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Complete attitude control of a spacecraft is not possible with only one single-gimbal variable-speed control

moment gyro due to the conservation of angular momentum. However, partial attitude control without violating the

angular momentum conservation principle is still possible. In this paper feedback controllers using only one single-

gimbal variable-speed controlmoment gyro are presented that drive all three components of the angular velocity of a

rigid spacecraft to zero, while at the same time a spacecraft body-axis points along an arbitrary inertial direction. To

solve this problem, we first introduce a pair of angles to parametrize all feasible final spacecraft orientations at rest

without violating the angularmomentum constraint. Based on this parametrization, an LQR control law is designed

to locally achieve the control objective. Afterwards, a multistage control law is proposed to achieve the same control

objective for large initial conditions.

I. Introduction

R ECENT advances in spacecraft and satellite control systems
have succeeded in solving several challenging problems

dealing with the attitude tracking and stabilization of rigid and
flexible spacecraft, including optimal slew maneuvers, precision
pointing, formation flying, etc. Techniques from nonlinear, adaptive,
optimal, and robust control have been used to this end with great
success. Most, if not all, of these results have been developed under
the assumption that the spacecraft is actively controlled with a
sufficient number of actuators, which is equal to (or even greater
than) the number of the degrees of freedom of the system. Although
this is certainly the case with most current spacecraft, the issue of
controlling a rigid spacecraft with less than three control torques has
recently aroused the interest of many researchers, as it provides a
theoretical foundation to account for unexpected actuator failures.
Minimization of the number of actuators also allows the reduction of
the spacecraft weight and even mission cost.

Several papers have been published on the stabilization of the
angular velocity vector of a rigid spacecraft to zero with less than
three control torques [1–5]. In these works only the kinetic equations
are considered, and the objective is to null the angular velocity vector
of the spacecraft. Stabilization of the complete equations (kinetics
and kinematics) is a much more difficult problem, and it has been
addressed in [6–12]. The objective of these references is to stabilize a
spacecraft about a desired reference attitude with less than three
control torques. See Tsiotras andDoumtchenko [13] for a full survey
of the underactuated spacecraft control literature up to the time of its
publication. In all the previous references, the control torques are
assumed to be provided by some external mechanism
(e.g., gas jets or magnetotorquers). Alternatively, internal torques
generated by momentum exchange devices, such as reaction or
momentumwheels or control moment gyros (CMGs) can be used for
spacecraft attitude control. A handful of researchers have worked on

the attitude stabilization [14,15], detumbling and/or angular velocity
control [16–18] problem using less than three reaction wheels.

Recently, a new alternative for spacecraft attitude control has
become available, namely that of a variable-speed control moment
gyro (VSCMG). A VSCMG is a hybrid actuator that combines a
reaction/momentum wheel (RW/MW) with a single-gimbal control
moment gyro [19–23]. Whereas the wheel speed of a conventional
CMG is kept constant, the wheel speed of a VSCMG is allowed to
vary continuously. Therefore, whereas a RW/MW can generate a
torque only along the direction of the wheel spin axis, and a
conventional CMG can generate a torque only along the direction
that is perpendicular to both the gimbal axis and the spin axis of the
CMG at any instant of time, a VSCMG can generate a torque along
any direction that lies in the plane perpendicular to the gimbal axis.
Hence, a cluster of VSCMGs can generate a torque along an arbitrary
direction in the three-dimensional space, as long as at least two or
more VSCMGs are used whose gimbal directions are not parallel to
each other [20]. Moreover, the extra degree of freedom of a VSCMG
(over a conventional RW or CMG) can be used to achieve additional
objectives of combined attitude and power tracking control [22] and/
or singularity avoidance [21,23]. In fact, VSCMGs are poised to
become the actuator of choice for combined attitude control and
power management on board orbiting spacecraft. For such
applications it is not unusual for the VSCMG wheels to spin at an
excess of 40,000 rpm to remain competitive to traditional chemical
batteries in terms of energy storage.

Recently, Tsiotras et al. have addressed the angular velocity
stabilization of a spacecraft via a single VSCMG actuator [24]. In
Marshall and Tsiotras [24], it is shown that complete attitude
stabilization may not always be possible due to the angular
momentum conservation constraint. Nonetheless, the angular
velocity system is linearly controllable, hence stabilizable. Both
linear LQR feedback controllers and a nonlinear controller were
designed in Richie et al. [24] for stabilizing the angular velocity
equations to zero.

In the present paper, we provide some new results for the angular
velocity stabilization of a spacecraft to zero via a single VSCMG,
while achieving at the same time partial attitude control. Even though
complete attitude control is not possible due to the momentum
conservation constraint as mentioned earlier, it is still possible to
achieve stabilization about certain orientations, which all lie in a
feasible orientation manifold. We investigate this possibility and
provide both linear and nonlinear controllers that locally and
semiglobally (as usual, semiglobal stability refers to the type of
stability with respect to all initial conditions from an a posteriori

arbitrarily large set; in contrast to global stability, the controller gains
depend on the size of this set) stabilize the angular velocity system.
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These controllers regulate the spacecraft attitude so that a body-fixed
axis (normal to the gimbal axis) aims at a given inertial direction.

The problem under consideration is of interest not only from a
theoretical point of view, but also from a practical point of view. For
instance, if we install a camera or an antenna fixed on the spacecraft,
then we can control the line of sight of this camera/antenna so that it
points along a desired direction using a single VSCMG. Therefore, if
for a certain mission one does not need to track the complete attitude
but one only needs to aim a body-fixed camera or antenna along an
arbitrary direction, then a single VSCMG is sufficient to achieve this
control objective.Moreover, our study also characterizes the types of
missions that are possible when some of the VSCMG actuators used
for spacecraft attitude control accidentally fail.

The paper is organized as follows. In Sec. II, we provide the
equations of motion of a spacecraft with one VSCMG actuator. We
specialize the full dynamic equation of a spacecraft with a cluster of
multiple VSCMGs of [22] to the case with a single VSCMG. In
Sec. III we investigate all feasible spacecraft orientations, which do
not violate the momentum conservation. We subsequently propose a
parametrization of all the feasible final orientations of the spacecraft
when it is at rest. The control objective is subsequently formulated in
terms of this parametrization. In Sec. IV we linearize the system
equations about the desired state and we study the controllability of
these equations. An LQR feedback controller that locally achieves
the control objective is proposed. In Sec. V we design a nonlinear
multistage controller that achieves the same control objective from
all initial conditions. Finally, numerical examples and simulations
that verify the proposed control methodology are presented in
Sec. VI.

II. Equations of Motion

The dynamic equations of motion of a spacecraft with a cluster of
VSCMGs have been derived in the literature [19,20,22,25]. Herein,
we will use the equations as given by Yoon and Tsiotras [22]. In [22]
the equations are derived under the assumptions that the center of
mass of each VSCMG wheel coincides with that of the gimbal
structure; the spacecraft, wheels, and gimbal structure are rigid; the
flywheels and gimbals are balanced; and the spacecraft rotational
motion is decoupled from its translational motion. Figure 1 shows a
schematic of a spacecraft with a singleVSCMG. The body frameB is

represented by the orthonormal set of unit vectors b̂1, b̂2, and b̂3, and
its origin is located at the center of mass of the entire spacecraft. The
gimbal frame G is represented by the orthonormal set of unit vectors

ŝ, t̂, and ĝ, and it is located on the gimbal, as shown in Fig. 1. In the
developments to follow, and with a slight abuse of notation, we use
bold symbols to denote both a vector and its components with respect
to a basis. The choice of the basis should be clear from the context.
When an ambiguity may be possible we will state the specific choice
of the basis used.

Specializing the dynamical equations of motion of [22] to the
single VSCMG case, one obtains

J _!� _J!� Icg �� ĝ�Iws�_� t̂�Iws _� ŝ�!�h� 0 (1)

where the total angular momentum vector h of the spacecraft is
expressed in the B frame as

h ≜ J!� Icg _� ĝ�Iws�ŝ (2)

Here J is the inertia matrix of the whole spacecraft (including the
VSCMG),� is the wheel spin rate of the VSCMGwith respect to the
spacecraft, Iws is a moment of inertia of the wheel about its spin axis,
and Icg is the sum of the inertia of the wheel and gimbal structure

about the gimbal axis. For any vector v� �v1; v2; v3�T 2 R3, the
notation v� 2 R3�3 represents the equivalent vector cross product
operation, that is,

v � ≜
0 �v3 v2
v3 0 �v1
�v2 v1 0

2

4

3

5

The total moment of inertia of the spacecraft will change, in general,
as the VSCMG rotates about its gimbal axis, so that the matrix
J � J��� is a function of a gimbal angle �; see the second term in
Eq. (1). However, the dependence of J on � is weak, especially when
the size of spacecraft main body is large. We will therefore assume

that J is constant ( _J � 0) during controller design. In addition, to
simplify the analysis, we assume that the gimbal acceleration term
Icg �� ĝ is ignored. This assumption is standard in the literature
[19,20,22,25], and it amounts to rate servo control of the gimbal
angle. This is a reasonable simplification because the gimbal angle
rate servo control bandwidth is typically high relative to the
dynamics of the attitude controllers addressed herein.

Under these assumptions, the dynamic Eq. (1) can be simplified as

J _!��!�h � Iws�_� t̂�Iws _� ŝ

��!��J!� Icg _� ĝ�Iws�ŝ� � Iws�_� t̂�Iws _� ŝ

��!��J!� Icg _� ĝ�Iws�ŝ� � Iws�t̂u1 � Iwsŝu2 (3)

where the control input is

u1
u2

� �

� _�
_�

� �

(4)

III. Feasible Spacecraft Orientations at Rest

A. Limitations due to Conservation of Angular Momentum

Because the VSCMG is a momentum exchange actuator, the total
angularmomentumof the spacecraft is conserved (in bothmagnitude
and direction) during a maneuver, assuming no external control/
disturbance torques are applied to the spacecraft. This momentum
conservation constraint imposes a restriction on the feasible
orientations of the spacecraft at rest.

For instance, it is clear that for any given nonzero initial total
angular momentum vector H0, the final rest state of the spacecraft
and the VSCMG has to be such that the direction of the spin axis of
the VSCMG is aligned with H0, and the magnitude of the angular
momentum of the wheel is equal to the initial magnitude of the

angular momentum vector H0≜ k H0 k. That is,

H0 � Iws�f ŝf � sgn�fH0ŝf (5)

where the subscript f denotes the desired final state, when the
spacecraft is at rest and sgn�f denotes the sign of �f.

Because the final spin axis of the VSCMG is determined by the
initial angular momentum H0, the spacecraft attitude at rest can be
determined via only two (Eulerian angle) rotations: one is a rotation
of the spacecraft about the body-fixed gimbal axis, and the other is a
rotation of the spacecraft about the body axis that coincides with the
final spin axis. Since at least three Eulerian angles are needed to
express the complete orientation of a spacecraft, one expects that

Body Frame

Gimbal Frame
ĝ

t̂

ŝ

O

b̂1

b̂2

b̂3

Fig. 1 Rigid spacecraft with a single VSCMG.
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complete attitude control of the spacecraft is not possible using a
single VSCMG; see Marshall and Tsiotras [24] for a formal proof of
this claim. As a result, the set of all feasible final spacecraft
orientations at rest for a given initial angular momentumH0 can be
parametrized by a pair of two angles.

Note that the geometric constraint that the wheel spin axis is
alignedwithH0 implies that the gimbal axismust be perpendicular to
H0, whenever the spacecraft is at rest. Therefore, if we install a
camera or an antenna on the spacecraft so that its line of sight is fixed
in the plane normal to the gimbal axis, we can aim the camera or
antenna at any given inertial direction n̂. Before providing a formal
proof of the last statement, we present a convenient parametrization
of all possible final orientations of the spacecraft when it comes to
rest.

B. Parametrization of All Final Feasible Orientations

To this end, let us assume for simplicity that the gimbal axis is

fixed along the b̂3 body axis, and the camera/antenna is fixed along

the b̂1 body axis, as shown in Fig. 2. The gimbal angle � is defined as

the angle from b̂1 to ŝ about the axis ĝ� b̂3 in the positive sense. The
spin axis of the VSCMG in the body frame can then be written as

ŝ� cos � b̂1 � sin � b̂2 (6)

We introduce the following parametrization of the spacecraft
orientation. First, we define an inertial frameHwith basis vectors â1,
â2, â3, so that the total angular momentum H0 is aligned along â3,
that is,

â3 ≜
H0

H0

(7)

Given an inertial direction n̂ (which is not parallel with H0), we
define the remaining two unit vectors by

â2 �
â3 � n̂

k â3 � n̂ k ; â1 � â2 � â3 (8)

When n̂ is parallel toH0, one may define â1 and â2 arbitrarily as two
unit vectors normal to n̂, so that the three vectors of â1, â2, â3 form an
orthonormal set.

A spacecraft orientation can be described by a “3-1-3” body-axis
angle sequence from frame H to frame B via the direction cosine
matrix RB

H defined as RB
H � R3� �R1���R3���, where Ri, for i� 1,

2, 3 is the rotational matrix about the ith body axis. Componentwise,
we can write

RB
H �

c�c � s�c�s s�c � c�c�s s�s 

�c�s � s�c�c �s�s � c�c�c s�c 

s�s� �c�s� c�

2

4

3

5 (9)

where � 2 �0; ��, and �; 2 ���; ��, and c�≜ cos�, s�≜ sin�,
etc. From (5–7), one now has

sgn�f

cos �f
sin �f
0

2

4

3

5� RB
Hâ3 �

sin �f sin f
sin �f cos f

cos �f

2

4

3

5 (10)

for the case when the spacecraft and the VSCMG gimbal are both at
rest. Comparing the third element of (10) yields cos �f � 0, that is,
�f � �=2. Physically, this implies that the only orientations that are

accessible at rest are those for which the b̂3 axis (the gimbal axis) is
perpendicular to the total angular momentum. Therefore, all feasible
spacecraft orientations at rest can be parametrized by the pair
of the two remaining Eulerian angles �f and  f. Since �f � �=2 it
follows that sin �f � 1. Hence cos �f � sgn�f sin f and sin �f�
sgn�f cos f. This yields a relation between the final gimbal angle
�f and the final Eulerian angle  f as follows:

�f � sgn�f��=2� �  f (11)

Equation (11) implies that the final Eulerian angle  f at rest is
determined by the final gimbal angle �f if the sign of �f is known.
Therefore, we can use the gimbal angle �f as one of the parameters to
describe the spacecraft orientation at rest, in lieu of f. In the sequel,
we denote ��f � �=2�  f and ��f ���=2 �  f � ��f � �.

Next, we provide an algorithm to find the values of the angles �f
and  f (or �f) in order to make the line of sight (herein, the b̂1 axis)
aim along an arbitrarily given inertial direction n̂. To this end,
suppose that n̂ can be written in the inertial frame H as

n̂� n1â1 � n2â2 � n3â3. To make the body axis b̂1 point along the
inertial vector n̂, we require that

n1
n2
n3

2

4

3

5� RH
B
b̂1 �

cos�f cos f
sin�f cos f

sin f

2

4

3

5 (12)

because cos �f � 0 and sin �f � 1. In fact, the right-hand side of (12)
is the expression of the vector n̂ in the spherical coordinate system,
shown in Fig. 3. One can therefore specify the desired final value of
the parameters �f and  f for any given inertial vector n̂.

Since n̂ is perpendicular to â2 it follows that n2 � sin�f
cos f � 0. There can be two possibilities for the final required
attitude parameters. The first possibility yields cos f � 0. It follows
that  f �	�=2 and �f 2 ���; ��. From (12) it follows that n1 � 0
and thus n3 �	1. This solution is valid only for the special case
when the given inertial vector n̂ is parallel to H0. The other
possibility yields sin�f � 0, which implies that either �f � 0 or
�f � �. The former case implies cos f � n1 and sin f � n3 and
hence f � atan2�n3; n1�. The latter case implies cos f ��n1 and
sin f � n3 and hence  f � atan2�n3;�n1�. Note that the previous
two cases include the case cos f � 0 as special case.

Fig. 2 Axes definition of a spacecraft with a VSCMG and an antenna.

â 1

â2

â3

n̂

H 0

φ f

ψf

π
2

− ψf

Fig. 3 A desired inertial direction n̂ in the inertial frameH.
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Wehave shown that if a camera/antenna line of sight is fixed along

the b̂1 axis it can aim along an arbitrary direction n̂ when !� 0.
Next, we show that the same is true if the camera/antenna line of sight
is anywhere in the plane that is perpendicular to the gimbal axis. In
this case we can express the body-fixed unit vector direction of the

line of sight of the camera as b̂� cos � b̂1 � sin � b̂2, where � is the

angle between b̂1 and b̂. Then similarly to Eq. (12), in order to make

the body-fixed vector b̂ point along the inertial vector n̂, we need that

n1

n2

n3

2

6

4

3

7

5
� RH

B
b̂

�
c�fc fc�� c�fs fs�

s�fc fc�� s�fs fs�

s fc�� c fs�

2

6

4

3

7

5

�
cos�f cos� f � ��
sin�f cos� f � ��

sin� f � ��

2

6

4

3

7

5
(13)

A simple calculation shows that these equations always have a
solution, given by

 f � atan2�n3; n1� � �; �f � 0 (14a)

 f � atan2�n3;�n1� � �; �f � � (14b)

Next, we show that a camera/antenna must be installed on the
spacecraft so that its line-of-sight axis is normal to the gimbal axis in
order to aim in an arbitrary inertial direction when!�tf� � 0. To this

end, let us define a body-fixed unit vector b̂� b1b̂1 � b2b̂2 � b3b̂3.

When the spacecraft is at rest (and thus �f � �=2), the vector b̂ can be

written in the H frame as b̂� a1â1 � a2â2 � a3â3, where

a1
a2
a3

2

4

3

5� RH
B
b̂�

c�fc f �c�fs f s�f
s�fc f �s�fs f �c�f
s f c f 0

2

4

3

5

b1
b2
b3

2

4

3

5 (15)

To make the b̂ axis point along the inertial direction n̂, the

final Euler angles �f and  f must be such that b̂ 
 n̂� a1n1�
a2n2 � a3n3 � 1. In particular, let us consider the case when the

line-of-sight axis (the b̂ axis) is commanded so that it aims in the
direction of the total angular momentum, that is n̂� â3�
H0=H0. Then, b̂ 
 n̂� b̂ 
 â3 � a3 � b1s f � b2c f �

����������������

b21 � b22
p

sin� f � ��, where cos �� b1=
����������������

b21 � b22
p

, sin�� b2=
����������������

b21 � b22
p

.

Because b̂ 
 n̂� 1 it follows that b21 � b22 � 1, and thus b3 � 0,

which implies that the body-fixed vector b̂must be perpendicular to

the gimbal axis b̂3 � ĝ. We have thus proved the following:
Proposition 1: Assume thatH0 ≠ 0.We can point any body-fixed

axis of a spacecraft with a single VSCMG along an arbitrary inertial
direction if and only if this axis lies in the plane that is normal to the
VSCMG gimbal axis.

Hereafter, for simplicity, we will consider only the case of �� 0,

that is b̂� b̂1. Figure 4 shows two final rest configurations for which

b̂1 points along the given inertial direction n̂ for the case when
�f � 0. There are two possible cases, as expected fromEq. (11). One

is with a positive final wheel speed�f ���
f ≜H0=Iws > 0. In this

case, the final gimbal axis ŝf is aligned along H0 in the same
direction, as shown in Fig. 4a. The other case is with a negative final

wheel speed, that is, �f ���
f ≜ �H0=Iws < 0. The final spin axis

ŝf is aligned along H0 but has the opposite direction, as shown in

Fig. 4b. In both cases, the final b̂1 axis points in the direction of n̂, as

desired. Notice that the gimbal axis ĝ� b̂3 is perpendicular to the
total angular momentum vector H0 �H0â3 because �f � �=2.

Figure 5 shows twofinal rest configurations forwhich b̂1 points in the
given inertial direction n̂ for the case�f � �. Similarly, with the case
with �f � 0, there are two possible configurations depending on the
sign of the final wheel speed �f. Figures 5a and 5b show the final
desired orientation of the spacecraft with �f > 0 and �f < 0,
respectively.

For either case, �f � 0 or �f � �, the final gimbal angle �f is
computed from Eqs. (11). Specifically, we have

cos ��f � cos

�

�

2
�  f

�

� sin f � n3 �
H0 
 n̂
H0

(16)

and similarly for ��f .

For each value of the sign of �f the pair ��f; �f� determines the
final spacecraft orientation at rest. Furthermore, if we design a
controller that achieves

!! 0 (17a)

�e ≜ � � �f ! 0 (17b)

�e ≜ � � �f ! 0 (17c)

then the spacecraft will be brought to rest and the b̂1 axis will point
along the desired inertial direction n̂. Hereafter, for simplicity, we
consider only the cases corresponding to �f � 0. The case with
�f � � can be treated similarly.Also, notice thatwhen n̂ is parallel to

Fig. 4 Desired attitudes with !� 0 for given H0 and n̂; case when

�f � 0.

Fig. 5 Desired attitudes with !� 0 for given H0 and n̂; case when
�f � �.
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H0 the controller does not need to meet the last requirement in (17)
because (17c) is redundant in this case and thus it can be ignored.

IV. Linearized System Analysis and Controller Design

The kinematic differential equation for the “3-1-3” rotational
sequence is given by

_�
_�
_ 

2

4

3

5� 1

sin �

s c 0

c s� �s s� 0

�s c� �c c� s�

2

4

3

5

!1

!2

!3

2

4

3

5 (18)

and the differential equation of �e is

_� e � _� � u1: (19)

In this section, we linearize the nonlinear equations of motion,
given by (3), (18), and (19). We then use these equations to
investigate the controllability properties of the system �!; �e; �e�.
We also present an LQR control law that satisfies the control
objectives (17) and thus stabilizes the angular velocity of spacecraft
with a body-fixed axis aiming at a given inertial direction.

A. Controllability Analysis

The desired equilibrium points of Eqs. (3), (18), and (19) are given
by !� 0, �e � 0, �e � 0, ���f and u� �u1; u2�T � 0.
Moreover, we know that sin �� 1, sin � sgn�f cos � and
cos � sgn�f sin � near the equilibrium. Thus, one can linearize
the differential equation of �e as follows:

_� e � _�� �!1 cos �f � !2 sin �f�sgn�f � !Tŝfsgn�f (20)

The linearized equations can be written as [24]

_!
_�e
_�e

2

4

3

5�
A1 0 0

0 0 0

A2 0 0

2

4

3

5

�!

�e
�e

2

4

3

5�
B1 B2

1 0

0 0

2

4

3

5

u1
sgn�fu2

� �

(21)

where,

A1 ≜ J�1Iws�f ŝ
�
f (22a)

A2 ≜ ŝTfsgn�f (22b)

B1 ≜ �J�1Iws�f t̂f (22c)

B2 ≜ �J�1Iwsŝf (22d)

where all vectors are expressed in the B frame.
Proposition 2: The linearized system described by Eqs. (21) and

(22) is controllable for any �f 2 �0; 2�� and �f ≠ 0.
Proof.The controllability of Eqs. (21) and (22) can be shownusing

the Popov–Belevitch–Hautus (PBH) test [[26], p. 135]. A necessary
and sufficient condition for the controllability of (21) and (22) is that
the matrix C��� defined as

C ���≜
A1 � �I 0 0 B1 B2

0 �� 0 1 0

A2 0 �� 0 0

2

4

3

5 (23)

has rank 5 for all complex � 2 C. It can be easily proved using the
approach of [24] that the linearized subsystem �!; �e� is controllable,
that is, the pair of matrices � �A; �B�, where

�A≜ A1 0

0 0

� �

; �B≜ B1 B2

1 0

� �

(24)

is controllable [27]. Therefore, it follows easily that rank C��� � 5
for all � ≠ 0. We only need to check the rank of the matrix

C 0�0�≜
A1 B1 B2

0 1 0

ŝTfsgn�f 0 0

2

4

3

5 (25)

Notice that

rank C0�0� � rank

ŝ�f t̂f ŝf
0 1 0

ŝTf 0 0

2

4

3

5 (26)

To this end, assume that there exist a vector v1 2 R3, and scalars
v2; v3 2 R such that

vT1 v2 v3
� �

ŝ�f t̂f ŝf
0 1 0

ŝTf 0 0

2

4

3

5� 0 (27)

Equivalently,

v T

1 ŝ
�
f � v3ŝ

T

f � 0 (28)

v T

1 t̂
�
f � v2 � 0 (29)

v T

1 ŝf � 0 (30)

Equation (28) holds if and only if v1 � 0 and v3 � 0. From (29) it
follows that v2 � 0. This implies that the left null space of the matrix
in Eq. (27) contains only the zero vector and thus rank C0�0� � 5 and
the proof is completed.

Notice that proposition 2 does not ensure the controllability of the
linearized system if �f � 0. However, if the initial angular
momentum H0 is not zero, then �f ≠ 0 by conservation of the
angular momentum.

B. Linear Control Design

In this section we outline briefly the design of a linear controller
via LQR theory for the linearized system (21). Let the matricesA and
B denote the system matrices in Eq. (21). Then we can determine a
control gain matrix K 2 R2�5 such that the static full-state feedback
law

u � �u1; sgn�fu2�T ��K�!T; �e; �e�T (31)

minimizes the performance index

J ≜
Z 1

0

�xTQx� uTRu� dt (32)

where x� �!T; �e; �e�T, Q 2 R5�5 is a positive semidefinite matrix,
and R 2 R2�2 is a positive definite matrix. The gain matrix K is
computed by K � R�1BTP, where P is the solution of the algebraic
Riccati equation (ARE)

ATP� PA � PBR�1BTP�Q� 0 (33)

No further details are provided because LQR theory is well known in
the literature [28].

V. Nonlinear System Analysis and Controller Design

The LQR controller of the previous section ensures asymptotic
stability only locally about the equilibrium !� 0 (and thus also
���f), �e � 0 and �e � 0. In realistic cases, however, one
cannot expect that the initial states will be near the equilibrium point.
To achieve the desired stabilization objective for all initial conditions
at large (not necessarily close to the origin), it is necessary to
design a controller based on the complete nonlinear equations of
motion.
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In the sequel we suggest a control methodology that comprises a
sequence of three stages. At the first stage, only the angular velocity
! is controlled in order to decrease its value toward zero. When a
certain condition ismet, the controller switches to the second stage in
which both ! and the gimbal angle � are controlled to their desired
values, according to the sign of the wheel speed. Once ! and � are
sufficiently close to the values at the desired equilibrium, then the
controller switches to the third stage where the LQR controller
designed in Sec. IV regulates the Euler angle � to �f, along with !
and �.

The following assumptions are made in order to simplify the
analysis.

Assumption 1: The spacecraft is inertially axisymmetric about the

gimbal axis ĝ� b̂3.
Assumption 2: The spacecraft is not inertially symmetric.
Under assumption 1, the inertia matrix written in the gimbal frame

G takes the form

J �
Jt 0 0

0 Jt 0

0 0 Ja

2

4

3

5 (34)

Assumption 2 implies that Jt ≠ Ja.

A. Angular Velocity Stabilization

Consider the positive definite, continuously differentiable
Lyapunov function candidate

V1�!� � 1
2
!TJ! (35)

Its time derivative along the trajectories of the system (3) yields

_V 1 � !TJ _!� !T��!��J!� Icg _� ĝ�Iws�ŝ� � Iws�t̂u1

� Iwsŝu2� � �!tIws�u1 � Iws!su2 (36)

where !s � !Tŝ and !t � !Tt̂ are the projections of the body
angular velocity ! along the spin and transverse axes of the gimbal

frame, respectively, that is, !� !sŝ� !tt̂� !gĝ, where
!g � !Tĝ. Taking a control law as

u1 � _� � k1!tIws�; k1 > 0 (37a)

u2 � _�� k2Iws!s; k2 > 0 (37b)

yields

_V 1 ��k1�!tIws��2 � k2�Iws!s�2 � 0 (38)

To show that the control law (37) provides an asymptotically
stabilizing feedback, we need to show that there exists c0 > 0 such
that, for each c1 2 �0; c0�, no trajectory of the vector field with
u1 � u2 � 0 is contained inside the set

L c ≜ f!: V1�!� � c1 and !tIws�� Iws!s � 0g (39)

In other words, we need to show that no trajectories of the control-

free system stay in nontrivial invariant sets of _V1 � 0, which are
characterized by the equations

!tIws�� 0 (40a)

Iws!s � 0 (40b)

Inside the invariant set Lc, we have that u1 � _� � 0 and

u2 � _�� 0, and thus � and� are constant. In addition,!s � 0 from
(40b). Because � is constant, the gimbal frame G is fixed in the body
frame. Rewriting the dynamic equations in the G frame, one obtains

J _!��!��J!� Iws�ŝ� � �!�h (41)

where

!� �0; !t; !g�T; _!� �0; _!t; _!g�T (42)

Using Eqs. (34) and (42), Eq. (41) can be written as

0

Jt _!t
Ja _!g

2

4

3

5��
h3!t � h2!g

h1!g
�h1!t

2

4

3

5�
!t!g�Jt � Ja�
�Iws�!g
Iws�!t

2

4

3

5 (43)

where

h � �h1; h2; h3�T � �Iws�; Jt!t; Ja!g�T (44)

is the total angular momentum of the vehicle expressed in the gimbal
frame. Comparing the first element in Eq. (43), one obtains!t!g � 0
for the equilibria. Also, one has!t�� 0 from Eq. (40a). Thus, there
are two different types of the equilibria:

1)!t � 0,!g 2 R: Comparing the second element in Eq. (43), one
has �!g � 0. If !g � 0, then !� 0, which is the desired
equilibrium. However, there can still be a nontrivial equilibrium
given by �� 0, !� �0; 0;	H0=Ja�T.

2) !g ��� 0, !t 2 R: There can be a nontrivial equilibrium at
�� 0, !� �0;	H0=Jt; 0�T.

Therefore, there exist nontrivial equilibria contained inside the
invariant set Lc, thus global stabilization is not guaranteed.
Nonetheless, these nontrivial equilibria are unstable; seeAppendixA
for the proof. Therefore, “essentially global stability” or “regional
stability” [global stability except a set of negligible size (in
mathematical language, a set of measure zero)] follows. This type of
stability is all that is needed from a practical point of view.

B. Stabilization of !, �e, and �e

The nonlinear controller designed in the previous section
stabilizes !, but it cannot achieve the overall control objective, as it
controls only the angular velocity vector. Hence, the final orientation
of the spacecraft is not controlled. In this section, we design a
nonlinear controller which makes, in addition to !! 0, also
�e � � � �f ! 0.

Notice that there are two possible desired values of thefinal gimbal
angle �f in this case, depending on the sign of the final wheel speed
�f, as shown in Eq. (11) or Eq. (16). The magnitude of the final
wheel speed is given by j�fj �H0=Iws as !! 0 due to the
momentum conservation law, but its sign can be either positive or
negative, unless it is explicitly controlled. Thus, we also need to
control the wheel speed � as well as ! and �.

First, let us consider a nonlinear controller which makes !! 0,
� ! ��f and� ! ��

f . For this purpose, define aLyapunov function

candidate V�
2 �!; �e;��

e � as

V�
2 �!; ��e ;��

e �≜ 1
2
!TJ!� 1

2
k��

�2
e � 1

2
k��

�2
e

� 1
2
�Jt�!2

s � !2
t � � Ja!

2
g� � 1

2
k��

�2
e � 1

2
k��

�2
e ;

k� ; k� > 0 (45)

where ��e ≜ � � ��f and ��
e ≜� ���

f . Its time derivative along

the trajectories of the system (3) and (19) yields

_V�
2 � !TJ _!� k��

�
e _� � k��

�
e
_�

���!tIws� � k���e �u1 � �Iws!e � k���
e �u2

(46)

Choosing a control law as

u1 � _� � k3�!tIws�� k���e �; k3 > 0 (47a)

u2 � _�� k4�Iws!s � k���
e �; k4 > 0 (47b)

yields

_V �
2 ��k3�!tIws� � k��e�2 � k4�Iws!s � k���

e �2 � 0 (48)
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The last inequality implies, in particular, that the angular velocity
remains bounded.

Now, let us check whether there exist nontrivial equilibria that

make _V�
2 � 0, as we did in Sec. V.A. These equilibria are

characterized by the equations

!tIws� � k��e � 0 and Iws!s � k���
e � 0 (49)

There are three types of nontrivial equilibria, and are shown in
Table 1. See Appendix B for the details.

Similarly, we also consider a nonlinear controller for the negative
final wheel speed��

f . Define another Lyapunov function candidate

V�
2 �!; �e;��

e � as

V�
2 �!; ��e ;��

e �≜
1

2
!TJ!� 1

2
k��

�2
e � 1

2
k��

�2
e

� 1

2
�Jt�!2

s � !2
t � � Ja!

2
g� �

1

2
k��

�2
e � 1

2
k��

�2
e

(50)

where ��e ≜ � � ��f and ��
e ≜� ���

f . This Lyapunov function

candidate suggests the control law

u1 � _� � k3�!tIws� � k���e �; k3 > 0 (51a)

u2 � _�� k4�Iws!s � k���
e �; k4 > 0 (51b)

One can show that the nontrivial equilibria of this control law are
identical with those of the control law (47) shown in Table 1, except
that !s and � have opposite sign.

Since it is rather complicated to check the stability of these
nontrivial equilibria using Lyapunov’s first method as we did in
Sec. V.A, here we follow a different approach. We eliminate the
possibility of encountering these nontrivial equilibria altogether, by
properly choosing the values of the controller gains, and by utilizing
the controller designed in Sec. V.A, which stabilizes the angular
velocity !. To this end, let V2eq be the minimum of the values of the
Lyapunov candidates V�

2 and V�
2 at the nontrivial equilibria. That is,

let

V2eq ≜min

�

1

2
H2

0

�

1

Jt
� k�

I2ws

�

;

2k�H
2
0

I2ws � k�Jt
;
1

2

H2
0�I2ws � k�Jt�

Ja�k��Jt � Ja� � I2ws�

	

> 0

(52)

For any nonzero initial angular momentumH0 and any spacecraft
inertia matrix J, we can choose the control gains k� and k� so that

V2eq >
1
2
k��

2 (53)

If we take the value of the gimbal angle � using the “congruence”-
function modulo 2�, that is,

�� �mod�� � � � ��f ; 2�� � �� ��f

�� �mod�� � � � ��f ; 2�� � �� ��f
(54)

and redefine

��e ≜ �� � ��f ; ��e ≜ �� � ��f (55)

then the gimbal angle errors are confined as �� � ��e < � and
�� � ��e < �.

Now, suppose that the control law (37) is applied to make !! 0.
From momentum conservation, the wheel speed � converges to

either ��
f or ��

f , as !! 0. If we let �≜ V2eq � 1
2
k��

2 > 0 from

Eq. (53), then there exist a time ts > 0 such that

1
2
�!TJ!� k��

�2
e �jt�ts < �; or 1

2
�!TJ!� k��

�2
e �jt�ts < �

(56)

At this time ts, therefore, one of the following conditions must hold

V�
2 �t� ts�< �� 1

2
k��

�2
e < �� 1

2
k��

2 � V2eq (57a)

V�
2 �t� t�< �� 1

2
k��

�2
e < �� 1

2
k��

2 � V2eq (57b)

Hence, if we switch the controller at t� ts from Eq. (37) to Eqs. (47)
or (51), depending on the sign of the wheel speed�, then we ensure
that � ! ��f and � ! ��

f , or � ! ��f and � ! ��
f as !! 0,

respectively, without encountering any of the nontrivial equilibria.
This follows from the fact that the control laws (47) and (51) imply
_V�
2 � 0 and _V�

2 � 0, respectively.
Remark 1: Inequality (53) imposes a restriction on the controller

gain k� that depends on the initial conditions for H0, equivalently
k !�0� k. For every bounded set of initial conditions the controller
gain can be chosen such that this inequality is satisfied. This type of
stability is known in the literature as semiglobal stability.

Remark 2: Notice that, assuming 2Ja � Jt > 0 holds, then
condition (53) can be satisfied by choosing k� > 0 and k� > 0 as
follows

k� >
I2ws

minfJt; 2Ja � Jtg
and

2k�H
2
0

I2ws � k�Jt
>
1

2
k��

2 (58)

See also the discussion in Appendix B.

C. Nonlinear Control Design for Stabilization of !, �e, and �e

The final goal of the control design is to stabilize �e, as well as !
and �e. We already have designed three separate controllers, which
we will use in the sequel to fulfill this objective. One is a linear
controller, designed in Sec. IV, which locally stabilizes!, �e, and�e.
The second one is a nonlinear controller, designed in Sec.V.A,which
regionally stabilizes !. The third one designed in Sec. V.B makes
!! 0, as well as � ! �f and� ! �f. Each one of the first and the
third controllers has two different versions according to the sign of
�f. Utilizing these three control laws, we can construct a switching
control logic consisting of three control phases that regionally
achieves the final control objective given in Eq. (17). At the first
stage,we use the nonlinear controller (37) tomake!! 0.While this
controller is being applied, the values of V�

2 and V�
2 are monitored,

and if one of them becomes less than V2eq, then the control switches
to the second stage, where the controller (47) or (51) results in!! 0
and � ! �	f and� ! �	

f according to the sign of�f. At the third

stage, we use the linear controller in Sec. IV to also stabilize �e as
well as ! and �e.

To use the linear controller in the third stage, we need all the states
to be kept close to their desired equilibrium values, except �e which

Table 1 Nontrivial equilibria of the system under controller Eq. (47)

Type E1a E2 E3b

!s ��k�H0=I
2
ws� ��2H0=�Jt � I2ws=k��� H0=�Ja � Jt � I2ws=k��

!t 	
������������������������������������������������

�H2
0=I

4
ws���I4ws=J2t � � k2��

p

0 0

!g 0 0 	
������������������������������������������������������������������������������

H2
0f�1=J2a� � �1=�Ja � Jt � I2ws=k��2�g

p

��e 0 0 0
� 0 ��2IwsH0=�Jtk� � I2ws�� � �H0=Iws� �fIwsH0=�k��Jt � Ja� � I2ws�g � H0=Iws� �
V�
2

1
2
H2

0 ��1=Jt� � �k�=I2ws�� 2k�H
2
0=�I2ws � k�Jt� �1=2�f�H2

0�I2ws � k�Jt��=fJa�k��Jt � Ja� � I2ws�gg
aExists only if k� � I2ws=Jt.
bExists only if 2Ja � Jt � I2ws=k� � 0.
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is ignorable, that is, it has no effect on the differential equations. It
follows that !� 0, �e � 0,���	

f at the beginning of, and during

the third stage. Owing to the nonlinear controller used at the second
stage ! and �e have arbitrarily small values at the beginning of the
third stage. The wheel speed � also becomes ���	

f to conserve

the total angular momentum. In addition, if we determine the
weighting matrix Q and R in the performance index (32) so that the
weights on! and �e are large, then the LQRcontroller thatminimizes
the performance index in (32) will keep ! and �e small during the
third stage. Thewheel speed variation alsomust be kept small, that is,
���	

f , but this is not guaranteed by the LQR controller. From the

momentum conservation law, however, if we can keep! sufficiently
small during the third stage (by using a large weight on! in the LQR
controller), then�will also stay close to�	

f . The flow chart of Fig. 6

summarizes the whole procedure to achieve the control objective.

D. A Comparison with the Momentum-Bias Case

Passive partial control of a satellite using a single (nongimballed)
wheel is a widely used and very well understood technique in
practice. See [[29], Chap. 6] and [[30], Chap. 8]. A momentum-
biased satellite, for instance, uses a single wheel to provide
gyroscopic stability of the wheel body-fixed axis. The body-fixed
axis along the wheel spin axis thus remains stable (but not
asymptotically stable). The projection of the angular velocity vector
along the transverse axes is not zero, however, and this induces
nutation of the body-fixed wheel axis at a frequency approximately
equal to [29,30]

!nut �
�Iws
���������

JaJt
p (59)

In this sectionwe investigate the relationship of this classical result to
the stabilizing control law of Sec. V.A, and we elucidate the effect of
using an active control strategy to inject damping in to the system in
order to make it asymptotically (not merely Lyapunov) stable.

To this end, we linearize the closed-loop dynamics (A1) around
the desired equilibrium

!� 0; � ≠ 0

The linearized equations are given by

J� _!� ��Iws�ŝ�� � k2I2wsŝŝT � k1I2ws�2t̂t̂T��!

which, when expressed in the stationary gimbal frame (�_� � 0),
leads to a linear system with state matrix

�k2I2ws=Jt 0 0

0 �k1I2ws�2=Jt �Iws�=Jt
0 Iws�=Ja 0

2

4

3

5

This matrix has eigenvalues

� k2I
2
ws

Jt
;

�Iws
2JtJa

�

�Jak1Iws�	
���������������������������������������

J2ak
2
1I

2
ws�

2 � 4JtJa

q

�

(60)

Since all three eigenvalues are in the open left half of the complex
plane for all positive values of k1 and k2, asymptotic stability results,
as expected. In the absence of feedback (k1 � k2 � 0) we have the
standard case of a gyrostat [[29], p. 162] and the system has a pair of
purely imaginary eigenvalues at

	 i
�Iws
���������

JaJt
p

that signify a nutation frequency as in (59). Note that the effect of the
feedback control action is to add damping to the system and move
eigenvalues further into the open left half of the complex plane, at
least initially. From (60) it is evident that for large values of k1 all
three roots are on the real axis and the response can be made
nonoscillatory. This will occur for

k1 > k1crit �
2

Iws�

�����

Jt

Ja

s

which is the optimal choice of k1 for a fast response. Figure 7 shows a
typical root locus for the closed-loop system eigenvalues as a
function of the controller gain k1. In Fig. 7 only two of the roots are
shown as the third one depends solely on k2 and remains always
negative real for all k2 > 0.

VI. Numerical Examples

In this section, we give an illustrative example of the proposed
control design for the problem of spacecraft angular velocity
stabilization with simultaneous body-fixed line-of-sight control. In
the previous sections, the simplified equations of motion with the

assumptions _J � 0 and Icg �� ĝ�0 were used for control design. In
this section the complete nonlinear equations of motion given by

Nonlinear

Controller

Linear

Controller

Linear

Controller

Start

No

Yes

End

Nonlinear

Controller

Nonlinear

Controller

1st stage

2nd stage

3rd stage

ω → 0, γ → γ +
f , Ω → Ω+

f ω → 0, γ → γ −
f , Ω → Ω−

f

ω → 0, γ → γ +
f , φ e → 0 ω → 0, γ → γ −

f , φ e → 0

V
+

2 < V2eq or V
−

2 < V2eq ?

V
+

2 < V2eq V
−

2 < V2eq

ω → 0

(37)

(47) (51)

(31) (31)

Fig. 6 Flow chart of entire control procedure.
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Fig. 7 Locus of closed-loop eigenvalues for 0 � k1 <1.
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Eq. (1) and the acceleration steering law of [22,24] are used to predict
and validate the performance of the proposed controllers under
realistic conditions. Table 2 summarizes the values of the moments
of inertia of the spacecraft and the VSCMG used in all numerical
simulations.

The control design parameters, the initial conditions, and the
desired line of sight n̂ used in the simulations are given in Table 3. To
describe the attitude of the spacecraft with respect to the inertial
frame I , we use Euler’s parameters (quaternion). The attitude of
the spacecraft with respect to the H frame is described by means of
the 3-1-3 Eulerian angles �, �, and as described earlier. The initial
value of the quaternion vector in Table 3 implies that the initial body

frame B is aligned with the inertial frame I at t� 0. The controller
gains of the nonlinear controller and the weights of the LQR
controller are chosen by trial and error in order to stabilize the system
quickly and with suitable damping. In particular, the gains k� and k�
are chosen so that the condition (53) holds.

For the given initial angular velocity !�0� and the desired line-of-
sight direction vector n̂, the corresponding final gimbal angles are
calculated from Eq. (16) as ��f � 127:1 and ��f ��52:91. The
final wheel speeds are given by ��

f �H0=Iws � 17; 505 rpm and

��
f ��H0=Iws ��17; 505 rpm. In addition, the inertial frame H,

defined from (7) and (8), is given via

RH
I �

âT1
âT2
âT3

2

4

3

5�
0:8889 0:4474 0:0983

�0:1458 0:0729 0:9866

0:4342 �0:8914 0:1300

2

4

3

5 (61)

Using this matrix we can calculate the coordinates of n̂ in the H

frame as n̂� �0:7977; 0;�0:6031�T.
Figures 8–13 show the results of the numerical simulations. As

mentioned in Sec. V.C, the whole control procedure consists of three
stages. During the first stage, the nonlinear controller (37) is applied
so as to stabilize !, whereas � and � are allowed to take any values.
For this example, V�

2 becomes less than V2eq � 3:1487 at
ts1 � 4:98 sec, as shown in Fig. 9, so that the control mode is
switched to the second stage of the nonlinear controller (51). During
the second stage, ! is still under stabilization, and � ! ��f and

� ! ��
f .

The switching from the second stage to the third stage occurswhen
the norms of ! and �e become smaller than some given tolerances
�!; �� > 0, respectively. We have used �! � 10�3 and �� � 10�2 in
the simulations, and the switching time for these values was
ts2 � 110:66 sec. At the third stage, the linear LQR controller is
applied to achieve the overall control objective by making!, �e, and
�e all converge to zero.

Figure 8 shows the angular velocity trajectory of the spacecraft. As
expected, the angular velocity is reduced to zero, thenmomentarily it
diverges after switching from the second to the third stage (near
ts2 � 110:66 s), and it converges to zero again as t! 1. Notice that
!3 � !g is kept small even during the third stage. Thismeans that the
spacecraft does not rotate significantly about the gimbal axis, but it
does rotate about the spin axis in order to make �e ! 0. On the other
hand, the other two angular velocity elements noticeably increase
during the transition to the third stage. This increase can bemitigated
by a suitable choice of the matrices Q and R in Eq. (32).

Figure 10 shows the attitude history of the body frame B.
Figure 10a is the time history of the quaternion parameters of Bwith

Table 2 Spacecraft model parameters

Symbol Value Units

BI 20 0 0

0 20 0

0 0 10

2

4

3

5

kgm2

Iws 0.0042 kgm2

Iwt, Iwg 0.0024 kgm2

Igs 0.0093 kgm2

Igt, Igg 0.0054 kgm2

ŝ0 �1; 0; 0�T ——

t̂0 �0; 1; 0�T ——

ĝ0 �0; 0; 1�T ——

Table 3 Control design parameters and initial conditions

Symbol Value Units

q�0� �0; 0; 0; 1�T ——

!�0�a �0:2;�0:4; 0:1�T rad= sec
��0� 120 deg
_��0� 0 deg = sec
��0� 3 � 103 rpm
n̂b �1=

���

5
p

��1; 2; 0�T ——

Q diag�104; 104; 104; 103; 103� ——

R diag�103; 1� ——

k1, k3 1 ——

k2, k4 5 � 104 ——

k� 0.05 ——

k� 1 � 10�6 ——

Kp 1 ——

aWritten in the body frame B.
bWritten in the inertial frame I .
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respect to I . Before the switching from the second to the third stage,
the attitude parameters converge to certain constant values because
!! 0, due to the nonlinear controller, and after switching they
converge to some other values as!! 0 again, due to the linear LQR
controller. The final quaternion coincides with the desired final

quaternion vector. Specifically, wemay check that the final b̂1 axis is

b̂1 � �0:4472; 0:8944; 0�T � n̂

whichmeans that the line of sight fixed along the b̂1 axis points in the
given direction n̂, as desired.

Figures 10b–10d show the time history of the Eulerian angles ofB
with respect to H, which are used for the parametrization of the
spacecraft orientation at rest. As the angular velocity converges to
zero, � converges to �f � 90 deg as expected. As shown in Fig. 10b,
� is not controlled during the first and second stage, but after
switching to the third stage, � converges to zero via the use of the
LQR controller. The other Euler angle  also converges to
 f � tan�1�n3=n1� � tan�1��0:6031=0:7977� � �37:09 deg. We
can see that only � varies in the third stage, whereas � and  are

nearly kept constant, and this implies again that the spacecraft rotates
about the VSCMG wheel spin axis during the third stage.

Figure 11 shows the gimbal angle and the wheel speed trajectories
of the VSCMG, respectively. It can be shown that both the gimbal
angle changes and the wheel speed changes are exploited by the
controller during the first and second stages to stabilize ! and �e. In
the third stage, only the wheel speed change is exploited to make
�! 0. The variation of the wheel speed in the third stage is not very
large, so that the use of the linearized analysis is justified. In fact, we
canmake the difference���f much smaller byweighting less� or

weighting more ! and/or _� in the performance index (32), but the
convergence rate of � will become slower in this case. It is also
shown that the gimbal angle � converges to ��f ��52:91 deg,

which satisfies Eq. (11). Figure 12 shows the trajectories of the

control inputs, _� and _�, as well the gimbal acceleration ��.

Finally, Fig. 13 shows a series of snapshots of thewholemaneuver
of the spacecraft. Note that the total angular momentum vectorH is
fixed in inertial space during themaneuver. The angular velocity! is
gradually reduced to zero and it is hardly seen in these snapshots after
t� 40 sec. At t� 100 sec, which is just before the switching from
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the second to the third stage, the gimbal angle is ��f ��52:91 deg.

Notice the relative positions of the unit vectors b̂1 and ŝ about the b̂3

axis. The spin axis ŝ is perfectly opposite in direction toH, and the
wheel speed is����

f < 0, which means that the wheel is actually

spinning in the direction ofH to conserve the angularmomentum.At

t� 120 sec, which is just after the second switching, we may see

that the spacecraft rotates about the ŝ axis to align the b̂1 axis with n̂,
while controlled by the LQR controller. Near t� 200 sec., the

spacecraft is at rest with the b̂1 axis pointing in the direction of n̂, and
the control objective is successfully achieved.

Fig. 13 Snapshots of the spacecraft orientation during the maneuver.
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VII. Conclusions

The present paper deals with the attitude control problem of a rigid
spacecraft using only one VSCMG. It is shown that the complete
attitude equations are not controllable, but a certain type of partial
attitude control without violating the angular momentum
conservation principle is possible. As an example of partial attitude
control, the problem of controlling an axis fixed in the spacecraft
frame is addressed. The approach is based on the complete
characterization of all feasible final orientations of the spacecraft at
rest by a pair of two angles. Both linear (for small initial conditions)
and nonlinear (for large initial conditions) strategies are presented.
The proposed nonlinear control strategy consists of three consecutive
stages and it successfully stabilizes the spacecraft angular velocity at
large, while making a specified spacecraft body-fixed axis aim at a
given inertial direction. The results of this paper should be useful for
spacecraft missions where only two-axis stabilization is of interest
(e.g., the line-of-sight direction of a camera or antenna) or for
mitigating actuator failures. This paper is the first one dealing with
the problem of spacecraft attitude stabilization using a single
VSCMG. Several extensions are therefore possible. Future work
should deal with the general case of a nonaxisymmetric spacecraft
and/orwith the case of zero total initial angularmomentum, aswell as
robustness issues.

Appendix A: Instability of the Nontrivial Equilibria

In this Appendix, we show that the nontrivial equilibrium states of
Eqs. (3) and (37) are unstable. For simplicity of the ensuing analysis,

we assume that h≜ J!� Icg _� ĝ�Iws�ŝ� J!� Iws�ŝ, which is
justified by the fact that the gimbal angle rate _� does not contribute
significantly to the total angular momentum. The closed-loop system
with the proposed nonlinear controller (37) can be written as

J _!��!��J!� Iws�ŝ� � k1I2ws�2!tt̂ � k2I2ws!sŝ (A1)

_� � k1Iws�!t (A2)

_�� k2Iws!s (A3)

Linearizing these equations about �� 0, �e � 0, !t � 0, and
!g �	H0=Ja, one obtains

J� _!� ��J!�� � !�J � k2I2wsŝŝT��! � !�Iwsŝ�� (A4)

�_� � 0 (A5)

� _�� k2Iwsŝ
T�! (A6)

It is obvious that the dynamics of�� in Eq. (A5) is neutrally stable,
and can be decoupled from those of�! and��. Thus we only need
to check the stability of Eqs. (A4) and (A6). It can be easily shown
that the characteristic equation of this linear system is

���3 � a2�
2 � a1�� a0� � 0 (A7)

where

a2 � �1=Jt�k2I2ws;

a1 �
H2

0�Ja � Jt�2
J2t J

2
a

;

a0 �� I
2
wsk2H

2
0�Ja � Jt�
J2t J

2
a

This equation has a single root at the origin, so that the system is
marginally stable at best. From Routh’s stability criterion, a
necessary and sufficient condition for stability for the characteristic
equation (A7) is

a0 > 0; a1 > 0; a2 > 0

and

a2a1 � a0 �
I2wsk2H

2
0�Ja � Jt�
JaJ

3
t

> 0

Note, however, that a0 and �a2a1 � a0� cannot have a same sign.
Therefore, this equilibrium is unstable.

Similarly, consider the equilibrium �� 0, �e � 0, !g � 0, and
!t �	H0=Jt. The linearized equations about this equilibrium state
are

J� _!� ��J!�� � !�J � k2I2wsŝŝT��!
� k2I2ws!tŝ�� � !�Iwsŝ��

(A8)

�_� � k1!tIws�� (A9)

� _�� k2Iwsŝ
T�!� k2!tIws�� (A10)

The characteristic equation of this linear system is

�2��3 � a2�
2 � a1�� a0� � 0 (A11)

where

a2 � �1=Jt�k2I2ws; a1 �� k1I
2
wsk2H

2
0

J2t

a0 �
I2wsk2H

2
0

J3t Ja
�Ja � Jt�

One of the necessary conditions for stability is

a1 > 0

which is false for this system, because k1; k2 > 0 from (37).
Therefore, this equilibrium is also unstable, and the proof is
complete.

Appendix B: Characterization
on the Nontrivial Equilibria

In this Appendix we derive the nontrivial equilibrium states of the
closed-loop system under the nonlinear controller (47). These
equilibria are characterized by Eq. (49), which is rewritten here as

!tIws� � k��e � 0 and Iws!s � k���
e � 0 (B1)

We consider two cases: 1) �� 0 and 2) � ≠ 0.
1) �� 0: When �� 0, then ��

e ����
f ��H0=Iws, and thus

!s ��k�H0=I
2
ws is a nonzero constant. Rewriting the dynamic

equations in the gimbal frame G, one obtains J _!��!�J!, where
!� �!s; !t; !g�T, _!� �0; _!t; _!g�T. This equation can be written
componentwise as

0

Jt _!t
Ja _!g

2

4

3

5�
�Jt � Ja�!t!g
��Jt � Ja�!g!s

0

2

4

3

5 (B2)

which immediately yields!t!g � 0 and _!g � 0. Moreover, because
!s and !g are constant, _!t is constant, from the second element of
Eq. (B2). If _!t is a nonzero constant, !t will diverge to infinity thus
violating the boundedness of !. Thus, _!t � 0 and !g!s � 0. Since
!s ��k�H0=I

2
ws ≠ 0, it follows that !g � 0. Therefore, the total

angular momentum is

h �
�

�Jt
k�H0

I2ws
; Jt!t; 0

�

T

(B3)
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Thus, assuming that k� � I2ws=Jt and from k h k �H0, we have that

!t �	

��������������������������������

H2
0

I4ws

�

I4ws

J2t
� k2�

�

s

(B4)

This is the nontrivial equilibrium E1 in Table 1. If, on the other hand,
k� > I

2
ws=Jt, this equilibrium does not exist.

2)� ≠ 0: In this case, !t as well as !s are constant. The equation
of motion written in the gimbal frame is

J _!��!��J!� Iws�ŝ� � �!�h (B5)

where

h � �Jt!s � Iws�; Jt!t; Ja!g�T (B6)

and !� �!s; !t; !g�T, _!� �0; 0; _!g�T. Equivalently,

0

0

Ja _!g

2

4

3

5�
!t!g�Jt � Ja�

!g!s�Ja � Jt� � Iws�!g
Iws�!t

2

4

3

5 (B7)

and thus !t!g � 0. Let us consider two cases again: a) !g � 0 and
b) !t � 0.

2a) !g � 0: Because _!g � 0, !t � 0 and

h � �Jt!s � Iws�; 0; 0�T � �	H0; 0; 0�T (B8)

From Eq. (B1), ��
e � Iws!s=k�, and thus ����

e ���
f �

Iws!s=k� �H0=Iws. Comparing with the first element of (B8)
yields

!s

�

Jt �
I2ws

k�

�

� 0; or !s

�

Jt �
I2ws

k�

�

��2H0 (B9)

If !s � 0, we are done because this is the desired (trivial)
equilibrium. If !s ≠ 0, then

!s �� 2H0

Jt � I2ws=k�
(B10)

and

��� 2IwsH0

Jtk� � I2ws
� H0

Iws
(B11)

and this state corresponds to the nontrivial equilibriumE2 in Table 1.
2b) !t � 0: From Eq. (B7), _!g � 0, thus,

!�h� 0 (B12)

where

!� �!s; 0; !g�T; h� �Jt!s � Iws�; 0; Ja!g�T (B13)

Since h ≠ 0, this equation implies !� 0 or h� �! (� ≠ 0). The
equilibrium with !� 0 is the desired state, so that we can ignore it.
From (B13), therefore, one obtains

�Jt � ��!s ��Iws� (B14)

�Ja � ��!g � 0 (B15)

The case with !g � 0 has been examined already, so that we only
need to check the case �� Ja. For this case, it is easy to show that

!s �
H0

Ja � Jt � I2ws=k�
(B16)

and

!g �	

���������������������������������������������������������������

H2
0

�

1

J2a
� 1

�Ja � Jt � I2ws=k��2
�

s

(B17)

where we have used the fact that ����
e ���

f � Iws!s=k� �
H0=Iws and k h k �H0. This equilibrium state correspond to column
E3 in Table 1. Note that this equilibrium is possible only when
2Ja � Jt � I2ws=k� � 0.
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