (a discrete-time first derivative), Equation (4) can be 

reformulated as 

(A2-A3)^ = A,+5A17 

.AMi^^'^xr (5> 

Solving for the new value of the filter output, 

Ai(n + 1)=4(n + D-4(n)^ + A(n)x^_^ (6) 

where dt is the sampling interval of the digital simulation to represent the modulator, which 

is chosen to produce a minimum on-time or minimum pulse width of dt. The digital 

implementation of the modulator is included in Appendix A. Simulation of the PWPF 

10 



modulator was performed using a sampling interval of 10 milliseconds. Figure 7 

illustrates operation of the modulator for two sinusoidal inputs and a ramp. 

t 

■ 

a. 

I 
s 

3 

iilUMI 
wmmw 

Do 
^ ^ „    ^ _ _        _ ^ j  

I—.—.—.— i... _„_ i i.  l   [ [  i        

Figure 7.   PWPF Modulator Output for Various Inputs 

The modulation factor or duty cycle is defined as the average output of the 

modulator. Pulse trains for various constant inputs were analyzed to verify the expected 

linear relationship between input and duty cycle. The pulse trains are included in 

Appendix A. Once the pulse width and frequency are determined, the duty cycle is 

simply determined by: 

duty cycle = pulse width x pulse frequency (7) 

The output characteristics are tabulated in Table 1 and shown graphically in Figure 8. 

The gains computed in the table are the average values of the duty cycle for a given input. 

11 



TABLE 1.   MODULATOR RESPONSE TO CONSTANT INPUTS 

INPUT 

0.15 

0.2 

0.25 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.85 

0.9 

0.95 

1.05 

DUTY CYCLE    PULSE WIDTH         PERIOD         FREQUENCY 
(10 msec) (msec) (msec) (Hz) 

GAIN 

1/13 (50%) 

1/12 (50%) 

2/13 

2/10 

2/8 

2/6 

2/5 

3/6 

3/5 

4/6 

5/7 

7/9 

8/9 (64.2%) 

8/10 (17.9%) 

9/10 (17.9%) 

15/16 (80.7%) 

16/17 (19.3%) 

continuous 

10 

20 

20 

20 

20 

20 

30 

30 

40 

50 

70 

81.8 

152 

125 

130 

100 

80 

60 

50 

60 

50 

60 

70 

90 

93.6 

162 

7.69 

10 

12.5 

16.67 

20 

16.67 

20 

16.67 

14.29 

11.11 

10.69 

6.17 

0.08 

0.15 

0.2 

0.25 

0.33 

0.40 
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0.67 

0.71 

0.78 

0.87 

0.94 

Pulse Width (msec) vs. Input Pulse Frequency (Hz) vs. Input Modulation Factor vs. Input 
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Figure 8.   Output Pulse Width, Pulse Frequency, and Duty Cycle 
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The modulation factor versus input graph of Figure 8 verifies the nearly proportional 

operation. Note that the modulator has an internal deadband, whereby a pulse will not be 

triggered for an input signal lower than about 0.15. It is important to remember that even 

though the output relationship is fairly linear, the relay constitutes a hard nonlinearity and 

hence nonlinear analysis must be employed to study the details of control system 

performance. 

C. INTRODUCTION TO SIMULATIONS 

Digital simulations were used for verifying basic control system operation, comparing 

the performance of different types of thruster control, and exploring system response with 

structural flexibility and variation of various parameters. In most cases simplified block 

diagrams are included in the text portion of the thesis for clarity and ease of interpretation, 

with corresponding Matrixx/Systembuild block diagrams included in Appendix B. All 

simulations were performed for the single axis control case, neglecting cross-axis 

momentum coupling effects. Hence the rigid body equation of motion is simply: 

Id = Tc (8) 

from which the Laplace transform yields the s-domain transfer function representation: 

0(5) _  1 
TM    Is 2 (9) 

where 0 is the controlled pointing angle, / is the total moment of inertia, and Tc the 

control torque. For the case of thruster control Tc is approximated as a square pulse. 

Unless otherwise noted, all block diagram elements were discretized with a sampling 

interval of 10 milliseconds. This enforced the minimum on-time of the thruster, while 

providing a sample rate fast enough to sufficiently capture the dynamic response. 

13 



All simulations were run using the parameters of the flexible spacecraft simulator 

(FSS) experimental system (but assumed a rigid body for the simulations of Chapter III). 

The values used for total moment of inertia and thruster control torque were 11.4 kg-m2 

and 0.35 N-m, respectively. The FSS was designed as a scale version of the pitch axis of 

a typical geosynchronous momentum-biased satellite, so that results representative of a 

realistic satellite control system could be expected. Indeed these values scale nicely to the 

pitch axis inertia and control torque values (440 kg-m2 and 10 N-m) for the operational 

satellite of Reference 1. 

A pointing accuracy goal of +/-. 1 degrees was used throughout the study as a basis 

for comparison. This is a realistic (if not lenient) requirement for a communications 

satellite at geosynchronous altitude. 

14 



JH. COMPARISON OF THRUSTER CONTROL METHODS FOR RIGID 

SPACECRAFT 

Simulations were run to demonstrate the performance of the pulse modulated control 

system and to compare it with the performance of bang-bang control systems. A block 

diagram control system representation for rigid body simulations is shown in Figure 9. 

Implementation of the pulse modulator involved replacing the elements from Figure 5 with 

a single Usercode Block in Systembuild which calls the FORTRAN routine for the discrete 

modulator in each integration step.  For the time-optimal bang-bang control system the 

CONTROLLERS 

'cmd 
+   e(t) 

O* k, 

,     PWPF Modulator 

1 rr -Km 

l+sTm u -i 

Bang-Bang with Dead Zona 

1 
■ r _l 1 • -i 

Time-optimal Bang-Bang 

-sgnLe-ecmd+ — J 

PLANT 

Figure 9.   Attitude Control Systems for Rigid Body Simulations 
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feedback gain and forward loop gain are not applicable. A linear (non-thruster) controller 

with position and rate feedback would bypass the controllers and the thruster block. The 

PWPF modulator incorporates an additional gain K which will be considered separately 

from the gain kj. The disturbance torque Tj is included in some simulations. The error 

signal, e(t), includes the error between the commanded angular position and the actual 

angular position, and the error between the commanded and actual angular rates where the 

commanded rate is always implicitly zero. 

The linear controller was used to size gains for a particular desired performance. The 

same gains were then used with the nonlinear controllers and for the simulations with 

flexible dynamics, in order to form a basis for comparison. The closed loop transfer 

function of the system for the case of linear actuation is: 

®ou,(s)_       K'J (10) 

e«w-f+!bls+*L 

The equation is of the same form as the general equation for a viscously damped 

single-degree-of-freedom system, 

(ID 
s + 2£(öns + (ön

z 

where C, and con are the damping ratio and natural frequency, respectively.   Equating 

coefficients of (10) and (11) it follows that 

co„=$ and C = |V¥ (12) 

For the linear design a damping factor of .84 was chosen for minimal overshoot. The 

value of con can be thought of as the control bandwidth, and was selected as .06 Hz in 

order to minimize interaction with the first pole and zero of the flexible dynamics in later 

16 



simulations (.12Hz and .15Hz, respectively). Based on these values Equations (12) yield 

the gain values 

ki = 1.4 N-m/rad 

lqx= 6.7 N-m-s/rad 

The response to a ten degree step input with linear actuation is shown below in 

Figure 10. Graphs are shown for angular position in degrees, angular rate in degrees per 

second, the gained error signal kie(t), and the phase plane trajectory. A 2% settling time of 

13.6 seconds is achieved, with less than one percent overshoot. 
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Figure 10.   Step Response for Linear Actuation with Position and Rate 
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A.  THRUSTER CONTROL STEP RESPONSE (SLEW MANEUVER) 

For large values of the error signal the system response with thrust-modulation is 

similar to the simple bang-bang system because the PWPF modulator tends to operate 

above its linear range. This is demonstrated by comparing Figures 11 and 12 below, 

where a 10° slew maneuver has been commanded from rest for bang-bang and modulated 

thruster control. Both controllers complete the maneuver in about 24 seconds, slower than 

the linear case but with essentially no overshoot as was desired. 
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Figure 11.   Slew Maneuver with Bang-Bang Controller 

The control torque pulses change in frequency for both controllers. This can be 

understood by referring back to Figure 4, which depicted the "ladder-step" phase plane 

approach to the final commanded state. The coast period (horizontal line in phase plane) 
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between each pulse increases as the trajectory approaches 0 = 0, hence the pulse frequency 

decreases. The trajectory rides the boundary of the deadband from just after one second 

until the completion of the maneuver. 
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Figure 12.   Slew Maneuver with Thrust-Modulated Controller, K=39 

Note that the modulated maneuver is slightly smoother in the phase plane. The 

response is closer to the characteristically smooth phase trajectory of the linear system 

(Figure 10) because the PWPF modulator is closer to approximating linear actuation. The 

smoothness of the trajectory is an important factor in the presence of flexibility. An abrupt 

change in velocity curve from positive slope to negative slope indicates an abrupt change in 

acceleration and hence jerk as well. The faster the acceleration is reversed, the more jerk is 

applied, which for a flexible structure results in more stored flexural energy. Whereas the 
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bang-bang controller only operates according to the sign of the error signal, the PWPF 

modulator responds to both the magnitude and the sign of the error. The difference in 

phase trajectory smoothness is shown more dramatically in simulations where the feedback 

gains and kj are all set to unity (Figures 13-15). The resulting damping ratio of .15 (for 

the linear controller) produces excessive overshoot but also a faster rise time. Both of these 

effects are seen to some extent with the nonlinear controllers, however the modulated 

system provides a smoother transition between the reversal of acceleration. 
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Note from Figure 15 that the pulse-modulated response would closer match the 

linear simulation if the modulator were operating in its linear region over the maneuver. As 

the time history of gained error signal shows, the modulator input is above the modulator 

saturation level of 1.05 (see Figure 8) until about 2.5 seconds, causing continuous-on 

operation. 

For the linear control loop, application of the final value theorem indicates that the 

steady state error to a step input is zero. The PWPF modulator on the other hand contains 

an internal dead zone which results in a steady state error (or defines the amplitude of the 

rigid body limit cycle), such as can be seen in Figure 15. The small steady state error is 

achieved only by using a high value of modulator input gain K (=39 for the previous runs). 

The need for a substantial value of input gain can be understood by considering the 

magnitude of the signal prior to the modulator input gain. The initial error signal is due to 

the commanded input only, since the spacecraft is initially at rest: 

e(0)x^= 10°(j^ 
80' ■   

X L° = -174 

which is the maximum value of this signal over the entire maneuver, already quite small 

considering the modulator dead zone of approximately +/- 0.75. Because the thruster is 

full-on for the first 2.5 seconds, the angular rate increases quickly to nullify the error 

signal: 

e(~2.5sec)xÄ:1= (10°x 1 - 6°xl - 4.2°/sec xl) x j^= -.003 

which is much too low to trigger the modulator. So a dramatic gain factor is needed to 

keep the modulator input signal above its internal deadband. It was found, however, that 

the value of modulator input gain could be substantially lower, say AT =10, while still 

achieving the maneuver (Figure 16). 

22 



-2 

4 

3 

2 

a 
I 1 

0 

•1 

-2 

0       10      20      30      40      50      80 
timefsec) 

10      20      30      40      50      60 
Km»(«ac) 

0 3 6 S 12        15 
posftktn(deg) 

Figure 16.   Underdamped Slew Maneuver with PWPF Modulator, K=10 

The rise time is not affected appreciably by the lower input gain, since the modulator is 

still initially saturated, producing a period of constant thrust. The lower value of K 

however results in more steady state error because the deadband is reached sooner. As 

with a linear system, an increase in the loop gain (via the modulator input gain) decreases 

the steady state error in the presence of a disturbance torque; this is discussed further in 

Chapter IV. 

Note that limit cycle behavior was not seen after maneuver completion in the previous 

simulations. This is because the final thruster pulse brings the velocity to zero. With non- 

zero initial conditions the limit cycle is seen at the completion of the maneuver (Figure 

17). 
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Conditions 

A ten degree slew maneuver performed using the time-optimal bang-bang controller is 

shown in Figure 18. Although the maneuver is faster than the other types of thruster 

control, the acceleration is by definition of the control law reversed instantaneously at the 

half-maneuver time. The effects of this with a flexible structure can be seen in the results 

presented in Reference 4, which show the maximum strain in the structure occurring just 

after the half-maneuver point. The stored energy then produces a whip-like motion of the 

flexible appendage which contributes to overshoot at the end of the maneuver. In rigid 

body simulations without dead zone, the sampling interval alone constituted enough of a 

delay to cause switching instability at the end of the maneuver. Hence it was necessary to 

include dead bands on position error, (6cmd - 60Ul), and rate 60ut, in order to avoid thruster 

chatter at the sampling rate of 100 Hz. Even with the dead zone, Figure 18 shows a slight 

imperfection in the half-time switching. Note that the maximum velocity reached 

(approximately 4.5 deg/sec) is over twice the velocity achieved using the other controllers. 

In many systems rate limiting is necessary, which of course diminishes the intended 

advantage of time-optimal switching. 
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Sensitivity of the time-optimal control system to parameter uncertainty was studied. 

Note that the switching law (Equation (2)) contains the thrust value and the total moment of 

inertia. Since these parameters are generally not known exactly, the values used in the 

switching law are only a best estimate. Though a thruster may be accurately calibrated, the 

actual torque produced is subject to mounting misalignment tolerances and plume 

impingement effects. Also, the moment of inertia of the satellite changes over the orbit 

lifetime with the depletion of propellant. Uncertainty manifests as overshoot (or 

undershoot) and subsequent unintended thruster firing (see Figures 19 and 20). Note 

the rigid body limit cycle which is established after completion of the maneuver. 
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With the PWPF-modulator uncertainty does not play as critical a role since an estimate 

of the inertia and the control torque are not part of the control law formulation. 

B.   NOMINAL CONTROL MODE: RIGID BODY LIMIT CYCLE 
PERFORMANCE 

The rigid body limit cycle performance was determined for each controller by 

simulating the response to small initial conditions. Limit cycles of the same size in the 

phase plane correspond to equivalent limit cycle frequencies. With the goal of keeping 

within +/- 0.1° pointing accuracy, the deadband of the bang-bang controller and the input 

gain for the modulated controller were adjusted accordingly. In the case of the simple on- 

off controller with deadband, the limit cycle behavior is shown in Figure 21. From the 

position graph the limit cycle frequency is determined to be about .026 Hz. 
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A limit cycle of similar frequency is achieved with the PWPF modulator (Figure 22) 

with an input gain K of 39. Treatment of the rigid body limit cycle in more general 

mathematical terms for any thruster system can be found in Reference 5, which also notes 

that with position and rate feedback, the limit cycle is stable. 
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Figure 22.   Rigid-Body Limit Cycle with Thrust-Modulated Controller 

The same limit cycle is established for both controllers because minimum-impulse 

operation is established, i.e. each vertical portion of the limit cycle corresponds to the 

minimum .01 second thruster pulse (with A6r[ia= .02 deg/sec). This is unexpected since 

early literature indicates a conventional bang-bang controller would not converge to 

28 



minimum impulse operation, but would rather form the higher frequency limit cycle shown 

in Figure 23 [adapted from Reference 6]. 
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Figure 23. Expected Limit Cycles for Conventional (Bang-Bang) and 

Minimum Impulse (PWPF) Systems 

Though time-optimal switching would probably not be used for nominal attitude 

control, a limit cycle of comparable size can be produced by introducing plant inertia 

uncertainty (here -20% was used as in Figure 20) . Figure 24 shows that minimum- 

impulse operation is not established and the resulting frequency is determined to be about 

. 18 Hz, substantially higher than the other controllers. 
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Figure 24.   Rigid-Body Limit Cycle with Time-Optimal Switching 

C.    DISTURBANCE REJECTION 

The response of the various control systems to a constant disturbance torque was 

studied. A constant torque of .015 N-m was applied in most cases. This value was 

originally used in Reference 7 to model the torque applied due to cabling wind-up in the 

experimental FSS setup. The value scales nicely to the thruster misalignment disturbance 

torque countered by the controller in Reference 1. The assumption of a constant 

disturbance torque is adequate for the case of disturbance due to thruster misalignment 

during a translational maneuver. The response to stochastic disturbances such as sensor 

noise are not considered. 
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A typical phase portrait for the thruster systems [Ref. 5, Ref. 6] converges to a 

disturbed limit cycle of the shape shown in Figure 25. The time history of Figure 26 

shows that as the deadband is reached due to the disturbance, a thrust pulse is commanded 

to counter the disturbance. The plot of 0 shows that the satellite periodically "bounces" off 

the deadband. These plots were generated using a more powerful thruster and are therefore 

intended for illustrative purposes only. 
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Figure 25.   Phase Plane Trajectory with Convergence to Disturbed 

Limit Cycle 
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Figure 26.   Typical Response to Constant Disturbance Torque 

Using the system parameters considered thus far, the angular position responses for 

the bang-bang and the PWPF-modulated systems (with K=39) are shown in Figures 27 
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and 28. Both results show thruster activity at 4.2 Hz, where the disturbance torque keeps 

the satellite at the edge of the deadband. 
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Note that the modulated controller does not provide the required pointing accuracy of 

.1 degrees. With a linear controller the steady state error under the influence of a constant 

disturbance torque is inversely proportional to the controller gain.   With the PWPF 
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modulator the gain on the error signal can similarly be increased in order to lower the 

steady state error. This is demonstrated in flexible body simulations in Chapter IV. The 

flexible body stability problems which can be encountered due to the thruster activity and 

the increased gain are further discussed in Chapters IV and V. 

A closer look at the gained error signal and the resulting pulses (Figure 29) for the 

PWPF-modulated simulation shows that when the error signal reaches the internal 

deadband of the modulator (point A) a single pulse is fired which decreases the error signal 

until the end of the pulse (point B). The error signal then grows under the influence of the 

disturbance until the deadband is reached again, triggering another thruster firing (point C). 

The pulse width of ten milliseconds is consistent with the response to the input of -.15 as 

given in Table 1, however the 8 Hz pulse rate cannot be realized since the input signal is 

not constant, but rather drops with each pulse. 
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Figure 29.   Error Signal During Constant Disturbance Torque 
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IV. FLEXIBLE SPACECRAFT DYNAMICS AND SIMULATIONS 

The simulations in Chapter HI demonstrated the advantages of PWPF modulation for 

the rigid body case. The flexible body dynamics are now discussed and comparative 

simulations presented. 

A. FLEXIBLE SPACECRAFT MODELS 

It is often necessary to include several vibrational modes of a flexible structure in a 

spacecraft dynamical model in order to adequately design the control system and to foresee 

possible modes of interaction between the control system and the structure. It is 

instructional to first examine the model of a spacecraft with one dominant mode of vibration 

about the controlled axis. Consider the spacecraft with a flexible solar array pictured in 

Figure 30 [adapted from Reference 8]. 

Solar Array 

Center Body 

Figure 30:   Spacecraft With Flexibility 
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Assuming a single undamped dominant torsional mode of vibration, the transfer 

function from control input to angular position output can be represented as: 

with 

0)n=M and Q.=fl>Jl + f (14) 

where 5 is the Laplace transform variable, h and Is are respectively the rigid body and 

solar array inertias about the pictured axis,6k is the controlled rotation angle of the rigid 

central body,r is the control torque, and K is the torsional stiffness. The term co„ in the 

numerator is the cantilever frequency (fixed base frequency) of the flexible appendage, and 

Qn in the denominator is the "system mode" or "free-free" mode frequency of vibration, 

whereby the rigid hub is no longer fixed but vibrates together with the flexible appendage. 

The s2 term in the denominator is attributable to the rigid body mode of the spacecraft (zero 

frequency). An important observation to be made is that the complex zeros of the plant 

transfer function correspond to the fixed-base vibrational frequency of the flexible 

structure. So the transfer function implies that while the flexible appendage may be 

vibrating at its natural frequency, a control torque is supplied to keep the central body from 

rotating [Ref. 9], For the more general case of N modes of vibration, the transfer function 

representation of the dynamics can be represented as 

G(5)-rw-/52if[5
2/Qi

2+(2CiM)^+i]     K } 

where / is the entire spacecraft inertia, a) is the ith cantilever mode natural frequency, and 

ß, is the ith system mode natural frequency. 
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The dynamics of Equation (13) can be derived easily because of the simplification that 

a single vibrational mode and a known stiffness K could represent the solar array 

flexibility. A higher fidelity dynamical model of a flexible spacecraft can be developed via 

the hybrid-coordinate representation of the system [Ref. 10], which includes both physical 

coordinates and modal coordinates. A finite element analysis is performed to determine the 

cantilever frequencies and mode shapes of the structure.  For the general case of three 

rotational degrees of freedom, the linearized equations of motion are [Ref. 1], for the rigid 

body: 

W + H6 + DTq = Tc + Td (16) 

and for the flexible appendage: 

q + 2Ccoq + (£=q + Dd = 0 (17) 

where / is the entire spacecraft inertia matrix, H is the momentum coupling matrix, D is the 

rigid-elastic coupling matrix of the flexible appendage, 6 is the attitude angle vector, Tc 

and Td are the control and disturbance torque vectors, q is the cantilever modal coordinate 

vector, andö)2 is a diagonal matrix of squared cantilever modal frequencies. The inclusion 

of the damping term of Equation (17) is based on the assumption of modal damping, 

whereby the damping matrix has been uncoupled and a single value for the modal damping 

ratio, £, is assumed for all modes. 

The flexible dynamics model used in this study was derived [Ref. 7, Ref. 11] for the 

experimental flexible spacecraft system (FSS) using the hybrid-coordinate formulation. 

The system, pictured in Figure 31, free-floats on air pads and vibrates in planar motion, 

with translational motion restricted by the air bearing. Hence the momentum coupling term 

H (Equation 16) does not apply and I, 6,Tc and Td become scalars. Equations (16) and 

(17) then become [Ref. 7]: 

36 



lJ + i,*>ä = Te + Td 
1=1 (15) 

^+2^,4 + 0)^ + ^0 = 0 

with the rigid-elastic coupling matrix having reduced to a vector with each element based on 

the modal vector components in the rigid body frame (0* and 0f ) and defined for each 

mode i of the flexible appendage as: 

D^]F{xF(PJ-yF<p:)dm (16) 

Each Dj is calculated using a FORTRAN subroutine which operates on the cantilever modal 

frequencies and mode shapes from the finite element analysis output; the integral of 

Equation (16) becomes a summation over the number of discrete subbodies into which the 

flexible body has been divided, where xp and yp locate each subbody in the rigid center 

body frame. 

THRUSTER SYSTEM 
AIR TANK 
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Figure 31.   Flexible Spacecraft Simulator 

In discretizing the system via the finite element method, the number of modes was 

truncated at six to obtain a compromise between reasonable model accuracy and 
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computational feasibility. The model was placed into state space in preparation for digital 

simulation using the Matrixx/Systembuild software package. The state space representation 

of the system equations is: 

x = Ax + Bu (20) 

y = Cx + Du 

where the state vector, x, is defined as: 

x = [0   qx q6    6   qx q6]
r (21) 

The output y is the vector of the current states, hence C is a 14x14 identity matrix and it is 

assumed that the feedback values of angular position and rate are measured exactly. The 

system matrix form used in Matrixx/Systembuild is 

S = 
'A B~ 

C D 
(22) 

The system matrix was discretized for simulations with dt= .01 second. The complete 

mathematical descriptions of the state matrix A and the input matrix B are given in 

Reference 11 (p. 20). The direct transmission matrix D is set to zero. 

During initial simulations with the flexible dynamics, the natural frequencies of 

oscillation were found to vary somewhat from the values presented in Reference 7 (pages 

21 and 110). In order to find the actual frequencies present in the discretized model, a bode 

plot of the system was obtained (Figure 32). The DBODE command in Matrixx was 

used and the normalized frequencies were divided by the sampling period to obtain rad/sec. 
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Figure 32. Bode Plot of Discretized Plant Model 

Based on the bode plot the bode plot the cantilever and system frequencies were 

determined and are given in Table 2. 

TABLE 2.   FSS DISCRETE MODEL CANTILEVER AND SYSTEM 
FREQUENCIES 

Mode 
Cantilever Frequency 

(Hz)             (rad/sec) 
System Frequency 

(Hz)             (rad/sec) 

1 0.121 0.76 0.153 0.96 
2 0.330 2.07 0.410 2.58 
3 2.660 16.71 2.730 17.15 
4 3.550 22.31 3.630 22.81 

5 6.140 38.58 6.210 39.02 
6 16.610 104.36 16.900 106.19 
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Reference 7 determined the first cantilever natural frequency to be .139 Hz, and the 

first system frequency .175 Hz. The discrepancy in the frequencies could partly be due to 

the method of discretization used. Consider the following continuous representation of a 

second order notch filter [Ref. 1]: 

w 
~2     .6 

(23) 

Figure 33 shows the continuous frequency response plotted with the discrete-time 

response using two different discretization methods (with w= .96). Note the shift in zero 

frequency introduced by the zero order hold method, whereas the first order hold method 

provides much better results. The same shift may have occurred when the FSS dynamics 

model was discretized. (This illustration underscores the difficulty in designing a notch 

filter for lightly damped poles since only a small inaccuracy in the knowledge of the true 

pole location would result in poor filter performance.) 
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Figure 33.   Continuos to Discrete-Time Conversion of Notch Filter using 

(a) zero order hold method, (b) first order hold method. 
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The state space representation of the system contains the information to form transfer 

functions between the torque input and each of the fourteen outputs. The transfer function 

for the central body rotation angle output was given in Equation (15), and can be modified 

into the form 

G(5)-"TO-p"ll[a»i
2Jlf[52+2CA* + ßia] 

(24) 

Using the values of the cantilever and system natural frequencies from Table 2, and 

an assumed modal damping ratio of .4 percent, the transfer function for the first three 

modes becomes: 

G(s) = 
. 23 * (s2 +. OO65+. 58)(s2 +■ 0175 + 4.4 l)(s2+. 134s + 279) 

(s2+.008s+.922)(/+.021s + 6.76)(s2 +1385 + 296) 
(25) 

The poles and zeros of the complete six-mode transfer function were computed using a 

Matlab routine which is included in Appendix C and are shown in Figure 34. 

150 

100 

-100 

-150 

Figure 34:   Poles and Zeros of Transfer Function from T to 0 
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Note that the underdamped modes appear as alternating poles and zeros near the 

imaginary axis. Reference 9 shows that with position and rate feedback or lead 

compensation, stability of the modes is achieved, that is the root locus from each open loop 

pole to its adjacent zero will lie in the left half plane. With angular position and rate 

feedback the loop transfer function is multiplied by the factor krfzs+l). The resulting root 

locus plot near the origin is shown in Figure 35, for z = 4.77. An underlying assumption 

is that the sensor and actuator are colocated at the "rigid" central hub of the spacecraft. 

With flexibility between the sensor and actuator, lead compensation can actually cause 

structural mode instability (see Reference 12, Appendix A.4). 

s 

Figure 35. Root Locus vs. Forward Loop Gain With Position 
and Rate Feedback 
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If the controller gain were chosen to locate the closed loop poles near points A for 

maximum damping of the flexible modes, the resulting rigid body control would be 

considerably underdamped. More realistically, the closed loop poles would probably be 

placed with the rigid body pole closer to point B, for nearly-critical damping of the center 

body. Hence the flexible poles would be dictated by the rigid body controller, and would 

be much nearer the imaginary axis. Although the stable root locus plot is guaranteed with 

the linear controller, nonlinearity can cause closed loop pole locations to change as a 

function of time. Nonlinear analysis is discussed in Chapter V. 
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B.  COMPARISON OF THRUSTER CONTROL METHODS FOR 
FLEXIBLE SPACECRAFT 

Comparisons of bang-bang and pulse-modulated thruster control in the presence of 

structural flexibility are presented in this section. The first two of the six cantilever modal 

coordinates are plotted to give some feel for the response of the flexible appendage with 

respect to the central body. The simulations were run at the same sampling rate (100 Hz) 

and with the same basic block diagrams as the previous rigid body simulations, only the 

flexible body dynamics were substituted for the rigid. 

1.    Step Response 

The ten-degree step response is shown in Figures 36-41 for the PWPF- 

modulator, bang-bang, and time-optimal bang-bang controllers. The time responses of the 

first two modal coordinates are included to provide some indication of the arm excitation. 

The PWPF-modulator input gain of 30 (Figure 36) was reduced to 10 for the run of 

Figure 37. Note the reduced thruster firing with little loss in accuracy, as well as the 

rapid decay in the modal coordinate amplitudes. The oscillation in pointing angle is due to 

the input gain to the modulator, which increases the loop gain. Hence the original linear 

design with low controller bandwidth to avoid interaction with the first mode is not 

realized. It is possible that further "optimization" of the modulator could help improve this 

aspect of the results. 

For the first bang-bang run (Figure 38), the dead bands were left as were 

required to provide the minimum-impulse limit cycle from the rigid body simulations (with 

+/-.10 excursion in 8). The resulting thruster actuation is unsatisfactory, although tight 

control of the center body is noted. The forward deadband was opened up to +/- .2° to 

produce the result of Figure 39. The increased deadband reduces the "density" of 

thruster firings, however the oscillations and firings continue until almost 200 seconds. 

Similar results were obtained using the time-optimal controller. The first run (Figure 40) 
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shows a much faster maneuver (as is expected), however excessive switching occurs at the 

termination. Again opening up the deadband (Figure 41) provides virtually no benefit in 

terms of reducing thruster firings, and results in undesirable oscillations in pointing angle. 

The phase plane plot is shown in this run to point out the limit-cycle-like behavior, 

however further investigation showed thruster firing ends after about 200 seconds. The 

delayed overshoot occurring just after six seconds is probably due to the "whipping" 

motion of the flexible appendage as it releases the energy stored during the maneuver. The 

amplitude of cantilever modal coordinate qi reaches .26, much higher than for the thrust- 

modulated maneuver where the amplitude is .085. The rate of decay is also more gradual 

than the modulator case. 
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Figure 36.     PWPF-Modulated Step Response, K=30, Flexible Dynamics 

45 



I 
i 
s 
3 
I 
E 

& 

Figure 37. PWPF-Modulated Step Response, K=10, Flexible Dynamics 
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Figure 41. Time-Optimal Bang-Bang Response with Increased Deadband 

Though these simulations were intended to point out the advantages of PWPF- 

modulated thruster control, it is important to remember that variations of each control law 

have been devised to improve the performance in the presence of flexibility [e.g. Agrawal 

& Bang, Dodds]. The basic idea in slew maneuvers is to minimize the post-maneuver 

energy in the flexible structure, however this desire tends to conflict with the fact that a fast 

slew is also desired. [Haiiey] demonstrated a slewing method which developed a more 

gradual angular acceleration using torque-shaping and resulted in less excitation of the 

structure. This method and others would show similar improvement for any of the 

controllers. 
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2.    Small Initial Condition Response 

Figures 42-45 show the responses of each of the control systems to small 

initial conditions, where phase plane trajectories are included rather than the modal 

responses. Thruster activity in the first PWPF case (Figure 42) was reduced further by 

implementing an external deadband of +/- .1° before the modulator (Figure 43). The 

tradeoff is seen to be slightly less accuracy, but still well within the goal of +/- .1°. The 

simple bang-bang response (Figure 44) is comparable to the modulated response. The 

time-optimal bang-bang, which implements the dead bands directly in the feedback loop, is 

seen to bounce back and forth within the +/- .1° deadband. 
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3.    Disturbance Rejection with PWPF-Modulated Controller 

The behavior of the modulated control system during a constant disturbance is 

illustrated in Figures 46-50. The disturbance of .015 N-m was applied for 20 seconds 

(except for Figure 46), starting at one second. Figure 46 shows that with £=30, the 

required pointing accuracy appears to be achieved. After the disturbance, a rigid body limit 

cycle of frequency .05 Hz appears to have been established. The longer run of Figure 47 

(70 second disturbance) clearly shows that the required pointing accuracy is maintained. 

The results of Figures 48-50 show that as the input gain is increased, the steady-state 

error is reduced, however some degree of modulator instability is shown for the case of K= 

200 (Figure 50). After the disturbance, the over-excited modulator still manages to drive 

the system toward zero pointing error. 
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V.   NONLINEAR CONTROL LOOP STABILITY ANALYSIS IN THE 

PRESENCE OF STRUCTURAL FLEXIBILITY 

The stability of the control system is a function of all elements of the control loop. The 

various elements other than constant gain add phase lead or lag (along with gain 

contribution except in the case of pure time delay), and hence contribute to the overall gain 

margin and phase margin. As was previously stated, for a control loop with linear 

actuation and position and rate feedback, the stability of each mode is assured. Though the 

control loop may induce oscillations in the structure, the oscillations will experience 

exponential decay. The discontinuous nature of the PWPF modulator, however, can cause 

the control to interact with the dynamics and result in self-sustained, or limit cycle, 

oscillations. 

A.  LIMIT CYCLE DETERMINATION USING DESCRIBING FUNCTION 
ANALYSIS 

In order to predict the existence and characteristics of limit cycles in a system, 

describing function analysis can be employed. Consider the block diagram depiction of a 

system which has been separated into linear and nonlinear elements (Figure 51, adapted 

from Reference 2). 

Nonlinear Element 
Describing Function Linear Element 

r(t) x(t) 
N(A,co) 

Mt) 
L(jco) 

y(t) 

Figure 51. Control System with Nonlinear Element 
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For a sinusoidal input to the nonlinear element, i.e. x(t)= Asin(cot), the output w(t) of the 

nonlinear element is generally periodic and hence can be represented by a Fourier series 

expansion. The describing function method makes the approximation that only the 

components corresponding to the fundamental harmonic of the expansion, nco with n=l, 

are to be considered. This approximation is based on the assumption that the linear 

element has low-pass properties and hence tends to attenuate the higher harmonics of w(t). 

The describing function of the nonlinear element is defined as the complex fundamental- 

harmonic gain of a nonlinearity in the presence of a driving sinusoid [Ref. 14]: 

._  phasor representation of output component at frequency co 
phasor representation of input component at frequency co 

A (A Q>) „*,(*■■ <_ew.») (26) 
A 

= jibi+M) 

where the magnitude and phase of the describing function are 

\N(A,co)\ = j4^+^ 

ZN(A,co) = <t> = tan-1 (a, /b,) 

(27) 

The describing function N(A,co), is analogous to the frequency response function, 

H(jco), of a linear system. But whereas the linear frequency response function is 

independent of the amplitude of the input signal, the nonlinear "transfer function" or 

describing function depends on both the input amplitude and frequency. In linear control 

loop design, closed-loop poles can be placed to assure a stable response. With a nonlinear 

element, however, the closed-loop pole locations vary with time due to the gain variation 
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with input amplitude. Hence, the root locations in the complex plane can oscillate between 

locations in the left and right-half plane, giving rise to limit cycle behavior. 

By representing the nonlinear element by a describing function approximation, some 

of the same graphical techniques from linear control analysis can be employed to predict the 

limit cycle behavior and to determine stability margins with respect to the limit cycle 

condition. Consider the configuration from Figure 51, assuming that a self-sustained 

oscillation of amplitude A and frequency (O is established and hence the input, r(t) = 0. 

The following relations can be obtained from the figure: 

x = -y 

w = N(A,co)x 

y = L(j(0)w 

and hence 
y = L(jco)N(A,(o)(-y) , or 

y(l + L(jco)N(A,(o)) = 0 

Since y?K), the limit cycle frequency and amplitude must satisfy the relationship 

w—mhi (28) 

A bode plot representation of a system with nonlinearity is depicted in Figure 52. 

The negative inverse of the describing function gain and phase are superimposed with the 

linear plot. The gain and phase margins are redefined with respect to the nonlinear 

boundary, as opposed to the -180 degree phase and 0 dB gain lines. The limit cycle 

frequency and amplitude corresponds to the point which satisfies Equation (28), the point 

of intersection between the nonlinear and linear gain plots. 
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Figure 52.   Gain Margin (Gm) and Phase Margin (Pm) for (a) Linear 

System, and (b) System with Nonlinear Element 

B . ANALYSIS OF PWPF MODULATOR 

For the rigid body case, the limit cycle frequency was easily determined by 

simulation. With a flexible spacecraft the dynamic characteristics of the modulator need to 

be considered in order to predict the limit cycle behavior which can result from the 

interaction of the nonlinearity of the PWPF modulator with the control system. The 

dynamic characteristics can be analyzed using the describing function method. 

Although the describing function method is based on the assumption that only the 

fundamental harmonic of the nonlinear response is significant, the residual higher 

harmonics have been considered [Ref. 14]. The corrected-conventional describing function 

uses the root-mean-square value of the first and third harmonics, with the phase of the 

fundamental. A corrected-conventional single input describing function (SIDF) for the 

PWPF modulator is presented in Reference 1, for which the gain and phase of the SIDF 

boundary, N(Amjco), are determined to be 
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where 

Gain(dB) = 20log(B/AJ 

Phase(deg) = -57.3 tan"1 (7;©) 

h = Uon- Uoff = hysteresis width 

(29) 

K = U *  u°"    l + exp(A/(7») 
V0»2 + 1 

B = JBJ+BJ 

D     4Um  . (Aco 
fi =—-sin -T- 1      K      \2 

B*~ 3n 

41/. . (3Aco\ 
sin -^— I 

V 2 ; 

h = Um- Uoff = hysteresis width 

co = input frequency (rad / s) 

A = minimum pulse width (s) 

A block diagram representation of the continuous-time control system is shown in Figure 

53. 
PWPF Modulator 

e Deadband 
ref 

Thruster 

Flexible 
Dynamics 

28x15 
State Spaa 
Matrix 

e 
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e 

ql...q6 

Figure 53.   PWPF-Modulated Thruster Control Loop 
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Bode plots for the control loop were developed in Matlab using the continuous-time 

dynamics description from Equation (24). The code is included in Appendix C. The 

bode plot for the first five pole-zero pairs of the plant dynamics is shown in Figure 54. 

The gain plot agrees closely with that found in Matrixx using the DBODE command on the 

discrete-time state space model of the plant (see Figure 32). The phase plot from Matrixx, 

however, shows phase lag at the higher frequencies which is not seen in Figure 54. This 

is thought to be another consequence of the discretization process. The possible effect that 

this discrepancy could have is that the predicted phase margin with respect to a limit cycle 

may be smaller than the analysis using the Matlab model would indicate. 
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Figure 55 shows the plant with position and rate feedback control (with K=30) 

superimposed with the SIDF boundary developed using Equations (29). The nonlinear 

boundary intersects the linear plot for the first five modes, with linear control loop gain 

reduction for the sixth system mode frequency sufficient enough that limit cycle interaction 

is not predicted. Hence five possible limit cycle interactions are indicated; only the third 

structural mode limit cycle at ~ 21 rad/sec was found to be significant, as will be discussed 

shortly. It is interesting to note that in Reference 1 only the first mode pole (representing 

the first system mode of vibration) needed to be considered because the other modes of 

vibration were far removed in frequency from the first and thus far below the SIDF 

boundary. For the flexible spacecraft model in this study, however, the modal density was 

high enough that higher frequency flexible mode limit cycles could be expected. Hence a 

fairly accurate plant model is desired since exclusion of the higher frequency modes in 

initial analysis would fail to predict the higher frequency limit cycles. 
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Figure 55.   Control Loop Bode Plot with Nonlinear Boundary, K=30. 
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Note that the position and rate feedback effectively provide lead compensation which is 

indicated in Figure 55 by the increase in gain of the higher frequency underdamped pole- 

zero pairs (in addition to the 32 dB contributed by the total gain factor of 42), and by the 

phase lead. The phase lead is desirable as it provides greater phase margin with respect to 

the nonlinear boundary. The gain increase however causes the linear boundary to intersect 

with the SIDF boundary at the higher frequencies where limit cycle interaction is of even 

more concern since higher frequency limit cycles are more wasteful of fuel. With the lead 

effect modeled as zs+1, a decrease in the rate feedback gain T would increase the break 

frequency and hence lessen the gain increase seen for the third-through-fifth pole-zero 

pairs. But it follows from Equation 12 (Chapter III) that this would also decrease the 

damping ratio, which may produce undesirable system response (i.e. too much overshoot). 

The stability of the control loop with respect to the third structural mode limit cycle can 

be evaluated by adding pure time delay to the control loop, which introduces phase lag with 

no gain contribution. With a large enough time delay the phase margin is effectively 

eliminated and limit cycling is predicted to occur. Pure time delay in the s-domain is by 

definition: 

G(s) = e'Ts (30) 

where T is the delay time. 

Employing a Taylor series expansion where higher order terms are neglected, an 

approximation to pure time delay with sample and zero-order-hold [Ref. 1] is 

\-e~,s 1 

Ts       7V/12 + 7s/2 + l 
(3D 

Note that for this analysis the use of continuous-time descriptions of the control loop 

elements is founded because the sampling rate used in the discrete-time simulations is 

sufficiently higher than the dynamic response frequencies. 
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A time delay of 60 msec was added to the control loop via the formulation of Equation 

(31). Figure 56 shows that for the 60 msec time delay, the phase margin with respect to 

the third structural mode limit cycle has vanished and hence limit cycling is predicted to 

occur. This will be verified through simulation in the next section. 
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Figure 56.   Loop Bode Plot with 60 msec Delay, K=30. 
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C.  SIMULATION OF LIMIT CYCLE BEHAVIOR 

The analytical stability margin was verified by adding loop time delay to the simulation 

block diagram and performing simulations for various delay times. In real satellite control 

system implementation, the on-board processing capability often limits the sampling rate 

and the speed with which each subsequent control signal command is computed. A multi- 

rate sampling scheme was incorporated to simulate the microprocessor sampling interval 

(which contributes to the delay). The block diagram of Figure 57 incorporates the two 

sampling rates and the process delay. The microprocessor sampling interval was chosen to 

be 40 msec. The total time delay is a combination of the microprocessor sampling interval 

and pure computational delay. The PWPF modulator continues to cycle at 100 Hz 

(providing pulse command updates every 10 msec), but receives an input signal every 40 

msec. Hence the modulator sees a constant input for four 10 msec cycles at a time. 

PWPF Modulator 

Deadband 
ref 

Process 

10 msec   Delay 

-o    I o •} -Ts 

Flexible 
Dynamics 

28x15 
State Space 
Matrix 

Td 

Figure 57.   Higher Fidelity Control Loop Model 

The structural mode limit cycle was excited in the simulations first by placing initial 

conditions on the controlled angle (6) and the modal coordinate (qi) corresponding to the 

deformed shape of the satellite and flexible appendage, for whichever mode was closest to 
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the predicted limit cycle frequency. It was found, however, that just about any initial 

condition would trigger the limit cycle in the presence of the proper amount of time delay. 

Figures 58 and 59 shows the time history of the physical and modal coordinates, 

respectively with initial conditions on 6, q\ and #2 > and a 60 msec time delay. A limit 

cycle of frequency 17.3 rad/sec is established after about four seconds, close to the 

predicted frequency of about 20 rad/sec from the analysis of Figure 56. The limit cycle 

amplitude (from the q plot) is of acceptable magnitude, within the pointing accuracy 

"requirement" of +/-. 1 degrees. Note the decay of all modal coordinates except #5, which 

grows in amplitude to the limit cycle condition. The PWPF modulator output shows 

sustained alternating positive and negative thruster firings, characteristic of the limit cycle 

condition. 

The modal coordinate time histories could be converted into physical arm deflections. 

However, the modal magnitudes are somewhat smaller than in the results from Reference 

7, indicating that the physical deflections are not of concern from the standpoint of the 

possibility of structural damage. Also, the main concern here is the control of the central 

body. 
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Figure 58. Initial Condition Response with K=30, 60 msec Delay 

Figure 59. Initial Cond. Modal Response with K=30, 60 msec Delay 
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Figures 60 and 61 show that with a reduced time delay of 20 milliseconds the limit 

cycle is not excited. Note the . 12 Hz oscillation in 6 , the frequency of the first cantilever 

mode. It was not possible to excite limit cycles near the fourth and fifth system modes, as 

predicted by the analysis. 
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Figure 60. Initial Condition Response, K=30, 20 msec Delay 
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Figure 61. Initial Condition Modal Response, K=30, 20 msec Delay 

The simulation of Figures 62 and 63 was performed with no time delay. Note that 

after the thruster firing stops, the body oscillates at the first system mode frequency of .15 

Hz. An important implication of on-off thruster control can be noted from the modal 

coordinate response. Note that each thruster firing excites the higher modes, and the 

modes ring down between pulses. This points out one of the shortcomings of trying to 

think of an on-off thruster system in linear response terms. Even though the output in 6 

appears to be typical of a sinusoidally forced linear system, each thruster pulse input to the 

plant actually has high frequency content, as we know from the trigonometric series 

expansion of a square wave. Note that the sampling rate of 100 Hz is six times the highest 

system frequency, so that proper capture of the qe dynamics is assured. 
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Figure 62. Initial Condition Response with K=30, No Delay 
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Figure 63. Initial Condition Modal Response with K=30, No Delay 
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Figures 64 and 65 show that a slew maneuver can still be performed in the presence 

of the third system-mode limit cycle. 

Figure 64.   Slew Maneuver with K=30, 60 msec Delay 
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Figure 65. Slew Maneuver Modal Response, K=30, 60 msec Delay 
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The analysis was continued by considering a lower PWPF input gain, predicting the 

limit cycle frequency from the bode plot, then adding delay until limit cycling occurred. 

Figure 66 is the linear bode plot with nonlinear boundary for the case K=10. For the 

case with K=30 the fourth and fifth system mode limit cycles were not excitable, hence the 

SIDF boundary is overly conservative. Assuming the same conservatism for the case 

K=10, it was predicted that only the second mode limit cycle would be evident. The 

predicted frequency from the bode plot is 5.5 rad/sec. 
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Figure 66.   Loop Bode Plot With Nonlinear Boundary, K=10, No Delay 
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With a delay of 280 milliseconds, the gain margin with respect to the second mode 

limit cycle is eliminated (Figure 67). The gain attenuation after 10 rad/sec is due to the 

approximate model of the pure time delay. 
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Figure 67.   Loop Bode Plot With Nonlinear Boundary 
K=10, 280 msec Delay 

The predicted stability margin with respect to the second mode limit cycle was verified 

and the results are shown in Figures 68 and 69. The limit cycle frequency is 4.7 rad/sec 

(.75 Hz). Simulations were run with delays of up to 270 milliseconds, but limit cycle 

behavior was not established until 280 milliseconds of delay was added. The assumption 

that the SIDF formulation is conservative was once again verified as the third mode limit 

cycle could not be excited for the case K=10. Note that the limit cycle amplitude violates 

the pointing requirement. 
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Figure 68.    Initial Condition Response with K=10, 280 msec Delay 
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Figure 69.   Initial Cond. Modal Response, K=10, 280 msec Delay 
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This analysis has shown that the control-structure interaction predicted using the SIDF 

formula is overly conservative. The K=30 case predicts limit cycling near the fourth and 

fifth structural modes, and likewise with K=10 a third-mode interaction is still predicted. 

Since the describing function method is by definition an approximate method of predicting 

instability, this is acceptable. But the value of backing up the analysis with simulation is 

clearly demonstrated. 
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VI. CONCLUSIONS 

A pulse-width pulse-frequency modulator has been successfully implemented and 

shown to provide pseudo-linear operation over a certain range of input. Simulations using 

the modulator indicate that this technique provides closer-to-linear actuation than 

conventional bang-bang thruster control methods. This facilitates a more tailorable 

response, which means that a single set of thrusters can be used to meet various control 

objectives. The resulting smoother control results in less thruster firing for identical 

maneuvers as compared to simple bang-bang and time-optimal bang-bang controllers. 

Analysis of the control loop was shown to be important because of the interaction 

between the modulator nonlinearity with the flexible dynamics. Nonlinear describing 

function analysis proved to be useful in predicting flexible-mode limit cycle behavior. 

A.  RECOMMENDATIONS FOR FURTHER STUDY 

• The PWPF modulator in this study required a fairly large input gain to provide 

adequate pointing accuracy. The resulting loop gain caused the bandwidth of the controller 

to overlap with flexible modes. The various elements of the modulator could be studied 

and further optimized for the specific system in hand in order to reduce the excitation to the 

structure introduced during maneuvers. Filtering of the first flexible mode (as in Reference 

1) could also be applied. 

• Operation of the PWPF modulator and comparisons to the performance of other 

controllers should be verified by experiments with the Flexible Spacecraft System. 

• Use of thruster pulse modulation for momentum dumping should be investigated with 

the goal of reducing the angular offset noted in Reference 7. 

75 



• A combined-controller approach should be investigated. For instance, the minimum 

time solution could be implemented to provide initial slewing, with switching to a PWPF- 

modulated controller to avoid excessive thruster activity at the termination of the maneuver. 

• The combination of center body control with active control of the flexible appendage 

using piezoelectric actuators and sensors is recommended. The "smart structures" 

experiments to date have been performed with the appendage cantilevered from a fixed 

center body. A multiple-input multiple-output controller could be developed which 

simultaneously considers end point control of the flexible appendage with the center body 

pointing control. 
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APPENDIX A 

The following graphs depict the modulator output for various constant inputs. 
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PWPF Modulator Output for ContUnt Inputs 
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The following is a listing of the digital implementation of the PWPF modulator. The 

code was implemented within the format of the general Userblock subroutine 

(USR01.FOR). Refer to Figure 5 (Chapter 2) for definition of the parameters. The 

Userblock is implemented in simulations by first compiling the progam ($ FOR USR01) 

followed by linking ($ MWSLINK USR01) which creates an appended MWS executable 

file with default name MYMWS. Entrance into Systembuild is then accomplished using the 

command $MWS MYMWS. See Chapter 5 of the Matrixx/Systembuild Modeling and 

Simulation manual for more information on Usercode Blocks. 

c INITIALIZATION 

IF(TIME.EQ.O)THEN 

c Modulator parameters 
K=4.5 
Tau=. 12976 
lm=54 
um=l 
uon= .45 
uoff= .15 
dt= .01 

c limiter 
if(al.gtlm) al=lm 
if(al.lt.-lm)al=-lm 

c +fire (schmidt trigger) 
if(al.gt.uon)then 
ml7= 1. 
else 
ml 7=0. 

end if 
if(al.gt.uoff)then 
nl7=l. 
else 
nl7=0. 

end if 
if((ml7+nl7).gt.O.) then 

ol7=l. 
else 
ol7=0. 

end if 
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c -fire (schmidt trigger) 
if(al.lt.-uon)then 
pl7=l. 
else 
pl7=0. 

end if 
if(al.lt.-uoff)then 
ql7=l. 
else 
ql7=0. 

end if 
if((pl7+ql7).gt.0.)then 
rl7=l. 
else 
rl7=0. 

end if 

c initial output 
a3= um*(ol7-rl7) 
y(2)= a3   // y is output vector of Usercode Block 

go to 100 
END IF 

c MAIN LOOP 

c new input u from simulation 
a2=u(l) 

c filter 
al= dt/Tau*K*(a2-a3) + alold*(l.-dt/Tau) 

c limiter 
if(al.gt.lm) al=lm 
if(al.lt.-lm)al=-lm 

c + fire (schmidt trigger) 
if(al.gt.uon)then 
ml8=l. 
else 
ml 8=0. 

end if 
if(al.gt.uoff)then 
nl8=l. 
else 
nl8=0. 

end if 
if((ml8+nl8*ol7).gt.0.)then 

ol8=l. 
else 
ol8=0. 

end if 

c - fire (schmidt trigger) 
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if(al.lt.-uon)then 
pl8=l. 
else 
pl8=0. 

end if 
if(al.lt.-uoff)then 
ql8=l. 
else 
ql8=0. 

end if 
if((pl8+ql8*rl7).gt.0.)then 
rl8=l. 
else 
rl8=0. 

end if 

c OUTPUT 
a3=um*(ol8-rl8) 
yd)=al 
y(2)=a3 

c reassign the fire commands and filter output for next time steD 
ol7=ol8 H 

rl7=rl8 
alold=al 

100 RETURN 
end 
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The following listing of a sample simulation/ plotting routine is included for the benefit 

of the next Matrixx user. These routines help minimize the amount of time spent retyping/ 

modifying commands on the Matrixx command line. The program is accessed using 

oWedt filename, and executed using oexecute ('filename'). In the editor use 'ctrl z' to 

get back to the editor command line, 'quit' to exit without saving revisions, 'exit' to exit 

and save revisions, 'ch' to get back to editing. 

dt=.01; 

tmax=100; 

t= [0:dt:tmax]';   // Define time vector 

11= 1; // lower limit for graphs 

ul= 6000;       // upper limit for graphs 

u= ones(t)*10*pi/180;    // input for simulation (10° step) 

y= sim(t, u); // simulation command 

plot(t(ll:ul),y(ll:ul,4),'upper left, ylabel/position(deg)/ xlabel/time(sec)/') 

plot(t(ll:ul),y(ll:ul,3),'upper right, ylabel/rate(dps)/ xlabeytime(sec)/ date') 

plot(y(:,4),y(:,3),'lower right, xlabeyposittion(deg)/ ylabeVang vel/... 

title/phase plane trajectory/') 

pause 

hard //hardcopy of plot 

Wprint/queue=ln03r matplotps 

plot([t(ll:ul) t(ll:ul) t(ll:ul)], [y(H:ul,9) y(ll:ul,10) y(ll:ul,l 1)],...   //strip chart plot 

'strip ylabeyqllq2lq3/ xlabel/time(sec)/ ymin-1.2 ymaxl.2') 

pause 

hard 
Wprint/queue=ln03r matplot.ps 
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Attempts were made (unsuccessfully) to implement the PWPF modulator 

using a Usercode Block for the Schmidt trigger and Systembuild elements 

for the remainder of the loop. 
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APPENDIX C 

These Matlab programs were used for development of the loop transfer function and 

single input describing function (SIDF) boundary for analysis in the frequency domain. 

% The zeros of the plant transfer function correspond to the 

% eigenvalues of the appendage only, the cantilever frequecies (rad/sec): 

z(l)=.76; z(2)=2.1; z(3)= 16.7; 

z(4)= 22.3; z(5)= 38.6; z(6)= 104.4; 

% Construct the plant transfer function numerator polynomial: 

zeta= .004;   % .4 percent modal damping assumed 

numplant= [1 2*zeta*z(l) z(l)A2]; 

denfactor= z(l)A2; 

for i=2:6 
numplant= conv(numplant,[l 2*zeta*z(i) z(i)A2]); 

denfactor= denfactor*z(i)A2; 

end 

% The poles of the plant transfer function correspond to the free-free or 

% system modes (rad/sec): 

p(l)= .96; p(2)= 2.6; p(3)= 17.2; 

p(4)= 22.8; p(5)= 39; p(6)= 106; 

% Construct the plant transfer function denominator polynomial: 

denplant= [1 2*zeta*p(l) p(l)A2]; 

numfactor= p(l)A2; 

fori=2:6 
denplant= conv(denplant,[l 0 p(i)A2]); 

numfactor= numfactor*p(i)A2; 

end 
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% Factor in the rigid body dynamics and the product-of-polesA2 to 

% product-of-zerosA2 ratio: 

Iest= 11.4;  % estimate of the total MOI 

denplant= Iest*conv( denplant,[ conv([l 0],[1 0]) ]); 

factor= numfactor/denfactor; 

numplant= numplant*factor; 

% Poles and zeros of transfer function (no control) 

axis([-10 10-150 150]) 

rlocus(numplant,denplant) %title(' Poles and zeros of plant xfer function') 

pause 

clg 

axis 

% Bode plot of plant 

w= logspace(-1,2,400); 

bode(numplant,denplant,w), pause 

% Now factor in the controller/feedback loop to form the loop xfer function 

K= 10; % PWPF modulator input gain 

k= K* 1.3985; % forward loop gain 

tau= 4.7746; % factor for rate gain 

numH= [tau 1]; % H is feedback loop 

denH= 1; 

numloop= k*conv(numplant,numH);      % combine plant and controller 

denloop= conv(denplant,denH); 

bode(numloop,denloop,w) % Bode of loop xfer funtion, GH 

pause 

[maglinear,phaselinear,w]= bode(numloop,denloop,w); %linear mag and phase 

%[Gm,Pm,Wcg,Wcp]=margin(maglinear,phaselinear,w);    %linear margins 

% Determine the SIDF boundary (magnitude and phase): 

[magsidf,phasesidf]= sidf;   % calls function sidf 
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magsidf= magsidf+1.5; % corrected to reflect [Bayloc] experimental results 

% Plot both linear mag and phase and nonlinear boundary: 

subplot(211),semilogx(w,magsidf,'--',w, 20*logl0(maglinear)),grid 

%title('Linear magnitude with SIDF boundary NO DELAY 24feb') 

%gtext('Nonlinear Boundary') %gtext('Gm') 
xlabel('frequency(rad/sec)'),ylabel('magnitude(dB)') 

subplot(212),semilogx(w,phasesidf,'--',w,phaselinear),grid 

%title('Linear phase with SIDF boundary') 

%gtext('Nonlinear Boundary') 

gtextCPm1) 
xlabel(,frequency(rad/sec)'),ylabel('phase(deg)') 

pause 

% The pure time delay causes a phase lag which shrinks the nonlinear phase 

% margin. Use sample and zero-order-hold formula from [Wie & Plescia] 

T= .280; % 60 msec, delay 

numdelay=[l]; 

dendelay= [TA2/12 T/2 1]; 

% augment numloop and denloop and calculate new magnitude and phase: 

numloop=conv(numloop,numdelay); 

denloop=conv(denloop,dendelay); 
[maglinear,phaselinear,w]=bode(numloop,denloop,w); %linear mag and phase 

% Plot both linear mag and phase and nonlinear boundary again for comparison: 

clg 
subplot(21 l),semilogx(w,magsidf,'-->, 20*logl0(maglinear)),grid 

gtext('Nonlinear Boundary') 
xlabel('freq (rad/sec)'),ylabel(,magnitude (dB)') 
subplot(212),semiiogx(w,phasesidf,'~',w,phaselinear),grid 

gtext('Nonlinear Boundary') 

gtext('Pm ') 
xlabel('freq (rad/sec)'),ylabel('phase (deg)') 
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SIDF subroutine: 

function [magsidf,phasesidf]= sidf 

% Modulator characteristics and SIDF analysis from [Wie] 

% Static characteristics: 

Uon= .45; 

Uoff=.15; 

h= Uon-Uoff; 

del=.01;   %minimum pulse width 

Um=l; 

Tm=. 12976; 

Km= 4.5; 

% Calculate SIDF boundary gain and phase: 

w=logspace(-1,2,400); 

Am= (Uon-h./( 1 + exp(del/Tm./w)) ).*( ( sqrt(Tm.*w) ).A2 + 1 )/Km; 

Bl= 4/pi*Um*sin(del.*w/2); 

B3= 4/3/pi*Um*sin(3*del.*w/2); 

B= sqrt(Bl.A2+B3.A2); 

magsidf= -20.*loglO(B./Am); 

phasesidf= -180-( -57.3*atan(Tm.*w)); 
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