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Abstract. We give necessary and sufficient conditions for the existence of spacelike maximal surfaces in 4-
dimensional space forms of index 2. We also discuss spacelike maximal surfaces with constant Gaussian curvature
or constant normal curvature, and a rigidity type problem.

1. Introduction.

Let Nn
p(c) denote the n-dimensional simply connected semi-Riemannian space form of

constant curvature c and index p, where we write Nn(c) if p = 0. We are interested in
comparing the geometry of minimal surfaces in N4(c), spacelike minimal surfaces in N4

1 (c),
and spacelike maximal surfaces in N4

2 (c).
In [2], Guadalupe and Tribuzy gave necessary and sufficient conditions for the existence

of minimal surfaces in N4(c), which are generalizations of the Ricci condition for minimal
surfaces in N3(c) (cf. [4]). In the previous paper [7], we obtained a Lorentzian version of
their result for spacelike minimal surfaces in N4

1 (c). In this paper, we will discuss the case of
spacelike maximal surfaces in N4

2 (c).
Let M be a spacelike maximal surface in N4

2 (c) with Gaussian curvature K and normal
curvature Kν . Then K ≥ c, where the equality holds at p if and only if p is a geodesic point.
Also we have (K − c)2 − K2

ν ≥ 0, or K − c ≥ |Kν |, where the equality holds at p if and only
if p is an isotropic point.

THEOREM 1. (i) Let M be a spacelike maximal surface in N4
2 (c). We denote by

K,Kν and � the Gaussian curvature, the normal curvature and the Laplacian of M, respec-
tively. Then

(1.1) � log(K − c + Kν) = 2(2K + Kν) ,

(1.2) � log(K − c − Kν) = 2(2K − Kν)

at non-isotropic points.
(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with

Gaussian curvature K(> c) and Laplacian �. If Kν is a function on M satisfying (K − c)2 −
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K2
ν > 0 and (1.1), (1.2), then there exists an isometric maximal immersion of M into N4

2 (c)

with normal curvature Kν .

THEOREM 2. Let f : M → N4
2 (c) be a non-isotropic isometric maximal immersion of

a 2-dimensional simply connected Riemannian manifold M into N4
2 (c) with normal curvature

Kν . Then there exists a π-periodic family of isometric maximal immersions fθ : M → N4
2 (c)

with the same normal curvature Kν . Moreover, if f̃ : M → N4
2 (c) is another isometric

maximal immersion with the same normal curvature Kν, then there exists θ ∈ [0, π] such
that f̃ and fθ coincide up to congruence.

THEOREM 3. (i) Let M be an isotropic spacelike maximal surface in N4
2 (c) with

Gaussian curvature K and Laplacian �. Then

(1.3) � log(K − c) = 2(3K − c)

at non-geodesic points.
(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with

Gaussian curvature K(> c) and Laplacian �. If M satisfies (1.3), then there exists an
isotropic isometric maximal immersion f of M into N4

2 (c). Moreover, if f̃ : M → N4
2 (c) is

another isotropic isometric maximal immersion, then f̃ and f coincide up to congruence.

Next we discuss spacelike maximal surfaces with constant Gaussian curvature in N4
2 (c).

By Theorem 3 (ii), we can see that for c < 0, there exists an isotropic isometric maximal
immersion of the hyperbolic plane of constant curvature c/3 into N4

2 (c).
We note that N3

1 (c) is naturally included in N4
2 (c). Let R4

2 = N4
2 (0) be the 4-dimensional

semi-Euclidean space with coordinate system (x1, x2, x3, x4) and metric

ds2 = dx2
1 + dx2

2 − dx2
3 − dx2

4 .

For c < 0, set

H 3
1 (c) = {(x1, x2, x3, x4) ∈ R4

2 |x2
1 + x2

2 − x2
3 − x2

4 = 1/c} ,

whose universal covering space is N3
1 (c). We define a map F : R2 → H 3

1 (c) by

F(u, v) = 1√−2c
(sinh(

√−2c · u), sinh(
√−2c · v), cosh(

√−2c · u), cosh(
√−2c · v)) .

Then the surface given by F is a unique flat spacelike maximal surface in H 3
1 (c). Let F̃ :

R2 → N3
1 (c) be the lift of F .

THEOREM 4. Let M be a spacelike maximal surface with constant Gaussian curvature
K in N4

2 (c). Then either (i) K = c and M is totally geodesic, (ii) c < 0, K = c/3 and M

is isotropic, or (iii) c < 0, K = 0 and M is congruent to the surface given by F̃ in a totally
geodesic N3

1 (c).

REMARK 1. (i) Theorem 4 should be compared with the Riemannian case in [3].
(ii) The author does not know the explicit representation of the surface in the case (ii)

of Theorem 4.
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We also discuss spacelike maximal surfaces with constant normal curvature in N4
2 (c).

THEOREM 5. Let M be a spacelike maximal surface with constant normal curvature
Kν in N4

2 (c). Then either (i) M lies in a totally geodesic N3
1 (c), or (ii) c < 0 and M has

constant Gaussian curvature c/3.

Finally we give the following rigidity type theorem.

THEOREM 6. Let M be a spacelike maximal surface in N4
2 (c). If M is locally isomet-

ric to a spacelike maximal surface in N3
1 (c), then M lies in a totally geodesic N3

1 (c).

REMARK 2. Theorem 6 should be compared with the Riemannian case in [6].

Our results suggest that the geometry of spacelike maximal surfaces in N4
2 (c) is some-

what similar to that of minimal surfaces in N4(c). But it seems that the Lorentzian case is
different from these two cases (cf. [7]).

The author wishes to thank the referee for useful comments.

2. Preliminaries.

In this section, we recall the method of moving frames for spacelike surfaces in N4
2 (c).

Unless otherwise stated, we shall use the following convention on the ranges of indices:

1 ≤ A,B, · · · ≤ 4 , 1 ≤ i, j, · · · ≤ 2 , 3 ≤ α, β, · · · ≤ 4 .

Let {eA} be a local orthonormal frame field in N4
2 (c), and {ωA} be the dual coframe.

Here the metric of N4
2 (c) is given by

ds2 = (ω1)2 + (ω2)2 − (ω3)2 − (ω4)2 .

We can define the connection forms {ωA
B} by

deB =
∑
A

ωA
BeA .

Then

(2.1) ωi
j + ω

j
i = 0 , ωα

β + ωβ
α = 0 , ωi

α = ωα
i .

The structure equations are given by

(2.2) dωA = −
∑
B

ωA
B ∧ ωB ,

(2.3) dωA
B = −

∑
C

ωA
C ∧ ωC

B + 1

2

∑
C,D

RA
BCDωC ∧ ωD ,

(2.4) RA
BCD = cεB(δA

CδBD − δA
DδBC) ,

where εi = 1 and εα = −1.
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Let M be a spacelike surface in N4
2 (c), that is, the induced metric on M is Riemannian.

We choose the frame {eA} so that {ei} are tangent to M . Then ωα = 0 on M . In the following,
our argument will be restricted to M . By (2.2),

0 = −
∑

i

ωα
i ∧ ωi .

So there is a symmetric tensor hα
ij such that

(2.5) ωα
i =

∑
j

hα
ijω

j ,

where hα
ij are the components of the second fundamental form h of M . A point p on M is

called isotropic if 〈h(X,X), h(X,X)〉 is constant for any unit tangent vector X at p. We say
that M is isotropic if every point on M is isotropic.

The Gaussian curvature K and the normal curvature Kν of M are given by

(2.6) dω1
2 = Kω1 ∧ ω2 , dω3

4 = Kνω
1 ∧ ω2 .

Then by (2.1), (2.3), (2.4) and (2.5) we have

(2.7) K = c − h3
11h

3
22 + (h3

12)
2 − h4

11h
4
22 + (h4

12)
2 ,

(2.8) Kν = −(h3
11h

4
12 − h3

12h
4
11 + h3

12h
4
22 − h3

22h
4
12) .

The mean curvature vector H of M is given by

H = 1

2

∑
i,α

hα
iieα .

The surface M is called maximal if H = 0 on M .
In the following we assume that M is maximal. Then by (2.7) and (2.8),

K = c + (h3
11)

2 + (h3
12)

2 + (h4
11)

2 + (h4
12)

2 , Kν = −2(h3
11h

4
12 − h3

12h
4
11) .

Thus we have K ≥ c, where the equality holds at p if and only if p is a geodesic point. By
the computation we can show that

(K − c)2 − K2
ν = {(h3

11)
2 + (h4

11)
2 − (h3

12)
2 − (h4

12)
2}2 + 4(h3

11h
3
12 + h4

11h
4
12)

2

= {(h3
11)

2 + (h3
12)

2 − (h4
11)

2 − (h4
12)

2}2 + 4(h3
11h

4
11 + h3

12h
4
12)

2 ≥ 0 ,
(2.9)

where the equality holds at p if and only if p is an isotropic point.
Around a non-isotropic point where (K − c)2 − K2

ν > 0, by (2.9), we may choose a
smooth function θ so that

{(h3
11)

2 + (h3
12)

2 − (h4
11)

2 − (h4
12)

2} sin 2θ + 2(h3
11h

4
11 + h3

12h
4
12) cos 2θ = 0 .

Set

ẽ3 = e3 cos θ − e4 sin θ , ẽ4 = e3 sin θ + e4 cos θ ,

and let h̃α
ij be the components of h with respect to the frame {ei, ẽα}. Then we have

h̃3
11h̃

4
11 + h̃3

12h̃
4
12 = 0 .



SPACELIKE MAXIMAL SURFACES 299

By (2.9) we may assume that (h̃3
11)

2 + (h̃3
12)

2 > (h̃4
11)

2 + (h̃4
12)

2. Then we may choose the
frame {ei} so that h̃3

12 = 0 , and we have also h̃4
11 = 0. Therefore,

LEMMA 1. Around a non-isotropic point on a spacelike maximal surface M in N4
2 (c),

we may choose the frame {eA} so that

(2.10) ω3
1 = aω1 , ω3

2 = −aω2 , ω4
1 = bω2 , ω4

2 = bω1 , a2 > b2 .

Here a and b are determined by K and Kν through the equations:
a2 + b2 = K − c , ab = −1

2
Kν .

We assume that M is isotropic maximal and K > c. Then by (2.9) we have

(h3
11)

2 + (h3
12)

2 = (h4
11)

2 + (h4
12)

2 > 0 , h3
11h

4
11 + h3

12h
4
12 = 0 .

So h3
12 	= 0 or h4

12 	= 0. Then we may choose the frame {eα} such that h3
12 = 0, and we have

also h4
11 = 0. Therefore,

LEMMA 2. On an isotropic spacelike maximal surface M with K > c in N4
2 (c), we

may choose the frame {eα} so that

(2.11) ω3
1 = aω1 , ω3

2 = −aω2 , ω4
1 = aω2 , ω4

2 = aω1 .

Here a satisfies 2a2 = K − c.

3. Proof of Theorems 1 and 2.

PROOF OF THEOREM 1. (i) Around a non-isotropic point, using (2.2), (2.3), (2.4)
and (2.10), we have

dω3
1 = da ∧ ω1 − aω1

2 ∧ ω2

= −ω3
2 ∧ ω2

1 − ω3
4 ∧ ω4

1

= aω2 ∧ ω2
1 − ω3

4 ∧ bω2 .

So, using the notation like

da = a1ω
1 + a2ω

2 , db = b1ω
1 + b2ω

2 ,

ω1
2 = (ω1

2)1ω
1 + (ω1

2)2ω
2 = −ω2

1 , ω3
4 = (ω3

4)1ω
1 + (ω3

4)2ω
2 = −ω4

3 ,

we get

2a(ω1
2)1 − b(ω3

4)1 = −a2 .

Similarly, from the exterior derivative of ω3
2, ω

4
1 and ω4

2,

2a(ω1
2)2 − b(ω3

4)2 = a1 ,

2b(ω1
2)2 − a(ω3

4)2 = b1 ,

2b(ω1
2)1 − a(ω3

4)1 = −b2 .
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Thus we have

2aω1
2 − bω3

4 = ∗ da , 2bω1
2 − aω3

4 = ∗ db ,

where ∗ denotes the Hodge star operator on M . Noting that

K = c + a2 + b2 , Kν = −2ab ,

(K − c)2 − K2
ν = (a2 − b2)2 ,

we get

(3.1) ω1
2 = 1

4
∗ d log |a2 − b2| = 1

8
∗ d log{(K − c)2 − K2

ν } ,

(3.2) ω3
4 = b ∗ da − a ∗ db

a2 − b2 = 1

4
∗ d log

(
K − c + Kν

K − c − Kν

)
.

Taking the exterior derivative of these equations, together with (2.6), we have

(3.3) � log{(K − c)2 − K2
ν } = 8K ,

(3.4) � log

(
K − c + Kν

K − c − Kν

)
= 4Kν .

By (3.3) ± (3.4), we obtain the equations (1.1) and (1.2).
(ii) We may assume that M is a small neighborhood. Let ds2 be the metric on M . By

(1.1) + (1.2)

� log{(K − c)2 − K2
ν } = 8K ,

which implies that the metric

dŝ2 = {(K − c)2 − K2
ν }1/4ds2

is flat. So there exists a coordinate system (x1, x2) such that

ds2 = {(K − c)2 − K2
ν }−1/4{(dx1)2 + (dx2)2} .

Set

(3.5) ωi = {(K − c)2 − K2
ν }−1/8dxi ,

so that {ωi} is an orthonormal coframe field with dual frame {ei}. By

dω1 = −ω1
2 ∧ ω2 , dω2 = −ω2

1 ∧ ω1 ,

we can find that the connection form ω1
2 = −ω2

1 is given by

ω1
2 = −ω2

1 = 1

8
∗ d log{(K − c)2 − K2

ν } .

As (K − c)2 − K2
ν > 0, we may choose smooth functions a and b so that

a2 + b2 = K − c , ab = −1

2
Kν , a2 > b2 .
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Let E be a 2-plane bundle over M with metric 〈 , 〉 and orthonormal sections {eα} such that
〈eα, eβ〉 = −δαβ . Let h be a symmetric section of Hom(T M × T M,E) such that

(h3
ij ) =

(
a 0
0 −a

)
, (h4

ij ) =
(

0 b

b 0

)
,

and set

ω3
1 = ω1

3 = aω1 , ω3
2 = ω2

3 = −aω2 ,

ω4
1 = ω1

4 = bω2 , ω4
2 = ω2

4 = bω1 .

We define a compatible connection ⊥∇ of E so that

⊥∇e3 = ω4
3e4 , ⊥∇e4 = ω3

4e3 ,

where

ω3
4 = −ω4

3 = 1

4
∗ d log

(
K − c + Kν

K − c − Kν

)
.

Now, almost reversing the argument in (i), we can find that {ωA
B} satisfy the structure

equations:

dω1
2 = −ω1

3 ∧ ω3
2 − ω1

4 ∧ ω4
2 + cω1 ∧ ω2 ,

dω3
1 = −ω3

2 ∧ ω2
1 − ω3

4 ∧ ω4
1 , dω3

2 = −ω3
1 ∧ ω1

2 − ω3
4 ∧ ω4

2 ,

dω4
1 = −ω4

2 ∧ ω2
1 − ω4

3 ∧ ω3
1 , dω4

2 = −ω4
1 ∧ ω1

2 − ω4
3 ∧ ω3

2 ,

dω3
4 = −ω3

1 ∧ ω1
4 − ω3

2 ∧ ω2
4 ,

which are the integrability conditions. Therefore, by the fundamental theorem, there exists an
isometric immersion of M into N4

2 (c), which is maximal and has normal curvature Kν .

Let us note the following fact.

PROPOSITION. Let M be a spacelike maximal surface in N4
2 (c). If the normal curva-

ture Kν of M is identically zero, then M lies in a totally geodesic N3
1 (c).

PROOF. When M is isotropic, by (2.9), K = c and M is totally geodesic. When M is
non-isotropic, from the argument in the proof of Theorem 1, we have ω1

4 = ω2
4 = ω3

4 = 0,
and we get the conclusion.

PROOF OF THEOREM 2. For f : M → N4
2 (c), let a, b and ωA

B be as in the proof of
Theorem 1. For each θ ∈ [0, π], let h(θ) be a symmetric section of Hom(T M × T M, T ⊥M)

such that

(h3
ij (θ)) =

(
a cos 2θ a sin 2θ

a sin 2θ −a cos 2θ

)
, (h4

ij (θ)) =
(−b sin 2θ b cos 2θ

b cos 2θ b sin 2θ

)
,
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and set

ω3
1(θ) = ω1

3(θ) = (a cos 2θ)ω1 + (a sin 2θ)ω2 = ω3
1 cos 2θ − ω3

2 sin 2θ ,

ω3
2(θ) = ω2

3(θ) = (a sin 2θ)ω1 − (a cos 2θ)ω2 = ω3
1 sin 2θ + ω3

2 cos 2θ ,

ω4
1(θ) = ω1

4(θ) = −(b sin 2θ)ω1 + (b cos 2θ)ω2 = ω4
1 cos 2θ − ω4

2 sin 2θ ,

ω4
2(θ) = ω2

4(θ) = (b cos 2θ)ω1 + (b sin 2θ)ω2 = ω4
1 sin 2θ + ω4

2 cos 2θ .

Let ω1
2(θ) = −ω2

1(θ) = ω1
2 and ω3

4(θ) = −ω4
3(θ) = ω3

4, for convenience. Then by the
computation, we can see that {ωA

B(θ)} satisfy the structure equations. Hence, for each θ ∈
[0, π], there exists an isometric maximal immersion fθ : M → N4

2 (c) with the same normal
curvature Kν .

Let f̃ : M → N4
2 (c) be another isometric maximal immersion with the same normal

curvature Kν . By Lemma 1, we may choose the frame {ẽA} so that

ω̃3
1 = aω̃1 , ω̃3

2 = −aω̃2 , ω̃4
1 = bω̃2 , ω̃4

2 = bω̃1 .

Then as in (3.1) and (3.2), we have ω̃1
2 = ω1

2 and ω̃3
4 = ω3

4. Also as in (3.5), there exists a
coordinate system {x̃1, x̃2} such that

ω̃i = {(K − c)2 − K2
ν }−1/8dx̃i .

Let θ be the angle between ∂/∂x1 and ∂/∂x̃1. Then using

∂

∂x̃1 = cos θ
∂

∂x1 + sin θ
∂

∂x2 ,
∂

∂x̃2 = − sin θ
∂

∂x1 + cos θ
∂

∂x2 ,

together with [∂/∂x̃1, ∂/∂x̃2] = 0, we find that θ is constant. We note that

e1 = (cos θ)ẽ1 − (sin θ)ẽ2 , e2 = (sin θ)ẽ1 + (cos θ)ẽ2 .

By the computation, we can see that the connection forms along f̃ with respect to the frame
{ei, ẽα} are the same as those along fθ with respect to {ei, eα}. That is, with respect to those
frames, f̃ and fθ have the same second fundamental forms and normal connections. Therefore
f̃ and fθ coincide up to congruence.

4. Proof of Theorem 3.

(i) As in Section 3, from the exterior derivative of (2.11), we can get

a(2ω1
2 − ω3

4) = ∗da .

Noting that

(4.1) K − c = −Kν = 2a2 ,

we have

2ω1
2 − ω3

4 = 1

2
∗ d log(K − c)
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at points where K > c. Taking the exterior derivative of this equation, together with (2.6) and
(4.1), we obtain the equation (1.3).

(ii) We may assume that M is a small neighborhood. Let {ωi} be an orthonormal
coframe field with dual frame {ei} and connection form ω1

2 = −ω2
1. Let E be a 2-plane

bundle over M with metric 〈 , 〉 and orthonormal sections {eα} such that 〈eα, eβ〉 = −δαβ .
Set a = √

(K − c)/2. Let h be a symmetric section of Hom(T M × T M,E) such that

(h3
ij ) =

(
a 0
0 −a

)
, (h4

ij ) =
(

0 a

a 0

)
,

and set

ω3
1 =ω1

3 = aω1 , ω3
2 = ω2

3 = −aω2 ,

ω4
1 =ω1

4 = aω2 , ω4
2 = ω2

4 = aω1 .

We define a compatible connection ⊥∇ of E so that
⊥∇e3 = ω4

3e4 , ⊥∇e4 = ω3
4e3 ,

where

(4.2) ω3
4 = −ω4

3 = 2ω1
2 − 1

2
∗ d log(K − c) .

By the computation, we can show that {ωA
B} satisfy the structure equations. Therefore, there

exists an isometric immersion f of M into N4
2 (c), which is maximal and isotropic.

Let f̃ : M → N4
2 (c) be another isotropic isometric maximal immersion. By Lemma 2,

we may choose the frame {ẽα} so that, with respect to the frame {ei, ẽα},
ω̃3

1 = aω1 , ω̃3
2 = −aω2 , ω̃4

1 = aω2 , ω̃4
2 = aω1 .

Then as in (4.2), we have ω̃3
4 = ω3

4. With respect to the frames {ei, ẽα} and {ei, eα}, f̃ and f

have the same second fundamental forms and normal connections. Hence f̃ and f coincide
up to congruence.

5. Proof of Theorem 4.

When M is isotropic, from the equation (1.3), we have either K = c, or K = c/3 (c <

0). In the following we consider the case that M is non-isotropic.
As K is constant, using the equations (1.1) and (1.2), we get

�Kν = 2(5K − c)Kν + 2K3
ν

K − c
=: P(Kν) ,

|∇Kν |2 = −4K(K − c)2 + 2(K + c)K2
ν + 2K4

ν

K − c
=: Q(Kν) ,

where ∇ is the Riemannian connection of M . By Lemma 3.3 of [1], on M1 = {p ∈ M|∇Kν 	=
0} we have

KQ + (P − Q′)
(

P − 1

2
Q′

)
+ Q

(
P ′ − 1

2
Q′′

)
= 0 ,
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where the prime denotes the differentiation with respect to Kν . By the computation, this
equation turns to

−4K(9K − 4c)(K − c)2 + (90K2 − 86cK + 16c2)K2
ν − 2(27K − 8c)

K − c
K4

ν = 0 ,

which is a nontrivial equation of Kν . Thus Kν must be constant on M1, and we have a
contradiction if M1 is nonempty. So M1 is empty and Kν is constant. Then by (1.1) and (1.2)
we have K = Kν = 0 (c < 0). By the Proposition, M lies in a totally geodesic N3

1 (c), and
M is congruent to the surface given by F̃ in the introduction. Thus the proof is complete.

6. Proof of Theorem 5.

Assume that M does not lie in any totally geodesic N3
1 (c). Then by the Proposition, Kν

is a non-zero constant. When M is isotropic, K is also constant by (2.9). So by Theorem 4,
we have c < 0 and K = c/3. In the following we consider the case that M is non-isotropic.

As Kν is a non-zero constant, using the equations (1.1) and (1.2), we get

�K = 10K2 − 12cK + 2c2 + 2K2
ν =: P(K) ,

|∇K|2 = 2(3K − c){(K − c)2 − K2
ν } =: Q(K) .

By Lemma 3.3 of [1], on M1 = {p ∈ M|∇K 	= 0} we have

KQ + (P − Q′)
(

P − 1

2
Q′

)
+ Q

(
P ′ − 1

2
Q′′

)
= 0 ,

where the prime denotes the differentiation with respect to K . By the computation, this equa-
tion turns to

10(K2 − cK + 2c2 − 4K2
ν ){(K − c)2 − K2

ν } = 0 ,

which is a nontrivial equation of K . Thus K must be constant on M1, and we have a contra-
diction if M1 is nonempty. So M1 is empty and K is constant. But by Theorem 4, there are
no non-isotropic spacelike maximal surfaces with constant Gaussian curvature and non-zero
constant normal curvature in N4

2 (c). So we have a contradiction. Thus we have proved the
theorem.

7. Proof of Theorem 6.

Assume that M does not lie in any totally geodesic N3
1 (c). Set

M1 = {p ∈ M|K > c, Kν 	= 0} ( 	= ∅) .

We note that every spacelike maximal surface in N3
1 (c) may be seen as a spacelike maximal

surface with vanishing normal curvature in N4
2 (c). As M is locally isometric to a spacelike

maximal surface in N3
1 (c), from the above note and Theorem 1, we have

(7.1) � log(K − c) = 4K

on M1.



SPACELIKE MAXIMAL SURFACES 305

If M is isotropic, then the equation (1.3) is valid on M1. From (7.1) and (1.3) we have a
contradiction. So M is not isotropic.

Set

M2 = {p ∈ M|K > c, Kν 	= 0, p is non-isotropic} .

Let F = Kν/(K − c). Then by (1.1), (1.2) and (7.1) we get

(7.2) �F = 2(K − c)F (F 2 + 1) ,

(7.3) |∇F |2 = 2(K − c)F 2(F 2 − 1)

on M2. Let K̃, ∇̃, �̃ denote the Gaussian curvature, the Riemannian connection and the
Laplacian of M2 with respect to the metric ds̃2 = (K − c)ds2, respectively. Then

(7.4) K̃ = K

K − c
− 1

2(K − c)
� log(K − c) = K

c − K

on M2, where we use (7.1) for the second equality. The equations (7.2) and (7.3) can be
rewritten as

(7.5) �̃F = 2F(F 2 + 1) =: P(F) ,

(7.6) |∇̃F |2 = 2F 2(F 2 − 1) =: Q(F)

on M2. As 0 < |F | < 1 on M2, |∇̃F |2 	= 0 on M2 by (7.6). Hence by Lemma 3.3 of [1], we
have

(7.7) K̃Q + (P − Q′)
(

P − 1

2
Q′

)
+ Q

(
P ′ − 1

2
Q′′

)
= 0

on M2, where the prime denotes the differentiation with respect to F . Noting that 0 < |F | < 1
on M2, we have by (7.4)–(7.7), K = 8c/9 on M2. As K > c on M2, we find that c < 0.
But by Theorem 4, there are no spacelike maximal surfaces with constant Gaussian curvature
8c/9 in N4

2 (c) where c < 0. So we have a contradiction.
Therefore, M lies in a totally geodesic N3

1 (c).
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