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Abstract: The approach of the paper is on spacelike circular surfaces in the Minkowski 3-space. A
spacelike circular surface is a one-parameter family of Lorentzian circles with a fixed radius regarding
a non-null curve, which acts as the spine curve, and it has symmetrical properties. In the study, we
have parametrized spacelike circular surfaces and have provided their geometric and singularity
properties such as Gaussian and mean curvatures, comparing them with those of ruled surfaces and
the classification of singularities. Furthermore, the conditions for spacelike roller coaster surfaces to
be flat or minimal surfaces are obtained. Meanwhile, we support the results of the approach with
some examples.
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1. Introduction

In spatial kinematic, the movement of the one-parameter family of circles with a fixed
radius generates a circular surface, while the movement of a one-parameter family of lines
generates a ruled surface. A circular surface has a spine curve, and a ruled surface has
a striction curve. The envelope of a set of circle planes is a tangent-developable ruled
surface. The characteristics of a tangent-ruled surface are straight lines, which are tangent
to the edge of regression. The edge of regression constitutes the singular points of the
tangent-developable ruled surface [1–6]. Because of this relationship between ruled and
circular surfaces, geometers have intention on circular surfaces in Euclidean and Minkowski
3-spaces. For example, Izumiya et al. [7] examined different geometric possessions and
singularities of circular surfaces by comparing with those of ruled surfaces. In [8], the
authors introduced great circular surfaces defined as a one-parameter family of great circles
in the three sphere, obtained a common classification of singularities of such surfaces,
and researched the geometric explanations from the viewpoint of spherical geometry.
In [9], a new category of circular surfaces in Euclidean 3-space defined by a curve and a
congruence of circles was constructed. The authors especially examine some geometrical
characterization of circular surfaces when the base curve is an algebraic curve. In [10],
Alluhaibi studied the singularity properties of circular surfaces in Euclidean 3-space. In [11],
spacelike circular surfaces in Minkowski 3-space defined by a smooth one-parameter family
of spacelike circles were investigated, and several geometric possessions were obtained.
Furthermore, the authors defined spacelike roller coaster surfaces, which are obtained
as spacelike circular surfaces whose generating circles are curvature lines, and obtained
a parametric equation of a spacelike roller coaster surface along a spacelike base curve
with spacelike principal normality. Tuncer et al. [12], reconstruct equations of spacelike
circular surfaces and spacelike roller coaster surfaces by using unit split quaternions and
homothetic movements. Furthermore, they parametrize timelike circular surfaces by using
unit split quaternions and homothetic movements and give the conditions for timelike
roller coaster surfaces to be flat or minimal surfaces. In [13], Abdel-Baky et al. considered
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the geometric properties of timelike circular surfaces in Minkowski 3-space. After that,
Yanlin et al. studied the timelike circular surfaces in Minkowski 3-space from the viewpoint
of singularity theory. They presented singularities and symmetry properties of timelike
circular surfaces in Minkowski 3-space [14]. Moreover, some of the latest connected studies
about symmetry and singularity can be seen in [15–23].

The present work includes the following: Section 3 gives definitions and studies the
geometry of spacelike circular surfaces with fixed radii that can be swept along a non-null
curve (the spine curve) via moving the position of a Lorentzian circle with its center as a
generating circle. Then, in analogy to [6,7], we characterize non-null curves as striction
curves on spacelike circular surfaces. Furthermore, we provide an investigation into local
singular points of spacelike circular surfaces. We also introduce roller coaster spacelike
surfaces as a special class of spacelike circular surfaces. Lastly, we give some examples of
roller coaster spacelike surfaces by using computer-aided graphics.

2. Basic Concepts

The Minkowski 3-space denoted by E3
1 is defined as the real vector space R3 with the

metric [24–26]
〈dx,dx〉 = dx2

1 + dx2
2 − dx2

3; (x1, x2, x3) ∈ R3.

A vector x ∈ E3
1 is said to be spacelike if 〈x, x〉 = 0 or x=0, timelike if 〈x, x〉 < 0, and

lightlike or null if 〈x, x〉 = 0 and x 6= 0. A timelike or light-like vector in E3
1 is said

to be causal. For x ∈ E3
1, the norm is defined by ‖x‖ =

√
|〈x, x〉|; then, the vector x

is called a spacelike unit vector if ‖x‖2 = 1 and a timelike unit vector if ‖x‖2 = − 1.
Similarly, a regular curve in E3

1 can locally be spacelike, timelike, or null (lightlike) if all
of its velocity vectors are spacelike, timelike, or null (lightlike), respectively. For any two
vectors x = (x1, x2, x3) and y = (y1, y2, y3) of E3

1, the vector product is defined by

x× y =

∣∣∣∣∣∣
i j −k

x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ = ((y2x3 − y3x2), (y3x1 − y1x3),−(y1x2 − y2x1)),

where i, j, k is the canonical basis of E3
1. The angle between two vectors in Minkowski

space is defined as follows.

Definition 1. (i) Spacelike angle: Let x and y be spacelike vectors in E3
1 that span a spacelike vector

subspace; then, we have |〈x, y〉| ≤ ‖x‖‖y‖; hence, there is a unique real number ϑ ≥ 0 such that
〈x, y〉 = ‖x‖‖y‖ cos ϑ. This number is called the spacelike angle between the vectors x and y.
(ii) Central angle: Let x and y be spacelike vectors in E3

1 that span a timelike vector subspace;
then, we have |〈x, y〉| > ‖x‖‖y‖; hence, there is a unique real number ϑ ≥ 0 such that 〈x, y〉 =
‖x‖‖y‖ cosh ϑ. This number is called the central angle between the vectors x and y.
(iii) Lorentzian timelike angle: Let x be spacelike vector and y be timelike vector in E3

1. Then,
there is a unique real number ϑ ≥ 0 such that 〈x, y〉 = ‖x‖‖y‖ sinh ϑ. This number is called the
Lorentzian timelike angle between the vectors x and y.

The hyperbolic and Lorentzian unit spheres, respectively, are

H2
+ = {x ∈ E3

1 | x2
1 + x2

2 − x2
3 = −1, x3 ≥ 1},

and
S2

1 = {x ∈ E3
1 | x2

1 + x2
2 − x2

3 = 1}.

We denote a surface M in E3
1 by

M : Q(s, ϑ) = (x1(s, ϑ), x2(s, ϑ), x3(s, ϑ)), (s, ϑ) ∈ D ⊆ R2. (1)
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Let ξ be the standard unit normal vector field on a surface M defined by ξ(s, ϑ) = Qs
×Qϑ ‖Qs ×Qϑ‖

−1, where, Qi = ∂Q
∂i . Then, the metric (first fundamental form) I of a

surface M is defined by
I = g11ds2 + 2g12dsdϑ + g22dϑ2, (2)

where g11 = 〈Qs, Qs〉, g12 = 〈Qs, Qϑ〉, g22 = 〈Qϑ, Qϑ〉. We define the second fundamental
form I I of M by

I I = h11ds2 + 2h12dsdϑ + h22dϑ2, (3)

where h11 = 〈Qss, ξ〉, h12 = 〈Qsϑ, ξ〉, h22 = 〈Qϑϑ, ξ〉. The Gaussian curvature K and the
mean curvature H are

K(s, ϑ) = ε
h11h22 − h2

12
g11g22 − g2

12
, H(s, ϑ) =

h11g11 − 2h12g12 + h22g22

2(g11g22 − g2
12)

, (4)

where 〈ξ, ξ〉 = ε(±1). A surface in the Minkowski 3-space E3
1 is called a spacelike (resp.

timelike) surface if the induced metric on the surface is a positive (resp. negative) definite
Riemannian metric. This is equivalent to saying that the normal vector on the spacelike
(resp. timelike) surface is a timelike (resp. spacelike) vector [1–3].

3. Spacelike Circular Surfaces

In this section, we first introduce spacelike circular surfaces in E3
1. Then, we give

some possessions of these surfaces and define the concept of the spacelike roller coaster
surface as a special class of spacelike circular surfaces, given a timelike spherical curve
e : I → S2

1 ⊆ E3
1 parameterized by its arc-length s. Then, there is a unique Blaschke frame

e1 = e(s), e2(s) = é(s)‖é(s)‖−1, e3 = e1 × e2 along e(s) ∈ S2
1. This yields

〈e3, e3〉 = 1,
e1×e2 = e3, e1 × e3 = e2, e2× e3 = e1.

(5)

From now on, this paper assumes such a parametrization and indicates its differentia-
tion with respect to s with primes. Then, the Blaschke formulae is e′1

e′2
e′3

 =

 0 1 0
−1 0 κg
0 −κg 0

 e1
e2
e3

, (6)

where κg(s) is the spherical (geodesic) curvature function of e1(s) ∈ S2
1. Let α(s) be a

non-null space curve represented by

α′(s) = γ(s)e1 + δ(s)e2 + η(s)e3. (7)

The four functions κg(s), δ(s), and η(s) constitute a Lorentzian complete system of
the curve α(s). Thus, for a positive number r > 0, and by means of the solutions of the
differential system (8), a spacelike circular surface M can be defined as follows:

M : Q(s, ϑ) = α(s) + r(cosh ϑe2(s) + sinh ϑe3(s)), s ∈ I, ϑ ∈ R, (8)

where α(s) is called the spine curve, and ϑ→ α(s) + r(cosh ϑe2(s) + sinh ϑe3(s)) are called
generating circles. In this work, we exclude circular surfaces with constant vector e1,
whose geometric possessions are not so much interesting and to a certain extent are easier
to explore.

It is clear that Equation (8) offers a way for constructing spacelike circular surfaces
with a given radius r > 0 through the equation

α(s) = α0 +

(∫ s

0
γe1 + δe2 + ηe3

)
ds. (9)
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Direct computation gives

Qϑ = r(sinh ϑe2 + cosh ϑe3),
Qs = (γ + r cosh ϑ)e1 + δe2 + ηe3 + κgQϑ.

}
(10)

Then,

g11 = (r cosh ϑ + γ)2 − (δ + rκg sinh ϑ)2 + (η + rκg cosh ϑ)2,
g12 = r

(
η cosh ϑ− δ sinh ϑ + rκg

)
, g22 = r2.

(11)

The timelike unit normal vector is

ξ(s, ϑ) =
Qs ×Qϑ

‖Qs ×Qϑ‖
=

(δ cosh ϑ− η sinh ϑ)e1 + (r cosh ϑ + δ)(cosh ϑe2 + sinh ϑe3)√
−(δ cosh ϑ− η sinh ϑ)2 + (r cosh ϑ + γ)2

. (12)

By a straightforward calculation, we obtain:

Qϑϑ = r(cosh ϑe2 + sinh ϑe3),
Qsϑ = r sinh ϑe1 + rκg(cosh ϑe2 + sinh ϑe3),

Qss = (γ′ + δ)e1 + (γ + δ′ + ηκg + r cosh ϑ)e2 + (δκg + η′)e3 + κ′gQϑ + κgQϑs,
(13)

so,

h11 =


(r cosh ϑ + δ)[(δκg + η′) sinh ϑ− rκ2

g − (γ + δ′ + ηκg + r cosh ϑ) cosh ϑ]

+(γ′ + δ + rκg sinh ϑ)(δ cosh ϑ− η sinh ϑ)√
−(δ cosh ϑ− η sinh ϑ)2 + (r cosh ϑ + γ)2

,

h12 =
r(δ cosh ϑ− η sinh ϑ) sinh ϑ− rκg(r cosh ϑ− δ)√
−(δ cosh ϑ− η sinh ϑ)2 + (r cosh ϑ + γ)2

,

h22 =
−r(r cosh ϑ + δ)√

−(δ cosh ϑ− η sinh ϑ)2 + (r cosh ϑ + γ)2
. (14)

Definition 2. Let M be a spacelike circular surface with the standard Equation (8). Then, at
s ∈ I ⊆ R, the following holds:
(1) M is called a spacelike canal (tubular) surface if the spine curve is orthogonal to the circular
plane, that is, α′(s), e1(s), e2(s), and e3(s) satisfy that

γ(s) = 〈e1, α′〉 6= 0, and 〈e2, α′〉 = 〈e3, α′〉 = 0⇔ δ(s) = η(s) = 0. (15)

(2) M is called a spacelike roller coaster (or tangent) surface if the spine curve is tangent to the
circular plane, that is, α′(s), e1(s), e2(s), and e3(s) satisfy that

γ(s) = 〈e1, α′〉 = 0, and δ(s) = 〈e2, α′〉 = 0 or η(s) = 〈e3, α′〉 = 0. (16)

It is well known that lines are considered as the simplest examples of curves, and
circles with a fixed radius give another simple example of curves. Ruled surfaces are
characterized out by a family of lines and circular surfaces by a series of circles with a fixed
radius. Ruled surfaces have striction curves, while circular surfaces have spine curves.
Therefore, it is normal to study circular surfaces compared with the class of ruled surfaces.
The following subsections give some geometrical possessions of the spacelike canal and
the non-canal spacelike surfaces.

3.1. Striction Curves

In the Euclidean 3-space, the striction curves of the circular surfaces are defined by
Izumiya et al. [7]. We devised a new definition of striction curves, as follows: the curve
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c(s) = α(s) + r(cosh ϑ(s)e2(s) + sinh ϑ(s)e3(s)) (17)

is the striction curve if and only if c(s) satisfies

〈c′, cosh ϑ(s)e2(s) + sinh ϑ(s)e3(s)〉 = 0, ∀ s ∈ I ⊆ R.

This condition is analogous to the condition on the striction curve of a ruled surface.
Then, after simple computations, we obtain that c(s) is a striction curve on the spacelike
circular surface if and only if

η(s) sinh ϑ(s)− δ(s) cosh ϑ(s) = 0. (18)

Then, the striction points only occur when

sinh ϑ(s) =
δ(s)√

η2(s)− δ2(s)
, and cosh ϑ(s) =

η(s)√
η2(s)− δ2(s)

. (19)

From Equations (8) and (19), we have

c(s) = α(s) +
r√

η2(s)− δ2(s)
(η(s)e2(s) + δ(s)e3(s)). (20)

According to Equations (15) and (19), any curve on the spacelike canal surface trans-
verse to the generating circle satisfies the condition of striction curve, that is , c(s) = α(s).
Therefore, the class of canal surfaces is an analogous class to the class of cylindrical surfaces.
From the above analysis, the following conclusion can be reached.

Proposition 1. Any non-canal spacelike circular surface has one striction curve.

3.2. Curvature Lines and Singularities

Curvature lines and singularities are fundamental for aspects of circular surfaces and
are addressed as follows: from Equations (10) and (12), it can be seen that all generating
circles are curvature lines if and only if

ξϑ‖Qϑ ⇔ 2r‖Qs ×Qϑ‖
2(rη + γδ sinh ϑ− γη cosh ϑ) = 0.

We will now study this condition in detail: if r = 0, then M cannot be generated (in
fact, we have imposed r > 0). Therefore, if ‖Qs ×Qϑ‖ = 0, the surface M is not regular.
According to the assumption of M being regular, we have

rη(s) + γ(s)δ(s) sinh ϑ− γ(s)η(s) cosh ϑ = 0, (21)

for all values of ϑ. Thus, we have three cases:
Case (1) When η(s) = γ(s) = δ(s) = 0, the tangent vector of the spine curve is equal to 0,
that is, the spine curve is a fixed point. This means that the spacelike circular surface is a
Lorentzian sphere with radius r, namely, M = {Q ∈ E3

1 | ‖Q− α‖2 = r2}.
Case (2) When δ(s) = η(s) = 0, the spine curve is orthogonal to the spacelike circular plane,
that is, α′ is parallel to e1. Then, the spacelike circular surface becomes a spacelike canal
surface with spacelike spine curve.
Case (3) When γ(s) = η(s) = 0, the tangent vector α′ is parallel to e2. Hence, the tangent
vector of the spine curve lies on the spacelike circle plane at each point of M, namely,
c′ = δe2. When δ is constant, it follows that

α = α0 + δe1, (22)
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where α0 is a constant vector. From Equations (8) and (22), it can be found that

‖Q− α0‖
2 = δ2 − r2. (23)

This means that all the circle points lie on a Lorentzian sphere of radius
√

δ2 − r2 with
|δ| > |r|, and α0 is its center point in E3

1.

Theorem 1. In the Minkowski 3-space E3
1, besides the general spacelike circular surfaces there are

two families of spacelike circular surfaces whose generating circles are curvature lines. These two
families are the spacelike roller coaster surfaces and the Lorentzian spheres with a radius smaller
than that of the generating circles.

Singularities are fundamental for the possessions of circular surfaces and are investi-
gated as follows: it is interesting to note that the singular points on a generating circle are
at one-point generality. From Equations (7) and (17), we can show that M has a singular
point at (s0, ϑ0) if and only if

〈e1, α′ + r cosh ϑe′2 + r sinh ϑe′3〉 = 0, and 〈α′, r cosh ϑe2 + r sinh ϑe3〉 = 0,

which gives

γ(s0) + r cosh ϑ0 = 0, and − δ(s0) cosh ϑ0 + η(s0) sinh ϑ0 = 0. (24)

Then, we have γ(s0) 6= 0, which yields cosh ϑ0 = − γ(s0)
r . Then, from the second

equation in Equation (24), we find − δ(s0)γ(s0)
r = η(s0) sinh ϑ0. Thus, we consider the

following possible cases.
Case (a). Let η(s0) = 0; then, we have δ(s0) = 0. Thus, the singular point of M

is at (s0, ϑ0) such that η(s0) = δ(s0) = 0, which gives α′(s0) = γ(s0)e1(s0), and ϑ0 =

cosh−1
(

γ(s0)
r

)
.

Case (b). If η(s0) 6= 0, then one can easily see that ϑ0 = − sinh−1( δ(u0)γ(s0)
rη(u0

). Thus, the
spacelike circular surface is a non-canal spacelike circular surface By using the definitions
of hyperbolic cosine and sine functions, we obtain

r = γ(s0)

√
1− δ2(s0)

η2(s0)
.

Hence, we can say that the spacelike circular surface M has a singular point at (s0, ϑ0)
such that γ(s0) > 0, and |η(s0)| > |δ(s0)|.

3.3. Spacelike Canal (Tubular) Surfaces

In this subsection, we investigate and construct spacelike canal surface (δ(s) = η(s) =
0), whose parametric curves are curvature lines. Therefore, from Equations (11), (14), and
(15), it follows that g12 = h12 = 0 and κg = 0. If we substitute this into the Equation (6),
we obtain  e′1

e′2
e′3

 =

 0 1 0
1 0 0
0 0 0

 e1
e2
e3

. (25)

The curve that satisfies the condition found in Equation (25) is a timelike great circle
on S2

1. For example, a timelike great circle can be expressed as e1(s) = (cosh s, 0, sinh s).
The tangent vector can be found from e2 = e′1 as e2(s) = (sinh s, 0, cosh s). Thus, e3 has the
form e3(s) = (0,−1, 0). Choosing integral with zero integration constants yields

α(s) =
∫ s

0
γ(s)(sinh s, 0, cosh s)ds. (26)
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Let us choose γ(s) = s. Then,

α(s) = (s cosh s− sinh s, 0, s sinh s− cosh s). (27)

It is clear that α(s) has a singular point at s0 = 0 (cusp), see Figure 1. Hence, the
spacelike canal surface M with the spacelike spine curve α(s) is given by

M : Q(s, ϑ) = (s cosh s− sinh s + r cosh ϑ sinh s,−r sinh ϑ, s sinh s− cosh s + r cosh ϑ cosh s).

Clearly, M has a singular point at (s0, ϑ0) = (0, 0) from the case(a) of singularity. For
r = 0.2, with −4 ≤ ϑ ≤ 4, and −1 ≤ s ≤ 1.

Figure 1. α(s) has a cusp at s0 = 0.

Example 1. A non-canal spacelike circular surface can be represented as: let e1(s) ∈ S2
1 as

indicated in the Equation (8). Take γ(s) = −δ(s) = 1, and η(s) =
√

2. Then,

α′(s) = α0 + e1 − e2 +
√

2e3.

Taking integral with zero integration constants yields

α(s) =
(

cosh s− sinh s,−
√

2s, sinh s− cosh s
)

.

One can easily see that α(s) has no singular points. According to the conditions of Case(b), we
have r = 1√

2
, and the striction curve is

c(s) =
(

2 sinh s− cosh s,−
√

2s +
1√
2

, 2 cosh s− sinh s
)

.

The spacelike circular surface M with the spine curve α(s) is given by

M : Q(s, ϑ) =


(

1 + 1√
2

cosh ϑ
)

sinh s− cosh s

−
√

2s− 1√
2

sinh ϑ(
1 + 1√

2
cosh ϑ

)
cosh s− sinh s

.

which has different singularities that appear on the striction curve (green), see Figure 2.
Now, we give parametric representation of a spacelike canal (tubular) surface with a spacelike

spine curve. Let u be the arc-length parameter of α and {t(u), n(u), b(u)} be its Serret–Frenet
frame. Then, we have

t(u) =
α′

‖α′‖ = e1, n(u) =
dt
du∥∥∥ dt
du

∥∥∥ = e2, b(u) = e3. (28)

Then, the Serret–Frenet equations are written as
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d
du

 t
n
b

 =

 0 κ(u) 0
κ(u) 0 τ(u)
0 τ(u) 0

 t
n
b

, (29)

where κ(u) and τ(u) are the natural curvature and torsion of the spine curve α(u), respectively,

κ(u) =
1

|γ(u)| , τ(u) =
κg

δ(u)
, with δ(u) 6= 0. (30)

It is interesting to note that as long as t(u) is orthogonal to the circle planes at each point of
the spine curve, the canal surface can thus be parametrized as

M : Q(u, ϑ) = α(u) + r(cosh ϑn + sinh ϑb), s ∈ I, ϑ ∈ R. (31)

The partial derivatives Qu(u, ϑ) and Qϑ(u, ϑ) can be computed as

Qs(u, ϑ) = λ t+ τQθ , and Qϑ(u, ϑ) = r(sinh ϑn + cosh ϑb), (32)

where λ = 1 + rκ cosh ϑ. The components of the first and second fundamental forms are

g11(u, ϑ) = λ2 + r2τ2, g12(u, ϑ) = r2τ, g22(u, ϑ) = r2. (33)

The unit normal vector is

ξ(u, ϑ) = cosh ϑn + sinh ϑb. (34)

By simple computations, we have

Qϑϑ = r(cosh ϑn + sinh ϑb),
Qsϑ = rκ sinh ϑt + rτ(cosh ϑn + sinh ϑb),

Qss = r(κ′ cosh ϑ + κτ sinh ϑ)t + r[λκ + r(τ′ sinh ϑ + τ cosh ϑ)]n
[λκ + r(τ′ cosh ϑ + τ sinh ϑ)]b.

(35)

This leads to
h11 = −rτ − λκ cosh ϑ, h12 = −rτ, h22 = −r.

Therefore,

K(u, ϑ) = −κ cosh ϑ

λr
, and H(u, ϑ) = −1

2

(
1
r
+ rK

)
. (36)

Since every generating circle is a curvature line, the value of one principal curvature is

χ1(u, ϑ) := ‖Qθ ×Qϑϑ‖‖Qθ‖
−3 = −1

r
. (37)

The principle direction of χ1 points in the direction of the generating circle, and this curvature
is constant along the generating circle. The other principal curvature is easy to obtain

χ2(u, θ) =
K(u, ϑ)

χ1
=

κ cosh ϑ

λ
. (38)

Corollary 1. The principal curvature of a spacelike canal surface is constant along each generat-
ing circle.

Example 2. In this example, we construct a spacelike canal surface family in which all of the
surfaces share a spacelike circular helix represented as

α(u) = (a sinh
u
c

,
bu
c

, a cosh
u
c
), −3 ≤ u ≤ 3,



Symmetry 2023, 15, 173 9 of 13

where a, b, c ∈ R, and b2 + a2 = c2. After simple computation, we have

t(u) = ( a
c cosh u

c , b
c , a

c sinh u
c ),

n(u) = (sinh u
c , 0, cosh u

c ),
b(u) = ( b

c cosh u
c , a

c , b
c sinh u

c ),



Figure 2. M has singularities along c(s).

Thus, the spacelike canal surface family is given by

M : Q(u, ϑ) = (a sinh
u
c

,
bu
c

, a cosh
u
c
) + r(0, cosh ϑ, sinh ϑ)

 a
c cosh u

c
b
c

a
c sinh u

c
sinh u

c 0 cosh u
c

b
c cosh u

c
a
c

b
c sinh u

c

.

If we take a = b = 1, −7 ≤ ϑ ≤ 7 and r = 1, then we immediately obtain a member of this
family. It is clear that α(s) has no singularity. M has a singular point at (0, 0), see Figure 3.

Figure 3. M has a singular point at (0, 0).

3.4. Spacelike Roller Coaster Surfaces

Spacelike roller coaster surfaces are defined to be those that the tangent vector of
spine curve α lies in the spacelike circle plane at each point of α. This means that γ(s) = 0,
and δ(s), η(s) do not equal to zero simultaneously. Through this work, we will consider
γ(s) = η(s) = 0, and δ(s) 6= 0. In this case, we call this surface a spacelike roller coaster
surface with timelike spine curve, that is, α′(s) = δ(s)e2. Therefore, we have

M : Q(s, ϑ) = α(s) + r(cosh ϑe2(s) + sinh ϑe3(s)), s ∈ I, ϑ ∈ R. (39)

The Gaussian and mean curvatures, respectively, are:

K(s, ϑ) =

(
δ2 − r2) cosh ϑ + rδ′

(δ2 − r2)
2 cosh ϑ

, and H(s, ϑ) =

(
δ2 − r2)(1 + r2) cosh ϑ + r2δ′

2r(δ2 − r2) cosh ϑ
. (40)
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Theorem 2. If a family of spacelike roller coaster surfaces has the same radius r, scalar function
δ(s), and derivative δ′(s), the Gaussian and the mean curvatures at corresponding points are the
same. In addition, these values are independent of the geodesic curvature of the timelike spherical
curve e1(s) ∈ S2

1.

In order to discuss the possessions of roller coaster surface, the Serret–Frenet of the
timelike spine curve α(s) needs to be built. So, let v denote the arc-length of the spine curve
α(v) and {T(v), N(v), B(v)} be the moving Serret–Frenet frame along α(t). Then, we have

T(v) =
α′

‖α′‖ = e2(s), N(v) =
dT
dv

∥∥∥∥dT
dv

∥∥∥∥−1
=

e1 + κge3√
1 + κ2

g

, B(v) =
κge1 − e3√

1 + κ2
g

. (41)

Thus, we obtain T(v)
N(v)
B(v)

 =

 0 1 0
cos ϕ 0 sin ϕ
sin ϕ 0 − cos ϕ

 e1(s)
e2(s)
e3(s)

, (42)

where
cos ϕ = 1√

1+κ2
g
, sin ϕ =

κg√
1+κ2

g
,

−〈T , T〉 = 〈N, N〉 = 〈B, B〉 = 1,
T × N = B, B× T = N, N× B = −T .


Then, the Serret–Frenet formulae read

d
dv

 T
N
B

 =

 0 κ(t) 0
−κ(t) 0 τ(s)
0 −τ(t) 0

 T
N
B

, (43)

where κ(v) and τ(v) are the natural curvature and torsion of the spine curve α(v), respec-
tively, given by

κ(v) =
1
|δ|

√
1 + κ2

g, τ(t) +
dϕ

dv
= 0,

dϕ

dv
= ±

dκg/dv

δ
(

1 + κ2
g

) . (44)

From Equation (44), it follows that if ϕ (resp. κg) is a constant, the torsion of the spine
curve vanishes. Thus, the spine curve is a timelike planar one.

Now, we investigate flat and minimal spacelike roller coaster surfaces. We know that
the necessary condition for M to be a flat surface is to satisfy the condition K(s, ϑ) = 0. By
using the first equation of Equation (40), we obtain

K(s, ϑ) = 0⇔
(

δ2 − r2
)

cosh ϑ + rδ′ = 0.

Hence, for all ϑ ∈ I ⊆ R we have

∂2K(s, ϑ)

∂2ϑ
+ K(s, ϑ) = 0⇔ δ′(s) = 0. (45)

From Equations (44) and (45), the expression of δ′(s) in terms of the Serret–Frenet’s
invariants is

δ′(s) = 0⇔ κ(v)τ(v) sin ϕ(t) +
dκ

dv
cos ϕ(v) = 0.

Thus, in a neighborhood of every point on M with κ(v) 6= 0, we obtain that dκ(v)
dv =

τ(v) = 0. Therefore, a spacelike roller coaster surface whose Gaussian curvature vanishes
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identically is a part of spacelike plane. In the same manner, we obtain that M is a spacelike
minimal flat surface.

3.5. Examples

We now give some examples of spacelike roller coaster surfaces. They also serve to
verify the correctness of the formulae derived above.

Example 3. Given the timelike circular helix:

α(v) = (a cosh
v
c

, b
v
c

, a sinh
v
c
), a > 0, b 6= 0, a2 − b2 = c2.

The Serret–Frenet frame along the curve α(v) is obtained as

T(v) = ( a
c sinh v

c , b
c , a

c cosh v
c ),

N(v) = (cosh v
c , 0, sinh v

c ),
B(v) = ( b

c sinh v
c , a

c , b
c cosh v

c ),


and τ(v) = − b

c2 , and it follows that ϕ(v) = b
c2 v. Thus, the spacelike roller coaster surfaces family

is expressed as

Q(v, ϑ) = (a cosh v
c , b v

c , a sinh v
c )

+r(cosh ϑ, sinh ϑ sin ϕ,− sinh ϑ cos ϕ)

 a
c sinh v

c
b
c

a
c cosh v

c
cosh v

c 0 sinh v
c

b
c sinh v

c
a
c

b
c cosh v

c

.

So, if we choose a =
√

2, b = 1, for r = 0.5, and special values of ϑ and v, the graph of the
surface is presented in Figure 4.

Figure 4. Spacelike roller coaster surface of the timelike circular helix.

Example 4. Suppose we are given a parametric timelike curve

α(v) = (0, cosh v, sinh v), 0 ≤ v ≤ 2.

Simple computations give

T(s) = (0, sinh v, cosh v), N(v) = (0, cosh v, sinh v), B(s) = (−1, 0, 0),

and τ = 0, and it follows that ϕ(s) = ϕ0 is a constant. Thus, the roller coaster spacelike surfaces
family is expressed as

Q(v, t) = (0, cosh v, sinh v) + r(cosh ϑ, sinh ϑ sin ϕ,− sinh ϑ cos ϕ)

 0 sinh v cosh v
0 cosh v sinh v
−1 0 0

.
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So, for ϕ0 = π
4 , r = 1, and there are special values of ϑ and v ; the graph of the surface is

presented in Figure 5.

Figure 5. Spacelike roller coaster surface of the timelike curve.

4. Conclusions

For a given Lorentzian unit circle and a given non-null space curve (the spine curve),
a spacelike circular surface can be defined as system of Lorentzian circles with its center
points following the spine curve. This approach has simplified the study of spacelike
circular surfaces with regard to examining two curves: the Lorentzian spherical indicatrices
of unit normals of the given non-null space curve and Lorentzian circle planes. Some new
results and theorems relevant to spacelike circular surfaces are attained. This study has
given some geometric aspects such as striction curves, as well as singularities in comparison
with those of ruled surfaces. In addition, the conditions for spacelike roller coaster surfaces
to be flat or minimal surfaces have been obtained. Lastly, some illustrative examples have
been given. The authors plans to extend the study in different spaces and examine the
classification of singularities.
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19. Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022,

1–12 . [CrossRef]
20. Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [CrossRef]
21. Li, Y.; Prasad, R.; Haseeb, A.; Kumar, S.; Kumar, S. A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic

Manifolds. Axioms 2022, 11, 503. [CrossRef]
22. Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2022,

7, 20213–20229. [CrossRef]
23. Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth

Metric Measure Spaces. Mathematics 2022, 10, 4580. [CrossRef]
24. O’Neil, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: New York, NY, USA, 1983.
25. Mc-Nertney, L.V. One-Parameter Families of Surfaces with Constant Curvature in Lorentz Three-Space. Ph.D. Thesis, Brown

University, Providence, RI, USA, 1980.
26. Walrave, J. Curves and Surfaces in Minkowski Space. Ph.D. Thesis, K.U. Leuven, Faculty of Science, Leuven, Belgium, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.difgeo.2011.02.005
http://dx.doi.org/10.2298/FIL1504725G
http://dx.doi.org/10.3934/math.2022701
http://dx.doi.org/10.1007/s00006-018-0883-6
http://dx.doi.org/10.1142/S0219887820500747
http://dx.doi.org/10.3390/sym14091914
http://dx.doi.org/10.3390/sym14091879
http://dx.doi.org/10.3390/sym14091930
http://dx.doi.org/10.3390/sym14101996
http://dx.doi.org/10.15672/hujms.1052831
http://dx.doi.org/10.3934/math.2023123
http://dx.doi.org/10.3390/axioms11100503
http://dx.doi.org/10.3934/math.20221106
http://dx.doi.org/10.3390/math10234580

	Introduction
	Basic Concepts
	Spacelike Circular Surfaces 
	Striction Curves
	Curvature Lines and Singularities
	Spacelike Canal (Tubular) Surfaces
	Spacelike Roller Coaster Surfaces
	Examples

	Conclusions
	References

