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Received 6 February 2015; Accepted 30 March 2015

Academic Editor: Che-Lun Hung
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De novo assembly of the genome of a species is essential in the absence of a reference genome sequence. Many scalable assembly
algorithms use the de Bruijn graph (DBG) paradigm to reconstruct genomes, where a table of subsequences of a certain length is
derived from the reads, and their overlaps are analyzed to assemble sequences. Despite longer subsequences unlocking longer
genomic features for assembly, associated increase in compute resources limits the practicability of DBG over other assembly
archetypes already designed for longer reads. Here, we revisit the DBG paradigm to adapt it to the changing sequencing technology
landscape and introduce three data structure designs for spaced seeds in the form of paired subsequences. �ese data structures
address memory and run time constraints imposed by longer reads. We observe that when a 	xed distance separates seed pairs,
it provides increased sequence speci	city with increased gap length. Further, we note that Bloom 	lters would be suitable to
implicitly store spaced seeds and be tolerant to sequencing errors. Building on this concept, we describe a data structure for
tracking the frequencies of observed spaced seeds. �ese data structure designs will have applications in genome, transcriptome
and metagenome assemblies, and read error correction.

1. Introduction

For nearly a century, progressive discovery of the number and
molecular structure of chromosomes and their information
content have proven to be useful in the clinical domain [1, 2].
With the sequencing of the human genome, we have gained
a reference for base pair resolution comparisons that have
provided unprecedented insights in molecular and cellular
biology. Complementing this reference, development of high
throughput sequencing (HTS) platforms, most notably from
Roche 454 (Basel, Switzerland), Illumina (San Diego, CA),
Life Technologies (Carlsbad, CA), and Paci	c Biosciences
(Menlo Park, CA), signi	cantly bene	ted clinical genomics
[3, 4], cancer genomics in particular [5, 6]. And there is
increased anticipation in the 	eld towards a new sequencing
platform from Oxford Nanopore Technologies (Cambridge,
UK).

Rapid improvements in the quality and quantity of
sequencing data generated by HTS platforms have called for
innovative and robust bioinformatics tools. �e introduction
of read alignment algorithms that use advanced comput-
ing science concepts, such as Burrows-Wheeler transforma-
tion [7], Ferragina Manzini (FM) indexing [8], and cache

oblivious algorithms, allowed the reference-based assembly
approach to scale with the exploding volume of HTS data [9–
11]. While earlier comparative genomics tools concentrated
mostly on analysis of aligned reads [12, 13], the approach
biased analyses toward rea�rmation of the reference, even
when there is an alternative and parsimonious interpretation.

�e fundamental drawback of the reference-based assem-
bly approaches is the consideration of read data indepen-
dently, ignoring that they are sampling a common underlying
sequence.�is becomes especially pronouncedwhen a region
is highly rearranged, expressed in an unannotated struc-
ture, or represented erroneously in the reference. To extend
the utility of the reference-based assembly paradigm, sev-
eral groups developed alternative alignment postprocessing
approaches, such as base quality recalibration followed by
realignment [14, 15], local assembly with constraints to gain
base pair resolution [16–18], or developed methods that
measure statistics about putative events, o�en foregoing base
pair resolution [19, 20].

Recently, analysis of HTS data using de novo assembly,
an approach that is unbiased by the reference sequence,
is gaining interest [21–23]. Even though the approach is
substantially more computationally intensive, the enhanced
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speci	city and the resulting savings in event veri	cation
e�orts justify the choice. In earlier work, we had reported
on a scalable de novo assembly tool, ABySS, that used short
reads from an HTS platform to assemble the human genome
[24], and we further demonstrated the utility of the approach
to analyze transcriptome sequencing (RNA-seq) data (Trans-
ABySS) [25, 26]. �e technology proved to be valuable in
large-scale cancer cohort studies [5, 27–29].

Sequence assembly tools di�er in the way they identify
read overlaps and disambiguate unclear sequence extensions.
A de Bruijn graph (DBG) representation of �-mer overlaps
(overlaps between sequences of � base pairs in length) was
introduced with the Euler algorithm [30] and is the enabling
technology behind ABySS and some of the other popular de
novo assembly tools, such as Velvet [31].

�e concept hinges on loading �-mers into the computer
memory to perform fast sequence extension queries. For large
target genomes and/or datasets with high sequencing error
rate, memory requirement for representing �-mers might be
prohibitive. ABySS solves this problem by distributing the
memory load over a given number of computer nodes in
a computer cluster. Minia [32] implements a Bloom 	lter
data structure [33] to represent a DBG stochastically in small
memory and navigates it using a secondary data structure.

In sequence assembly, there are several advantages of
using a DBG approach compared to overlap-layout-consen-
sus [34] or string graph based assembly algorithms [35].
�e former approach uses less memory and executes faster
compared to the latter two. However, with increasing read
lengths in “short read” platforms like Illumina and with the
gaining popularity and development of “long read” platforms
like Paci	c Biosciences and Oxford Nanopore, DBG based
assembly algorithms need to adapt to retain their advantage.

Merely increasing the length of �-mers has several prob-
lems. For both deterministic (as inABySS [24]) and stochastic
(as in Minia [32]) representation, longer �-mers will quickly
in�ate the memory requirements of the assembly tools, as
the experimental data will present a �-mer spectrum of
increasing volume. Doing so would further result in missed
sequence overlaps in the presence of mismatched bases.

�e data structure reported in this paper o�ers a design
that will be suitable for extending the utility of fast and
e�ective DBG algorithms, hereby modifying the concept of
�-mers by introduction of spaced seeds. As well, we describe
primary and auxiliary data structures based on Bloom 	lters
[33] with potential uses in genome, transcriptome and
metagenome assemblies, and error correction.

2. Spaced Seeds

Longer reads from technological advances in sequencing
platforms and sample preparation coupled with data prepro-
cessing methods (such as the Illumina synthetic long reads)
will certainly be a welcome development for assembly-based
analysis. However, they also pose certain challenges, most
notably due to an increase in the memory required when
using longer �-mer lengths.

�e maximum �-mer length that ABySS can use is a
compile-time parameter. Currently, we routinely use �-mers
as long as 120 bp when assembling 2×150 bp reads. However,
we need to, for instance, increase the number of CPUcoreswe
use for a typical human genome assembly from 36 cores to 48
coreswhenwe increase the �-mer length from96 bp to 120 bp.

Further, a DBG approach assumes that one has error-
free �-mers, which becomes a strong assumption when the
�-mer lengths increase, especially with the established long
read technology from Paci	c Biosciences typically producing
reads with error rates of over 10%. Even though the Illumina
platforms are generally producing good quality reads with
less than 1% average error rate, with increased read lengths
the probability of having an error-free �-mer still decreases
geometrically.

To address both of these issues, we propose using DBGs
with spaced seeds. �e concept is similar to the paired DBG
approach in the Pathset algorithm [36]. �e di�erence is that
assembly by spaced seeds would allow for a 	xed distance
between the seed pairs, as opposed to an undetermined (yet
constrained) distance in the Pathset algorithm, which is
sensitive to read coverage �uctuations.

For spaced seeds, we use two �-mers [� : �], separated
by a 	xed distance, Δ. �is construct is a special case of the
spaced seeds that are used for read alignments [37], where a
sequence to be aligned ismasked by a template of “match” and
“do not care” positions. �e alignment process tolerates
mismatches in the do not care positions, as long as the match
positions agree between the query and the target. In our case,
match positions are evenly split and pushed to the 3� and 5�

ends of the template, and the do not care positions are
collected between the �anking match positions.

We note that, as the distance between the two �-mers
increases, the uniqueness of spaced seeds also increases, as
demonstrated in Figure 1 for both the E. coli and H. sapiens
genomes. Although this observation is anecdotal, it is com-
pelling that the behavior is so similar for these two species
with substantial phylogenetic distance. Our conjecture is that
the curves we present in Figure 1 are representative of a wide
variety of genomes. �is allows one to use spaced seeds to
achieve unique representations that are otherwise not pos-
sible with single �-mers of length 2�, thus reducing the
memory requirement for assemblies with longer reads. Such
a construct would also be tolerant to sequence errors that fall
within the space between the seeds.

3. Data Structures

3.1. Spaced Seeds Hash Table. A straightforward implemen-
tation of the data structure within ABySS is possible through
modi	cation of the �-mer hash table of the so�ware. A
hashed �-mer holds several pieces of information:

(1) In two-bit base encoding, the sequence content for
the 	rst observation of the �-mer or its reverse-
complement: 2� bits.

(2) Frequency of the forward and reverse-complement

observations, both maxing out at 215–30 bits (round
up to 32 bits).
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Figure 1: Uniqueness of spaced seeds in the (a) E. coli and (b)H. sapiens genomes, as a function of the space length. �e red, blue, and black
curves correspond to spaced seeds of lengths 8, 16, and 32 bp, respectively. When the space length is zero, the uniqueness 	gures correspond
to 16, 32, and 64 bp single �-mer lengths, respectively. Curves show that, for the E. coli genome, using a spaced seeds of length 16 is equivalent
to or better than using �-mers of length 64, when delta is longer than 100 bp.

(3) In the input dataset, presence (1) or absence (0) of all
four possible one-base extensions of the sequence in
both directions: 8 bits.

(4) Book keeping �ags to track �-mers removed by error
removal algorithms: 16 bits.

For a spaced seeds hash table, wemodi	ed (1) to represent
the sequence content of the concatenated sequence [� : �],
while applying the same encoding. Of importance, the mem-
ory footprint of the spaced seeds is a constant, 4�, for a 	xed
�-mer length, and does not depend on the distance between
the seeds.

We also modi	ed the sequence extension information to
re�ect possible extensions of either seed in either direction.
�is increases the memory footprint of this information to 16
bits.

�e data structure for tracking spaced seed frequencies
and the book keeping �ags are not modi	ed.

Overall, compared to storing a sequence of length (2�+Δ),
a spaced seed represents savings in memory when Δ > 8.

3.2. Spaced Seeds Bloom Filter. In the Bloom 	lter data
structure, a number of hash functions are used to convert a
sequence to a large integer value.�is value speci	es a unique
coordinate in allocated memory, when modulus of the calcu-
lated integer is used to 	t into a prede	ned memory size. �e
Bloom	lter data structure o�ers a frugal representation of the
set of reads and is typically used to query set memberships.
Because of the information loss during hashing and the
modulus operations, such set membership queries using a
Bloom 	lter constructed with ℎ hash functions holding �
sequences in � bits of memory would, for large �, have an
approximate false positive rate [38] given by

� = (1 − 	−ℎ�/�)ℎ . (1)

For a 	xed target number of sequences in the 	lter and 	xed
memory size, the optimal number of hash functions can be
calculated as

ℎ∗ = ⌈�� ln 2⌉ . (2)

Assuming the optimumnumber of hash functions to be 4,
it is feasible to store the human genome in a Bloom 	lter with
a false positive rate of � = 6.25% using ca. 2 GB of memory.

Conventional methods (e.g., CityHash from Google,
MountainView,CA) for storingℎ coordinates associatedwith
a given sequence in the memory block use ℎ di�erent hash
seeds and one hash function. (�e term hash seed here refers
to an initialization value for the hash function to randomize
the distribution of generated hash values and should not to
be confusedwith spaced seeds.) As an alternative, we propose
the following.

Let 2� be a string of length 2� over the alphabet Σ =
[�, �, �, �] represented using a 2-bit encoding with the
alphabet mapped to [00, 01, 10, 11], such that complement
bases correspond through a bitwise NOT operation. Next, let
sequence 2� (� : � : �) be a substring of 2� starting from the
�th letter, ending at the �th letter, sampling every �th letter,
using an index origin of 1. Given a hash function, �{⋅}, we
calculate the following four hash values:

�� = �{2� (1 : 1 : �) ⊕ �2� (1 : 1 : �)} ,
�	 = �{2� (� + 1 : 1 : 2�) ⊕ �2� (� + 1 : 1 : 2�)} ,
�
 = �{2� (1 : 2 : 2� − 1) ⊕ �2� (1 : 2 : 2� − 1)} ,
�� = �{2� (2 : 2 : 2�) ⊕ �2� (2 : 2 : 2�)} ,

(3)

where the substring operation is performed prior to reverse
complementation denoted by “�” and ⊕ denotes the bitwise
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Table 1: Update rules for the counting Bloom 	lter.

Value at bit location Update action

� �� At location Set sign Set count

0 0 or −0 � 0 2

Nonzero 0 or −0 � No change Increment

0 or −0 Nonzero �� 1 Increment

Nonzero Nonzero � and �� 1 0

−0 0 �� 1 2

Stage 1 Bloom 
�lter

Stage 2 Bloom 
�lter

Reads

Generate 
spaced seeds

For each 
spaced seed

Generate hash 
values

Present?
No Yes

Populate Populate

Figure 2: Flowchart of cascading Bloom 	lters. �e process of
populating the stage 2 Bloom 	lter, indicated by the dashed box, is
described in Table 1.

XOR operation. �e four values calculated in (3) can be
interpreted as the le�, right, odd, and even hash values for
the string 2�. When this string is a concatenation of two �-
mers, the le� and the right hash values will represent the 	rst
and the second �-mers, respectively, while the odd and even
hash values will stretch through the concatenated sequence.

3.3. Counting Bloom Filter. In a sequencing experiment, it is
o�en desirable to count the multiplicity of observed sequen-
ces. �is may be valuable information for removing experi-
mental noise in de novo assembly of sequencing data. InRNA-
seq experiments, �-mer counts may be used to quantitate
gene expression levels. Likewise, in metagenome sequencing
experiments, they may be used for sequence clustering of
similar �-mer coverage levels.

However, in almost all applications, the exact count does
not necessarily indicate precise abundance of a sequence in
the input material, as the shotgun sequencing represents a
statistical sampling process. Further, if a short integer counter
is used, it may saturate rapidly. On the other hand, if a long
integer counter is used, it may in�ate memory usage.

Building on the spaced seeds Bloom 	lter described
above, we designed a staged Bloom 	lter with a mini�oat
counter, as described below.

When populating the spaced seeds Bloom 	lter, if the
inserted sequence has already been observed (i.e., all the
corresponding bits are set in the memory before populating
them with the present observation) a pair of hash values
are calculated for the concatenated sequence 2� and its
reverse-complement �2�.�ese hash values are collapsed by a
modulus operation to point to the memory coordinates of a
byte array � and ��, for 2� and �2�, respectively. Note that this
is a deviation from the regular Bloom 	lters, which are bit
arrays, as opposed to byte arrays. Also note that � and ��
are two coordinates on the same byte array. In this construct,
the “	rst-stage” Bloom 	lter of the spaced seeds records all
observed 2�, while the “second-stage” counting Bloom 	lter
is engaged when it is observed at least twice (Figure 2).

At the second stage, themini�oat counter follows an IEEE
754 inspired standard to represent �oating point numbers
in one byte, the sign standing for the strand information of
the recorded sequence. By default, we populate the counter
in the direction of the 	rst observed strand. �at is, if the
positions � and �� are both vacant, this would indicate that
we have cascaded this observed sequence to the second stage
for the 	rst time. Assuming that this is not a false positive
hit in our spaced seed Bloom 	lter, the count of observation
of this sequence should be two; accordingly the position � is
populated with a count of 2.

If only one of the positions is nonzero, that position is
incremented by one. If it happens to be the coordinate of the
reverse-complement sequence, ��, then the sign bit is set to
indicate that the sequence has been observed on both strands.

If both positions are nonzero, this indicates hash collision.
�e number negative zero is reserved as a �ag for such cases,
and both counts are truncated to this special �ag. Note that,
to avoid secondary hash collisions, that is, hash collisions due
to some other pair of sequences, the nonzero condition for
this case includes negative zero as well. Table 1 provides a
summary of rules on how the counts are performed.

For the counts, we use a mini�oat representation with
one sign bit, four exponent bits, and three mantissa bits, with
an exponent bias of -2 (or a 1.4.3.-2 mini�oat) using the
IEEE 754 standard. �is gives us exact counts up to 15 and
a probabilistic count beyond 16, up to a maximum of 122,880.
�e precision in the lower end is valuable to control for noise
in experimental data.�edynamic range of over 	ve orders of
magnitude is conducive to analyzing data from RNA-seq
experiments.

Table 2 illustrates some counts and their mini�oat repre-
sentations. Figure 3 shows the tight concordance between the
approximate counts from probabilistic mini�oat values and
the true counts.
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Table 2: Mini�oat counts and their representations.

Count (�) Mantissaa (�) Exponenta (	)
Zeros

0 and −0b 0 0 0 0 0 0 0

Subnormal numbersc (� = �)
1 0 0 1 0 0 0 0

2 0 1 0 0 0 0 0
... ... ...
7 1 1 1 0 0 0 0

Normalized numbersc (� = 1 ⋅ � × 2�+2)
8 0 0 0 0 0 0 1

9 0 0 1 0 0 0 1
... ... ...
15 1 1 1 0 0 0 1

16 0 0 0 0 0 1 0

18 0 0 1 0 0 1 0
... ... ...
122,880d 1 1 1 1 1 1 0

aMost signi	cant digits on the le�.
bDistinguished by the sign bit.
cShown for a sign bit of 0.
dMaximum possible 1.3.4.-2 mini�oat number.

4. Application Areas

4.1. Error Correction. Above, we noted that read errors within
the space between seeds would not a�ect the sequence 2�.
Further, the Bloom 	lter with the four hash values ��, �	,�
, and �� would have certain characteristics when the
sequencing data has read errors.

For example, when an interrogated sequence 2� has a
single base error, then the error should be con	ned to the
le� or the right half of the sequence. Likewise, it should be
con	ned to the odd or even bases. �erefore, if an error-free
version of the sequence is already recorded in the Bloom	lter,
two out of four hash values should register hits with a partic-
ular pattern, such as the le� and the odd hash values. If the
other two subsequences can be modi	ed by the same one-
base change, such that they also register hits, it would be
a strong indication that the correct sequence should have
been the sequence with this change. �is can further be sup-
ported through correlating corrected bases to their estimated
sequencing qualities, such as the �-scores generated by the
data acquisition so�ware of the sequencing instruments.

Optionally, we can use both the spaced seeds and their
counts to guide error correction. Table 3 summarizes how the
error correction may be performed.

4.2. Sequence Assembly. �e extension of the DBG assembly
algorithm using spaced seeds hash table involves minor
modi	cations to the ABySS algorithm [24].

When the assembly of a contig is initiated, it would go
through a transient phasewith two “wave fronts” correspond-
ing to extensions of the 	rst and the second �-mer. A�er
the seed gap is traversed, while the leading edge probes

1e + 01 1e + 03 1e + 05

1e + 01

1e + 03

1e + 05

True counts
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Figure 3: Approximate counts versus true counts in the mini�oat
data type 1.4.3.-2. �e box-whisker plots indicate the interquartile
range and the variability of the counts outside the 	rst and the third
quartiles. �e distributions represent a repetition of 10,000 counts
in each logarithmic bin.

for possible extensions, the lagging edge would eliminate
false branches by asserting that the extension on the lagging
edge agrees with the assembled sequence between the seeds.
Such assertions would realize the bene	ts of the improved
sequence uniqueness of spaced seeds demonstrated in
Figure 1.

It is also possible to use the spaced seeds Bloom 	lter
design for sequence assembly, when the data type is supple-
mented with auxiliary information about the sequences of
certain �-mers. While building the spaced seeds data type,
one can query it at the same time for the presence or absence
of 1-base extensions of the populated spaced seeds, as well
as their uniqueness. �ese will indicate whether the �-mers
under consideration are blunt ends (with no neighbors in
one or both directions) or at some branching points in the
corresponding DBG. If so, their sequences can be saved as
auxiliary data along with their types (blunt or branch). Such
sequences can be used to initiate the assembly.

During the construction of the spaced seeds Bloom 	lter,
the list of blunt edges will go through a transitory phase,
where initially there will be two blunt edges for each read.
As the set of sequences converges to the target assembly size,
blunt edges will be reported only at places of low or missing
sequence coverage and at the edges of target sequences (as
in the chromosome ends for genomes or transcript ends for
transcriptomes). Depending on the size of the problem, a
periodic “garbage collection” might be necessary, where the
list of blunt edges is interrogated again to see if any members
in the list have extensions in the populated 	lter and they are
removed from the list if so.

However, branch sequences would not have similar
issues. At branching points, it is enough to capture branching
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Table 3: Error correction rules.

Value at bit location
Interpretation Action�� �	 �
 ��

1 1 1 1 Present in the set Update count

0 0 0 0

Not present in the set Insert in the 	lter

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 0 1 0 �ere may be a single
base correction that
would make the
pattern (1 1 1 1)

If so, and if the
corrected sequence
has a nonzero count,
correct the read.
If not, insert in the
	lter.

1 0 0 1

0 1 1 0

0 1 0 1

1 0 0 0 �ere may be two
base corrections that
would make the
pattern (1 1 1 1)

0 1 0 0

0 0 1 0

0 0 0 1

using any representative of the branching sequences. While
populating the 	lter, the 	rst sequence to cross a branching
point would not be labeled as such, but the second sequence
to do so would necessarily be caught and labeled accordingly.

DBG construction using spaced seed sequences is
expected to reconstruct all the edges and vertices but would
also have extra edges and vertices stemming from false
positive hits in the Bloom 	lter. However, the pattern of false
positive branches on the graph would be easily distinguish-
able using their lengths.

If the probability of a false positive hit in our Bloom 	lter
is �, then the probability of this branch to get extended to

another false node will be �2, and this probability will con-
tinue to drop geometrically as the length of the false branch
gets longer. �is represents a massive multiple hypothesis
testing problem, even at the scale of the human genomewhere
the probability of a false branch of length 10 will be very small
compared to the number of hypotheses tested.

In our example of � = 6.25%, the probability of a false
branch of length 10, a�er a naı̈ve Bonferroni correction with

a factor of 3×109, is still less than 0.3%. Keeping in mind that
the ABySS algorithm already implements a default branch
trimming for branches shorter than 2�−1 bases long, branch
removal due to false Bloom 	lter hits will be benign, in
comparison.

By design, the spaced seeds Bloom	lter harbors informa-
tion at two length scales: � and 2� + Δ. As such, the assembly
process can potentially switch between these two scales. A
smaller length scale is valuable when the local sequence
coverage is low, and a large length scale is valuable when the
local sequence complexity is low. Being able to dynamically
switch between these two length scales would potentially
allow the assembly algorithm to navigate its way out of these
challenging situations.

Using the coverage information captured in the count-
ing Bloom 	lter data structure may further strengthen the

assembly process. For example, in transcriptome assembly,
the abundance of sequences in the experimental data would
be indicative of the expression levels of the corresponding
transcripts. Using the counting Bloom	lter, one can partition
the assembly problem into strata of expression levels, con-
structing sequences across spaced seeds with similar counts.
However, the presence of alternatively spliced transcripts
would be a challenge that would need to be mitigated.
Allowing temporary “excursions” into other coverage strata
may help resolve this issue.

Similarly, for metagenome assembly, partitioning the
assembly problem into strata of counts would also be a viable
approach, albeit with similar caveats. Identical or nearly iden-
tical sequences from less abundant specieswould yield gaps in
their assembled genomes, when the higher coverage branches
are used exclusively to assemble the genomes of highly
abundant species. As is the case for transcriptome assemblies,
count strati	cation can be performed taking the graph topol-
ogy into account and holds the potential to disambiguate and
catalog sequences with uneven representation.

5. Conclusions

�e de Bruijn graph has reigned for over a decade as the
data type of choice for short read assembly algorithms but
could be supplanted by other paradigms as its advantages are
becoming less apparent with increased read lengths. Here,
we present novel data types that will help de Bruijn graphs
maintain their competitive edge over alternatives. Speci	-
cally, we generalize the de	nition of a �-mer, the traditional
workhorse of de Bruijn graphs, to a “spaced seed”: a �-mer
pair, consisting of two shorter sequences separated by a 	xed
distance, Δ.

�e concept can be generalized for any topology of the
spaced seed templates, such as those used for sequence align-
ments [37], but the special case we use is more amenable to de
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Bruijn graph applications. When a spaced seed is extended
within a de Bruijn graph, 1-base extensions at all thematch/do
not care transitions and the last matched base (if the latter
corresponds to the template edge) need to be tracked. In our
design, that is two bases per spaced seeds. Further, the design
has the potential to be extended to represent paired end reads,
when Δ is variable.

We introduce three data types to represent the spaced
seeds. �e 	rst one is an extension of the �-mer hash table
in the ABySS algorithm. �e second one uses a specialized
Bloom 	lter data structure to store them implicitly. Lastly, we
describe the design of a counting Bloom 	lter in association
with a mini�oat counter to represent the abundance of �-
mers deterministically up to 15-fold and store higher abun-
dances in a probabilistic fashion.

Although the advantages of a Bloom 	lter as a low mem-
ory footprint alternative to a hash table have been reported
before [32], extending the concept to include spaced seeds
leverages their e�ciency to report additional true positive
sequences across longer distances, potentially o�ering longer
range contiguity for de novo sequence assemblies. Also,
the designed spaced seed data types that use Bloom 	lter
data structures support sequence contig construction at two
length scales (� and 2� +Δ), a feature expected to handle low
coverage and sequence complexity issues. Further, we note a
major advantage of the designed data types in their potential
utility for sequence error correction.

Another potential use case for spaced seeds is in the
problem of assembly sca�olding. We have implemented an
algorithm, LINKS [39], which takes long reads, such as those
generated by the Oxford Nanopore MinION sequencer to
sca�old or resca�old dra� assemblies. It uses a hash table
of �-mer pairs to register linkage information between assem-
bled contigs or sca�olds. Weighing the evidence of �-mer
positions on linked contigs or sca�olds and frequencies of
linkage observation, it constructs paths through the linked
sequences to build sca�olds.

For algorithmic complexities of various use cases,
although we expect the major impact of the spaced seeds to
be on reducedmemory footprints, we note that reduced space
complexity should result in reduced run times. �at is, even
if the time complexity of the algorithms as a function of the
input data would not change, their scaling constants would.
�is behavior would be mostly due to the memory manage-
ment and cache performance of the a�ected algorithms.

�e spaced seed data type concepts proposed herein
will help us retain the succinct representation advantages of
de Bruijn graphs for sequence assembly of data from high
throughput sequencing technologies and carry the paradigm
forward to the era of long reads, when it arrives.
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