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Abstract

This thesis focuses on Earth albedo modeling when applying Sun sensors in spacecraft

attitude determination. Since the recent development of the CubeSat pico-satellite con-

cept, numerous universities have initiated student satellite projects. The minimal size

of the CubeSats limits the hardware configuration, which, for an attitude determination

point-of-view, only allows simple attitude sensors with limited accuracy. This motivates

the development of advanced algorithms capable of improving the estimation results

through enhanced models of the space environment.

The main contribution of this thesis is the development of an Earth albedo model,

based on measurements of the Earth reflectivity by the Total Ozone Mapping Spectrom-

eter instruments on-board NASA’s Earth Probe satellite. The Earth albedo model may

be used to calculate the amount of Earth albedo on a satellite given a Sun, Earth, and

spacecraft constellation. The model results are verified using telemetry data from the

Danish Ørsted satellite.

The secondary contribution of the thesis is an investigation in attitude determina-

tion algorithms, where the Earth albedo model is applied. A single-point Q-Method

algorithm, which uses magnetometer and Sun sensor data, is derived. The Sun sen-

sor data is Earth albedo corrected using the Earth albedo model. In order to improve

the performance of the attitude determination, an Extended Kalman Filter is developed.

The Extended Kalman Filter includes knowledge of the spacecraft dynamics by apply-

ing non-linear models of the attitude propagation. The Extended Kalman Filter also

enables attitude determination during eclipse, during which Sun sensor measurements

are invalid. Due to the highly non-linear behavior of the Sun sensor measurements,

an Unscented Kalman Filter is developed, and the results are compared to those of the

Extended Kalman Filter. Additionally the possibilty of non-linear measurement descrip-

tion in the Unscented Kalman Filter enables three-axis attitude determination from Sun

sensors only.

The Earth albedo modeling software is distributed as a SIMULINK toolbox for the

MATLAB software from Mathworks. In addition to improving attitude determination
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accuracy and spacecraft environment simulation, the Earth albedo model is also useful

for investigating the the total power generated by the solar panels. Accurate knowledge

of the excess power from Earth albedo irradiance, extends the usability of the pico-

satellites.



Synopsis - Danish Abstract

Projekttitel: Retningsbestemmelse af rumfartøjer med jordalbedokorrigerede solsensor-

målinger

Denne ph.d.-afhandling har fokus på modellering af Jordens albedo, når solsensorer

anvendes i retningsbestemmelse af rumfartøjer. Efter den nye udvikling af CubeSat pico-

satellitkonceptet har flere universiteter iværksat studentersatellitprojekter. Den mini-

male størrelse af CubeSats begrænser hardwarekonfigurationen, som, set fra et retnings-

bestemmelsessynspunkt, kun tillader brugen af simple retningssensorer med begrænset

præcision. Dette motiverer udviklingen af avancerede algoritmer, som er i stand til at

forbedre estimeringens resultater gennem bedre modeller af omgivelserne i rummet.

Hovedbidraget af denne ph.d.-afhandling er udviklingen af en jordalbedomodel,

baseret på målinger af jordens reflektivitet foretaget af Total Ozon Kortlægningsspek-

trometerets instrumenter ombord på NASA’s Earth Probe satellit. Jordalbedomodellen

kan bruges til at beregne størrelsen af jordalbedo på en satellit ud fra en given Sol-Jord-

rumfartøj konstellation. Modellens resultater verificeres ved brug af telemetridata fra

den danske Ørsted-satellit.

Ph.d.-afhandlingens sekundære bidrag er en undersøgelse af retningsbestem-

melsesalgoritmer, hvor jordalbedomodellen anvendes. En enkeltpunkts-Q-Metode-

algoritme, som gør brug af magnetometer- og solsensordata, udvikles. Disse solsensor-

data korrigeres for jordalbedo ved brug af jordalbedomodellen. For at forbedre ydelsen

af retningsbestemmelsen udvikles et Udvidet Kalman Filter. Det Udvidede Kalman

Filter inkluderer kendskab til rumfartøjets dynamik ved brug af ulineære modeller af

retningsfremskrivningen. Det Udvidede Kalman Filter muliggør også retningsbestem-

melse under solformørkelser, hvor solsensormålinger er uanvendelige. På grund af de

højt ulineære egenskaber af solsensormålingerne, udvikles et Uparfumeret Kalman Fil-

ter, og resultaterne sammenlignes med det Udvidede Kalman Filter. Derudover gør den

ulineær målingsbeskrivelse i det Uparfumerede Kalman Filter det muligt at foretage tre-
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akses-retningsbestemmelse udelukkende fra solsensorer.

Jordalbedomodelsoftwaren distribueres som en SIMULINK toolbox til MATLAB

softwaren fra Mathworks. Udover at forbedre nøjagtigheden af retningsbestemmelsen

og simuleringen af rumfartøjsomgivelserne, kan jordalbedomodellen også bruges til at

undersøge den totale strøm, der genereres af solpanelerne. Præcis information om over-

skudsstrøm fra jordalbedoirradiansen udvider anvendeligheden af pico-satellitter.



Nominclature

The following definitions are used in the report.

Parenthesis (·) are used to enclose function parameters or dependancies as f (x, t).
Vectors are denoted with lower case bold v.

The i’th element of vector v is denoted as vi.

The line-of-sight of vector v is represented by the parallel unit vector denoted as v̂.

v̂1.

The two-norm of vector v is denoted as ||v||.
The estimate of vector v is denoted as The value of an estimate x̂ at time tk+1, based

on measurements up to time tk, is denoted as x̂ (tk+1|tk).
The nominal value of vector v is denoted as v̄.

The small signal value of vector v is denoted as ṽ.

The set point of vector v is denoted as v̄.

The small signal of vector v is denoted as ṽ.

Vector v in frame b is denoted as vb.

The time derivative of a vector v in frame b, given in frame s is denoted as
(

v̇b
)s

.

Functions resulting in a vector are denoted with lower case bold acos (v).

Matrices are denoted with uppercase bold M .

The i’th column of matrix M is denoted as {M}i.

The element of the i’th column and j’th row of matrix M is denoted as Mi,j .

The transposed of a matrix M is denoted with a superscript T MT.

The i by i identity matrix is denoted as 1i×i.

The i by j zero matrix is denoted as 0i×j .

Cross product matrices are denoted as S (v).

1Theˆoperator is used for both unit vector and estimates to maintain notational agreement. The function
of the operator should be clear by the context.
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The rotation from frame I to frame B is represented by a rotation matrix as AB
I .

The scalar part of a quaternion q is denoted as q.

The vector/complex part of a quaternion q is denoted as p.

The complex conjugated of q is denoted with an asterisk q∗.

Functions returning a matrix values are denoted in upper case bold S (v).
The attitude matrix representing the rotation q is denoted as A (q).
The time at discrete sample number k is denoted as tk.

The trace function of matrix M is denoted as tr (M).
The expected value function of a random variable w is denoted as E (w).
Dirac’s delta function is dentoted as δ (·).
Kronecker’s delta function is dentoed as ∆(·).



List of Symbols

The following symbols are used in the report.

0 Zero matrix.

1 Identity matrix.

A Frame and area.

A Attitude matrix (or direct cosine).

Ac Cell area.

a Limit.

a Acceleration vector.

αc Incident angle of irradiance on a cell.

αirad Angle of incident irradiance onto a Sun sensor.

αsat Angle of a satellite line-of-sight.

αSun Angle of a Sun line-of-sight vector.

B Frame and body fixed frame.

B Matrix of weighed reference and body fixed vectors.

b Limit.

bEarth Earth magnetic field vector.

C Frame.

C Matrix of weighed reference and body fixed vectors.

c Velocity of light in vacuum.

χ Set of sigma points.

D Set of grid points coordinates.

∆φ Angle of rotation.
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∆φg Angular resolution of grid point latitude coordinates.

∆qsat Satellite attitude quaternion between time steps.

∆θg Angular resolution of grid point longitude coordinates.

d Distance.

dS->E Sun Earth distance.

E Irradiance.

Ea Total Earth albedo irradiance.

EAM0 Solar irradiance at 1A.U..

Ebb Black body irradiance.

Ec Cell irradiance.

Ecal Irradiance used for calibrating Sun sensors.

Edd Direct and diffuse irradiance reaching a reflecting surface.

Edd0 Atmospheric scattered irradiance reaching a satellite.

Eirad Incident irradiance onto a Sun sensor.

Emeas Measured irradiance.

Er Irradiance reflected by reflecting surface.

EE Black body irradiance of Earth.

ESun Black body irradiance of the Sun.

Esat Albedo irradiance at satellite from reflected by a cell.

e Base of the natural logarithm.

ê Vector of rotation.

ǫ Small error.

F Linear system matrix.

F red Linear system matrix of reduced system state.

f Fraction of reflected irradiance reaching a satellite.

G Linear control matrix.

H Linear output matrix.

h Planck’s constant and altitude.

I Reference frame.

i Multi-purpose index variable and imaginary constant.

imax Maximum current output of a Sun sensor when illuminated with constant irra-

diance.

j Multi-purpose index variable and imaginary constant.

J Inertia tensor.

K Kalman gain matrix.

k Imaginary constant, constant terms,discrete sample number, and Boltzmann’s

constant.

κ Tuning parameter.
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l Angular momentum.

lE Earth irradiance vector.

lg Grid point irradiance vector.

lSun Sun irradiance vector.

λ Wavelength.

n Number of vector observations, discrete sample number, number of states, and

multi-purpose index variable.

nctrl Control torque.

nd Disturbance torques.

next External torques.

M Matrix.

m Mass.

n̂c Cell normal.

n̂SSi Sun sensor SSi normal.

Ω Angular velocity quaternion product matrix.

ωsat Satellite angular velocity.

P Point.

Pc Incident radiant flux onto a cell.

P cross Cross correlation matrix.

P est State estimate error covariance.

P meas Measurement error covariance.

Pr Reflected radiant flux.

π Half the ratio between the unit circle circumference and area.

Φ Set of latitude grid points and discrete linear system matrix.

Φred Discrete linear system matrix of reduced state.

p Quaternion vector part.

psat Satellite attitude quaternion vector part.

φ Elevation and polar angle.

φg Latitude coordinate of grid point.

Q Process noise covariance matrix.

q Quaternion scalar part.

qsat Satellite attitude quaternion scalar part.

q Quaternion.

qω Quaternion formed from angular velocity with zero scalar part.

qsat Satellite attitude quaternion.

R Measurement noise.

R Euclidean space.

r Radius.
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r Position vector..

rE Earth mean radius.

rSun Sun mean radius.

r̂g Grid point line-of-sight vector.

r̂s Source line-of-sight vector.

rsat Position vector of a satellite.

rSun Position vector of the Sun.

r̂SunEst Estimated Sun line-of-sight vector.

ρ Reflectivity of reflecting surface and angular distance.

S Stokes reflectivity.

S Matrix of weighed reference vectors.

s Weighed reference vector.

T Temperature.

TE Earth surface mean temperature.

TSun Sun surface temperature.

T Matrix of weighed body fixed vectors.

Θ Set of longitude grid point coordinates.

t Time.

t Weighed body fixed vector.

θ Azimuth.

θg Longitude coordinate of grid point.

U Matrix of weighed reference and body fixed vectors.

u Control signal.

V sat Set of grid points visible from a satellite.

V Sun Set of visible grid points from the Sun.

v Vector and vector of random variables representing measurement noise and

velocity vector.

w Weight factor.

w Vector of random variables representing process noise.

x Variable.

x System state.

xred Reduced system state where the quaternion scalar is omitted.

x̂ Unit vector defining frame and state estimate.

xECEF Axis defining the Earth centered Earth fixed frame.

xECI Axis defining the Earth centered inertial frame.

xSCB Axis defining the spacecraft body frame.

xSCN Axis defining the spacecraft nominal body frame.

xSIM Axis defining the star imager fixed frame.
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ξ Lagrange multiplier.

y Variable.

ŷ Unit vector defining frame.

yECEF Axis defining the Earth centered Earth fixed frame.

yECI Axis defining the Earth centered inertial frame.

ySCB Axis defining the spacecraft body frame.

ySCN Axis defining the spacecraft nominal body frame.

ySIM Axis defining the star imager fixed frame.

z Measurement vector.

ẑ Unit vector defining frame and estimated measurement.

zECEF Axis defining the Earth centered Earth fixed frame.

zECI Axis defining the Earth centered inertial frame.

zSCB Axis defining the spacecraft body frame.

zSCN Axis defining the spacecraft nominal body frame.

zSIM Axis defining the star imager fixed frame.

ζ Set of sigma point observations.
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The following acronyms are used in the report.

ACS Attitude Control System

ADC Attitude Determination and Control

ADCS Attitude Determination and Control System

ADS Attitude Determination System

BOL Beginning-of-Life

CoM Center of Mass

CSC Compact Spherical Coil

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

EKF Extended Kalman Filter

EPS Electrical Power System

FIR Finite Impulse Response

FOAM Fast Optimal Attitude Matrix

FOV Field of View

IGRF International Geomagnetic Reference Field

IEKF Iterated Extended Kalman Filter
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LEO Low Earth Orbit

LOS Line-of-Sight

NASA National Aeronautics and Space Administration

NL Non-Linear

PF Particle Filters

QUEST Quaternion Estimator

REQUEST Recursive Quaternion Estimator

RMS Root-Mean-Square

SCB Spacecraft Body

SCN Spacecraft Body Nominal

SGP4 Special General Perturbation Model of Fourth Order

SIM Star Imager

SSE Summarized Sun and Earth

SVD Singular Value Decomposition

TOMS Total Ozone Mapping Spectrometer

UKF Unscented Kalman Filter

UT Unscented Transformation
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Chapter 1
Introduction

The work in this thesis is in the field of satellite Attitude Determination and Control

System (ADCS). A field which has been thoroughly researched since the dawn of the

space age. However, the literature is limited in the analysis of the sunlight reflected off

the Earth’s surface and atmosphere, known as Earth albedo. Earth albedo is relevant

for practically all Earth orbiting satellites. The amount of solar radiation reflected by

the Earth towards a satellite, influences the power generated by solar panels, generates

radiation torques, affects the thermal design, and is measured by horizon sensors to

estimate satellite attitude [Harris and Lyle, 1969], [Wertz, 1978], [Wertz, 2001]. The

Earth albedo is especially important for satellites in Low Earth Orbit (LEO) and has

impact in two major design areas of the satellite:

• The ADCS often implements Sun sensors in order to measure the direction to-

wards the Sun. These sensors generate power which is scaled with the incident

angle of the sunlight, and based on multiple measurements the direction to the Sun

is estimated. The Earth albedo generates additional currents in the sensors which

distort the Sun estimation, and thereby degrades the accuracy of the ADCS.

• The Electrical Power System (EPS) makes detailed budgets of the power gener-

ation and consumption on-board the satellite. The power on-board a satellite is

typically generated from solar cells, and the Earth albedo will add to the total

generated power.

The goal of this Ph.D. thesis is to develop a model of the Earth albedo for simu-

lation, and incorporate the model of the Earth albedo into the algorithms for attitude

determination in order to increase the accuracy when using Sun sensors, and potentially

allow three-axis attitude determination by Sun sensors only. The model of the Earth
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albedo is designed for use with the AAUSAT-II satellite, which is a student satellite de-

veloped at Aalborg University. The AAUSAT-II satellite is a CubeSat, which is a 1kg,

10cm×10cm×10cm satellite, limiting the amount of hardware and power consumption

considerably.

In order for the Earth albedo model to be widely applicable, the model must support

the engineering software tools typically applied by ADCS designers. One such tool is

MATLAB from The Mathworks, [The Mathworks, 2005]. MATLAB is used in numerous

institutions and space agencies and companies. The SIMULINK interface for MATLAB

gives the ADCS designers a graphical interface to the simulation platform, and is well

suited for implementing easy-to-use simulation toolboxes.

An Earth albedo model has multiple applications and motivations in the ADCS de-

sign, especially for pico-satellites. In general, the Attitude Determination System (ADS)

design pre-phase includes analysis of the space environment, specific for the mission.

For LEO satellites, the effects of Earth albedo are significant, both for disturbances in

the satellite motion and Sun sensor measurements. Additionally the ADCS is typically

tested in computer simulations of the space environment and satellite models. The Earth

albedo model facilitates both analysis and simulation of the Earth albedo. As mentioned

above, the analysis of the space environment is also interesting from an EPS point of

view, because of the excess energy in the Earth albedo irradiance.

In the case of pico-satellites, the limited size, mass, and typically also budgets, re-

quire the use of simple sensor hardware. As opposed to complicated hardware, advanced

models and algorithms can improve the overall performance of the ADCS. Even if the

resulting algorithms are computationally heavy, which make them unapplicable for on-

board implementations, post-processing of down-linked telemetry data is feasible. This

enables the use of pico-satellites in science missions where accurate attitude informa-

tion is required for the interpretation of the science data, and hence may be processed

on-ground.

1.1 Background and Motivation

The motivation for developing space environment models, including an Earth albedo

model, comes from more than 10 years experience in satellite design at Aalborg Uni-

versity. Aalborg University has been involved in satellite projects since 1993, when the

preliminary design phase of the Ørsted satellite was initiated. Aalborg University was

selected to design and implement the ADCS for Ørsted. The Ørsted satellite was the first

nationally funded and built satellite in Denmark, and was launched on February 23rd,

1999. The satellite has been operated successfully for more than six years since then,

and it is still active in measuring the Earth’s magnetic field.

Following the internationally recognized work on the Ørsted satellite, a second na-

tional satellite project was initiated under the name Rømer. The Rømer project was ini-

tiated in the year 2000. Aalborg University was once again chosen to deliver the ADCS

design. The Rømer satellite has yet to be completed, and the project is on standby until



1.1 Background and Motivation 3

funding has been acquired.

Recent developments in the satellite industry and education community has changed

the limitations of satellites from high cost, highly complex to simpler and cheaper de-

signs, allowing new concepts and low cost development and launch costs. A knew type

of satellites, known as CubeSats, have brought down launch costs to a level, which has

made it possible for universities to launch satellites into space.

1.1.1 The CubeSat Concept

The CubeSat concept was conceived jointly by Prof. Robert Twiggs, Stanford Univer-

sity and Prof. Jordi Puig-Suari and Prof. Clarke Turner, California Polytechnic State

University. The effort at California Polytechnic State University is concentrated around

the deployer and the interface with the launcher. The deployer is known as the P-Pod,

which is an abbreviation of Poly Pico-satellite Orbital Deployer. Stanford University is

responsible for the CubeSat satellite itself.

The CubeSat standard defines the physical requirements as a 10cm × 10cm × 10cm

cubical structure with a mass of 1kg, [Puig-Suari et al., 2001]. A P-Pod can accom-

modate three of these CubeSats, and is launched as a piggy-bag ride on an unspecified

launcher. The number of P-Pods is only limited by the launch provider.

AAU CubeSat

Aalborg University initiated its first CubeSat project in 2000, which was a student satel-

lite project. The satellite is called AAU CubeSat, and it was launched on June 30, 2003,

which was the first time CubeSats were launched into space. A total of six CubeSats

were launched:

• AAU CubeSat, Aalborg University, Denmark.

• DTUsat, Danish Technical University, Denmark.

• Can X-1, University of Toronto, Canada.

• CUTE-1, Tokyo Institute of Technology, Japan.

• CubeSat XI, University of Tokyo, Japan.

• QuakeSat, Stanford University, U.S.

Figure 1.1 shows a picture of the AAU CubeSat flight model, taken before integration

into the P-Pod launcher interface.

AAU CubeSat had problems with the communication system, which was solved

by upgrading the ground station. This upgrade took approximately three months, and

following the successful download of telemetry from the satellite, the batteries on the

satellite lost capacity. End-of-life was declared on September 22, 2003.
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Figure 1.1: The flight model of AAU CubeSat.

AAUSAT-II

Students at Aalborg University are currently working on a second CubeSat called

AAUSAT-II. As its main payload, AAUSAT-II will be flying a gamma-ray burst detec-

tor. Gamma-ray bursts are massive extra-galactic energy discharges. They are hundreds

of times larger than supernovas, which are caused by exploding stars.

The AAUSAT-II satellite is equipped with six Sun sensors, a magnetometer, and

three gyros, for attitude determination. The ADCS on AAUSAT-II is purely experimen-

tal, and is a demonstration of full three-axis active control on a pico-satellite. AAUSAT-

II carries magnetorquers and momentum wheels for actuation, hence it is the most ad-

vanced control system ever developed for a satellite of its class.

The Earth albedo model is developed for use in the ADCS design for the AAUSAT-II

satellite. The model is used for simulating the environment of the satellite in LEO. The

attitude algorithm will also be used during operations as an off-line algorithm for im-

proved attitude estimation. Simple Earth albedo compensations, based on the developed

Earth albedo model, will be used in the on-board algorithms. The AAUSAT-II satellite is

expected to be launched in the first half of 2006. Figure 1.2 shows an artist’s impression

of the AAUSAT-II satellite.

The Earth albedo model is validated by using telemetry data from the Ørsted satellite.

Since the ADCS for the Ørsted satellite is designed at Aalborg University, telemetry

data is readily available. The Ørsted satellite is equipped with eight Sun sensors and a

magnetometer, and but also flies a star imager, for high precision attitude determination.

The star imager measures the attitude of the Ørsted satellite with a precision better than

an 5 − 20arcsec, and is well suited for comparing the results of the algorithms based on
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Figure 1.2: Artist’s impression of the AAUSAT-II satellite. The algorithms developed in

this thesis are being implemented for use for AAUSAT-II, and the satellite is

planned for launch in the first half of 2006.

Sun sensor and magnetometer data.

The Ørsted telemetry data and configuration of attitude sensors, gives unique con-

ditions for performing an analysis and validation of Earth albedo. Aalborg University

is continuously developing student satellites. The Earth albedo model derived in this

thesis will assist the ADCS engineers in the design and test of attitude determination

and control algorithms for future satellite missions.

1.2 Overview of Previous and Related Work

This section investigates previous and related publications within the field of Earth

albedo modeling and attitude determination algorithms. Attitude determination has been

researched thoroughly over the last 30 years. The Earth albedo is one out of a number

of environmental disturbances in the ADS, and is the focus of this thesis.

1.2.1 Earth Albedo

Earth Albedo is only one of several external disturbance forces. Other sources if dis-

turbance include magnetic residual, solar pressure, gravity gradient, and atmospheric

drag. These disturbances are naturally very dependent on the type of orbit of the space-

craft. A study of the external disturbances, excluding the Earth albedo, is published in

[Bryson, Jr., 1994].
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Earth albedo is typically treated as noise to the ADS. The albedo distur-

bance is either filtered out statistically in Kalman algorithms [Psiaki et al., 1990],

[van Beusekom and Lisowski, 2003], which is possible when used with magnetome-

ters, or it can be measured using albedo sensors [Fisher et al., 1993]. Digital sun sen-

sors are also available, which are mostly insensitive to albedo light by implement-

ing an active pixel array instead of solar cells [Hales and Pedersen, 2001]. SOme

configurations result in errors in the least significant bits of the digital Sun sensors,

[Brasoveanu and Sedlak, 1998]. Some algorithms simply rely on protection of stray

light in the sensor hardware [Humphreys, 2002].

A significant research effort in Earth albedo has been conducted in the geophys-

ical and meteorological research communities (see e.g. [Herman and Celarier, 1997],

[Koelemeijer and Stammes, 1998], [Snyder and Wan, 1998]). The results of these stud-

ies are mainly focused on spectral distributions of absorbance and reflectivity of the at-

mosphere and different Earth surface scenarios. Investigation in Earth albedo modeling

has also been conducted by National Aeronautics and Space Administration (NASA)

in [Flatley and Moore, 1994], however information of the Earth reflectivity is not in-

cluded in derived model. Earth observations by satellites and high altitude aircrafts

and balloons, have been used to acquire data of the Earth reflectance and radiance

[Harris and Lyle, 1969], [Lyle et al., 1971]. These data are more than 30 years old, and

more accurate satellite observations may be used to develop new and accurate models of

the Earth albedo.

Since July 25, 1996, the Earth Probe satellite has been measuring the

Earth’s reflectivity for the Total Ozone Mapping Spectrometer (TOMS) project

[McPeters et al., 1998]. The detailed reflectivity recordings are in this thesis used to

calculate the Earth albedo, given a geometrical constellation of the Sun, Earth, and

spacecraft. The Earth albedo model, may be utilized to remove the Earth albedo dis-

turbance from Sun sensor measurements. In addition, the development of the Unscented

Kalman Filter (UKF) yields a new algorithm for using the Earth albedo as a source for

navigation. This allows for three-axis attitude determination using Sun sensors alone.

Attitude determination algorithms can be split into two common groups: 1) the single-

point algorithms and 2) filters, which utilize multi-point information to calculate the

attitude.

1.2.2 Single-Point Algorithms

Single-point algorithms sample the attitude hardware once, and provides an estimate

of the attitude at the time of sampling. Filters continuously sample the sensors, and

incorporate dynamic models of the attitude in order to give an attitude estimate based on

a weighed average of the predicted measurement and sensor data.

The single-point algorithms are based on the Least Square’s problem published in

1965 by Wahba, [Wahba, 1965]. The problem formulation is known as Wahba’s prob-

lem, and the optimal solution is the attitude which minimizes Wahba’s cost function. The
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principle of attitude determination by Wahba’s problem formulation is based on vector

observations. It requires that two or more vectors can be measured in a spacecraft fixed

frame. The same vectors must be known in a reference frame as well. By comparing the

vector observations in reference and body fixed frames, the attitude of the satellite may

be estimated.

Since Wahba formalized the problem in 1965, numerous solutions to Wahba’s prob-

lem have been published. The TRIAD algorithm, [Lerner, 1978], is a simple solution to

Wahba’s problem based on two vector observations. In [Bar-Itzhack and Harman, 1997]

the TRIAD algorithm has been extended. The estimated attitude is based on a weighed

average of two TRIAD solutions, which is guaranteed to be better than the two results

separately. The simplicity of the TRIAD algorithm makes it attractive still, for on-board

implementations [Flatley et al., 1990].

Davenport’s Q-Method algorithm uses the quaternion attitude representation to

parameterize Wahba’s problem, which is formulated as an eigenvector problem

[Lerner, 1978]. The Quaternion Estimator (QUEST) algorithm is an extension to Dav-

enport’s Q-Method algorithm, [Shuster and Oh, 1981], which avoids solving the eigen-

value problem, and instead formulates Wahba’s problem as a characteristic equation.

In 1988, Markeley published an algorithm which solves Wahba’s problem, in its

original formulation using the attitude matrix (or direct cosine), using the Singular Value

Decomposition (SVD) Method, [Markley, 1988]. This algorithm evolved into the Fast

Optimal Attitude Matrix (FOAM) algorithm, published in [Markley, 1993], and is com-

parable to the QUEST algorithm in computational speed.

1.2.3 Filtering Algorithms

Several extensions of the single-point algorithms exist, which make use of multi-

ple sensor samples in order to improve the attitude estimates. The Filter QUEST

[Shuster, 1989] and Recursive Quaternion Estimator (REQUEST) [Bar-Itzhack, 1996]

include past measurements, that require accurate knowledge of the angular velocity in

order to propagate the attitude between sample times. A number of publications have

looked into the the use of multiple samples in order to compensate for lacking vector

observation, i.e. a single vector measurement [Psiaki et al., 1990], [Challa et al., 1997].

Batch estimators and smoothers, which use future measurements to improve attitude

estimates, also exist, [Crassidis and Markley, 1997a].

A filtering algorithm, which include multiple samples and dynamical descriptions

of the system, was presented by Rudolph E. Kalman in 1960 [Kalman, 1960]. From a

statistical description of the system dynamics and measurements, the Kalman filter pro-

duces an optimal estimate of the state of the system. However, some extension to the

Kalman filter is necessary in order to apply the filter in attitude determination. The prob-

lem is that the general used attitude parameters, the attitude matrix and the quaternion,

are constrained parameters, which must be taken into account when calculating esti-

mates [Lefferts et al., 1982a]. In [Bar-Itzhack and Oshman, 1985] an Extended Kalman
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Filter (EKF) is derived which assumes an additive correction. The EKF linearizes a

non-linear system around the current estimate of the system state, and applies the linear

Kalman filter equations on the linearized system.

As it is the case with the single-point algorithms, numerous perturbations

of the EKF exist, which handle star trackers [Gai et al., 1985], gyro-less config-

urations [Challa, 1993], [Crassidis and Markley, 1997b], single vector observations

[Psiaki et al., 1990], and a Kalman filter, which assumes quaternion measurements by

incorporating the QUEST algorithm, [Fisher et al., 1989].

Over the recent years a new algorithm has been published, known as the UKF,

[Julier and Uhlmann, 1997], [Wan and van der Merwe, 2000]. This algorithm is gain-

ing recognition throughout the attitude determination research community, even though

the EKF has been the preferred ADCS algorithm for more than two decades. The

EKF may experience problems with non-convergence, due to first order approxima-

tions of the system linearization. This problem has been documented in several publica-

tions, [Kalman and Bucy, 1961], [Bucy, 1965], [Athans et al., 1968], [Bass et al., 1966],

[Kushner, 1967b], [Kushner, 1967a]. Second order filters, improving the approxima-

tion of the system dynamics, may be applied to remedy the convergence problems,

[Maybeck, 1982], however the issue has resulted in investigations in other filtering al-

gorithms.

The improvement of the EKF has been branched in two direction, the Iterated Ex-

tended Kalman Filter (IEKF) and the UKF, [Lefebvre et al., 2004]. The IEKF uses mul-

tiple iterations of the EKF in order to ensure convergence. The UKF uses a set of sigma

points to approximate the distribution of the modeling errors, and these sigma points are

inserted in the system model, in order to approximate the noise distributions and cross-

correlations of the system at subsequent time-steps. This is known as the Unscented

Transformation (UT), [Julier and Uhlmann, 1994]. The UKF has been adapted to at-

titude determination. These algorithms are published in [Crassidis and Markley, 2003]

and [Lai et al., 2003].

The advantage of the UKF over the EKF is the fact that calculation of the first order

Jacobians of the non-linear system models are avoided. This is necessary if the Earth

albedo results of this thesis are to be incorporated correctly into the attitude determi-

nation algorithm. Alternately, a single-point algorithm must be used to pre-process the

Sun sensor data before it is passed to the EKF, in order to acquire a Sun vector. Both

solutions are presented and compared in this thesis.

The UKF is in fact a special case of the general Particle Filters (PF). A PF uses

approximations of the system noise distributions by mapping any number of points in the

state space, and observing the transformed distribution of points. Recently, PF have been

suggested for attitude determination, [Cheng and Crassidis, 2004], which use a large

number of state space points, which are able to represent the current and transformed

distribution of the state and observations using Monte-Carlo simulation. However, due

to the complexity of the Earth albedo modeling, it is inconvenient to apply the system

models to several hundreds of points, rather than strategically selected sigma-points.
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In this thesis an Earth albedo model, based on the TOMS reflectivity data, is derived.

Novel methods for incorporating the Earth albedo model in existing attitude algorithms

is presented, and the performances of the algorithms are compared, with reference to

computational complexity. Inclusion of enhanced modeling of Sun sensors results in an

algorithm based on the UKF, enabling attitude determination from Sun sensors only.

1.3 Contributions

The Earth albedo modeling is the main focus of this thesis, and is published in

[Bhanderi, 2005b]. The motivation of the Earth albedo model analysis spawns from

experience in ADCS design, [Bak et al., 2002], and management of student satellite

projects, [Nielsen et al., 2005], [Alminde et al., 2005]. The implementation of simula-

tion modules assist the ADCS design significantly, and is a necessary procedure, regard-

less of the satellite complexity, [Amini et al., 2005].

The major contributions of the Ph.D. work are

• Advanced modeling of Earth albedo. Using reflectivity data from the Earth Probe

satellite, an Earth albedo model of high accuracy is derived. The model may be

utilized in environment simulations and ADCS design and test.

• The Earth albedo model is implemented as a toolbox for MATLAB with

SIMULINK interface, enabling easy integration in existing MATLAB simulations.

The toolbox is available on-line at [Bhanderi, 2005a].

• Accurate Sun sensor vector estimation. Calibrating measurements from solar cells

with the albedo model, enhances the performance of the algorithm for Sun sensor

vector estimation.

• Novel methods for incorporating the Earth albedo model in existing attitude de-

termination algorithms, and the results of the algorithms are compared.

• Three-axis attitude determination using only solar cells. Using solar cells for

estimating the Sun vector, and in addition the nadir, allows for coarse three-axis

attitude determination, using simple hardware, or even using the solar panels, used

for collecting power. This allows for three-axis attitude determination on very

small satellites like the CubeSats without consuming power or mass, at the cost

of higher data flow. It can also be used as a safe mode algorithm on large scale

satellites.

1.4 Thesis Outline

The thesis is organized as follows.
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Chapter 2. Earth Albedo Modeling This chapter derives the Earth albedo model.

The input reflectivity data is described and statistical data is calculated. The Earth

albedo model principle is described and the equations for calculating diffuse di-

rectional Earth albedo are given.

Chapter 3. Sun Sensor Current Modeling Given the Earth albedo model, the stan-

dard Sun sensor current model is expanded to include the diffuse irradiance from

Earth albedo.

Chapter 4. Sun Sensor Vector Observations This chapter describes the algorithms

for forming a Line-of-Sight (LOS) vector from Sun sensor currents. Three algo-

rithms are presented, in order to compare the impact of advanced Earth albedo

modeling. The standard algorithm disregards Earth albedo completely. The Max

Currents algorithm uses Sun sensors with highest current output. The Summarized

Sun and Earth (SSE) algorithm incorporates the Earth albedo model in forming

vector observation pairs.

Chapter 5. Attitude Parameters This chapter provides an introduction to the attitude

parameters used in this thesis. The attitude matrix and attitude quaternion is pre-

sented, and some useful properties of their algebra is given.

Chapter 6. Single-Point Algorithms This chapter presents Wahba’s problem which

expresses attitude determination as minimizing the error of vector observation

pairs by estimating the attitude parameter. The single-point Q-Method algorithm

is presented as a solution which gives the optimal attitude quaternion from the

vector observations.

Chapter 7. Kalman Filters This chapter presents the equations of the EKF and UKF

filtering algorithms. The attitude determination is performed using a system and

measurement models. The Kalman Filters use the models to predict the measure-

ments at each time step. Calculations of the estimation error covariance allows for

statistical optimal fusion of the predicted and sensor measurements.

Chapter 8. Estimator Designs System specific models and tweaking of the Kalman

Filters are described. The equations of satellite motions are presented. Lineariza-

tion of the system and vector observation models are performed, as required by

the EKF. The use of quaternions in the system state requires modifications specific

to quaternion algebra.

Chapter 9. Validation of the Earth Albedo Model The Earth albedo model is vali-

dated by applying the Earth albedo and Sun sensor current model on the Ørsted

satellite configuration. The results of the current simulation is compared to Ørsted

telemetry data.

Chapter 10. Earth Albedo Model Results The Earth albedo model is utilized in dif-

ferent scenarios, and the resulting of the Earth albedo is discussed. Impacts of
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longitude and altitude variation are investigated, and the total Earth albedo of the

Ørsted satellite’s noon-midnight orbit is presented. Due to the computational com-

plexity of the Earth albedo model, impacts of reducing the input/output resolution

is investigated.

Chapter 11. Simulated Attitude Determination Results The attitude determination

algorithms are simulated and the performance of the algorithms compared. The Q-

Method, EKF, and UKF are simulated with vector pair inputs from magnetometer

and Sun sensors. The UKF is additionally simulated using the non-linear Sun

sensor current model, with and without magnetometer vector observation.

Chapter 12. Application of the Earth Albedo Model on Ørsted Data The Q-

Method is applied to the Ørsted satellite telemetry data, using the Sun vector

observation algorithms. The performance of the Sun sensor vector observation

algorithms are compared, and the results of the attitude determination presented.

Chapter 13. Conclusion Summary of the thesis with concluding remarks and recom-

mendations for future work.
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Chapter 2
Earth Albedo Modeling

Earth albedo is relevant for practically all Earth orbiting satellites. The amount of so-

lar irradiance reflected by the Earth towards a satellite, influences the power generated

by solar panels, generates torques, affects the thermal design, and may be measured

by horizon sensors to estimate satellite attitude [Harris and Lyle, 1969], [Wertz, 1978],

[Wertz, 2001]. Albedo is typically treated as noise in the ADS. By modeling the Earth

albedo, this disturbance may be incorporated into the ADS and potentially allow the

Earth albedo to be used as navigation reference.

Due to the geometry of the Earth, the Earth albedo irradiance is multi-directional,

unlike the solar irradiance which may be assumed to be anti-parallel to the Sun LOS

vector. This assumption holds because the distance to the Sun is large relative to the

Sun radius for Earth orbiting satellites. Since the Earth albedo is significant only in the

vicinity of Earth, the Earth albedo model must include information of the directional

incidence of the Earth albedo irradiance. The model of the Earth albedo is based on

reflectivity data from the Earth Probe satellite, which is part of the TOMS project. The

data resolution partitions the Earth surface into a number of cells. The incident irradi-

ance on each cell is used to calculate the total radiant flux reflected from the cell. From

the radiant flux from each cell, the irradiance at the satellite is calculated. The out-

put is an array of Earth albedo contribution from each cell in the partition. Directional

information is maintained by the LOS vector to each cell.

2.1 Satellite Data

A significant research effort in Earth albedo has been conducted in the geophysi-

cal and meteorological research communities (see e.g. [Herman and Celarier, 1997],

[Koelemeijer and Stammes, 1998], [Snyder and Wan, 1998]). The results of these stud-
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ies are mainly focused on spectral distributions of absorbance and reflectivity of the

atmosphere and different Earth surface scenarios. These results can be applied in the

calculation of Earth albedo received by a satellite in the vicinity of Earth.

The modeling of the Earth albedo is based on the reflectivity data, measured by the

Earth Probe Satellite of the TOMS project, and the data is available online at the TOMS

website, [National Aeronautics and Space Administration, 2005]. The Earth Probe re-

flectivity data is available daily from July 25, 1996 to present, with minor periods of

outage. The orbit altitude was changed from 515km to 740km on July 5, 1997. The

reflectivity data fluctuates because of changes in cloud and ice coverage and seasonal

changes. The satellite data is given in a resolution of ∆φg = 1 deg latitude times

∆θg = 1.25 deg longitude, i.e. 180 × 288 data points. The two-dimensional data space

D is defined as a grid of data points Φ× Θ, where

Φ = {0, ∆φg, 2∆φg, ..., 179∆φg} , (2.1)

Θ = {0, ∆θg, 2∆θg, ..., 287∆θg} . (2.2)

To each data point (φg, θg) ∈ D, the mean reflectance of a cell, φg ± ∆φg/2 and θg ±
∆θg/2, on the Earth surface is available in the TOMS data product.

The reflectivity of a cell in the TOMS data, is calculated by measuring the irradiance

received Emeas by the satellite, which is matched by adjusting a single parameter ρ in the

model of the measured irradiance. The irradiance measurement Emeas is model by

Emeas =
ρf

1 − Sρ
Edd + Edd0, (2.3)

where ρ is the reflectivity of the reflecting surface, f is the fraction of reflected irradi-

ance reaching the satellite, S is the fraction of reflected irradiance scattered back to the

reflecting surface, known as Stokes reflections, Edd is the amount of direct and diffuse

irradiance reaching the reflecting surface, and Edd0 is the amount of atmospheric scat-

tered irradiance reaching the satellite, [Herman et al., 2001]. Figure 2.1 illustrates the

reflectivity model used in the reflectivity estimation.

In Figure 2.1, it is seen that the incident irradiance EAM0 reaches the reflecting sur-

face as partial direct and Rayleigh scattered diffuse irradiance Edd. The total irradiance

reaching the surface is the sum of Edd and the infinite sum of irradiance reflected be-

tween the atmosphere and the surface, hence the reflected irradiance is expressed as

Er = ρEdd

(

1 + Sρ + S2ρ2 + ... + Snρn + ...
)

=
ρEdd

1 − fρ
. (2.4)

Due to atmospheric scattering and absorption only a fraction f of the reflected irradiance

reaches the satellite. Adding the atmospheric backscatter Edd0 yields the reflectivity

model in Equation (2.3).
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Figure 2.1: Reflectivity model used for estimating the surface reflectivity in the TOMS

data product.

A plot of a single day’s measurements by the Earth probe satellite, is shown in Figure

2.2. Note that the satellite does not cover the entire Earth surface in the duration of 24

hours. Figure 2.2 reveals that the Earth Probe satellite did not record measurements at

latitudes higher than 60 deg on December 31, 2001.

2.2 Data Statistics

Figure 2.2 shows that a single day’s measurement is incomplete. The orbit of the Earth

Probe satellite is configured such that all latitudes are covered over a period of approx-

imately four months. Mean reflectivity and standard deviation of the data for the year

2001 are calculated. The result is shown in Figure 2.3. The standard deviation of the

data is shown in Figure 2.4. Note that the scale of the color map is different in the two

figures. The plots show that there is high reflectivity over the poles, which can be ex-

pected due to the polar ice caps, and low reflectivity around the Equator. The standard

deviation is high around 40 deg to 60 deg latitude, North and South, due to changing

cloud coverage. Over the poles, the icy surface ensures high reflectivity regardless of

cloud coverage. The data suggests an average Earth reflectivity of 30.40%, which is con-

sistent with the literature, [Lyle et al., 1971], [Wertz, 2001]. The average is calculated

by weighting each reflectivity measurement with respect to the area of the associated

cell at the measurement grid point.
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Figure 2.2: Plot of TOMS reflectivity data recorded on December 31, 2001.

Figure 2.3: Plot of mean TOMS reflectivity data recorded from January 1 to December

31, 2001.
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Figure 2.4: Plot of standard deviation of the TOMS reflectivity data recorded from Jan-

uary 1 to December 31, 2001.

The Earth albedo model calculations are based on the input reflectivity data. Uti-

lizing daily reflectivity data is more accurate than mean values. However, for on-board

algorithms the daily reflectivity is likely to be unavailable in real-time, and the annual

mean may be applied. In off-line calculations on ground, the daily reflectivity data may

be used. Since the daily reflectivity data does not provide full coverage, as shown in

Figure 2.2, the annual mean data is substituted for missing data.

2.3 Modeling

The principle of the modeling scheme is outlined in Figure 2.5. The incident solar

irradiance EAM0 reaches the cell at grid point (φg, θg), at an incident angle of αc to the

cell normal n̂c. The angle of incidence defines density of the incident irradiance on

the cell. The amount of radiant flux reflected by the cell is given by the irradiance and

the area of the cell, Ac (φg). The Earth albedo contribution of the cell, Ec, reaches the

satellite, and the density of the radiant flux is dependent on the angle αsat. The modeling

approach is described in detail in the following sections, following the path of the solar

irradiance in Figure 2.5.
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nss1
αsun

αsat

n̂c

Ec

Ac (φg)

EAM0

(φg, θg)

Figure 2.5: Earth albedo modeling principle. The incoming solar AM0 irradiance is

reflected by a cell.
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2.3.1 Reflection of Incident Irradiance

The incident solar irradiance hits a cell on the Earth’s surface. The incident irradiance is

modeled as a black body source, and the total irradiance is the sum of irradiances in the

black body spectrum. The modeling of the solar irradiance is described in Appendix B.

The AM0 irradiance is found to be EAM0 = 1367W/m2.

The amount of energy reflected by a cell, at grid point (φg, θg) ∈ D, depends on the

cell area Ac (φg), which is found using Surface of Revolutions, described in Appendix

C. Given the polar angle of the grid center φg, the grid area is given by

Ac (φg) = θgr
2
E ×

(

cos

(

φg −
∆φg

2

)

− cos

(

φg +
∆φg

2

))

, (2.5)

where rE is the Earth mean radius.

The incident irradiance on the cell, is equal to the solar AM0 irradiance multiplied

by a cosine term dependent on the incident angle αSun, which is the angle between the

cell normal n̂c and the Sun LOS vector from the grid point, r̂Sun. The intensity of the

incoming irradiance decreases as the angle of incidence increases. This is equivalent to

the observed cell area as seen from the Sun. The incident radiant flux density Pc (φg, θg)
on a single cell at grid point (φg, θg), is given by

Pc (φg, θg) = EAM0Ac (φg)
{

r̂T
Sunn̂c

}∞

0
, (2.6)

where {·}b
a denotes saturation of the argument, with lower limit a and upper limit b.

Note that the vectors r̂Sun and n̂c are functions of the data grid point (φg, θg). This is not

included in the notation, to preserve readability. This includes the satellite LOS vector,

r̂sat, introduced below.

The reflection on the Earth surface is assumed to be Lambertian. Lambertian equiv-

alent reflecting surfaces have a diffuse reflection, which is independent on the incident

angle of the incoming irradiance, and look evenly illuminated regardless of the view-

ing angle, [Ryer, 1997]. The reflected radiant flux density Pr (φg, θg), also known as

the radiant exitance, is calculated as a fraction ρ (φg, θg) of the incoming radiant flux in

Equation (2.6)

Pr (φg, θg) = ρ (φg, θg)Pc (φg, θg) , (2.7)

where ρ (φg, θg) is the reflectivity of the grid point.

2.3.2 Earth Albedo at Satellite

The amount of Earth albedo from a single cell, seen from the satellite, depends on the

distance to the satellite and the angle between the cell normal and the satellite LOS

vector from the grid point, r̂sat. The irradiance Er (φg, θg) of the cell, when assuming

Lambertian reflectivity, is related to the radiant exitance by, [Ryer, 1997]

Er (φg, θg) =
Pr (φg, θg)

π
. (2.8)
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The Inverse Square Law states that the intensity of the irradiance decreases with the

square of the distance from the grid point to the satellite, which is written as

Esat (φg, θg) =
Er (φg, θg)

||r̂sat||2
. (2.9)

Finally the irradiance at the satellite depends of the visible area of the cell surface seen

from the satellite. The visible area is related to αsat by the cosine function. This rela-

tionship, combined with equations (2.8) and (2.9), results in an expression of the Earth

albedo irradiance Ec (φg, θg) from a single cell, given by

Ec (φg, θg) =
Pr (φg, θg)

{

r̂T
satn̂c

}∞

0

π ||r̂sat||2
. (2.10)

The full Earth albedo model is expressed as

Ec (φg, θg) =

{

ρ(φg,θg)EAM0Ac(φg)r̂
T
Sunn̂cr̂

T
satn̂c

π||r̂sat||
2 if (φg, θg) ∈ V Sun ∩ V sat

0 else
. (2.11)

The sets V Sun ⊂ D and V sat ⊂ D are the grid points visible from the Sun and satellite,

respectively, i.e. V Sun ∩ V sat is the set of sunlit grid points visible from the satellite,

which are necessary conditions for a cell to reflect solar irradiance to the satellite. The

inequality defining the sets V sat and V Sun is derived in Appendix D.

The total Earth albedo irradiance Ea at the satellite position may be calculated as the

sum of irradiances from all cells

Ea =
∑

V Sun∩V sat

Ec (φg, θg) . (2.12)

The output of the Earth albedo model, Ec (φg, θg), is the irradiance received from the

cells at all grid points, i.e. a 180 × 288 matrix. This result allows for incident angular

dependency, when calculating Earth albedo effects on solar cells. This is useful, since

the irradiance on solar cells decreases when the angle between the solar panel normal

and the incident irradiance increases. The albedo model may be used to derive advanced

Sun sensor current models, which takes the directional Earth albedo output into account.

Improved models should facilitate improved vector observations and attitude determina-

tion.



Chapter 3
Sun Sensor Current Modeling

The Sun sensor current model is used to calculate the output currents of the Sun sensors.

It is derived from the configuration of sensors on the satellite. Different types of Sun

sensors exist. A very simple analogue Sun sensor simply consist of a small solar cell in

short circuit mode. Sun sensors of this type are very cheap and small, compared to more

advanced sensors, and are suitable for CubeSat applications. Driving the Sun sensors in

short circuit mode ensures that the current output is dependent mainly on the incoming

irradiance only. The solar cells used for charging batteries on a satellite, can experience

change in current output as a result of high loads. Consequently using these solar cells

requires modeling of the entire electrical system in the satellite, which is very complex.

The model derived in this chapter applies for simple Sun sensors with solar cells in short

circuit mode.

The angle of the incident irradiance is clearly dependent on the angle of the incident

irradiance, since the density of the radiant flux on the solar cell surface in the Sun sensor

changes with this parameter. From the density of the radiant flux on the Sun sensor,

the output current may be calculated from the area and efficiency of the solar cell. Typ-

ically, the Sun sensor is calibrated on-ground, by illuminating the Sun sensors with a

known irradiance, denoted Ecal, and measuring the current output, imax, when the angle

of incidence is zero, i.e. the irradiance is perpendicular on the solar cell plane. The mea-

sured current from an ideal Sun sensor i, as a function of the angle of incidence αirad,i is

expressed as

imeas,i = imax,icos
(

{αirad,i}π/2
−∞

)

. (3.1)

The angle αirad,i is measured as the angle between the normal vector to the Sun sensor

solar cell plane, n̂SSi, and the LOS vector to the irradiance source, illustrated in Figure

3.1. The notation {αirad,i}π/2
−∞ indicates that the angle of the incident irradiance saturates

at π/2. When the angle of incidence exceeds 90 deg the Sun sensor is illuminated from
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the back, hence no current is generated. The saturation gives the Sun sensor output a

highly non-linear behavior.

n̂SS1

αirad,1

r̂s

Figure 3.1: Definition of the angle of incidence αirad,i, illustrated by Sun sensor SS1 on

the Ørsted satellite.

The parameter imax,i may be assumed to scale linearly with the amount of incident

irradiance. Hence the output generated from the solar irradiance is given by

imeas,i =
Eiradimax,i

Ecal
cos
(

{αirad,i}π/2
−∞

)

, (3.2)

where Eirad is the incident irradiance from an angle αirad,i of incidence. Equation (3.2)

can be expressed in terms of the Sun sensor normal vector n̂SSi and the LOS vector to
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the source r̂s, as

imeas,i =
Eiradimax,i

Ecal

{

n̂T
SSir̂s

}∞

0
. (3.3)

Equation (3.3) is often used for estimating the output when disregarding the Earth

albedo. In this case the incident irradiance is EAM0. In the following, the output equa-

tion is extended to include the output of the Earth albedo model, Ec (φg, θg), derived in

Chapter 2.

3.1 Incorporating the Earth Albedo Model

The total generated current in the Sun sensors is a sum of currents generated from the

Sun irradiance, Earth albedo irradiance, and other fainter sources which are assumed to

be negligible. Recall from Equation (2.11), that the output of the Earth albedo model is

an array of albedo contributions from each cell in the partitioning of the Earth surface.

This allows the Sun sensor output equation to include directional dependence to each

cell, when calculating the current generated from Earth albedo.

n̂c

αsat

Ec

Ac (φg)

Figure 3.2: Albedo contributions in the Earth albedo model output. Each value in the

albedo array is a irradiance contribution from a cell on the Earth surface.

The interpretation of the Earth albedo array is illustrated in Figure 3.2. The Earth

albedo of a cell Ec (φg, θg), specified by the grid point (φg, θg), is a irradiance contri-

bution from the direction from the satellite to the grid point. The Sun sensor output

equation must calculate the contribution of each cell on the Sun sensor. The total gener-

ated current is calculated by summarizing the solar induced current and the contributions
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from each grid point. The resulting Sun sensor output equation becomes

imeas,i = imax,i

({

EAM0n̂
T
SSir̂Sun

Ecal

}∞

0

+
∑

V Sun∩V sat

{

Ec (φg, θg) n̂T
SSir̂g

Ecal

}∞

0

)

. (3.4)

The r̂g vector is the LOS vector from the satellite to the grid point (φg, θg). Irradiance

vectors lSun and lg are introduced, and defined as

lSun = EAM0r̂Sun, lg = Ec (φg, θg) r̂g, (3.5)

which represent vectors to the sources of irradiance, with norms equal to the magnitude

of the source irradiances. Inserted into Equation (3.4), yields

imeas,i = imax,i

({

n̂T
SSilSun

Ecal

}∞

0

+
∑

V Sun∩V sat

{

n̂T
SSilg

Ecal

}∞

0

)

. (3.6)

Equation (3.6) is a non-linear model of the current output of a Sun sensor. The

attitude of the satellite, and consequently the Sun sensor, naturally influences the Sun

sensor output. This dependency is included in the model, since the normal vector of the

Sun sensor, n̂SSi, changes as the satellite rotates. The model incorporates the output of

the Earth albedo model, which includes irradiance contributions from each cell of the

partitioned Earth surface. This includes directional dependency of each cell irradiance.

The Sun sensor model potentially allows improved Sun sensor vector observations and

current simulation.



Chapter 4
Sun Sensor Vector Observations

This chapter describes the algorithms for estimating a vector from Sun sensor measure-

ments. An algorithm which includes the results of the Earth albedo model in Chapter 2

is derived.

Sun sensors convert radiant flux to electrical power, and can be used to estimate the

angle between the normal vector to the sensor plane and the Sun LOS vector, by measur-

ing the intensity per area on the sensor’s solar cell surface, which is related to the angle

of incident irradiance. Sun sensors are typically mounted such that measurements are

available in six directions, which are opposite facing in pairs, such that the observations

span all of R
3. Typically a minimum of six Sun sensors are used, looking in the positive

and negative directions of each axis in the spacecraft reference frame, as it is the case on

the Ørsted satellite [Blanke et al., 1994]. In the following it is assumed that six Sun sen-

sor measurements are available and that the Sun sensors are mounted looking in pairs in

opposite directions, along orthogonal axes. If this is not the case, the measurements can

be projected onto orthogonal axes, and the results will still apply. The Sun sensors de-

scribed in this thesis are simple sensors, which work by measuring the current output of

a solar cell in short circuit mode. Digital Sun sensors are more complicated, and are not

significantly affected by albedo [Brasoveanu and Sedlak, 1998]. The improved accuracy

of digital Sun sensors is at the expense of higher price, mass, and power consumption.

Figure 4.1 shows the geometry of the Sun LOS vector r̂Sun in a configuration, where

six sun sensors are mounted in pairs in opposite directions and along three orthogonal

axes. The Sun sensors are represented by the normal vectors n̂SSi of each sensor SS1

through SS6. In the following section a standard algorithm of obtaining the Sun LOS

vector is presented.
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x

y

z

n̂SS1

n̂SS2

n̂SS3

n̂SS4

n̂SS5

n̂SS6

α1 α2

α3

r̂Sun

Figure 4.1: Projections of the Sun LOS vector measured by Sun sensors mounted in op-

posite looking directions along three orthogonal axes.
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4.1 Standard Algorithm

Applying the cosine model of the Sun sensor current and normalizing the measured

current imeas,i with respect to the maximum generated current imax,i, i.e. when the inci-

dent light hits the Sun sensor orthogonally onto the solar cells, the measurement can be

written as

imeas,i

imax,i
= cos

(

{αirad,i}pi/2
−∞

)

, (4.1)

which is the projection of r̂Sun onto n̂SSi. This is a simplified equation compared to the

measurement model derived in Chapter 3, since it assumes a single constant irradiance

source. However, this is the typical assumption used, since the solar irradiance may be

assumed constant over time periods which are small when compared to the 11 year solar

cycle. The Earth albedo is disregarded completely.

If the Sun sensor is looking in the negative direction of an axis, then Equation (4.1)

is the projection onto the associated axis in negative direction. The elements of the

estimated Sun LOS vector, r̂SunEst, may be written as

EAM0

Ecal
r̂SunEst =







imeas,1

imax,1
− imeas,2

imax,2
imeas,3

imax,3
− imeas,4

imax,4
imeas,5

imax,5
− imeas,6

imax,6






. (4.2)

Note that the resulting vector is scaled by the ratio between the incident irradiance and

the calibrated irradiance. If the Sun sensor parameter imax,i is calibrated using EAM0 a

unit vector is formed. The above equation is the standard algorithm for constructing a

Sun LOS vector. This algorithm is error-prone when the Earth albedo induces currents

in the Sun sensors. When observing a Sun sensor pair of opposite facing Sun sensors,

the Earth albedo will either increase or decrease the estimate of the associated element

of the r̂SunEst vector. If the solar irradiance and the Earth albedo illuminate the same Sun

sensor, the estimated element will be too large. If opposite Sun sensors in the sensor

pair are illuminated, the estimated element will be decreased, due to the subtraction of

the currents in Equation (4.2).

In order to compensate the Earth albedo induced errors, the full equation of the

output current of the Sun sensors, derived in Chapter 3, must be taken into consideration.

Two different algorithms are considered in order to compensate for the Earth albedo

induced currents. One algorithm simply uses the maximum currents of the Sun sensor

pairs to estimate the Sun LOS vector. This algorithm does not use the Earth albedo

model. The other uses the standard algorithm and argues that the resulting vector is an

approximation of Sun and Earth irradiance vectors. The algorithms are presented in the

following.
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4.2 Max Currents Algorithm

A simple way of compensating the Earth albedo, is to compare a Sun sensor pair, and

only utilize the measurement from the Sun sensor which generates the highest current.

Thus assuming that this Sun sensor is illuminated by solar irradiance only. The Max

Currents algorithm can be formulated as

EAM0

Ecal
r̂SunEst,1 =

{

imeas,1

imax,1
if

imeas,1

imax,1
>

imeas,2

imax,2

− imeas,2

imax,2
else

, (4.3)

EAM0

Ecal
r̂SunEst,2 =

{

imeas,3

imax,3
if

imeas,3

imax,3
>

imeas,4

imax,4

− imeas,4

imax,4
else

, (4.4)

EAM0

Ecal
r̂SunEst,3 =

{

imeas,5

imax,5
if

imeas,5

imax,5
>

imeas,6

imax,6

− imeas,6

imax,6
else

. (4.5)

The algorithm is particularly effective for Earth pointing satellites, since the Earth albedo

is concentrated on Earth pointing Sun sensors, and the opposite facing Sun sensors are

looking towards the Sun, hence the Earth albedo is filtered very effectively. The algo-

rithm will in this case mostly fail near the terminator, coming out of, and going into

eclipse.

4.3 Summarized Sun and Earth Algorithm

The SSE algorithm incorporates a simplification of the Earth albedo in the Sun sensor

output equation in Equation (3.6). The Earth albedo is approximated by a single vector,

as opposed to contributions from each data point (φg, θg) ∈ V Sun ∩ V sat. The total

albedo Ea, calculated in Equation (2.12), is assumed to reach the satellite anti-parallel

to the Earth direction. This results in an Earth irradiance vector lE, given by

lE = Ear̂E, (4.6)

where r̂E is the Nadir vector. Utilizing the Earth irradiance vector, the output equation

of the Sun sensors can be approximated by

imeas,i = imax,i

({

n̂T
SSilSun

Ecal

}∞

0

+

{

n̂T
SSilE

Ecal

}∞

0

)

. (4.7)

With the above approximation and applying the standard Sun LOS vector algorithm

in Section 4.1, the resulting estimated vector is actually the sum of the Sun and Earth

irradiance vectors, i.e.

EAM0 + Ea

Ecal

lSun + lE

||lSun + lE||
=







imeas,1

imax,1
− imeas,2

imax,2
imeas,3

imax,3
− imeas,4

imax,4
imeas,5

imax,5
− imeas,6

imax,6






. (4.8)
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The SSE vector is shown in Figure 4.2. The SSE vector is an improved estimate of the

vector projected onto the axes spanned by the Sun sensors, as opposed to the Sun LOS

vector of the Standard algorithm, shown in Figure 4.1.

x

y

z

n̂SS1

n̂SS2

n̂SS3

n̂SS4

n̂SS5

n̂SS6

lSun

lE

lSun + lE

Figure 4.2: Projections of the SSE vector measured by Sun sensors mounted in opposite

looking directions along three orthogonal axes.

The proof of Equation (4.8) is given for the first element of the vector. An expression
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of the first element can be found by inserting Equation (4.7) into Equation (4.8)

imeas,1

imax,1
− imeas,2

imax,2
=

{

n̂T
SS1lSun

Ecal

}∞

0

+

{

n̂T
SS1lE

Ecal

}∞

0

−
{

n̂T
SS2lSun

Ecal

}∞

0

−
{

n̂T
SS2lE

Ecal

}∞

0

. (4.9)

Since the Sun sensor pair SS1 and SS2 are facing opposite directions it holds that

n̂SS1 = −n̂SS2. (4.10)

As a result the saturation function on the Sun irradiance vector can be eliminated by

{

n̂T
SS1lSun

Ecal

}∞

0

−
{

n̂T
SS2lSun

Ecal

}∞

0

=

{

n̂T
SS1lSun

Ecal

}∞

0

+

{

n̂T
SS1lSun

Ecal

}0

−∞

(4.11)

=
n̂T

SS1lSun

Ecal
. (4.12)

The same applies for the Earth irradiance vector. Inserting into Equation (4.9), yields

imeas,1

imax,1
− imeas,2

imax,2
=

n̂T
SS1lSun

Ecal
+

n̂T
SS1lE

Ecal
, (4.13)

or equivalently

imeas,1

imax,1
− imeas,2

imax,2
=

n̂T
SS1

Ecal
(lSun + lE) , (4.14)

which is the first element of the SSE irradiance vector, since n̂SS1 is aligned with the x
axis, illustrated in Figure 4.2.

The SSE algorithm is proven to estimate the SSE irradiance LOS vector, by approx-

imating the Sun sensor output equation. It does not directly utilize the Earth albedo

model. However, when the estimated SSE vector is applied in the attitude determination

algorithms, the SSE vector must be calculated in the reference frame, in order to obtain

an attitude from reference to Spacecraft Body (SCB) frame. When calculating the SSE

vector in a reference frame, the Earth albedo model must be included in the ephemeris

models, in order to estimate the correct ratio between the Sun and Earth irradiance vec-

tors.



Part II

Attitude Estimation

Chapters

5 Attitude Parameters 33

6 Single-Point Algorithms 39

7 Kalman Filter 43

8 Estimator Designs 51





Chapter 5
Attitude Parameters

This chapter gives a short overview of the mathematical representations of attitude used

in this thesis. The purpose of ADS is to determine the orientation of an object relative

to a reference frame. This is done by defining a body fixed frame, which rotates with

the object. See Appendix A for definitions of the frames used in this thesis. Figure 5.1

shows an object which is rotated. The reference frame is defined by the x̂A, ŷA, and ẑA

unit vectors, and the body fixed frame by x̂B , ŷB , and ẑB .

x̂A

ŷA

ẑA

x̂B

ŷB

ẑB

Figure 5.1: Rotation of an object with body fixed frame, relative to a reference frame.

In order for the frames A and B to be orthogonal right-hand frames, it must hold
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that

ẑi = x̂i × ŷi , i ∈ {A, B} . (5.1)

5.1 Attitude Matrices

Several attitude parameter formulations exist for representing the attitude of the body

frame with respect to the reference frame. A complete description of the parameters is

available in several books on mechanics and attitude control, see e.g. [Wertz, 1978] or

[Hughes, 1986]. Clearly, specifying x̂B , ŷB , and ẑB axes in the x̂A, ŷA, and ẑA frame,

gives a full parameterization of the attitude. Figure 5.2 shows the projection of the ẑB

axis onto the x̂A, ŷA, and ẑA axes. The ẑB projected onto the x̂A, ŷA, and ẑA vectors

is ẑB given in the reference frame, which is denoted ẑA
B . The superscript specifies that

the ẑB is given in frame B.

x̂A

ŷA

ẑA

ẑB

Figure 5.2: The ẑB projected onto the x̂A, ŷA, and ẑA vectors.

A total of nine parameters are required to parameterize the body fixed axes in the

reference frame, which are represented in a 3 × 3 attitude matrix, given by

A =













(

x̂A
B

)T

(

ŷA
B

)T

(

ẑA
B

)T













. (5.2)

The matrix A is a mapping of vectors from the reference frame to the body frame. This

can be indicated by sub- and superscripts, AB
A . Given a vector vA in the reference frame,
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the representation in the body frame is found by

AB
AvA =





x̂A
B · vA

ŷA
B · vA

ẑA
B · vA



 = vB. (5.3)

Since the vectors of the two frames are unit vectors and mutually orthogonal, it holds

that

AAT = 1, (5.4)

which means that A is an orthonormal matrix. It follows from equations (5.3) and (5.4)

that

AA
B =

(

AB
A

)T

. (5.5)

Consecutive rotations is found as the product of attitude mappings

AC
A = AC

BAB
A , (5.6)

where AC
A represents a rotation from frame A to B followed by a rotation from frame

B to C.

The attitude matrix is widely used due to its algebraic mapping. It is published in

[Stuelpnagel, 1964] that the parameterization of attitude has three degrees of freedom,

and that no three-dimensional parameter can be both global and non-singular. Hence

a minimum of three parameters are required. The direct cosine matrices contain nine

parameters with three degrees of freedom. Due to this redundancy, numerous ways of

representing the satellite attitude with a minimum set of parameters have been devel-

oped. Euler angles describe the rotation around the principal axes and use therefore

only three parameters. However some singularities arise for some rotations, which is

why Euler angles are commonly used when the attitude of the object involved, is known

to be within a certain margin [Wertz, 1978]. An investigation of attitude parameters is

given in [Shuster, 1993].

Quaternions use four parameters with a single constraint, to represent attitude, and

are subject to no singularities. This is useful when considering that the attitude of a satel-

lite is usually unknown after the release from the launcher. For this reason quaternions

are commonly used in space applications. In this thesis the quaternion representation is

used, because it is a global four parameter representation.

5.2 Attitude Quaternions

Quaternions is one of many ways to represent attitude. The quaternion has the advantage

of being without singularities for all attitudes.
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A quaternion q is defined by its four vector elements q1, q2, q3 and q4, as

q = q4 + iq1 + jq2 + kq3 =









q1

q2

q3

q4









. (5.7)

where i, j and k are hyper imaginary numbers satisfying

i2 = j2 = k2 = −1, (5.8)

ij = −ji = k, (5.9)

jk = −kj = i, (5.10)

ki = −ik = j. (5.11)

The fourth element of a quaternion is named the scalar element and is also denoted by

q. The 1st, 2nd, and 3rd are complex elements. The complex part of the quaternion is

denoted p, hence a quaternion may be written

q =

[

p
q

]

. (5.12)

A rotation ∆φ around a unit vector ê, is represented by the attitude quaternion

q =





êsin
(

∆φ
2

)

cos
(

∆φ
2

)

.



 (5.13)

The definition of the attitude quaternion parameters is illustrated in Figure 5.3. The

four parameters of the attitude quaternion are subject to the constraint

q2
1 + q2

2 + q2
3 + q2

4 = 1, (5.14)

which means that the quaternion has three degrees of freedom, corresponding to the

minimum set of parameters needed for attitude representation.

The product of two quaternions q and q′ is defined in matrix form as

q′′ = q′q =









q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2
q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4

















q1

q2

q3

q4









. (5.15)

Note that the multiplication of quaternions is not commutative, which is also the case

for attitude matrices. The complex conjugate of the quaternion is defined as

q∗ = q4 − iq1 − jq2 − kq3 =

[

−p
q

]

. (5.16)
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x̂A

ŷA

ẑA

ê

∆φ

Figure 5.3: Definition of the quaternion attitude parameter as a rotation ∆φ around the

unit vector ê.

It follows from equations (5.13) and (5.16) that

qA
B =

(

qB
A

)∗
. (5.17)

Note that

qq∗ =









0
0
0
1









, (5.18)

which is the unit quaternion representing the zero rotation, i.e. no rotation.

Representing the attitude quaternion q by the attitude matrix A (q), the rotation

calculation of Equation 5.15, can be written in terms of the associated attitude matrices,

as

A (q′′) = A (q′)A (q) , (5.19)

where A (q) is given by

A (q) =





q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4

2(q1q3 + q2q4) 2(q3q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4



 (5.20)

=
(

q2 − ||p||2
)

13×3 + 2ppT − 2qS (p) , (5.21)
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where the cross-product matrix function is defined as

S (v) =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (5.22)

for an arbitrary vector v.

The attitude parameters and their algebra have been presented in this chapter. In the

following chapters the algorithms for estimating the attitude parameters of a satellite are

presented.



Chapter 6
Single-Point Algorithms

In this chapter attitude estimation from a single sample of sensor hardware is described.

As opposed to filtering algorithms, the single-point algorithms solely use samples from

a single time instant, to estimate attitude. Common for most single-point algorithms is

the use of vector observations to estimate the attitude of an object. Given a set of n ≥ 2
vector observations, a loss function is formulated, known as Wahba’s problem given by

L
(

AB
I

)

=
1

2

n
∑

j=1

wj

∣

∣

∣

∣

∣

∣v̂
B
j − AB

I v̂I
j

∣

∣

∣

∣

∣

∣

2

, (6.1)

where wj is the weight of the j’th vector observation, v̂I
j is the LOS vector in the

reference frame and AB
I is the orthonormal rotation matrix, representing the rotation

from reference to body frame, which is sought, [Wahba, 1965]. The loss function is a

weighted sum squared of the difference between the measured and the reference LOS

vectors in the body frame. By minimizing the loss function, given in Equation (6.1), an

optimal attitude may be estimated.

One solution to Wahba’s problem is the Q-Method, which directly estimates an opti-

mal attitude quaternion minimizing Wahba’ problem. The Q-Method was developed by

Davenport in 1968 and is based on earlier work done by Wahba [Lerner, 1978]. A num-

ber of alternative algorithms have been derived from the Q-Method, e.g. the QUEST

algorithm, [Shuster and Oh, 1981]. These algorithms are fundamentally similar to the

Q-Method, but optimize the calculations with respect to computation efficiency and

on-board implementation. Algorithms exist that result in alternate attitude parameters.

Since the attitude quaternion is used to parameterize satellite attitude in this thesis, the

Q-Method is presented in the following.
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6.1 The Q-Method

To simplify Wahba’s problem it is necessary to expand it to

L
(

AB
I

)

=

1

2

n
∑

j=1

wj

(

(

v̂B
j

)T

v̂B
j +

(

v̂I
j

)T (

AB
I

)T

AB
I v̂I

j − 2
(

v̂B
j

)T

AB
I v̂I

j

)

, (6.2)

where
(

v̂B
j

)T

v̂B
j is constant and

(

AB
I

)T

AB
I is the identity matrix. The loss function,

L
(

AB
I

)

, may then be written as

L
(

AB
I

)

= −
n
∑

j=1

tT
j AB

I sj + k, (6.3)

where k denotes the constant terms. The unnormalized vectors tj and sj are defined as

tj =
√

wj v̂
B
j , (6.4)

sj =
√

wj v̂
I
j . (6.5)

The loss function is at a minimum, when the gain function

g
(

AB
I

)

=

n
∑

j=1

tT
j AB

I sj = tr
(

T TAB
I S
)

(6.6)

is at maximum. The matrices T and S are defined as

T =
[

t1 t2 · · · tn

]

, (6.7)

S =
[

s1 s2 · · · sn

]

. (6.8)

and tr (·) is the trace function. The maximization of g
(

AB
I

)

is complicated since the

nine elements of AB
I are subject to six constraints, [Shuster and Oh, 1981]. It is there-

fore convenient to express AB
I in terms of a quaternion q. According to Chapter 5, the

rotation matrix AB
I is defined in terms of quaternions as

AB
I (q) =

(

q2 − ||p||2
)

13×3 + 2ppT − 2qS (p) . (6.9)

Substituting Equation (6.9) into Equation (6.6), gives the modified expression for the

gain function

g (q) = qTCq, (6.10)
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where C is defined as

C =

[

U − σ13×3 c
cT σ

]

. (6.11)

The above values are defined as

U = BT + B, (6.12)

c =





B2,3 − B3,2

B3,1 − B1,3

B1,2 − B2,1



 , (6.13)

σ = tr (B) , (6.14)

where

B = TST. (6.15)

The problem of determining the optimal attitude has been reduced to finding the

quaternion that maximizes Equation (6.10). The normalization constraint, qTq = 1, can

be taken into account by using Lagrange multipliers, [Wertz, 1978]. A new function

g′ (q) is defined

g′ (q) = qTCq − ξqTq, (6.16)

where ξ is the Lagrange multiplier. The gain function g′ (q) is maximized without con-

straints and ξ is chosen to satisfy the normalization constraint. Taking the derivative

of Equation (6.16) with respect to q and setting the result equal to zero, an eigenvector

equation is obtained [Shuster and Oh, 1981]

Cq = ξq. (6.17)

The optimal quaternion which determines the optimal attitude matrix, in accordance

with Equation (6.9), is an eigenvector of C. Substitution of Equation (6.17) into Equa-

tion (6.10) gives

g (q) = qTCq = qTξq = ξ, (6.18)

thus g (q) will be maximized if the optimal quaternion is chosen to be the eigenvector

of C belonging to the largest eigenvalue.
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Chapter 7
Kalman Filters

Kalman filters are algorithms for calculating estimation of states using a model descrip-

tion of the system. The Kalman filter was introduced by R. Kalman in [Kalman, 1960].

Kalman filters are preferred, since they can incorporate noise information, to produce

statistically optimal estimates.

In order to estimate the state vector from the noise inflicted measurements, an EKF

and an UKF is designed. The Kalman filters propagate a previous estimation of the

states, using the state space equations, and corrects the propagation using measurements.

The Kalman Filters use a non-linear system description for the propagation of the state.

The propagation of the covariance of the state error in the EKF is calculated using Ja-

cobian matrices, which are calculated at each time step, using the current estimate as

the nominal value. The UKF uses approximations of the noise distributions, which are

mapped through the non-linear system equations.

7.1 Extended Kalman Filter

When a system is described by a non-linear model equation, the EKF requires the equa-

tions to be linearized around a nominal state. If the nominal state is constant, the equa-

tions resembles that of the linearized Kalman filter. In some cases, however, a lineariza-

tion around a single trajectory is inadequate, especially if it is not guaranteed that the

state of the system is always close to the nominal values. In these situations an EKF filter

is applied, which re-linearizes the system around the current estimate. The description

of the EKF is based on inspired by [Grewal and Andrews, 1993] and [Maybeck, 1982].

In the following the equations of the EKF are presented. The filter linearizes the system

equations around the current estimate x̂ (tk|tk) and control input u (tk) at all time steps.
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The non-linear system, is described by the generic differential equation

ẋ (t) = f (x (t) , u (t) , t) + w (t) , (7.1)

where w (t) is a vector of random variables, representing process noise. The continuous

Gaussian white process noise has the statistics

E (w (t)) = 0, (7.2)

E
(

w (t) wT (t + τ)
)

= Q (t) δ (τ) , (7.3)

where E (·) is the expected value function, δ (·) is Dirac’s Delta Function, and Q (t) is

the covariance of the process noise.

The non-linear output equation is given by

z (tk) = h (x (tk) , tk) + v (tk) , (7.4)

where v (tk) is a vector of random variables, representing measurement noise. Note that

it is assumed that there is no direct dependency on the control input. This has been left

out, since it is uncommon in dynamical systems. The measurement noise is assumed to

be Gaussian white noise with statistics

E (v (tk)) = 0, (7.5)

E
(

v (tk)vT (tk+n)
)

= R (tk)∆ (n) , (7.6)

where ∆(·) is Kronecker’s Delta Function and R (tk) is the covariance of the measure-

ment noise.

Using a Taylor expansion of Equation (7.1) around a nominal trajectory x̄ (t) and a

nominal input ū (t), yields

ẋ (t) =f (x̄ (t) , ū (t) , tk)

+
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

(x (t) − x̄ (t))

+
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

(u (t) − ū (t))

+ h.o.t. + w (t) , (7.7)

where h.o.t. are the higher order terms. Considering the perturbation of the state from

the nominal trajectory, denoted x̃ (t) = x (t) − x̄ (t) and a perturbed input ũ (t) =
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u (t) − ū (t), Equation (7.7) is written

˙̃x (t) =
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

x̃ (t)

+
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

ũ (t)

+ w (t) . (7.8)

It is assumed that the higher order terms are negligible. Consequently, the covariance of

the process noise should be scaled accordingly.

Choosing the current estimate x̂ (tk|tk) as the nominal trajectory at each time step,

an approximated linearized system equation of the state perturbation are expressed as

˙̃x (t) =

F (x̂ (tk|tk) , u (tk) , tk) x̃ (t) + G (x̂ (tk|tk) , u (tk) , tk) ũ (t) + w (t) , (7.9)

where F (x̂ (tk|tk) , u (tk) , tk) and G (x̂ (tk|tk) , u (tk) , tk) are the Jacobians of

f (x (t) , u (t) , t) with respect to the state and the input, given by

F (x̂ (tk|tk) , u (tk) , tk) =
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̂(tk|tk)
u(t)=u(tk)

t=tk

, (7.10)

G (x̂ (tk|tk) , u (tk) , tk) =
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̂(tk|tk)
u(t)=u(tk)

t=tk

. (7.11)

In a similar manner, a linear expression of the output equation in Equation (7.4) is found

to be

z̃ (tk) = H (x̂ (tk|tk) , tk) x̃ (tk) + v (tk) , (7.12)

where H (x̂ (tk|tk) , tk, t) is the Jacobian of h (x (t) , t), given by

H (x̂ (tk|tk) , tk) =
∂h (x (t) , t)

∂x (t)

∣

∣

∣

∣

x(t)=x̂(tk|tk),tk

t=tk

. (7.13)

Starting with an estimate at time tk−1, denoted x̂ (tk−1|tk−1), the predictor of the

filter calculates an a priori estimate using Equation (7.1). Although the system is lin-

earized, the Jacobians are only required in the update of the estimate covariance, hence

the non-linear system is applied in propagation and measurement estimates. The propa-

gated estimate, denoted x̂ (tk|tk−1), is an estimate of the state at time tk, based only on
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the dynamics described by the non-linear model of the system, corrected by measure-

ments up to time tk−1. Given the measurement at time tk, z (tk), the a priori estimate

can be corrected into the a posteriori estimate at time tk, denoted x̂ (tk|tk). The correc-

tor equation is given by

ˆ̃x (tk) = K (tk) (z (tk) − ẑ (tk|tk−1)) , (7.14)

where ẑ (tk|tk−1) is the estimated measurement, given by

ẑ (tk|tk−1) = h (x̂ (tk|tk−1) , tk) , (7.15)

and K (tk) is the Kalman gain. The Kalman gain is calculated using

K (tk) = P est (tk|tk−1)HT (x̂ (tk|tk−1) , tk)

×
(

H (x̂ (tk|tk−1) , tk)P est (tk|tk−1)HT (x̂ (tk|tk−1) , tk) + R (tk)
)−1

. (7.16)

The estimate of the state at time tk is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + ˆ̃x (tk) . (7.17)

The covariance matrices of the a priori and a posteriori estimation errors at time tk,

are defined as

P est (tk|tk−1) = E
(

(x (tk) − x̂ (tk|tk−1)) (x (tk) − x̂ (tk|tk−1))
T
)

, (7.18)

P est (tk|tk) = E
(

(x (tk) − x̂ (tk|tk)) (x (tk) − x̂ (tk|tk))T
)

. (7.19)

The a priori estimate P est (tk|tk−1) of P est (tk|tk) is calculated using the equation

P est (tk|tk−1) =

Φ (x̂ (tk−1|tk−1) , u (tk−1) , tk−1)P est (tk−1|tk−1)

× Φ
T (x̂ (tk−1|tk−1) , u (tk−1) , tk−1) + Q (tk−1) , (7.20)

where Φ (x̂ (tk−1|tk−1) , u (tk−1) , tk−1) is the discrete equivalent of

F (x̂ (tk−1|tk−1) , u (tk−1) , tk−1), calculated using e.g. zero-order-hold.. As

with the state estimate, the a posteriori covariance matrix P est (tk|tk) is obtained by

correcting the a priori covariance matrix P est (tk|tk−1). The corrector equation for the

covariance matrix is

P est (tk|tk) = P est (tk|tk−1) − K (tk)H (x̂ (tk|tk−1) , tk)P est (tk|tk−1) , (7.21)

where K (tk) is the Kalman gain in Equation (7.16). An alternate equation of the cor-

rector, which is numerically more stable, is given in [Maybeck, 1982] as

P est (tk|tk) = (1− K (tk)H (x̂ (tk|tk−1) , tk))P est (tk|tk−1)

× (1− K (tk)H (x̂ (tk|tk−1) , tk))
T

+ K (tk) R (tk)KT (tk) . (7.22)
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It is important to note from Equation (7.14), that the Kalman gain is a weight factor,

which weighs error in the measurement against the predicted state. From Equation (7.16)

it is seen that if R (tk) approaches zero, the Kalman gain will increase. This results in

a large update in Equation (7.14), which means that the new measurements are weighed

higher than the predicted state. If P est (tk|tk) approaches zero, the Kalman gain will de-

crease, and the predicted state is weighed higher. When R (tk) and P est (tk|tk) increase,

they will have the opposite effects on the Kalman gain. These effects are in agreement

with the expected, when considering the interpretation of R (tk) and P est (tk|tk).

7.2 Unscented Kalman Filter

The UKF follows the same overall structure as the EKF. The UKF is fundamentally

different in the way it estimates the noise distributions of the filter. As opposed to

approximating the non-linear transformation of the noise distributions, the UKF ap-

proximates the transformation by applying the non-linear transformation to a num-

ber of selected points in the state space. These points are called sigma points, and

are calculated from the covariances of the estimation error. Figure 7.1 illustrates the

approximation of the non-linear process noise covariance transformation. The sigma

points, circled points in the figure, are selected such that they describe the distribution

of the estimation error. The transformed sigma points are then used to calculate the

approximation of the transformed distribution. This is known as the UT published in

[Julier and Uhlmann, 1994]. The UKF is published in [Julier and Uhlmann, 1997] and

[Wan and van der Merwe, 2000]. In the following, the equations of the UKF are pre-

sented.

The estimation error covariance P est (tk−1|tk−1) is approximated by 2n + 1 sigma

points, where n is the dimension of the state vector. The sigma points are given by

χ0 (tk−1|tk−1) = x̂ (tk−1|tk−1) , (7.23)

χi (tk−1|tk−1) = x̂ (tk−1|tk−1) +
{

√

(n + κ)P est (tk−1|tk−1)
}

i
, (7.24)

χn+i (tk−1|tk−1) = x̂ (tk−1|tk−1) −
{

√

(n + κ)P est (tk−1|tk−1)
}

i
, (7.25)

where i = 1, 2, ..., n and κ is a tuning parameter. If x (t) can be assumed Gaussian, κ
is selected such that n + κ = 3. The notation {M}i denotes the i’th column of M .

It should be noted that for non-zero-mean process noise, the system state vector is aug-

mented with the process and measurement noise vectors, and the covariance augmented

with the associated covariance matrices. Each sigma point has an associated weight.
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Covariance

Mean

ẋ (t) = f (x (t) , u (t) , t)

Figure 7.1: Illustration of the UT. The transformed distribution is based on the non-

linear transformation of selected sigma points, marked as circled points in

the figure.

The weights are given by

w0 =
κ

n + κ
, (7.26)

wi =
1

2 (n + κ)
, (7.27)

wn+i =
1

2 (n + κ)
. (7.28)

The set of sigma points χ (tk−1|tk−1) is propagated one time step to χ (tk|tk−1),
using the non-linear system equation. The transformed sigma points are used to calculate

the statistics of the propagated state. The estimated propagated state is the weighted

mean of the sigma points

x̂ (tk|tk−1) =

2n
∑

j=0

wjχj (tk|tk−1) , (7.29)

and the covariance of the estimate is given by

P est (tk|tk−1) = Q (tk)

+

2n
∑

j=0

wj

(

χj (tk|tk−1) − x̂ (tk|tk−1)
) (

χj (tk|tk−1) − x̂ (tk|tk−1)
)T

. (7.30)
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An observation is estimated at each sigma point

ζj (tk|tk−1) = h
(

χj (tk|tk−1) , tk
)

, (7.31)

where j = 0, 1, ..., 2n. The predicted measurement is the weighted mean of the obser-

vation set

ẑ (tk|tk−1) =
2n
∑

j=0

wjζj (tk|tk−1) . (7.32)

The covariance of the predicted measurement is expressed, in terms of the covariance of

the predicted sigma points and the measurement covariance, as

P meas (tk|tk−1) = R (tk)

+

2n
∑

j=0

wj

(

ζj (tk|tk−1) − ẑ (tk|tk−1)
) (

ζj (tk|tk−1) − ẑ (tk|tk−1)
)T

. (7.33)

Equations (7.30) and (7.33) hold if the process and measurement noise are additive and

independent.

Given the sets of sigma points and their observations, the cross correlation matrix is

given by

P cross (tk|tk−1) =

2n
∑

j=0

wj

(

χj (tk|tk−1) − x̂ (tk|tk−1)
) (

ζj (tk|tk−1) − ẑ (tk|tk−1)
)T

. (7.34)

The Kalman gain is expressed in terms of the above matrices as

K (tk) = P cross (tk|tk−1)P−1
meas (tk|tk−1) . (7.35)

The update of the estimate is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + K (tk) (z (tk) − ẑ (tk|tk−1)) , (7.36)

and the update of the estimate covariance is expressed as

P est (tk|tk) = P est (tk|tk−1) − K (tk)P meas (tk|tk−1)KT (tk) . (7.37)

The EKF and UKF have now been presented. The main difference between the

filters is the approximation of the estimation error covariance. Where the EKF uses

a first-order linearized system description, the UKF uses sigma points transformed by

the non-linear system description for calculating statistics. The equations presented are

generic, and the following chapter presents the design of the estimators, specific for

attitude determination of satellites.
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Chapter 8
Estimator Designs

This chapter describes the estimators designed for Ørsted, based on the Kalman filters

described in Chapter 7 and the Earth Albedo model described in Chapter 2. The system

and measurement models are derived. The system model is based on the general equa-

tions of satellite motion. The measurement model is based on the Sun sensor current

model and vector observations derived in chapters 3 and 4. In addition, some specific

alternation to the theory is necessary, due to the use of quaternions in the state and the

non-differentiable measurement equation.

8.1 System Model

This section presents the derivation the equations used for modeling the kinematics and

dynamics of satellite motion. A detailed description of the satellite motion can be found

in [Wertz, 1978]. The modeling of a satellite’s rotation is split into the kinematic equa-

tion and the dynamic equation. The kinematic equation describes the change in the

attitude parameters of the satellite, regardless of the forces acting on it. The dynamic

equation describes the time dependent parameters as functions of external forces.

8.1.1 Kinematic Equation

Let the attitudes of a satellite at times t and t + ∆t be denoted qsat (t) and qsat (t + ∆t).
If the rotation of the satellite in the time period ∆t is denoted ∆qsat (t), the propagation

of the attitude from t to t + ∆t can be written

qsat (t + ∆t) = ∆qsat (t) qsat (t) . (8.1)
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Writing ∆qsat (t) in terms of rotation angle ∆φ (t) around the vector ê (t) in time

∆t, yields

∆qsat (t) =

















ê1 (t) sin
(

∆φ(t)
2

)

ê2 (t) sin
(

∆φ(t)
2

)

ê3 (t) sin
(

∆φ(t)
2

)

cos
(

∆φ(t)
2

)

















. (8.2)

Assuming that ê (t) and ∆φ (t) are constant over the time ∆t, and using the defini-

tion of the quaternion product, Equation (8.1) is written

qsat (t + ∆t) =








cos

(

∆φ (t)

2

)

14×4 + sin

(

∆φ (t)

2

)









0 ê3 (t) −ê2 (t) ê1 (t)
−ê3 (t) 0 ê1 (t) ê2 (t)
ê2 (t) −ê1 (t) 0 ê3 (t)
−ê1 (t) −ê2 (t) −ê3 (t) 0

















× qsat (t) , (8.3)

where 14×4 is the 4 by 4 identity matrix. For infinite small time steps, ∆φ (t) can be

approximated by

∆φ (t) = ||ωsat (t)||∆t, (8.4)

where ωsat (t) is the instantaneous angular velocity of the satellite. Using small angle

approximations of the sine and cosine functions, Equation (8.3) can be expressed as

qsat (t + ∆t) =

(

14×4 +
∆t

2
Ω (t)

)

qsat (t) , (8.5)

where

Ω (t) = ||ωsat (t)||









0 ê3 (t) −ê2 (t) ê1 (t)
−ê3 (t) 0 ê1 (t) ê2 (t)
ê2 (t) −ê1 (t) 0 ê3 (t)
−ê1 (t) −ê2 (t) −ê3 (t) 0









. (8.6)

Realizing that ê (t) = ω̂sat (t), Equation 8.6 can be written

Ω (t) =









0 ω3 (t) −ω2 (t) ω1 (t)
−ω3 (t) 0 ω1 (t) ω2 (t)
ω2 (t) −ω1 (t) 0 ω3 (t)
−ω1 (t) −ω2 (t) −ω3 (t) 0









. (8.7)
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The differential equation of qsat (t) is defined as

q̇sat (t) = lim
∆t→0

qsat (t + ∆t) − qsat (t)

∆t
. (8.8)

Inserting Equation (8.5) yields the sought kinematic differential equation

q̇sat (t) =
1

2
Ω (t) qsat (t) (8.9)

8.1.2 Dynamic Equation

The dynamic equation of motion is derived from the change in angular momentum of the

satellite. An expression for the change in angular velocity, as a function of the applied

torques is sought. The angular momentum l (t), is given by

l (t) =

k
∑

i=1

li (t)

=

k
∑

i=1

ri (t) × mivi (t) , (8.10)

where ri (t) is the position of the i’th particle with mass mi and velocity vi (t). Taking

the time derivative of Equation 8.10, yields

l̇ (t) =

k
∑

i=1

(vi (t) × mivi (t) + ri (t) × miai (t)) , (8.11)

ai (t) being the acceleration of the i’th particle. The first term under the summation of

Equation (8.11) is a cross-product of two parallel vectors, which is zero. Realizing that

miai (t) is the force acting on the i’th particle, yields

l̇ (t) = next (t) , (8.12)

where next is the sum of external torques acting on the satellite. Equation (8.12) only

holds if the internal torques sum up to zero. An expression of the derivative of the

angular momentum in terms of the satellite’s angular velocity is sought, in order to

obtain the dynamic equation.

In the Earth Centered Inertial (ECI) frame, denoted I , the angular momentum of the

satellite can be expressed as a function of the angular velocity of the SCB frame relative

to the ECI frame,ωsat (t), and the moment of inertia matrix J (t) of the satellite, by

lI (t) = JI (t)ωI
sat (t) . (8.13)

The moment of inertia is more conveniently expressed in the SCB frame, which has

it axes aligned with the principal axes of the satellite, denoted B. The attitude matrix
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AB
I (t), represents the rotation from the inertial frame to the body frame, which is used

to represent the angular momentum in the body frame, yielding

lB (t) = AB
I (t) lI (t) . (8.14)

The derivative of lB (t) is given by

l̇
B

(t) =
d

dt

(

AB
I (t) lI (t)

)

(8.15)

= Ȧ
B

I (t) lI (t) + AB
I (t) l̇

I
(t) . (8.16)

In order to obtain an expression for Ȧ
B

I (t), consider the kinematic equation for the

derivative of a vector described in a rotating frame of reference, which for the angular

momentum vector l (t) is

(

l̇
I
(t)
)B

= l̇
B

(t) + ωB
sat (t) × lB (t) (8.17)

m

l̇
B

(t) =
(

l̇
I
(t)
)B

− ωB
sat (t) × lB (t) . (8.18)

Since
(

l̇
I
(t)
)B

= AB
I (t) l̇

I
(t), combining Equations 8.15 and 8.17, gives

Ȧ
B

I (t) lI (t) = −ωB
sat (t) × lB (t)

= −ωB
sat (t) ×

(

AB
I (t) lI (t)

)

. (8.19)

Introducing the cross-product matrix, Equation (8.19) is written as

Ȧ
B

I (t) lI (t) = −S
(

ωB
sat (t)

)

AB
I (t) lI (t) . (8.20)

Since Equation (8.20) holds for all lI (t), the sought expression for the derivative of the

attitude matrix is

Ȧ
B

I (t) = −S
(

ωB
sat (t)

)

AB
I (t) . (8.21)

Inserting Equation (8.21) into Equation (8.15), gives

l̇
B

(t) = −S
(

ωB
sat (t)

)

AB
I (t) lI (t) + AB

I (t) l̇
I
(t) . (8.22)

Recalling, from Equation (8.12), that the derivative of the angular momentum is the

external torques and applying the attitude matrix rotations in Equation (8.22), yields

l̇
B

(t) = −S
(

ωB
sat (t)

)

lB (t) + nB
ext (t) . (8.23)
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Finally the angular momentum is expressed in terms of the moment of inertia and

the angular velocity, as given in Equation 8.13. Solving with respect to ω̇sat (t), gives

the sought nonlinear differential equation, written in the form

ω̇sat (t) = J−1 (next (t) − ωsat (t) × Jωsat (t)) , (8.24)

where the superscript of frame is left out, since all vectors and matrices are given in the

SCB frame. The external torque is the sum of disturbance torques nd (t) and the control

torque nctrl (t)
next (t) = nctrl (t) + nd (t) . (8.25)

The control torque is calculated by the Attitude Control System (ACS) of the satellite.

The disturbance torque is the sum of torques generated from gravity gradient, magnetic

residual, solar pressure, aerodynamic drag, and Earth albedo.

8.1.3 Non-Linear System Model

Combining the kinematic equation of Equation (8.9) and the dynamic equation of Equa-

tion (8.24), yields the non-linear differential equation

ẋ (t) = f (x (t) , u (t)) (8.26)

=

[

1
2Ω (t) qsat (t)

J−1 (nctrl (t) + nd (t) − ωsat (t) × Jωsat (t))

]

, (8.27)

where

x (t) =

[

qsat (t)
ωsat (t)

]

, (8.28)

and

u (t) = nctrl (t) (8.29)

defines the control torques as the input to the system. The model derived in Equation

(8.26) is a non-linear differential equation, which can be numerically integrated,in order

to predict the state of a satellite, from initial conditions. The non-linear system model is

applied in the Kalman Filters, when estimating the propagated state. However, the prop-

agation of the estimation error covariance, presented in Chapter 7, require linearization

of the system model at a given nominal set point. The linearization of the system model

is given in the following.

8.2 Linearization of System Model

In this section the attitude dynamic and kinematic equations are linearized around a set

point of the state. As a consequence of linearization, the system state is replaced with

the small signals of the full state. The linear description of the system is utilized in the

estimation algorithms, for propagating the noise distribution of the system state estimate.



58 Estimator Designs

The non-linear system matrix f (x (t) , u (t) , t) is linearized, and a linear expres-

sion, of the form

ẋ (t) = F (t)x (t) + G (t)u (t) , (8.30)

is sought. The kinematic and dynamic equations are linearized separately in the follow-

ing.

8.2.1 Linear Kinematic Equation

For the linearization of the kinematic equation, the attitude quaternion of the satellite

qsat is written, in terms of a set point q̄sat (t) and small signal q̃sat (t), as

qsat (t) = q̃sat (t) q̄sat (t) (8.31)

m
q̃sat (t) = qsat (t) q̄∗

sat (t) , (8.32)

where q̄∗
sat (t) is the complex conjugate of q̄sat (t). Recalling the definition of Ω (t) in

Equation (8.6) and the definition of quaternion products, the kinematic equation can be

written in terms of a quaternion product, as

q̇sat (t) =
1

2
qω (t) qsat (t) , (8.33)

where the quaternion qω (t) is defined by

qω (t) =

[

ωsat (t)
0

]

. (8.34)

Using the chain rule and Equation (8.33), the derivative of the small signal attitude

quaternion of Equation (8.31) can be expressed as

˙̃qsat (t) = qsat (t) ˙̄q∗
sat (t) + q̇sat (t) q̄∗

sat (t) (8.35)

=
1

2

(

qsat (t) (qω̄ (t) q̄sat (t))
∗

+ qω (t) qsat (t) q̄∗
sat (t)

)

(8.36)

=
1

2
(−qsat (t) q̄∗

sat (t) qω̄ (t) + qω (t) qsat (t) q̄∗
sat (t)) (8.37)

=
1

2
(−q̃sat (t) qω̄ (t) + qω (t) q̃sat (t)) , (8.38)

where qω̄ (t) is defined as in Equation (8.34) and the set point of the angular velocity

ω̄sat (t), defined below, is inserted. Note that the complex conjugate of a quaternion

represents the opposite rotation. Hence the reverse rotation defined by a sequence of

rotations, is the reverse sequence of each rotation complex conjugated. The complex

conjugate of qω̄ (t) is simply −qω̄ (t), since the scalar part is zero.
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The angular velocity is defined, in terms of a set point ω̄sat (t) and small signal

ω̃sat (t), as

ωsat (t) = ω̄sat (t) + ω̃sat (t) . (8.39)

Hence qω (t) can be written

qω (t) =

[

ω̄sat (t) + ω̃sat (t)
0

]

(8.40)

= qω̄ (t) + qω̃ (t) . (8.41)

Inserting Equation (8.40) in Equation (8.38), and recognizing that the associative rule

applies for quaternions, yields

˙̃qsat (t) =
1

2
(−q̃sat (t) qω̄ (t) + qω̄ (t) q̃sat (t) + qω̃ (t) q̃sat (t)) . (8.42)

A quaternion can be expressed, in terms of a scalar part and a complex vector part,

as

q =

[

p
q

]

, (8.43)

as described in Chapter 5. If q̃sat (t) is a small rotation, q̃sat (t) is close to one and p̃sat (t)
close to zero. Hence the quaternion product of the last term in Equation (8.42) can be

approximated by

qω̃ (t) q̃sat (t) =

[−S (ω̃sat (t)) ω̃sat (t)

−ω̃T
sat (t) 0

] [

p̃sat (t)
q̃sat (t)

]

(8.44)

=

[−S (ω̃sat (t)) p̃sat (t) + ω̃sat (t) q̃sat (t)

−ω̃T
sat (t) p̃sat (t)

]

(8.45)

≈ qω̃ (t) , (8.46)

where S (ω̃sat (t)) is the cross-product matrix function, applied on ω̃sat (t). The terms

q̃sat (t) qω̄ (t) and qω̄ (t) q̃sat (t), of Equation 8.42, can be expressed as

q̃sat (t) qω̄ (t) =

[−S (p̃sat (t)) + q̃sat (t)13×3 p̃sat (t)

−p̃T
sat (t) q̃sat (t)

] [

ω̄sat (t)
0

]

(8.47)

=

[

−S (p̃sat (t)) ω̄sat (t) + q̃sat (t) ω̄sat (t)
−p̃T

sat (t) ω̄sat (t)

]

(8.48)

and

qω̄ (t) q̃sat (t) =

[

−S (ω̄sat (t)) ω̄sat (t)
−ω̄T

sat (t) 0

] [

p̃sat (t)
q̃sat (t)

]

(8.49)

=

[

−S (ω̄sat (t)) p̃sat (t) + ω̄sat (t) q̃sat (t)
−ω̄T

sat (t) p̃sat (t)

]

. (8.50)



60 Estimator Designs

Inserting the approximation of Equation (8.46) and the results of equations (8.50)

and (8.48) in Equation (8.42), yields

˙̃qsat (t) =

[

−S (ω̄sat (t)) 03×1

01×3 0

]

q̃sat (t) +
1

2
qω̃ (t) , (8.51)

which is the sought linearized kinematic equation in terms of the small signal of the

state.

8.2.2 Linear Dynamic Equation

The dynamic equation is linearized using first order Taylor expansion around the set

point ω̄sat (t). The control and disturbance torques are disregarded in the linearization,

as they are already linear terms.

The derivative of the small signal angular velocity describes the linearized dynamics

of the system, and can be expressed as in terms of the Jacobian as

˙̃ωsat (t) ≈ −J−1 d (ωsat (t) × Jωsat (t))

dωsat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t) . (8.52)

Utilizing the chain rule, the above equation is expressed as

J ˙̃ωsat (t) ≈− d

dωsat (t)
S (ωsat)Jωsat

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t) (8.53)

= − d

dωsat (t)
S (ωsat (t))

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

Jω̄sat (t) ω̃sat (t)

− S (ω̄sat (t))J
d

dωsat (t)
ωsat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t) . (8.54)

The constant factors can be moved inside the differential expressions, and the cross-

products are interchanged with opposite sign, which yields

J ˙̃ωsat (t) ≈− d

dωsat (t)
S (ωsat (t))Jω̄sat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t)

− d

dωsat (t)
S (ω̄sat (t))Jωsat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t) (8.55)

=
d

dωsat (t)
S (Jω̄sat (t))ωsat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t)

− d

dωsat (t)
S (ω̄sat (t))Jωsat (t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat (t) (8.56)

= (S (Jω̄sat (t)) − S (ω̄sat (t)) J) ω̃sat (t) . (8.57)
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8.2.3 Linear System Model

The linearized system model can now be written as a linear system in the form ˙̃x (t) =
F x̃ (t) + Gũ (t), given by

˙̃x (t) =




−S (ω̄sat (t)) 03×1
1
213×3

01×3 0 01×3

03×3 03×1 J−1 (S (Jω̄sat (t)) − S (ω̄sat (t))J)



 x̃ (t)

+

[

04×3

J−1

]

ũ (t) +

[

04×1

J−1nd (t)

]

, (8.58)

where the last term is a noise term, given by the disturbance torques.

8.3 Measurement Model

The Ørsted satellite is configured with eight Sun sensors and a magnetometer. The EKF

requires that the measurement equation can be linearized by Taylor expansion, which

is not the case for the Sun sensor output equation, due to saturation. Consequently, the

output of the Sun sensors cannot be utilized directly in the EKF filter. A solution is to

utilize the Sun sensor vector algorithms, described in Chapter 4, and express the mea-

surement of the body frame vectors as a function of reference vectors and the satellite

state. The measurement vector can be expressed as

z (tk) =

[

r̂B
Sun (tk)

bB
Earth (tk) ,

]

(8.59)

which is a 6 × 1 vector, where bEarth denotes the Earth magnetic field vector. The mea-

surement equation is expressed in terms of the system state as

z (tk) =

[

A (qsat (tk)) r̂I
Sun (tk)

A (qsat (tk)) bI
Earth (tk)

]

. (8.60)

The linearization of the measurement equation follows the method described in

[Gebre-Egziabher et al., 2000]. A linear measurement equation is obtained by express-

ing Equation (8.60) in terms of the state set point x̄ (tk) and small signal x̃ (t), as

z (tk) =

[

A (q̃sat (tk))A (q̄sat (tk)) r̂I
Sun (tk)

A (q̃sat (tk))A (q̄sat (tk)) bI
Earth (tk)

]

. (8.61)

Equation (5.21) expresses the attitude matrix as a function of the quaternion elements.

For the small signal attitude quaternion, a first order approximation yields

A (q̃sat (tk)) ≈ 13×3 − 2S (p̃sat (tk)) . (8.62)
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Inserting into Equation (8.61), the vector observation of the Earth magnetic field can be

expressed as

bB
Earth = A (q̄sat (tk)) (13×3 − 2S (p̃sat)) bI

Earth. (8.63)

The measurement bEarth (tk) can be expressed in terms of the set point and small signal

bEarth (tk) = b̄Earth (tk) + b̃Earth (tk) , (8.64)

where the set point is expressed in terms of the inertial reference vector

b̄
B
Earth (tk) = A (q̄sat (tk)) b̄

I
Earth (tk) . (8.65)

Inserting into Equation (8.63) can be written as

b̃
B

Earth (tk) = 2S
(

b̄
B
Earth (tk)

)

p̃sat (tk) . (8.66)

Applying the same method to the Sun LOS vector in Equation (8.61), yields the

expression of the measurement small signal

z̃ (tk) =

[

2S
(

¯̂rB
Sun (tk)

)

2S
(

b̄
B
Earth (tk)

)

]

p̃sat. (8.67)

Equation (8.67) is a linear expression in the form of Equation (7.12). The noise

term in Equation (7.12) represents errors in the International Geomagnetic Reference

Field (IGRF) model and sensor errors. The linear output matrix of the reduced state

EKF becomes

H (tk) =

[

2S
(

¯̂rB
Sun (tk)

)

03×3

2S
(

b̄
B
Earth (tk)

)

03×3

]

. (8.68)

When applying the Earth albedo model to the EKF, the Sun LOS vector is replaced

with the SSE vector, and the SSE algorithm is applied to the Sun sensor currents. Uti-

lizing the Sun LOS vector the Standard and Max Currents algorithms are applied.

The UKF approximates the noise matrices by non-linear mapping of a number of

sigma points, hence the Jacobian of the measurement equation is not required. The

Earth albedo model is utilized in the non-linear output equation, and the Earth magnetic

field observation is described by Equation (8.60).

8.4 Quaternion Algebra Modifications

The use of quaternions as attitude parameter in the Kalman filter leads to two problems

which need to be considered. Both are related to the unity constraint of the quaternion.

The unity constraint of the quaternion in the state vector leads to a singular state er-

ror covariance, [Lefferts et al., 1982b]. In addition, the quaternion unity norm must be

ensured since the filter updates the estimate regardless with no attention to constraints.
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8.4.1 Covariance Singularity

As a solution to the problem of singularities in the state estimation error covariance

matrix, the state vector of the filter is reduced by one dimension in the corrector, by

leaving out the scalar element of the attitude quaternion

x̂red (tk|tk) =

[

p̂ (tk|tk)
ω̂sat (tk|tk)

]

, (8.69)

where p̂sat (t) is the complex 3 × 1 vector part of the quaternion q̂sat (t). The reduced

state vector is a 6× 1 vector. As a consequence, the covariance matrix P est (tk) reduces

to a 6 × 6 matrix. The reduced dimension of the state error covariance requires that

all equations involving P est (tk) are adapted accordingly. The Kalman gain K (t) thus

reduces to a 6 × 6 matrix. The update ˆ̃xred (tk|tk) to the a priori state estimate is given

by
ˆ̃xred (tk|tk) = K (tk) (z (tk) − ẑ (tk|tk−1)) . (8.70)

Note that the reduction of the state vector and consequently the covariance and Kalman

gain matrices, results in a reduced state correction vector. The a priori update vector
ˆ̃xred (tk|tk) is expanded to the full 7 states, before updating the a priori estimate, such

that small rotation approximations apply to the quaternion reduced state.

The quaternion part of the state vector is expanded from three states to four states

by setting the value of the fourth element, such that a unit quaternion is formed. This is

done under the assumption that the correction term ˆ̃xred (tk|tk) is small. The expansion

of the correction vector is written as

ˆ̃x (tk|tk) =









ˆ̃psat (tk|tk)
√

1 −
∣

∣

∣

∣

∣

∣

ˆ̃psat (tk|tk)
∣

∣

∣

∣

∣

∣

2

ˆ̃ωsat (tk|tk)









. (8.71)

The a posteriori estimate x̂ (tk|tk) is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + ˆ̃x (tk|tk) , (8.72)

which is a full state vector, and used in the non-linear system equations, when propagat-

ing to the a priori value at time tk+1. A block diagram of the Kalman filter is given in

Figure 8.1, showing the propagator and the corrector using the reduced state.

8.4.2 Preserving Quaternion Unity Norm

Equation (8.72) reveals the second problem of using the quaternion as attitude parameter

in the Kalman filters. Due to the use of quaternions in the state, quaternion multiplication

is used for the first four elements of the state. The attitude estimate q̂sat (tk|tk) is given

by the a priori attitude estimate q̂sat (tk|tk−1) and a correction ˆ̃qsat (tk|tk), expressed as

q̂sat (tk|tk) = ˆ̃qsat (tk|tk) q̂sat (tk|tk−1) , (8.73)
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x̂ (tk|tk−1)

x̂ (tk|tk)

h (x (tk))
ẑ (tk|tk−1)

z (tk)

z̃ (tk)

ˆ̃xred (tk|tk)

ˆ̃x (tk|tk)

K (tk)

Figure 8.1: Structure of the Kalman filter algorithm state update with state reduction

and expansion.

given by quaternion multiplication. Hence the a posteriori estimate is given by

x̂ (tk|tk) =

[

ˆ̃qsat (tk|tk) q̂sat (tk|tk−1)

ω̂sat (tk|tk−1) + ˆ̃ωsat (tk|tk)

]

. (8.74)

8.5 Covariance Equations

The covariance of the EKF is calculated using the linearized system matrix, given by

F red (x̂ (tk|tk) , u (tk)) =
[

−S (ω̂sat (tk|tk)) 1
213×3

03×3 J−1 (S (Jω̂sat (tk|tk) − S (ω̂sat (tk|tk))J))

]

(8.75)

and

G =

[

03×3

J−1

]

, (8.76)

which is the linearized system model for the reduced state. The system is linearized

around the current estimate, and is used in the discrete zero-order hold equivalent, de-

noted Φred (x̂ (tk|tk) , u (tk) , tk). This matrix is used in the covariance propagation

equation in Equation (7.20), and the correction of P est (tk|tk) is done using Equation

7.22. No changes apply, due the use of quaternions, except for the reduction from seven

to six states, causing P est (tk|tk) to be a 6 × 6 matrix.
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Chapter 9
Validation of the Earth Albedo

Model

In this chapter the Earth albedo model is compared with telemetry data from the Danish

Ørsted satellite. The ACS of the Ørsted satellite has been designed and implemented by

the Department of Control Engineering, Aalborg University, which means all the Ørsted

telemetry is readily available. The simulations are done in SIMULINK, which is a graph-

ical user interface to MATLAB. The Earth albedo model is implemented in MATLAB

with a SIMULINK interface. The implementation is released as a Albedo Toolbox, and

can be freely downloaded at the author webesite [Bhanderi, 2005a].

The Ørsted satellite is equipped with Sun sensors, and since the orbit and attitude

of the satellite is known, the Earth albedo model can be applied in order to estimate

the currents from the Sun sensors. These estimates are then compared to the sampled

currents in the telemetry data, in order to validate the Earth albedo modeling algorithm.

The errors observed in the validation are a product of a number of factors. Clearly

errors are introduced due to sensor noise and model discrepancies. However some biases

are due to calibration errors, both geometrical and temporal. A known problem with the

Ørsted boom deployment, causes an unknown orientation of the gondola, containing the

star tracker and magnetometer, relative to the spacecraft body. Temporal data calibration

is also possible observing the magnitude of the magnetic field. The time shift between

the observed and modeled magnetic field amplitudes, is mainly caused by orbit propa-

gation errors in the Special General Perturbation Model of Fourth Order (SGP4) model.

In addition, the solar cells in the Sun sensors are expected to have a degraded efficiency

compared to the Beginning-of-Life (BOL) efficiencies.

Due to these expected discrepancies of the data and reference models, a number of

calibration procedures have been conducted, in order to ensure data integrity. The fol-
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lowing sections describe the Ørsted satellite sensor configuration and telemetry layout,

and describes the calibration procedures. Finally the Earth albedo model is validated

based on these data.

9.1 The Ørsted Satellite

The Danish Ørsted satellite was launched on February 23, 1999 into a LEO orbit. The

main scientific mission is a precise global mapping of the Earth’s magnetic field. The

Ørsted satellite is equipped with two magnetometers, the Compact Spherical Coil (CSC)

flux-gate and Overhauser magnetometers, for measuring the magnetic field magnitude

and direction. The Ørsted satellite is characterized by its eight meter boom, at the end of

which the CSC flux-gate magnetometer is placed, in order to minimize electro-magnetic

disturbances from the on-board electronics. Also on the boom, at a distance of six meters

from the main body of the satellite, a star imager is mounted. This allows for attitude

measurements with an accuracy of 5 − 20arcsec, [Liebe, 1995], [Jørgensen, 1995]. An

illustration of the Ørsted satellite is shown in Figure 9.1.

Figure 9.1: Illustration of the Ørsted satellite.

The Ørsted satellite is a micro satellite of 60.7kg with dimensions 45×34×68 cm3.
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The satellite is in a LEO with an inclination of 96.1 deg and an altitude of 850km at

apogee and 650km at perigee. The orbit period is 100 minutes. The inertia matrix of the

Ørsted satellite in the SCB frame, after boom deployment, is

JSCB =





219 0 0
0 219 0
0 0 1.529



 kgm2. (9.1)

The satellite is three axes stabilized. Passively gravity gradient stabilized and ac-

tively using magnetorquers. The reference attitude is such that the boom points in the

direction of zenith and the rotation around the boom axis is optimized with respect to

the star imager. The optimal orientation of the star imager is such that the Sun, Earth,

and Moon are not within its Field of View (FOV).

9.2 Telemetry Data Packages

The Ørsted satellite telemetry data is down-linked when the satellite is above the ground

station in Copenhagen, Denmark. The down-linked telemetry is assembled in packages

which are numbered consecutively, and each package may contain data from one or

more orbits.

The telemetry consists of three major components:

• Housekeeping data

• Science data

• Diagnostics data

Sun sensor measurements are available in housekeeping data packets, in addition to Sun

sensor temperatures, three axes magnetometer measurements, magnetorquers currents,

etc. The housekeeping data is available at 1/60Hz. The science packet contains the

star imager data, which is considered science, since it is used together with the science

magnetometer readings in order to estimate the Earth magnetic field. The science in-

struments are sampled at up to 100Hz. Finally the diagnostics data is data explicitly

requested, which can be changed through up-link, in case a subsystem needs to be mon-

itored closely.

The data packet utilized in the validation is from May 21, 2001, which is telemetry

data packet 5200. The total time of which data from the Star Imager and ACS house

keeping data are available is 3:52:03.707 PM to 10:10:16.469 PM.

The telemetry data is used in conjunction with reference models implemented in

SIMULINK. The magnetic field is modeled through an IGRF model and the ephemeris

models are based on a SGP4 orbital propagator. The time-stamp of the on-board data

and the reference vectors is calibrated in order to improve the accuracy of the vector

observations. This is described in the following section.
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9.2.1 Sun Sensors

The Ørsted satellite is equipped with eight Sun sensors, two three axis and two single

axis. Figure 9.2 shows the placement of the sensors in the SCB frame. It is seen from

the figure that since the boom is pointing away from the Earth at all times, the Earth

albedo currents are expected to be apparent on Sun sensors SS3 and SS6. These two

Sun sensors ideally point in the direction of the Nadir vector at all times.

xSCB

ySCB

zSCB

n̂SS1

n̂SS2

n̂SS3

n̂SS4
n̂SS5

(a) Top View

xSCB

ySCB
n̂SS3

n̂SS4

n̂SS5

n̂SS6

n̂SS7

n̂SS8

(b) Bottom View

Figure 9.2: Placement of the Ørsted Sun sensors in the spacecraft reference frame. The

boom extends in the positive zSCB direction.

The solar cells in the Sun sensors operate in short-circuit mode, such that voltage

drops, affecting the generated current, are avoided.

9.2.2 Sun Sensor Calibration

The Sun sensor circuits are designed such that they ideally generate 1.5mA of current

when illuminated by 1353W/m2 perpendicular to the solar cell plane. Pre-flight calibra-

tion is performed in order to measure the actual generated current at 1353W/m2. Table

9.1 lists the results of the pre-flight calibration.

The Sun sensor model is configured such that the generated current is matched when

the Sun sensors are illuminated with an irradiance of 1353W/m2. This requires that
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Sun Sensor Current @ 1353W/m2 Calibrated Efficiency

SS1 1.15mA 18.4%
SS2 1.53mA 20.7%
SS3 1.54mA 20.7%
SS4 1.56mA 19.6%
SS5 1.54mA 19.1%
SS6 1.39mA 24.2%
SS7 1.53mA 23.0%
SS8 1.58mA 16.8%

Table 9.1: Current generated by the Sun sensor, when illuminted by 1353W/m2 and re-

sulting calibrated effeciencies.

the simulated current is scaled linearly with the fraction of incoming irradiance to the

calibration irradiance.

The efficiencies of the solar cells in the Sun sensors are calibrated from the telemetry

data. A BOL efficiency of around 23% is expected since the solar cells in the Sun sen-

sors are single-junction GaAs cells, [Blanke et al., 1994]. The efficiency of solar cells

degrades over time, which requires that the efficiencies are calibrated post-launch. The

simulated currents using an efficiency of 23% is shown in Figure 9.3 in addition to the

measured currents from telemetry data package 5200. Telemetry data package contains

data recorded May 21, 2001, which is approximately 27 months after launch. The simu-

lated currents are higher than the measured currents, which is due to the degradation of

the solar cells in the Sun sensors.

From the data in Figure 9.3 the efficiencies of each Sun sensor is calibrated, which

results in the calibrated efficiencies listed in Table 9.1. The results of the calibrated

current simulation is shown in Figure 9.4. The simulated currents are calculated from

the solar irradiance only, which is why additional currents are seen on a number of the

Sun sensors. These currents are generated by the Earth albedo.

Clearly there are still discrepancies in the Sun sensor simulations, especially in Sun

sensors SS1 and SS7. These types of discrepancies are typically caused by shadow

effect. It is expected that the boom will cast a shadow on a number of the Sun sen-

sors, causing a decrease in current output. Temperature compensation has also been

investigated, and has been included in the modeling of Sun sensors. The influence of

the temperature variation on the solar cell efficiencies in the Sun sensors has negligible

impact on the output accuracy, hence it is not presented.

9.2.3 Star Imager

The data from the star imager is used as reference for the satellite attitude. The star

imager computes its inertial attitude based on the star pattern in the FOV, which is com-

pared to an on-board star catalogue. The output of the star imager is a quaternion which
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Figure 9.3: Currents on all eight solar cells on Ørsted. The estimated values do not

include the Earth albedo model. The Sun currents are used to calibrate

the degraded efficiencies of the solar cells in the Sun sensors. The current

measurements are from telemetry data package 5200.
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Figure 9.4: Measured and estimated currents on all six solar cells, after calibration of

the solar cell efficiencies. The current measurements are from telemetry data

package 5200.
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represents the attitude of the star imager frame with respect to the ECI frame. Figure 9.5

shows the mounting of the star imager in the gondola housing.

xSCN ySCN

zSCN

xSIM

ySIM

zSIM

αx

Gondola

Figure 9.5: Placement of the Ørsted star imager and star imager housing, known as the

gondola.

Data Fallouts

The star imager uses a number of stars in its FOV to determine an attitude. An initial

attitude is obtained by comparing the stars in the FOV with a star catalogue. Once the

initial attitude is found, the stars in the FOV are tracked. This tracking imposes some

requirements to the angular velocity of the satellite. When the angular velocity exceeds a

certain limit, the star imager is unable to track the satellite attitude, and must re-acquire

the initial attitude. These fallouts are identified in Figure 9.6, which show the time-

stamp of the star imager data as a function of the sample number. Jumps in the graph

reveals missing data, and four major fallouts are identified. The fallouts occur at times

660s, 6660s, 12660s, and 18660s. The period is of the fallouts are identical to the orbit

period. Following a fallout, approximately 1000s is needed until star tracking is stable.

The periods of fallouts are disregarded when applying the star imager data as attitude

reference.

Instrument Alignment

It is necessary to calculate the attitude of the SCB frame with respect to the inertial

frame, since the attitude of the Sun sensors are know with respect to this frame and

the ephemeris data is given in the ECI frame. In order to calibrate the star imager

misalignment, the designed orientation of the Star Imager (SIM) frame is described

relative to a nominal SCB frame, denoted the Spacecraft Body Nominal (SCN) frame.

The attitude quaternion of the SCN frame, qSCN
ECI (t) is calculated from the star imager

output, which is the rotation of the SIM frame wrt. the ECI frame, qSIM
ECI (t), and the
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Figure 9.6: Time-stamps of the star imager data in telemetry data package 5200. The

data is available at 1Hz with fallouts for a duration of up to 1100s.

attitude of the SIM frame wrt. the SCN frame, qSCN
SIM , with the following relation

qSCN
ECI (t) = qSCN

SIM qSIM
ECI (t) . (9.2)

The attitude quaternion qSCN
SIM is known prior to launch, dependent only on the mounting

of the star imager and the mounting of the star imager housing, known as the gondola.

However, the boom is non-rigid, because it has to be folded into the main body of the

satellite during launch. Problems with boom deployment causes an unknown rotation

of the boom. As a consequence, the attitude of the star imager with respect to the true

SCB frame must be estimated. This is done by estimating the discrepancy between the

SCB frame and the SCN frame. The SCB frame is aligned with the SCN frame when

the boom is fully deployed. Hence, Equation (9.2) becomes

qSCB
ECI (t) = qSCB

SCN (t) qSCN
SIM qSIM

ECI (t) , (9.3)

where qSCB
SCN (t) is the attitude of the nominal SCB frame wrt. true SCB frame.

The attitude of the star imager wrt. the SCN frame is constant, and calibrated prior to

launch. The attitude of the SCN frame wrt. the SCB frame is calculated using MATLAB.

This is discussed below.

9.3 Boom Deployment Calibration

The 8m boom on the Ørsted satellite is constructed in such a way, that it folds into

spacecraft’s main body during launch. After the satellite is released from the launcher,

the boom is deployed. The boom rotates as it folds out from the spacecraft body, and

it has been detected that the boom did not fully deploy. Hence there is also rotation
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error between the boom fixed frames and the SCB frame. This error has been estimated

and is uploaded to the on-board software. The boom rotation error does not influence

the science measurements, since the star tracker and the magnetometer are aligned in the

optical bench. Consequently the boom error is uploaded very seldom, i.e. approximately

three times during currently six years life time. It is assumed that the boom rotation error

is constant in the time frame between updates, which is not the case. The boom rotation

error is estimated on ground for the current data package, and the error between the

on-board compensation and the off-line estimation is added to the telemetry data.

The boom error rotation is found by estimating the Sun vector in all parts of the orbit

where the satellite is not in eclipse. Using the star tracker and the nominal rotation from

the SIM frame to the SCB frame, the direction to the Sun in body frame is found using

the ephemeris model. These vector pairs are used in Wahba’s problem in Equation (6.1),

and the optimal solution that minimizes the cost function is the estimate of the boom

rotation error. The Earth albedo model derived in Chapter 2 is used in order to improve

the Sun vector estimation. Figure 9.7 shows the measured and reference Sun vectors.

Large discrepancies occur during periods of eclipse. The data in eclipse is left out when

estimating the rotation error between the two Sun vectors.

By applying Wahba’s loss function to the data in Figure 9.7, the following quaternion

is found to minimize the error between the measured and reference Sun vectors

qSCB
SCN (t) =









0.0309
−0.0642
−0.0203
0.9973









. (9.4)

The quaternion qSCB
SCN (t) is a representation of the rotation of the boom, and rotates from

the SCN frame to the SCB frame. The calibration suggests a boom rotation error of

8.5 deg, mainly around the z axis. However, there is also a rotation around the other

axes due to the non-rigidness of the boom, i.e. the boom has a minor bend. Figure

9.8 shows the Sun vector estimation and reference after calibration of the boom rotation

error.

9.4 Temporal Calibration

The temporal calibration of the telemetry data is done by comparing the on-board mag-

netic field amplitude with the IGRF model. The on-board magnetic field measurements

is available in the house keeping data package. The amplitude of the magnetic field is

independent of the boom deployment induced error. Figure 9.9 shows the magnetic field

amplitude from the on-board measurements and the IGRF reference model.

By inspection it is found that the reference model is ahead in time by 66 seconds.

Figure 9.10 shows the resulting magnetic field strength comparison, when applying a

temporal calibration of 66 seconds.
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Figure 9.7: Sun LOS vector comparison for boom rotation error estimation. The rotation

error between the estimated Sun vector and the reference Sun vector, from

the ephemeris model, is used to estimate the rotation error of the boom.

Disregarding periods in eclipse, the data suggests a boom rotation error of

8.5 deg, mainly around the boom axis.
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Figure 9.8: Sun LOS vector comparison when applying boom rotation error calibration.
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Figure 9.9: Magnetic field amplitude comparisons for temporal calibration. The IGRF

reference model is shifted approximately 66 seconds forward in time.

Figure 9.10: Magnetic field amplitude comparisons for temporal calibration. The IGRF

reference model has been calibrated by 66 seconds.
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9.5 Earth Albedo Model Validation

The Earth albedo model is implemented in MATLAB with a SIMULINK interface, and the

calculated Earth albedo irradiance is fed to the Sun sensor models. The resulting currents

are compared to the measured currents. The data flow of the validation is illustrated in

Figure 9.11, where ǫ is the error of the simulated Sun sensor currents.
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Figure 9.11: Structure of the data flow in the validation calculations. The white boxes

are models used to estimate the Sun sensor currents. The greyed boxes

are satellite data. The reflectivity data is telemetry data from the TOMS

Earth Probe satellite and the star imager and Sun sensor data are Ørsted

telemetry.

The simulated currents in Figure 9.4, used for calibration of the Sun sensors, devi-

ate from the measured on-board currents. These deviations are primarily caused by the

Earth albedo, since the figures only show the currents induced by the solar energy flux.

Figure 9.12 shows the calibrated currents including the Earth albedo induced currents,

calculated using the Earth albedo model. It can be seen from the plots, that the Earth

albedo model and sensor simulation is able to estimate the additional Earth albedo in-

duced currents. It is seen that even though the Sun sensors SS4, SS5, SS7, and SS8

are perpendicular to the Nadir vector, the simulation is able to estimate Earth albedo

currents on these panels also.

Since Sun sensors SS3 and SS6 are the Nadir pointing Sun sensors, the albedo cur-

rents are most apparent on these sensors. The measured and estimated currents on solar

cell SS3 is shown in Figure 9.13. It is clearly seen that the Earth albedo model can be

used to calculate the irradiance on the solar cells from the Earth albedo.

Although the albedo model is added to the simulation, and the results show good es-

timation of the Earth albedo currents, Figure 9.13 reveals that residual discrepancies still

exist between the measured and estimated currents. This is due to a number of factors.

Some physical elements are disregarded in the model, such as variation in the atmo-

spheric pressure over the reflecting surface. The variation in pressure affects how much

of the irradiance is absorbed, and how the light is diffused. The surface is assumed Lam-

bertian, however, specular effects occur over some surfaces like ice and water, which

distributes the reflected irradiance more in certain directions, and not uniformly, as it
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Figure 9.12: Plot of the telemetry data of all Sun sensors in data package number 5200

together with the simulated current using the albedo model and daily re-

flectivity data.
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Figure 9.13: Plot of the telemetry data of Sun sensor SS3 in data package number 5200

together with the simulated current using the albedo model and daily re-

flectivity data.

is the case with Lambertian equivalent reflective surfaces. The daily TOMS reflectivity

data is incomplete (see Figure 2.2), which means that annually averaged values are sub-

stituted into the source data, where daily data is unavailable. This will give errors over

areas where the cloud coverage deviates from the norm. In addition, the reflectivity data

is recorded at a specific time of the day, which is likely to differ from the time the Ørsted

satellite appeared over the same area. Since the cloud coverage is not constant over a

day, this will also lead incorrect Earth albedo calculations. Finally, the Moon albedo

also contributes to the total irradiance on the Sun sensors.

The significance of using the Earth albedo model in the Sun sensor output equation is

shown in Figure 9.14 and Table 9.2. Figure 9.14 shows the errors between the estimated

currents and the Ørsted telemetry, with and without albedo compensation. There is no

improvent in Sun sensors SS1 and SS2 since they are constantly facing away from the

Earth, hence no albedo reaches these sensors. The improvement is apparent on the Earth

facing Sun sensors, SS3 and SS6, where the Root-Mean-Square (RMS) error is reduced

from approximately 0.18mA to 0.06mA. The Earth albedo is often assumed to reach

the satellite only from the direction to Earth. This would result in no estimated albedo

currents on Sun sensors SS4, SS5, SS7, and SS8. The Earth albedo model enables the

estimation of the currents generated on these Sun sensors, as a result of the Earth albedo

contributions from all grid points. The RMS errors are reduced significantly, e.g. from

0.041mA to 0.020mA on Sun sensor SS5. The RMS error is reduced from 0.11mA to

0.074mA average., which is an improvement of 33%.
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Figure 9.14: Error of the estimated currents on the Sun sensors, with and without Earth

albedo compensation.



84 Validation of the Earth Albedo Model

Sun Sensor
RMS Error [mA] RMS Error [mA]

wo. Albedo Comp. w. Albedo Comp.

SS1 0.193 0.193
SS2 0.062 0.062
SS3 0.175 0.060
SS4 0.063 0.058
SS5 0.041 0.020
SS6 0.184 0.053
SS7 0.121 0.105
SS8 0.043 0.039

Table 9.2: RMS errors of the Sun sensor current estimation, with and without using the

Earth albedo model.

It is concluded from the results above, that the Earth albedo model is able to predict

the Earth albedo with an accuracy that has not been preceded in the literature. In the

following section the Earth albedo model is applied to investigate the properties of the

Earth albedo.



Chapter 10
Earth Albedo Model Results

In this chapter the results of the Earth albedo model are presented. First an example of

the model output is presented and a total coverage calculation is done. Secondly model

outputs for multiple calculations are presented to show dependency on longitude and

altitude. The Earth albedo of an Ørsted orbit is presented. Finally the possibility to

reduce the resolution of the Earth albedo model is presented. This allows for decreasing

the computation time of the algorithm.

The results in this chapter are based on the annual mean of TOMS reflectivity data

from 2001, except for the Ørsted simulation which uses daily reflectivity data. The

annual mean reflectivity data of 2001 is shown in Figure 2.3. All vectors in this chapter

are given in the Earth Centered Earth Fixed (ECEF) frame.

10.1 Earth Albedo

Figure 10.1 shows the conditions for the Earth albedo calculations. The plot (a) shows

the satellite’s FOV. The coordinates of the satellite are

rsat =





−π/2
π/3

7171km



 , (10.1)

which is equivalent to 90 deg West and 30 deg North at an altitude of 800km. The Sun’s

coordinates are

rSun =





0rad

1.17rad

1A.U.



 , (10.2)
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(a) Satellite FOV

(b) Solar FOV

(c) Sunlit satellite FOV

Figure 10.1: Parameters to the albedo calculation. a) shows the satellite FOV, V sat,

b) shows the Sun’s FOV, V Sun, and c) shows the intersection of the two,

V sat ∩ V Sun. It is seen that the satellite is over North America at dawn.
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which is at the Greenwich Meridian and 23 deg North, shown in plot (b). Plot (c) in

Figure 10.1 shows the intersection of (a) and (b), which is the sunlit part of the satellite

FOV. This means that the satellite is at an altitude of 800km over the state of Louisiana

at dawn in mid-summer. The albedo algorithm returns an array of same resolution as the

Earth Probe reflectivity data. Each element in the array, represents the albedo contribu-

tion from a single cell. The result is shown in Figure 10.2.

Figure 10.2: Result of albedo calculation given the conditions in Figure 10.1.

The total albedo at the satellite, is calculated by summing up all elements in the

array. This indicates an albedo of 73.5W/m2. This is equivalent to 5.4% of the incident

solar irradiance. For comparison, the same albedo has been calculated for an altitude of

500km, which yields a total albedo of 82.5W/m2 or 6.0%. The albedo is expected to

be low, since the FOV of the satellite is partially on the night side of Earth, and over an

area of generally low reflectivity.

Given specific time, the position of the Sun is constant, and the total albedo at every

satellite position at a single altitude, may be calculated. The position of the Sun is

rSun =





0
1.17rad

1A.U.



 , (10.3)

which gives the Earth visibility shown in Figure 10.3. The result of the Earth albedo

model, given a satellite altitude of 800km, is shown in Figure 10.4. The data suggests

that the albedo near the North Pole is 21%, and decreases moving away from the pole,

and of course moving towards the shadow side of the Earth.
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Figure 10.3: Solar FOV of total albedo calculation at all satellite positions.

Figure 10.4: Total albedo at all satellite positions at an altitude of 800km, given a solar

FOV shown in Figure 10.3.
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It is often assumed that the maximum albedo is observed over the poles, due to the

constant ice coverage. This has been investigated using the Earth albedo model. Due of

the high angle to the Sun, the albedo is 33.8% directly over the South Pole and 36.7%
over the North Pole, during local summer. From Figure 10.4, the maximum albedo of

approximately 49% is observed over Greenland during local summer at noon. This is due

to Greenland’s large ice coverage, which has a low angle to the Sun during summertime,

compared to the polar regions. The Earth albedo at local winter over Greenland at noon

is 36.7%.

10.2 Longitude Dependency

It is known that the reflectivity data is strongly dependent on the latitude. It is sometimes

assumed that the longitude dependency can be disregarded. This is investigated below.

The albedos of two sub-solar satellite positions have been calculated. The positions

are equal in latitude and separated by 90 deg longitude. The input parameters of the first

albedo calculation are

rsat =





−π/2
1.17rad

6871km



 rSun =





−π/2
1.17rad

1A.U.



 , (10.4)

which are equivalent to 90 deg West and 23 deg North. The satellite is at an altitude of

500km, with the Sun directly above. The Earth albedo is in this case calculated to be

356W/m2 or 26.1%. The input parameters of the second albedo calculation are

rsat =





0rad

1.17rad

6871km



 rSun =





0rad

1.17rad

1A.U.



 , (10.5)

which are the same as above except at the Greenwich Meridian, i.e. 90 deg East of the

satellite and Sun positions of the first calculation. The albedo in this case is 187W/m2 or

13.7%, which is almost half the albedo at 90 deg W. This shows a significant dependency

on longitude in the Earth albedo.

10.3 Altitude Dependency

The Earth albedo is expected to decrease with satellite altitude. In order to show this, the

albedo is calculated with constant Sun and satellite directions, and varying the altitude

of the satellite between 200km and 2000km. The Sun position is constant at

rSun =





0
1.17rad

1A.U.



 (10.6)
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and the satellite position is sub-solar. The result of 50 albedo calculations at altitudes

between 200km and 2000km is shown in Figure 10.5. The calculations indicate that the

albedo decreases from 15.3% at 200km to 10.5% at 2000km.

Figure 10.5: Total Earth albedo at constant sub-solar satellite position at altitudes from

200km to 2000km at Greenwich Meridian and 23 deg North.

10.4 Ørsted Orbit

The Earth albedo model has been applied to the Ørsted satellite simulation. The Ørsted

satellite is in a LEO orbit with an altitude of approximately 850km at apogee and 650km

at perigee. The inclination of the orbit is 96.1 deg. Figure 10.7 shows the Ørsted orbit,

where the position of the satellite is shown at each telemetry sample point.

The Earth albedo model uses daily reflectivity data based on the time of the simu-

lation, which is May 21, 2001. Since daily reflectivity data is incomplete, see Chapter

2, the mean reflectivity data of 2001 is used when daily data is unavailable. Figure 10.6

shows the input reflectivity data to the Earth albedo model, where the mean data is used

to complete the data set.

The total Earth albedo at the satellite, calculated from the Earth albedo model is

shown in Figure 10.8. The albedo is at maximum when the Sun is at Zenith. The

maximum albedo is 649W/m2 or 47.5%. The mean albedo is 10.1% during an entire

orbit, or 15.3% when periods of eclipse are omitted.



10.4 Ørsted Orbit 91

Figure 10.6: Reflectivity data used for the Ørsted albedo simulation.

Figure 10.7: Ørsted orbit telemetry sample points. The rotation of the Earth is indicated

by a moving shadow on the reflectivity data.
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Figure 10.8: Simulated Earth albedo during Ørsted orbit.

10.5 Resolution of the Earth Albedo Model

Due to the computational load of the Earth albedo model, an option to reduce the reso-

lution of the input data is implemented. As a consequence, the output data resolution is

reduced, as it is equal to the resolution of the input data. The reduction of the resolution

is done by setting a reduction factor. The resolutions along latitude and longitude are

divided by this factor. A reduction factor of one, results in no reduction, and the resolu-

tion of the TOMS reflectivity data is the default resolution, i.e. 180× 288 data points in

latitude and longitude, respectively. This is an angular resoution of 1 deg × 1.25 deg. A

reduction factor of two will result in a resolution of 90 × 144 and an angular resolution

of 2 deg×2.5 deg. Any real number larger than one may be used as the reduction factor.

The TOMS reflectivity input data to the Earth albedo model is reduced in resolution

by applying a low pass Finite Impulse Response (FIR) filter and linear interpolation.

Table 10.1 shows the result of a number of reduction factors, when calculating 379 orbit

points on a 2.8 GHz Pentium 4 processor.

Figure 10.9 shows that the simulation time drops dramatically when setting the re-

duction factor to a integer greater than one. A reduction factor of two, makes the simu-

lation four times faster. This is expected, since a reduction factor of two, results in four

times fewer grid points.

Figure 10.10 shows the RMS error of the simulated Sun sensor SS3 current. The

figure shows that the error increases noticeably when using a reduction factor of five

compared to a factor of four. There is noticable increase in the RMS error when changing
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Reduction Data Simulation SS3 RMS

Factor Points Time [s] Error [mA]

1 180 × 288 2454 0.0609
2 90 × 144 597 0.0622
3 60 × 96 271 0.0600
4 45 × 72 160 0.0609
5 36 × 57 103 0.0662
6 30 × 48 75 0.0658
7 25 × 41 54 0.0660
8 22 × 36 43 0.0680
12 15 × 24 23 0.1029
16 11 × 18 16 0.1257

Table 10.1: Impact of the reduction factor on the simulation time and current simulation

accuracy.

Figure 10.9: Simulation time of the Earth albedo model as a function of the reduction

factor for 379 samples.
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from a reduction factor of seven to eight. Table 10.1 additionally shows the error and

simulation times for a reduction factor of 12 and 16.

Figure 10.10: RMS error of the Sun sensor SS3 current as a function of the reduction

factor.

Based on the impact of the reduction factor, it is recommended that a reduction fac-

tor of four is used. This value reduces the computation time with a factor of 15 without

adding significant errors to the simulated Sun sensor current. To illustrate the reduced

resolution of the Earth albedo model Figure 10.11 shows the mean reflectivity data of

2001, reduced by a factor four. This data should be compared to the mean TOMS re-

flectivity data of 2001 shown in Figure 2.3. The data also suggests that reduction factors

higher than four, can be used with moderate errors in the Earth albedo model accuracy.

This would make the Earth albedo model applicable for on-board implementation.
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Figure 10.11: Plot of TOMS mean reflectivity data recorded from January 1 to December

31, 2001. The reflectivity data has been reduced by a factor of four along

both latitude and longitude.
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Chapter 11
Simulated Attitude Determination

Results

This chapter presents the simulation results of the different attitude determination algo-

rithms included in this thesis. A simulation of the Ørsted satellite is the basis of the

simulations. The results of the Q-Method, EKF, and UKF attitude determination algo-

rithms are presented. The algorithms are simulated using the Standard, Max Currents,

and SSE algorithms, and the results are compared. Additionally, the UKF algorithm has

been utilized without use of magnetometer data, in order to show the results of applying

the Earth albedo model, in order to obtain three-axis attitude determination using Sun

sensor measurements alone.

Initially the simulation conditions are presented, since these are common for all

simulation in this Chapter.

11.1 Simulation Conditions

The simulation time matches those of telemetry data package 5200, which is also used

in Chapter 9 for the validation of the Earth albedo model. The simulation time is thus

3:52 PM to 10:10 PM on May 21, 2001, which is a total simulation time of 6 hours and

18 minutes. This is equivalent to approximately three orbits. The sample time is 60s,

which is equivalent 379 samples.

The simulated attitude and angular velocity of the satellite are calculated solving the

non-linear differential equations of the attitude dynamics and kinematics, presented in

Chapter 8. The initial conditions of the are shown in Table 11.1. The satellite is initially

aligned with the ECI frame with a angular velocity around the z axis of 0.001rad/s.
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State Initial Value

qsat (t0)
[

0 0 0 1
]T

ωsat (t0)
[

0 0 0.001
]T

rad/s

Table 11.1: Initial conditions of the simulated satellite state.

In order to simulate the environment disturbances, noted in Chapter 8, an external

torque is added as a white noise process, which has a standard deviation of 10−6Nm.

The magnitude of the disturbance torque is found by investigating the control signal of

the Ørsted satellite. The controller calculates a magnetic moment, which is generated by

the magnetorquers on the satellite. The controller calculates this actuation signal based

on the external disturbances, hence the control torque indicates the magnitude of the

external torques. It should be noted that the external disturbances are not modeled in

the simulation, hence the satellite is not Earth pointing, since there is no gravitational

gradient torque. This is because the Max Current algorithm is particularly effective in

this case, and thus does not produce general comparable results. This is discussed in

Chapter 12.

Given the initial condition of the satellite and the external torques, the simulated true

sates of the satellite, qsat (t) and ωsat (t), evolves as shown in figures 11.1 and 11.2.

Figure 11.1: Simulated attitude, qsat (t), of the Ørsted satellite.

In the simulation, the satellite position is model by an SGP4 propagator. The Earth

magnetic field is modeled by a 10th order IGRF model readily available for SIMULINK.
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Figure 11.2: Simulated angular velocity, ωsat (t), of the Ørsted satellite.

Sun position, ECEF rotation, and eclipses are calculated using the Spacecraft Control

Toolbox from Princeton Satellite Systems, [Princeton Satellite Systems, 2005]. In order

to simulate the model discrepancies and sensor noise, white noise is added to the mea-

surements, i.e. Sun sensor currents and the Earth magnetic field vector. The noise on the

magnetic field vector has a standard deviation of 2500nT, which results in an angular

error on the magnetic field vector of approximately 0.5 deg. This error is consistent

with [Bak, 1999]. The noise on the Sun sensor currents has a magnitude of 53µamps,

which is the observed standard deviation of the error in the Ørsted Sun sensor telemetry

after calibration of the data. The calibration of the Ørsted telemetry data is described in

Chapter 9.

Figure 11.3 shows the angular error of the simulated reference and measured Earth

magnetic field vectors. The data validates that the standard deviation of the angular error

is 0.5 deg.

Figure 11.4 shows the error in the simulated Sun sensor currents with measurement

noise. The Sun sensor naming SS1 to SS8 represents the Ørsted satellite Sun sensor

configuration illustrated in Figure 9.2. Note that SS1 and SS3 are omitted since SS1 and

SS6 are mounted in the similar directions.

The following section investigates the errors in the Sun sensor vector pairs using the

Standard, Max Currents, and SSE algorithms.
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Figure 11.3: Simulated angular error of the simulated reference and measured Earth

magnetic field vectors.

11.2 Sun Sensor Vector Observations

The Sun sensor vector pairs are formed using the algorithms described in Chapter 4.

The Earth albedo model used in the simulation of the true albedo uses reflectivity data

of the simulation date, i.e. May 21, 2001. The Earth albedo model utilized in the SSE

algorithm is based on the mean reflectivity data of 2001 described in Chapter 2, in order

to include model discrepancies in the Earth albedo estimation.

Figure 11.5 shows the angular errors of the Sun LOS vector pairs, using the Standard

and Max currents algorithms, and the SSE vector pair. Periods of eclipse are omitted

from the plot, as the Sun sensor output is invalid when not illuminated. The results

of the Sun sensor vector algorithms is shown in Table 11.2. The results show that the

SSE vector pair is significantly more accurate than Max Currents algorithm. This indi-

cates that the Earth albedo model derived in Chapter 2 can be utilized to improve errors

induced by the Earth albedo.

Algorithm RMS Error [deg]

Standard 8.86
Max Currents 5.28
SSE 3.71

Table 11.2: Simulated accuracy of the Sun sensor vector pairs using the Standard, Max

Currents, and SSE algorithms.
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Figure 11.4: Simulated Sun sensor currents with measurement noise.
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Figure 11.5: Angular error of the simulated reference and measured Sun sensor vector

pairs. Periods of eclipse are omitted.

11.3 Q-Method Algorithm

This section presents the results of the Q-Method algorithm. The Q-Method algorithm

vector pairs are based on the Earth magnetic field and the Sun sensor vectors described

in Chapter 4. The weights of the vector pairs are scaled according to the variance of the

angular separation of the vectors from reference and measurements, respectively.

Figure 11.6 shows the attitude error quaternion of the Q-Method algorithm using

the Max Currents algorithm for Sun LOS vector estimation and the SSE algorithm for

estimating the SSE irradiance vector. The error is large during periods of eclipse, which

is expected.

Figure 11.7 shows the angular error of the algorithms, where periods of eclipse have

been omitted. The RMS error is 5.9 deg for the Max Currents algorithm and 3.8 deg for

the SSE algorithm. The Standard algorithm has an angular RMS error 6.6 deg. Both the

Max Currents and SSE algorithms reduce the RMS error, but the SSE algorithm proves

to be superior to the Max Currents algorithm. The simulation results are shown in Table

11.3. The results of the algorithms are consistent with the performance of the Sun sensor

vector observations presented in Table 11.2.



11.3 Q-Method Algorithm 103

Figure 11.6: Attitude error quaternions of the Q-Method algorithm using the Max Cur-

rents algorithm for Sun LOS vector estimation and the Earth albedo model

for the SSE vector pair.
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Figure 11.7: Angular error of the Q-Method algorithm using the Max Currents algo-

rithm for Sun LOS vector estimation and the Earth albedo model for the

SSE vector pair.

Algorithm RMS Error [deg]

Standard 6.57
Max Currents 5.91
SSE 3.82

Table 11.3: Simulation performance of the Q-Method attitude determination algorithm.

The algorithm uses Sun sensor vector pairs formed by the Standard, Max

Currents, and SSE algorithms.

11.4 Extended Kalman Filter

The EKF algorithm uses the model of the satellite motion, which allows estimation of

not only the satellite attitude, but also the satellite angular velocity. The model of the

satellite states in the filter requires an estimate of the initial state. A single run of the

Q-Method algorithm produces an output which can be used to initialize the EKF. The

initial attitude error of the EKF is set to 22.5 deg around the y axis. The angular velocity

is initialized to zero around all axes. Table 11.4 shows the initial parameters of the EKF.

An initial value of the the estimation error covariance, P est (t0), is also needed. The

value of P est (t0) reflect the initial values of the states.

The covariance matrix of the measurement noise, R (t), is calculated based on the

Sun sensor vector errors. The covariance of the measurement noise is calculated sepa-
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State Initial Value

q̂sat (t0)
[

0 0.20 0 0.98
]T

ω̂sat (t0)
[

0 0 0
]T

rad/s

Table 11.4: Initial conditions of the EKF.

rately in and out of eclipse, and also for total measurements. Since the error between

the Sun sensor vector pairs is strongly biased, the mean error on each axis is added to

the diagonal elements of the Sun sensor vector variances. This increases the variance

significantly, and is bound to decrease the effect of Earth albedo compensation.

The process noise covariance matrix, Q (t), describes the errors in the kinematic

and dynamic differential equations of the satellite. The covariance of the dynamics is

set to the external disturbance standard deviation. The model noise of the kinematics are

added, to compensate for numerical errors in the 5th order Runge-Kutta algorithm, used

to solve the non-linear differential equation. The error is expected to be insignificant,

and the covariance is set to 10−14. The value is required by the EKF to be non-zero in

order to prevent singularities in the estimation error covariance matrix P est. The process

noise covariance is assumed to have zeros in the off-diagonal elements.

Figure 11.8 shows the EKF quaternion estimation error. Figure 11.9 shows the result

of the angular velocity estimation error. The figures show that the filter uses approxi-

mately 2500s to converge. The convergence time and filter performance are similar, re-

gardless of Sun sensor vector algorithm. Figure 11.8 shows that due to the non-whiteness

of the input noise of the Sun sensors, the estimation error is biased.

Figure 11.10 shows the angular error of the EKF algorithm using all three Sun sensor

vector algorithms. Table 11.5 shows the RMS angular error of the attitude estimation,

and the mean RMS error of the angular velocity estimates. The RMS values are calcu-

lated from time 3000s and forward, such that the the estimation error does not include

initial errors. It should be noted that the RMS values include periods of eclipse, unlike

the results from the Q-Method algorithm. The results are compared directly, since the

Q-Method algorithm is used out of eclipse only, and the Kalman filters are typically

applied during the entire orbit.

The results show that the algorithms perform equally, even without Earth albedo

compensation. This is a result of the high covariance of the Sun sensors due to peri-

ods of eclipse. Using time dependent measurements noise, thus using appropriate Sun

Sensor vector error covariances in and out of eclipse, does not improve the estimation

results. It is concluded that although the Sun sensors do improve the convergence of the

filter significantly, the vector pairs formed using the Sun sensors do not have significant

impact on the accuracy of the estimation.
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Figure 11.8: Attitude estimation error quaternions of the EKF algorithm using the Max

Currents algorithm for Sun LOS vector estimation and the Earth albedo

model for the SSE vector pair.
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Figure 11.9: Angular velocity estimation error of the EKF algorithm using the Max Cur-

rents algorithm for Sun LOS vector estimation and the Earth albedo model

for the SSE vector pair.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean

RMS Error [deg] RMS Error [rad/s]

Standard 3.43 1.00 · 10−5

Max Currents 3.34 1.07 · 10−5

SSE 3.47 1.09 · 10−5

Table 11.5: Simulation performance of the EKF attitude determination algorithm. The

algorithm uses Sun sensor vector pairs formed by the Standard, Max Cur-

rents, and SSE algorithms.
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Figure 11.10: Angular estimation error of the EKF algorithm using the Max Currents

algorithm for Sun LOS vector estimation and the Earth albedo model for

the SSE vector pair.

11.5 Unscented Kalman Filter

The UKF is simulated using the same parameters and measurement inputs as the EKF

described in the previous Section. This allows for a direct comparison of the two al-

gorithms. The angular estimation error is shown in Figure 11.11. The RMS errors are

presented in Table 11.6.

The results show that the overall performance of the UKF is identical to the EKF. The

UKF, however, requires more computation time, which is approximately 18 times higher

for the Standard and Max Currents algorithms. Even though the EKF algorithm requires

the calculation of the Jacobians of the process and measurement models at each time

step, the EKF requires non-linear propagation and measurement simulation of 41 sigma

points. Since the output equation requires the utilization of SGP4 and IGRF models,

the approximation of the noise distributions by sigma points, is computationally heavy.

Using the Earth albedo model adds significantly to the computation times. The UKF is

37 times slower than the EKF algorithm when the SSE algorithm is used.

The advantage of the UKF is not fully utilized in the simulations shown in Figure

11.11. Since the UKF filter approximates the noise distributions of the process and

measurement models, the need to construct a vector pair from the Sun sensor currents

is not required. The non-linear measurement equation described in Chapter 3 may be

implemented directly into the filter. This means that the filter estimates the Sun sensor

currents directly, as opposed to estimating a LOS vector. The UKF with Non-Linear
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Figure 11.11: Angular estimation error of the UKF algorithm using the Standard and

Max Currents algorithm for Sun LOS vector estimation and the Earth

albedo model for the SSE vector pair.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean

RMS Error [deg] RMS Error [rad/s]

Standard 3.41 1.00 · 10−5

Max Currents 3.32 1.11 · 10−5

SSE 3.45 1.15 · 10−5

Table 11.6: Simulation performance of the UKF attitude determination algorithm. The

algorithm uses Sun sensor vector pairs formed by the Standard, Max Cur-

rents, and SSE algorithms.

(NL) output equation is simply denoted NL. The result of the NL algorithm is shown

in Figure 11.12. The result is compared to the performance of the UKF using the Max

Currents algorithm. The angular RMS error is 3.4 deg, as seen in Table 11.7. The results

are similar to those of the UKF with Sun sensor vector observations as measurement

input.

The measurement error covariance matrix in the NL algorithm is time variant. The

variance of the measurement error is calculated from the simulation input. Two covari-

ance matrices are calculated from data in and out of eclipse, respectively. The covariance

of the measurement errors in eclipse renders the Sun sensor measurements useless, as it

should, since the output of the Sun sensors during eclipse is undefined.

EKF using magnetometer vector observations have been developed previously,
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Figure 11.12: Angular estimation error of the UKF using the NL algorithm with magne-

tometer measurements and Sun sensor currents.

[Bak, 1999]. The linearized output equation is not observable, however, due to the vari-

ation of the Earth magnetic field, the algorithm will still converge given enough time.

The Ørsted attitude determination algorithm converges from initial errors 30 deg within

half an orbit at 0.1Hz, i.e. 500 samples. The Sun LOS vector varies a meager 0.0003 deg

for a satellite in 800km LEO. Hence the Sun LOS vector varies with the Earth’s orbit

around the Sun. For this reason, three-axis attitude determination based solely on Sun

sensors has not previously been implemented. However, due to the accurate modeling of

the Earth albedo current on the Sun sensors, the system is observable using Sun sensors

only.

The NL algorithm has been simulated without magnetometer measurements, and

the result is shown in figures 11.13 and 11.14. It is seen from the figures, that the filter

is able to converge within a couple of samples. Since only Sun sensors are utilized,

the filter has no measurements at all during eclipse, hence the filter diverges in these

periods. The simulation includes four periods of eclipse, which can be identified in the

plot of the simulated Sun sensor currents in Figure 11.4. It is seen from the figures, that

the estimated standard deviation of the estimation error is incorrect. However, the filter

performs surprisingly well in the simulation, when considering that no measurements

are available during eclipses. In real-life implementations the NL algorithm without

magnetometer measurement cannot be expected to work during eclipse, since it would

require accurate modeling of all disturbances. However, the filter is well suited for

CubeSats in periods out of eclipse, when magnetometer measurements are unavailable.

The angular error of the estimation is shown in Figure 11.15. The performance is
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Figure 11.13: Attitude estimation error quaternion of the NL algorithm without magne-

tometer measurements.
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Figure 11.14: Angular velocity estimation error of the NL algorithm without magne-

tometer measurements.
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compared to the results of the UKF using the Max Currents algorithm. It is seen that the

accuracy of the attitude estimation is decreased, although the filter converges fastest of

all the algorithms. The RMS errors of the UKF using the NL algorithm with and without

magnetometer is shown in Table 11.7. The NL algorithm is able to estimate the attitude

in three-axis with an RMS error of 6.8 deg, which is a decrease in performance when

compared to the previous algorithms. The performance decrease is expected, since the

filter relies on propagation of the estimated state of the satellite during eclipse.

Figure 11.15: Angular estimation error of the UKF using the NL algorithm with Sun

sensor currents only.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean

RMS Error [deg] RMS Error [rad/s]

NL w. magnetometer 3.37 1.53 · 10−5

NL wo. magnetometer 6.78 8.46 · 10−5

Table 11.7: Simulation performance of the UKF using the NL algorithm. The UKF is

implemented with and without magnetometer measurements.

11.6 Discussion

Simulations of the different attitude determination algorithms has been performed. The

results are based on accurate noise models in the Kalman filters, hence the presented per-
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formance of the filters are only valid for ideal situation. The performance will decrease,

as uncertainties in the noise models increase.

The simulation results show that compared to the Standard algorithm, the Q-Method

algorithm is improved by 0.7 deg RMS, when using the Max Currents algorithm, and by

2.8 deg RMS when the SSE algorithm is utilized. This shows that the Earth albedo model

may be utilized to improve the performance of single-point algorithms significantly.

The results of the EKF and UKF are similar, and result in an improved performance

in attitude estimation of 0.5 deg RMS at best, compared to the Q-Method with SSE vec-

tors. Considering the complexity of the algorithms 0.5 deg RMS is a small performance

improvement, when compared to the Q-Method using the SSE algorithm. Although the

performance in attitude estimation is small, the EKF and UKF estimate the angular ve-

locity of the satellite, in addition to the attitude quaternion. In addition the attitude esti-

mate is maintained during periods of eclipse. It must also be noted that the performance

of the multi-point algorithms is due to the lack of gyros in the sensor configuration.

The EKF and UKF utilize dynamical models of the system to improve estimation per-

formance, and are capable of merging gyro measurements with attitude measurements

effectively, ideally optimal. Without direct measurements of the dynamical behavior of

the system, the resulting increase in accuracy is limited. Instead, the dynamical model

allows for estimation of the angular velocity in the absence of gyros.

Based on the simulation results in this chapter, it can be concluded that the Earth

albedo model improve the attitude estimation performance of the Q-Method results to a

level close to those of the multi-point algorithms. Due to the simplicity of the Q-Method

algorithm, and thus computational requirements, it is preferred to the EKF and UKF.

In case estimates of the angular velocity is sought, it is concluded that the Sun sensor

measurements improve convergence only, and that Earth albedo compensation has no

influence on the general performance of the filter. Finally it is shown that including

the non-linear Sun sensor output equation in the UKF makes the system observable in

the presence of albedo, and thus allows for three-axis attitude determination from Sun

sensors alone. Although the accuracy is decreased, the algorithm may be considered

as backup in the case of magnetometer failure, or utilized in conjunction with gyros.

The result of three-axis attitude and angular velocity estimation from Sun sensors only,

definitely puts new perspective in the field of satellite navigation.



Chapter 12
Application of the Earth Albedo

Model on Ørsted Data

This chapter presents the results of applying the Earth albedo model on Ørsted telemetry

data. The results of the SSE algorithm is compared to the Standard and Max Currents

algorithm, and the vector pairs are utilized in the Q-Method algorithm. The telemetry

data package and calibration procedures follow the description in Chapter 9.

12.1 Errors in Ørsted Vector Observations

This section describes the errors on the vector observations from the Ørsted satellite

telemetry data, compared to the reference models. The vector observations are the input

to the estimation algorithms, and therefore the precision of these measurements directly

influence the performance of the algorithms.

In order to compare the Ørsted vector observations with the reference models, the

star tracker telemetry is used to obtain the reference vectors in the SCB frame. The

magnetic field measurement is compared with the 10th order IGRF model. The Sun

sensor currents are processed in order to obtain the Sun LOS and SSE irradiance vectors,

using the algorithms described in Chapter 4, which are compared with the reference

vectors from the ephemeris models.

12.1.1 Magnetic Vector Observation

The attitude determination algorithms have the possibility to weigh the measurements

between each other. For this reason the error of the measurements relative to the refer-
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ence models are investigated. Figure 12.1 show the RMS errors in the components of the

magnetic field measurements and IGRF reference model. These errors are expressions

of the total error in sensors and IGRF model inaccuracies. The vector pair is compared

after normalization of the vectors, since it is the normalized vectors which are input into

the Q-Method algorithm.

Figure 12.1: Magnetic LOS vector error between the IGRF reference model and cali-

brated on-board measurements.

From the data in Figure 12.1 the angular error between the measured Earth magnetic

field vector and the IGRF reference vector is calculated. Figure 12.2 shows the angular

separation between the two vectors. The RMS angular error is 1.59 deg. This error is

three times higher than in the simulations in Chapter 11. The reason for this increased

error is caused by poor performance of the IGRF model, which is based on parameters
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from 1995. It is expected that the increased error in the Earth magnetic field vector pair,

will impact the performance of the attitude estimation.

Figure 12.2: Angular separation between magnetic LOS vector error from IGRF refer-

ence model and calibrated on-board measurements.

12.1.2 Sun Vector Observation

Albedo is handled in two different ways, as described in Chapter 4. When the albedo

model is applied, the vector pair used is the SSE irradiance vector. Without the Earth

albedo model, a Sun vector LOS vector is formed by using the Standard and Max Current

algorithms. Figure 12.3 shows the error of the three vector pairs, when comparing the

measurements with the ephemeris reference model. Periods of eclipse and star imager

fallouts have been removed from the plots.

Figure 12.4 shows the angular separation between the vector pairs, and Table 12.1

shows the resulting RMS errors. The RMS angular separation using Max Currents Sun

LOS vector is 8.1 deg, whereas the RMS separation between the SSE vectors is 6.9 deg.

The RMS angular separation of the Standard algorithm vector pair is 11 deg.

It is clear from Figure 12.4 that albedo compensation improves the vector obser-

vation. However, the improvement in RMS error when using the SSE algorithms as

opposed to the Max Currents algorithm, is not as apparent as in the simulations. The

error in the estimation of the Sun LOS vector using the Max Current algorithm is sig-

nificant when the satellite crosses the terminator. The SSE vector pair has errors due

to Earth albedo modeling inaccuracies. Additional errors are introduced, since it is as-

sumed in this algorithm, that the Earth albedo can be described as an energy flux from a
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Figure 12.3: LOS vector errors between the ephemeris reference model and calibrated

on-board measurements. The Sun sensor currents are pre-processed to

form two different vector pairs: 1) a Sun LOS vector using the Max Cur-

rents algorithm 2) the summarized Sun and Earth irradiance vector using

the SSE algorithm. Periods of eclipse and star imager fallouts have been

removed from the plots.
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Figure 12.4: Angular separation between the Sun sensor LOS vector pairs compared

with the Sun LOS vector observation without albedo compensation. The

top plot shows the Max Currents algorithm and the bottom plot shows the

SSE algorithm.

Algorithm RMS Error [deg]

Standard 11.2
Max Currents 8.13

SSE 6.93

Table 12.1: Statistics of the Sun sensor vector pairs, using the Max Currents algorithm

and the SSE algorithm. The LOS vectors are formed using on-board cal-

ibrated measurements and are compared to the ephemeris reference LOS

vectors.
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single direction.

Figure 12.5: Direction of incident irradiances during a pass over the sunlit part of Earth.

The improved performance of the Max Current algorithm is investigated. Figure

12.5 shows the Ørsted satellite in its path over the sunlit part of Earth, where the Sun

sensors are illuminated by the Sun and Earth albedo. The advantage of the Max Current

algorithm is when the Sun and Earth albedo energy fluxes reach the satellite from oppo-

site sides. In this case the Sun sensor pairs facing opposite directions will have one Sun

sensor with solar induced current, and another with Earth albedo induced current. Since

the Sun sensor with maximum current is used to form the Sun LOS vector, the albedo

is effectively filtered completely. When the satellite is Earth pointing this becomes even

more effective, since the majority of the Earth albedo constantly reaches only the Earth

pointing sensors. Once the the incidence of the solar irradiance causes the current from

the zenith pointing Sun sensors to exceed the Earth pointing Sun sensors, most of the

Earth albedo is filtered from the sensors.

The general performance of the SSE algorithm is expected to be consistent with

the simulation results i.e. approximately 2.1 deg RMS better than the Max Current

algorithm. For Earth pointing satellites the improvement is expected to be 1.2 deg RMS,

which was the result of the Ørsted case.

It can be concluded that although the Ørsted satellite is ideal for verifying the Earth

albedo model, because Sun sensors SS3 and SS6 are constantly facing the Earth, the

improvement in vector observation and consequently attitude determination, is less ap-

parent when applying the Earth albedo model, for the same reason.
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12.2 Q-Method Algorithm

The simulation results in Chapter 11 recommends applying the Q-Method algorithm

with the SSE algorithm. In this section the results of the Q-Method algorithm are pre-

sented. The Sun sensor vector algorithms are applied in forming a vector pair to be used

in conjunction with the magnetometer data. The vector pairs are weighted according

to the RMS errors found in the previous section. The error quaternion of the attitude

estimation error is shown in Figure 12.6. The resulting angular error of the estimated

attitude are shown in Figure 12.7 and Table 12.6.

Algorithm RMS Error [deg]

Standard 5.60
Max Currents 4.70
SSE 4.90

Table 12.2: Performance of the Q-Method algorithm applied to Ørsted telemetry data.

The algorithm uses Sun sensor vector pairs formed by the Standard, Max

Currents, and SSE algorithms.

The result show that the algorithm accuracy is decreased compared to the simulation

results. This is due to the non-whiteness of the measurement noise. The actual noise of

the vector pairs, due to reference model errors, is expected to be biased, which creates

unpredictable performance of the results. A surprising result is the performance of the

Q-Method algorithm with the Max Currents vector pair, which gives a better result than

the SSE vector pair with the current data set. The angular error of the SSE vector pair

was found to be superior to the Max Current vector pair in the previous section, hence

the Q-Method algorithm is expected to have better performance using the SSE vector

pair. This is a result of the bias in the vector pair errors, since the direction of the errors

in the input vector pairs, has impact on the estimation performance.

It is concluded based on the results of the Ørsted attitude estimation, that the Max

Currents algorithm, due to its simplicity, is recommended for Earth pointing satellites.

This is due to the results of the estimation and the argument presented in the previous

section. In general, the Q-Method algorithm using the SSE vector pair produces estima-

tion results, which are at worst, similar to the Max Currents algorithm, and is shown to

be superior for inertial stabilized satellites in Chapter 11.
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Figure 12.6: Quaternion error of the Q-Method algorithm applied to Ørsted telemetry

data, using the Max Currents algorithm for Sun LOS vector estimation and

the Earth albedo model for the SSE vector pair.
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Figure 12.7: Angular error of the Q-Method algorithm applied to Ørsted telemetry data,

using the Max Currents algorithm for Sun LOS vector estimation and the

Earth albedo model for the SSE vector pair.
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Chapter 13
Conclusion

In this thesis the Earth albedo has been analyzed and a model has been implemented and

verified. The Earth albedo model has been incorporated in three attitude determination

algorithms through enhanced Sun sensor modeling, and the results have been compared.

An Earth albedo model, based on the TOMS reflectivity data, was derived. The

resolution of the TOMS reflectivity data defines a partitioning of the Earth surface, and

the reflectivity of each cell is given. From the area of the cell, and the angle to the

Sun, the amount of radiant flux reflected from each cell was calculated. From the angle

and distance from the satellite to each cell, the amount of albedo reaching the satellite

was derived. The directional information of the Earth albedo contribution from each

cell was maintained, thus allowing information of diffuse Earth albedo irradiance to be

incorporated into the Sun sensor modeling.

The Earth albedo model was used to develop enhanced Sun sensor modeling. The

directional information of the Earth albedo was utilized, and the Earth albedo and Sun

sensor model were implemented as MATLAB toolboxes. The Earth albedo and enhanced

Sun sensor models were verified using the Ørsted telemetry. Data from the Sun sensors

was compared to the simulation results, and the error was reduced from approximately

0.18mA to 0.055mA RMS on the Earth pointing Sun sensors. This is a significant

improvement of the Sun sensor current simulation, which is useful for designing and

testing ADCS algorithms for future space missions.

The enhanced Sun sensor model allowed for improved Sun sensor vector observa-

tions. The improved vector observation algorithm was compared to existing algorithms,

and the results showed that the incorporation of the Earth albedo model in the Sun sensor

model produced superior results. Compared to the reference vector, the angular sepa-

ration was reduced from 5.9 deg to 3.82 deg RMS. The error in the vector observation

directly influences the Q-Method single-point algorithm and the EKF since these use
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vector observations as input.

An investigation of attitude determination algorithms was performed. Three algo-

rithms were presented, the Q-Method, the EKF, and the UKF. The Earth albedo model

was incorporated in the Q-Method and EKF through the improved vector observations.

The UKF facilitated the use of the enhanced Sun sensor model directly. The Kalman

Filter performances were similar with an accuracy of 3.4 deg RMS. The simulation re-

sults revealed that the accuracy of the Q-Method with improved Sun vector observation

was reduced to a level which was comparable to the more complex Kalman filters. The

Q-Method with Earth albedo corrected Sun vector observations increased the attitude

determination accuracy from 5.9 deg to 3.8 deg RMS. Compared to the performance of

the Kalman Filters, the Q-Method was recommended due to its simplicity.

The Kalman Filters, although marginally more accurate, enable estimation of not

only the satellite attitude, but also the satellite angular velocity. In addition, the Kalman

filters maintain attitude estimation during periods of eclipse. Due to the computation

requirements of the measurement model, the EKF was recommended over the UKF.

However, the UKF proved capable of estimating the attitude and angular velocity of the

satellite from Sun sensors only, when the enhanced Sun sensor models with Earth albedo

modeling, was applied. This proved that the modeling of the Earth albedo ensures ob-

servability of the system, and enables three-axis attitude determination from Sun sensors

only.

From a CubeSat perspective, the results allow improved attitude determination satel-

lites,from simple sensor configuration, since sensors such as star trackers are unavailable

for pico-satellites. Previously, magnetometers have been applied for three-axis attitude

determination in the absence of Sun sensor measurements, which is possible due to the

variation in the Earth magnetic field as the satellite orbits the Earth. The use of Earth

albedo modeling for Sun sensor three-axis attitude determination, allows the ADS de-

signers to apply the algorithm in case of magnetometer failure, or omit magnetometers

from the sensor configuration completely.

The improved Sun sensor vector observation algorithm was applied on the Ørsted

telemetry data, and showed the angular error relative to the reference vector was re-

duced from 8.1 deg to 6.9 deg RMS. The Q-Method was applied to the Sun sensor

and magnetometer data from the Ørsted telemetry data, and the result compared to the

output of the star imager used for high accuracy attitude measurements on-board the

Ørsted satellite. The performance of the algorithms was discussed, and the resulting

accuracy was 4.9 deg RMS. Very simple CubeSat satellites exist, that only fly passive

attitude control, and no attitude sensors. However all CubeSats must fly solar panels. By

sampling the output of the solar panels, currents and voltages, the results of this thesis

may be applied to obtain three-axis attitude determination. This is implemented in the

AAUSAT-II satellite ADS design as an on-ground feasibilty study.

The contributions of the thesis are:

• A high accuracy Earth albedo model of as been derived, which maintains direc-

tional information of the incident albedo irradiance.
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• Enhanced Sun sensor current modeling incorporating directional Earth albedo ir-

radiance.

• Improved methods for Sun sensor vector observation by applying the Earth albedo

model and enhanced Sun sensor current model.

• Novel methods for incorporating the Earth albedo model in a number of widely

used attitude determination algorithms, and comparison of the results.

• Three-axis attitude determination from Sun sensors only, by applying the Earth

albedo model and enhanced Sun sensor current model directly into the UKF.

• Implementation of Earth albedo model and Sun sensor current model in MATLAB,

including SIMULINK interface, released as an albedo toolbox.

Overall, the modeling of the Earth albedo was proven to be applicable in attitude

determination simulation, design, and test. The accuracy of the Earth albedo model en-

ables improved simulations of the space environment for analysis and testing of ADCS.

Applied in the Sun sensor modeling, the Earth albedo model allows for improved vector

observations and consequently improved attitude determination.

13.1 Future Work

Based on the research in this thesis, a number of open questions arise, and are interesting

for future investigations.

The SSE algorithm assumes that the Earth albedo is single directional, anti-parallel

to the Nadir. Since the Kalman Filters use statistical information of the measurement

model accuracy, effects of the assumption should be analyzed and described by a co-

variance matrix. The error effect may be calculated by comparison to the full Earth

albedo model output.

Further simplification of the Earth albedo model could also be investigated, and is

on-going work on the AAUSAT-II ADCS design, due to limited computational resources

on the on-board computer and real-time requirements. Reduction of code complexity

also have important benefits of reducing memory usage and improved testing. The Earth

albedo model may be reduced further by parameterizing the Earth albedo by the angle

of the Sun and satellite in the ECEF frame only. This saves calculation of Earth albedo

of each cell, and instead calculates the entire FOV in a single instance. Directional

information of the Earth albedo is lost, at the benefit of reduced computation. The errors

in the simplification must be investigated, by comparison to the full Earth albedo model.

Finally, the Sun sensor current modeling could be extended to include a number

of non-linear properties, such as dark current and low-angle reflection. Including such

terms in the modeling, improves the accuracy of the Sun vector observations further.
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Appendix A
Frames

This appendix defines two reference frames and a body fixed used in this thesis. The

ECI frame is an inertial frame which is fixed with the stars. The ECEF frame is fixed

with the Earth, and thus rotates with the same angular velocity as the Earth.

A.1 Earth Centered Inertial Frame

The ECI frame is fixed with the stars. The frame is shown in Figure A.1.

xECI

yECI

zECI

Vernal Equinox

Earth Center
Equator

Figure A.1: Definition of the ECI frame.
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The ECI frame has its origin in the Earth Center of Mass (CoM), and is defined by

the xECI, yECI, and zECI axes. The plane spanned by xECI and yECI is aligned with the

Earth equatorial plane, and the zECI is normal to the the xECIyECI plane in the direction

of the North Pole. The xECI is in the direction of Vernal Equinox. Vernal Equinox is

the direction to the Sun from the Earth center, when the Sun crosses the Earth equatorial

plane from South to North. Since the Vernal Equinox direction moves slightly, due to

the nutation of the Earth’s spin axis, the Vernal Equinox of epoch J2000 is used, i.e. the

direction of the Vernal Equinox in 2000. The yECI axis forms a right-handed orthogonal

frame, and is given by

yECI = zECI × xECI. (A.1)

A.2 Earth Centered Earth Fixed Frame

The ECEF frame is an Earth fixed frame, i.e. it rotates relative the ECI frame with the

angular velocity of the Earth. The frame is shown in Figure A.2.

xECEF

yECEF

zECEF

Greenwich Meridian

Earth Center
Equator

Figure A.2: Definition of the ECEF frame.

The ECEF frame has its origin in the Earth CoM, and is defined by the xECEF, yECEF,

and zECEF axes. The plane spanned by xECEF and yECEF is aligned with the Earth equa-

torial plane, and the zECEF is normal to the the xECEFyECEF plane in the direction of the

North Pole. The xECEF is in the direction of Greenwich Prime Meridian. The yECEF axis

forms a right-handed orthogonal frame, and is given by

yECEF = zECEF × xECEF. (A.2)
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A.3 Spacecraft Body Frame

The SCB frame is a body fixed frame, which has its origin in the CoM of satellite. The

axes are defined by the principal axes of the satellite, with the zSCB axis aligned with the

principal axis of smallest inertia. The frame is right-handed and orthogonal. The frame

is fixed on the satellite body.
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Appendix B
Sun and Earth Black Body Spectra

In this Appendix the model of the Sun and Earth spectra are presented. The Sun spec-

trum is used to calculate the incident irradiance at the top of Earth’s atmosphere from the

Sun. It is a fraction of this irradiance reflected back into space, which defines the Earth

albedo. The remaining energy is absorbed by Earth and is radiated back into space as

thermal energy mainly in the infrared spectrum. The analysis in this Appendix is needed

in the modelling of the Earth albedo.

B.1 Sun Spectrum

The spectral distribution of the power emitted from the Sun is modeled by a black body

radiator. The spectral distribution of black body irradiance is calculated using Planck’s

Law

Ebb (λ, T ) =
2πc2h

λ5
(

ech/(kλT )
) , (B.1)

where c is the velocity of light, h is Planck’s constant, k is Boltzmann’s constant, λ
is the wavelength, and T the black body surface temperature, [Ryer, 1997]. The total

irradiance is given by Stefan-Boltzmann’s Equation

Ebb (T ) =

∫ ∞

−∞

Ebb (λ, T ) dλ = σT 4, (B.2)

where σ is Stefan-Boltzmann’s Constant. The surface temperature of the Sun is TSun =
5777K, [Wertz, 2001], which means that the total energy emitted by the Sun is

ESun = Ebb (5777K) = 63
MW

m2
. (B.3)
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The Inverse Square Law, which correlates the intensity per unit area as inversely pro-

portional to the square of the distance between light source and an observer, can be

expressed as

E1d
2
1 = E2d

2
2, (B.4)

where E1 is the irradiance from the point source at the surface at distance d1, and E2 is

the irradiance at distance d2. When the Sun is the point source the irradiance from the

Sun at Earth becomes

EAM0 =
r2

Sun

d2
S->E

ESun = 1367
W

m2
, (B.5)

where rSun is the radius of the Sun, and dS->E is the distance from the Sun to Earth. AM0

indicates that the solar irradiance has passed through zero air-mass, [Mazer, 1997]. The

resulting EAM0 in Equation (B.5) is in accordance with satellite irradiance measurements

published in [Dewitte et al., 2001]. The spectral distribution of the solar irradiance at

Earth is calculated by combining equations (B.1) and (B.5)

Ebb (λ, T ) =
r2

Sun

d2
S->E

2πc2h

λ5
(

ech/(kλTSun)
) . (B.6)

The spectral distribution is shown in Figure B.1.

B.2 Earth Spectrum

The spectral distribution of Earth is calculated following the same procedure as for the

solar spectral distribution. The surface temperature is the mean surface temperature of

Earth, which is TEarth = 288K, [Wertz, 1978]. From Equation (B.2) the total irradiance

at the Earth surface is

EE = 391
W

m2
. (B.7)

This irradiance decreases according to the Inverse Square Law. For an orbit altitude of

e.g. 800km the irradiance is 309W/m2. The spectral distribution of Earth at satellite

position rsat given in an Earth centered frame, is given by

Ebb (λ, T ) =
r2

E

||rsat||2
2πc2h

λ5
(

ech/(kλTE)
) , (B.8)

where rE denotes the Earth mean radius. The Earth spectrum is shown in Figure B.2. It

can be seen from the figure that the spectrum is close to zero for wavelengths less than

4µm. The amount of energy absorbed by solar cells from the Earth thermal radiation is

investigated.

It is known that dual junction InGaP/GaAs cells have practically no absorbance for

wavelengths higher than 900nm. Triple junction cells can absorb irradiance at wave-

length as high as 1.7µm, [Emcore, 2004]. By numerical integration of Equation (B.8)
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Figure B.1: Black body spectrum for a surface temperature of 5777K at 1A.U., equiva-

lent to the solar spectrum at Earth.

it is found that 4 · 10−8% of the energy is in the spectrum below 2µm, meaning that

the Earth radiation may be completely disregarded, in the calculation of Earth albedo

currents induced in solar cells.
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Figure B.2: Black body spectrum for a surface temperature of 288K at a distance of

800km from the surface, equivalent to the Earth spectrum at an orbit altitude

of 800km.



Appendix C
Area of Spherical Rectangle

A spherical rectangle is in this thesis defined as the enclosed area constructed from two

pairs of vertical and horizontal lines on sphere. The rectangle is parameterized by the

azimuth angle span θ, the polar angle span φ, and the radius of the sphere r, illustrated

in Figure C.1.

The area A of the spherical rectangle is calculated using the principle of Surface of

Revolution [Weisstein, 2005]. The curve x = f(y) spanning φ from φ0 on the sphere,

is rotated around the y axis by theta. The curve over the y axis of the spherical rectangle

can in the xy plane be defined by

x = f (y) = ±
√

r − y2 , y = [a, b], (C.1)

where a and b are the projections of the span of φ onto the y axis as illustrated in Figure

The surface A of revolution of C.1 by θ is given by

A = θ

∫ b

a

f (y)

√

1 +

(

d

dy
f (y)

)2

dy. (C.2)

Inserting Equation (C.1) into Equation (C.2), yields

A = θ

∫ b

a

±
√

r − y2

√

1 +
y2

r2 − y2
dy (C.3)

= θ

∫ b

a

√

r2 − y2 + y2dy (C.4)

= θ

∫ b

a

rdy. (C.5)
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θ

φ

r

Figure C.1: Definition of the spherical rectangle.

From Figure C.2 it is seen that the limits are expressed as a function of the polar angles

angles φ0 and φ as a = rcos (φ0 + φ) and b = rcos (φ0). Inserting in (C.3) gives

A = θ

∫ rcos(φ)

rcos(φ0+φ)

rdy (C.6)

= θr2 (cos (φ) − cos (φ0 + φ)) . (C.7)

Note that the surface of the entire sphere of radius r can be calculated using Equation

(C.6) by inserting φ0 = 0, φ = π, and θ = 2π

A = 2πr2 (cos (0) − cos (π)) (C.8)

= 4πr2, (C.9)
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x

y

a

b

φ0

φ

f (y)

Figure C.2: The curve x = f(y) defining the span φ as a limit [a, b] on the y axis.

which is the general equation of the sphere surface.
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Appendix D
Field of View on a Celestial Body

This appendix derives inequality used for calculating the FOV on a celestial body given

a position of an observer. The FOV is characterized by an angular radius ρ. Figure D.1

illustrates an observer at altitude h observing a FOV 2ρ on a celestial body.

From the law of cosine for right triangles, it is given that

cos (ρ) =
r

r + h
(D.1)

hence

ρ = acos

(

r

r + h

)

. (D.2)

Given two points on a sphere, P 1 = (θ1, φ1) and P 2 = (θ2, φ2), the radial distance

is defined as the smaller radial fraction of the great circle, passing through both points,

illustrated in Figure D.2.

Two unit vectors v̂1 and v̂2 are defined from origin to points P 1 and P 2, respec-

tively. The vectors are given by

v̂1 =





cos (θ1) sin (φ1)
sin (θ1) sin (φ1)

cos (φ1)



 , v̂2 =





cos (θ2) sin (φ2)
sin (θ2) sin (φ2)

cos (φ2)



 , (D.3)

using spherical to Cartesian coordinate transformation. The cosine to the radial distance

can be calculated as

cos (ρ) = v̂T
1v̂2

= sin (φ1) sin (φ2) (cos (θ1) cos (θ2) + sin (θ1) sin (θ2)) + cos (φ1) cos (φ2)

= sin (φ1) sin (φ2) cos (θ1 − θ2) + cos (φ1) cos (φ2) . (D.4)
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r

ρ

h

Observer

Figure D.1: Illustration of observer at altitude h, observing a celestial body with FOV

2ρ.
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θ1 θ2

φ1

φ2

P 1

P 2

P 3

ρ

x

y

z

Figure D.2: Illustration of the radial distance ρ between two points P 1,P 2.

Given the radius of the celestial body r and the spherical coordinates of the observer

(θ1, φ1, r + h), where h is the observer altitude, any point on the sphere surface can be

classified as in or out of the observers FOV, by combining Equation (D.2) and Equation

(D.5). The spherical coordinates are centered in the origin of the celestial body. A point

(θ2, φ2, r) is in the FOV of the observer if and only if

sin (φ1) sin (φ2) cos (θ1 − θ2) + cos (φ1) cos (φ2) ≤
r

r + h
. (D.5)
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