Spacelike Maximal Surfaces in 4-dimensional Space Forms of Index 2

Makoto SAKAKI

Hirosaki University

(Communicated by R. Miyaoka)

Abstract

We give necessary and sufficient conditions for the existence of spacelike maximal surfaces in 4dimensional space forms of index 2 . We also discuss spacelike maximal surfaces with constant Gaussian curvature or constant normal curvature, and a rigidity type problem.

1. Introduction.

Let $N_{p}^{n}(c)$ denote the n-dimensional simply connected semi-Riemannian space form of constant curvature c and index p, where we write $N^{n}(c)$ if $p=0$. We are interested in comparing the geometry of minimal surfaces in $N^{4}(c)$, spacelike minimal surfaces in $N_{1}^{4}(c)$, and spacelike maximal surfaces in $N_{2}^{4}(c)$.

In [2], Guadalupe and Tribuzy gave necessary and sufficient conditions for the existence of minimal surfaces in $N^{4}(c)$, which are generalizations of the Ricci condition for minimal surfaces in $N^{3}(c)$ (cf. [4]). In the previous paper [7], we obtained a Lorentzian version of their result for spacelike minimal surfaces in $N_{1}^{4}(c)$. In this paper, we will discuss the case of spacelike maximal surfaces in $N_{2}^{4}(c)$.

Let M be a spacelike maximal surface in $N_{2}^{4}(c)$ with Gaussian curvature K and normal curvature K_{ν}. Then $K \geq c$, where the equality holds at p if and only if p is a geodesic point. Also we have $(K-c)^{2}-K_{v}^{2} \geq 0$, or $K-c \geq\left|K_{\nu}\right|$, where the equality holds at p if and only if p is an isotropic point.

THEOREM 1. (i) Let M be a spacelike maximal surface in $N_{2}^{4}(c)$. We denote by K, K_{v} and Δ the Gaussian curvature, the normal curvature and the Laplacian of M, respectively. Then

$$
\begin{gather*}
\Delta \log \left(K-c+K_{v}\right)=2\left(2 K+K_{v}\right), \tag{1.1}\\
\Delta \log \left(K-c-K_{v}\right)=2\left(2 K-K_{v}\right) \tag{1.2}
\end{gather*}
$$

at non-isotropic points.
(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with Gaussian curvature $K(>c)$ and Laplacian Δ. If K_{v} is a function on M satisfying $(K-c)^{2}-$
$K_{v}^{2}>0$ and (1.1), (1.2), then there exists an isometric maximal immersion of M into $N_{2}^{4}(c)$ with normal curvature K_{ν}.

THEOREM 2. Let $f: M \rightarrow N_{2}^{4}(c)$ be a non-isotropic isometric maximal immersion of a 2-dimensional simply connected Riemannian manifold M into $N_{2}^{4}(c)$ with normal curvature K_{ν}. Then there exists a π-periodic family of isometric maximal immersions $f_{\theta}: M \rightarrow N_{2}^{4}(c)$ with the same normal curvature K_{ν}. Moreover, if $\tilde{f}: M \rightarrow N_{2}^{4}(c)$ is another isometric maximal immersion with the same normal curvature K_{ν}, then there exists $\theta \in[0, \pi]$ such that \tilde{f} and f_{θ} coincide up to congruence.

THEOREM 3. (i) Let M be an isotropic spacelike maximal surface in $N_{2}^{4}(c)$ with Gaussian curvature K and Laplacian Δ. Then

$$
\begin{equation*}
\Delta \log (K-c)=2(3 K-c) \tag{1.3}
\end{equation*}
$$

at non-geodesic points.
(ii) Conversely, let M be a 2-dimensional simply connected Riemannian manifold with Gaussian curvature $K(>c)$ and Laplacian Δ. If M satisfies (1.3), then there exists an isotropic isometric maximal immersion f of M into $N_{2}^{4}(c)$. Moreover, if $\tilde{f}: M \rightarrow N_{2}^{4}(c)$ is another isotropic isometric maximal immersion, then \tilde{f} and f coincide up to congruence.

Next we discuss spacelike maximal surfaces with constant Gaussian curvature in $N_{2}^{4}(c)$. By Theorem 3 (ii), we can see that for $c<0$, there exists an isotropic isometric maximal immersion of the hyperbolic plane of constant curvature $c / 3$ into $N_{2}^{4}(c)$.

We note that $N_{1}^{3}(c)$ is naturally included in $N_{2}^{4}(c)$. Let $R_{2}^{4}=N_{2}^{4}(0)$ be the 4-dimensional semi-Euclidean space with coordinate system $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and metric

$$
d s^{2}=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}-d x_{4}^{2}
$$

For $c<0$, set

$$
H_{1}^{3}(c)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R_{2}^{4} \mid x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=1 / c\right\}
$$

whose universal covering space is $N_{1}^{3}(c)$. We define a map $F: R^{2} \rightarrow H_{1}^{3}(c)$ by

$$
F(u, v)=\frac{1}{\sqrt{-2 c}}(\sinh (\sqrt{-2 c} \cdot u), \sinh (\sqrt{-2 c} \cdot v), \cosh (\sqrt{-2 c} \cdot u), \cosh (\sqrt{-2 c} \cdot v))
$$

Then the surface given by F is a unique flat spacelike maximal surface in $H_{1}^{3}(c)$. Let \tilde{F} : $R^{2} \rightarrow N_{1}^{3}(c)$ be the lift of F.

THEOREM 4. Let M be a spacelike maximal surface with constant Gaussian curvature K in $N_{2}^{4}(c)$. Then either (i) $K=c$ and M is totally geodesic, (ii) $c<0, K=c / 3$ and M is isotropic, or (iii) $c<0, K=0$ and M is congruent to the surface given by \tilde{F} in a totally geodesic $N_{1}^{3}(c)$.

REMARK 1. (i) Theorem 4 should be compared with the Riemannian case in [3].
(ii) The author does not know the explicit representation of the surface in the case (ii) of Theorem 4.

We also discuss spacelike maximal surfaces with constant normal curvature in $N_{2}^{4}(c)$.
THEOREM 5. Let M be a spacelike maximal surface with constant normal curvature K_{v} in $N_{2}^{4}(c)$. Then either (i) M lies in a totally geodesic $N_{1}^{3}(c)$, or (ii) $c<0$ and M has constant Gaussian curvature $c / 3$.

Finally we give the following rigidity type theorem.
THEOREM 6. Let M be a spacelike maximal surface in $N_{2}^{4}(c)$. If M is locally isometric to a spacelike maximal surface in $N_{1}^{3}(c)$, then M lies in a totally geodesic $N_{1}^{3}(c)$.

REMARK 2. Theorem 6 should be compared with the Riemannian case in [6].
Our results suggest that the geometry of spacelike maximal surfaces in $N_{2}^{4}(c)$ is somewhat similar to that of minimal surfaces in $N^{4}(c)$. But it seems that the Lorentzian case is different from these two cases (cf. [7]).

The author wishes to thank the referee for useful comments.

2. Preliminaries.

In this section, we recall the method of moving frames for spacelike surfaces in $N_{2}^{4}(c)$. Unless otherwise stated, we shall use the following convention on the ranges of indices:

$$
1 \leq A, B, \cdots \leq 4, \quad 1 \leq i, j, \cdots \leq 2, \quad 3 \leq \alpha, \beta, \cdots \leq 4
$$

Let $\left\{e_{A}\right\}$ be a local orthonormal frame field in $N_{2}^{4}(c)$, and $\left\{\omega^{A}\right\}$ be the dual coframe. Here the metric of $N_{2}^{4}(c)$ is given by

$$
d s^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}-\left(\omega^{3}\right)^{2}-\left(\omega^{4}\right)^{2}
$$

We can define the connection forms $\left\{\omega_{B}^{A}\right\}$ by

$$
d e_{B}=\sum_{A} \omega_{B}^{A} e_{A}
$$

Then

$$
\begin{equation*}
\omega_{j}^{i}+\omega_{i}^{j}=0, \quad \omega_{\beta}^{\alpha}+\omega_{\alpha}^{\beta}=0, \quad \omega_{\alpha}^{i}=\omega_{i}^{\alpha} . \tag{2.1}
\end{equation*}
$$

The structure equations are given by

$$
\begin{gather*}
d \omega^{A}=-\sum_{B} \omega_{B}^{A} \wedge \omega^{B} \tag{2.2}\\
d \omega_{B}^{A}=-\sum_{C} \omega_{C}^{A} \wedge \omega_{B}^{C}+\frac{1}{2} \sum_{C, D} R_{B C D}^{A} \omega^{C} \wedge \omega^{D}, \tag{2.3}\\
R_{B C D}^{A}=c \varepsilon_{B}\left(\delta_{C}^{A} \delta_{B D}-\delta_{D}^{A} \delta_{B C}\right), \tag{2.4}
\end{gather*}
$$

where $\varepsilon_{i}=1$ and $\varepsilon_{\alpha}=-1$.

Let M be a spacelike surface in $N_{2}^{4}(c)$, that is, the induced metric on M is Riemannian. We choose the frame $\left\{e_{A}\right\}$ so that $\left\{e_{i}\right\}$ are tangent to M. Then $\omega^{\alpha}=0$ on M. In the following, our argument will be restricted to M. By (2.2),

$$
0=-\sum_{i} \omega_{i}^{\alpha} \wedge \omega^{i}
$$

So there is a symmetric tensor $h_{i j}^{\alpha}$ such that

$$
\begin{equation*}
\omega_{i}^{\alpha}=\sum_{j} h_{i j}^{\alpha} \omega^{j} \tag{2.5}
\end{equation*}
$$

where $h_{i j}^{\alpha}$ are the components of the second fundamental form h of M. A point p on M is called isotropic if $\langle h(X, X), h(X, X)\rangle$ is constant for any unit tangent vector X at p. We say that M is isotropic if every point on M is isotropic.

The Gaussian curvature K and the normal curvature K_{v} of M are given by

$$
\begin{equation*}
d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2}, \quad d \omega_{4}^{3}=K_{\nu} \omega^{1} \wedge \omega^{2} \tag{2.6}
\end{equation*}
$$

Then by (2.1), (2.3), (2.4) and (2.5) we have

$$
\begin{align*}
K & =c-h_{11}^{3} h_{22}^{3}+\left(h_{12}^{3}\right)^{2}-h_{11}^{4} h_{22}^{4}+\left(h_{12}^{4}\right)^{2} \tag{2.7}\\
K_{v} & =-\left(h_{11}^{3} h_{12}^{4}-h_{12}^{3} h_{11}^{4}+h_{12}^{3} h_{22}^{4}-h_{22}^{3} h_{12}^{4}\right) . \tag{2.8}
\end{align*}
$$

The mean curvature vector H of M is given by

$$
H=\frac{1}{2} \sum_{i, \alpha} h_{i i}^{\alpha} e_{\alpha}
$$

The surface M is called maximal if $H=0$ on M.
In the following we assume that M is maximal. Then by (2.7) and (2.8),

$$
K=c+\left(h_{11}^{3}\right)^{2}+\left(h_{12}^{3}\right)^{2}+\left(h_{11}^{4}\right)^{2}+\left(h_{12}^{4}\right)^{2}, \quad K_{v}=-2\left(h_{11}^{3} h_{12}^{4}-h_{12}^{3} h_{11}^{4}\right)
$$

Thus we have $K \geq c$, where the equality holds at p if and only if p is a geodesic point. By the computation we can show that

$$
\begin{align*}
& (K-c)^{2}-K_{v}^{2}=\left\{\left(h_{11}^{3}\right)^{2}+\left(h_{11}^{4}\right)^{2}-\left(h_{12}^{3}\right)^{2}-\left(h_{12}^{4}\right)^{2}\right\}^{2}+4\left(h_{11}^{3} h_{12}^{3}+h_{11}^{4} h_{12}^{4}\right)^{2} \tag{2.9}\\
& \quad=\left\{\left(h_{11}^{3}\right)^{2}+\left(h_{12}^{3}\right)^{2}-\left(h_{11}^{4}\right)^{2}-\left(h_{12}^{4}\right)^{2}\right\}^{2}+4\left(h_{11}^{3} h_{11}^{4}+h_{12}^{3} h_{12}^{4}\right)^{2} \geq 0,
\end{align*}
$$

where the equality holds at p if and only if p is an isotropic point.
Around a non-isotropic point where $(K-c)^{2}-K_{v}^{2}>0$, by (2.9), we may choose a smooth function θ so that

$$
\left\{\left(h_{11}^{3}\right)^{2}+\left(h_{12}^{3}\right)^{2}-\left(h_{11}^{4}\right)^{2}-\left(h_{12}^{4}\right)^{2}\right\} \sin 2 \theta+2\left(h_{11}^{3} h_{11}^{4}+h_{12}^{3} h_{12}^{4}\right) \cos 2 \theta=0 .
$$

Set

$$
\tilde{e}_{3}=e_{3} \cos \theta-e_{4} \sin \theta, \quad \tilde{e}_{4}=e_{3} \sin \theta+e_{4} \cos \theta
$$

and let $\tilde{h}_{i j}^{\alpha}$ be the components of h with respect to the frame $\left\{e_{i}, \tilde{e}_{\alpha}\right\}$. Then we have

$$
\tilde{h}_{11}^{3} \tilde{h}_{11}^{4}+\tilde{h}_{12}^{3} \tilde{h}_{12}^{4}=0 .
$$

By (2.9) we may assume that $\left(\tilde{h}_{11}^{3}\right)^{2}+\left(\tilde{h}_{12}^{3}\right)^{2}>\left(\tilde{h}_{11}^{4}\right)^{2}+\left(\tilde{h}_{12}^{4}\right)^{2}$. Then we may choose the frame $\left\{e_{i}\right\}$ so that $\tilde{h}_{12}^{3}=0$, and we have also $\tilde{h}_{11}^{4}=0$. Therefore,

Lemma 1. Around a non-isotropic point on a spacelike maximal surface M in $N_{2}^{4}(c)$, we may choose the frame $\left\{e_{A}\right\}$ so that

$$
\begin{equation*}
\omega_{1}^{3}=a \omega^{1}, \quad \omega_{2}^{3}=-a \omega^{2}, \quad \omega_{1}^{4}=b \omega^{2}, \quad \omega_{2}^{4}=b \omega^{1}, \quad a^{2}>b^{2} \tag{2.10}
\end{equation*}
$$

Here a and b are determined by K and K_{v} through the equations:

$$
a^{2}+b^{2}=K-c, \quad a b=-\frac{1}{2} K_{\nu}
$$

We assume that M is isotropic maximal and $K>c$. Then by (2.9) we have

$$
\left(h_{11}^{3}\right)^{2}+\left(h_{12}^{3}\right)^{2}=\left(h_{11}^{4}\right)^{2}+\left(h_{12}^{4}\right)^{2}>0, \quad h_{11}^{3} h_{11}^{4}+h_{12}^{3} h_{12}^{4}=0
$$

So $h_{12}^{3} \neq 0$ or $h_{12}^{4} \neq 0$. Then we may choose the frame $\left\{e_{\alpha}\right\}$ such that $h_{12}^{3}=0$, and we have also $h_{11}^{4}=0$. Therefore,

Lemma 2. On an isotropic spacelike maximal surface M with $K>c$ in $N_{2}^{4}(c)$, we may choose the frame $\left\{e_{\alpha}\right\}$ so that

$$
\begin{equation*}
\omega_{1}^{3}=a \omega^{1}, \quad \omega_{2}^{3}=-a \omega^{2}, \quad \omega_{1}^{4}=a \omega^{2}, \quad \omega_{2}^{4}=a \omega^{1} \tag{2.11}
\end{equation*}
$$

Here a satisfies $2 a^{2}=K-c$.

3. Proof of Theorems $\mathbf{1}$ and 2.

Proof of Theorem 1. (i) Around a non-isotropic point, using (2.2), (2.3), (2.4) and (2.10), we have

$$
\begin{aligned}
d \omega_{1}^{3} & =d a \wedge \omega^{1}-a \omega_{2}^{1} \wedge \omega^{2} \\
& =-\omega_{2}^{3} \wedge \omega_{1}^{2}-\omega_{4}^{3} \wedge \omega_{1}^{4} \\
& =a \omega^{2} \wedge \omega_{1}^{2}-\omega_{4}^{3} \wedge b \omega^{2}
\end{aligned}
$$

So, using the notation like

$$
\begin{array}{cl}
d a=a_{1} \omega^{1}+a_{2} \omega^{2}, & d b=b_{1} \omega^{1}+b_{2} \omega^{2} \\
\omega_{2}^{1}=\left(\omega_{2}^{1}\right)_{1} \omega^{1}+\left(\omega_{2}^{1}\right)_{2} \omega^{2}=-\omega_{1}^{2}, & \omega_{4}^{3}=\left(\omega_{4}^{3}\right)_{1} \omega^{1}+\left(\omega_{4}^{3}\right)_{2} \omega^{2}=-\omega_{3}^{4}
\end{array}
$$

we get

$$
2 a\left(\omega_{2}^{1}\right)_{1}-b\left(\omega_{4}^{3}\right)_{1}=-a_{2}
$$

Similarly, from the exterior derivative of $\omega_{2}^{3}, \omega_{1}^{4}$ and ω_{2}^{4},

$$
\begin{aligned}
& 2 a\left(\omega_{2}^{1}\right)_{2}-b\left(\omega_{4}^{3}\right)_{2}=a_{1} \\
& 2 b\left(\omega_{2}^{1}\right)_{2}-a\left(\omega_{4}^{3}\right)_{2}=b_{1} \\
& 2 b\left(\omega_{2}^{1}\right)_{1}-a\left(\omega_{4}^{3}\right)_{1}=-b_{2}
\end{aligned}
$$

Thus we have

$$
2 a \omega_{2}^{1}-b \omega_{4}^{3}=* d a, \quad 2 b \omega_{2}^{1}-a \omega_{4}^{3}=* d b
$$

where $*$ denotes the Hodge star operator on M. Noting that

$$
\begin{gathered}
K=c+a^{2}+b^{2}, \quad K_{v}=-2 a b \\
(K-c)^{2}-K_{v}^{2}=\left(a^{2}-b^{2}\right)^{2}
\end{gathered}
$$

we get

$$
\begin{gather*}
\omega_{2}^{1}=\frac{1}{4} * d \log \left|a^{2}-b^{2}\right|=\frac{1}{8} * d \log \left\{(K-c)^{2}-K_{v}^{2}\right\}, \tag{3.1}\\
\omega_{4}^{3}=\frac{b * d a-a * d b}{a^{2}-b^{2}}=\frac{1}{4} * d \log \left(\frac{K-c+K_{v}}{K-c-K_{v}}\right) \tag{3.2}
\end{gather*}
$$

Taking the exterior derivative of these equations, together with (2.6), we have

$$
\begin{align*}
& \Delta \log \left\{(K-c)^{2}-K_{v}^{2}\right\}=8 K \tag{3.3}\\
& \Delta \log \left(\frac{K-c+K_{v}}{K-c-K_{v}}\right)=4 K_{v} \tag{3.4}
\end{align*}
$$

By (3.3) \pm (3.4), we obtain the equations (1.1) and (1.2).
(ii) We may assume that M is a small neighborhood. Let $d s^{2}$ be the metric on M. By $(1.1)+(1.2)$

$$
\Delta \log \left\{(K-c)^{2}-K_{v}^{2}\right\}=8 K
$$

which implies that the metric

$$
d \hat{s}^{2}=\left\{(K-c)^{2}-K_{\nu}^{2}\right\}^{1 / 4} d s^{2}
$$

is flat. So there exists a coordinate system $\left(x^{1}, x^{2}\right)$ such that

$$
d s^{2}=\left\{(K-c)^{2}-K_{v}^{2}\right\}^{-1 / 4}\left\{\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right\}
$$

Set

$$
\begin{equation*}
\omega^{i}=\left\{(K-c)^{2}-K_{v}^{2}\right\}^{-1 / 8} d x^{i} \tag{3.5}
\end{equation*}
$$

so that $\left\{\omega^{i}\right\}$ is an orthonormal coframe field with dual frame $\left\{e_{i}\right\}$. By

$$
d \omega^{1}=-\omega_{2}^{1} \wedge \omega^{2}, \quad d \omega^{2}=-\omega_{1}^{2} \wedge \omega^{1}
$$

we can find that the connection form $\omega_{2}^{1}=-\omega_{1}^{2}$ is given by

$$
\omega_{2}^{1}=-\omega_{1}^{2}=\frac{1}{8} * d \log \left\{(K-c)^{2}-K_{v}^{2}\right\}
$$

As $(K-c)^{2}-K_{v}^{2}>0$, we may choose smooth functions a and b so that

$$
a^{2}+b^{2}=K-c, \quad a b=-\frac{1}{2} K_{v}, \quad a^{2}>b^{2} .
$$

Let E be a 2-plane bundle over M with metric \langle,$\rangle and orthonormal sections \left\{e_{\alpha}\right\}$ such that $\left\langle e_{\alpha}, e_{\beta}\right\rangle=-\delta_{\alpha \beta}$. Let h be a symmetric section of $\operatorname{Hom}(T M \times T M, E)$ such that

$$
\left(h_{i j}^{3}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad\left(h_{i j}^{4}\right)=\left(\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right),
$$

and set

$$
\begin{array}{ll}
\omega_{1}^{3}=\omega_{3}^{1}=a \omega^{1}, & \omega_{2}^{3}=\omega_{3}^{2}=-a \omega^{2} \\
\omega_{1}^{4}=\omega_{4}^{1}=b \omega^{2}, & \omega_{2}^{4}=\omega_{4}^{2}=b \omega^{1}
\end{array}
$$

We define a compatible connection ${ }^{\perp} \nabla$ of E so that

$$
{ }^{\perp} \nabla e_{3}=\omega_{3}^{4} e_{4}, \quad{ }^{\perp} \nabla e_{4}=\omega_{4}^{3} e_{3}
$$

where

$$
\omega_{4}^{3}=-\omega_{3}^{4}=\frac{1}{4} * d \log \left(\frac{K-c+K_{v}}{K-c-K_{v}}\right)
$$

Now, almost reversing the argument in (i), we can find that $\left\{\omega_{B}^{A}\right\}$ satisfy the structure equations:

$$
\begin{gathered}
d \omega_{2}^{1}=-\omega_{3}^{1} \wedge \omega_{2}^{3}-\omega_{4}^{1} \wedge \omega_{2}^{4}+c \omega^{1} \wedge \omega^{2} \\
d \omega_{1}^{3}=-\omega_{2}^{3} \wedge \omega_{1}^{2}-\omega_{4}^{3} \wedge \omega_{1}^{4}, \quad d \omega_{2}^{3}=-\omega_{1}^{3} \wedge \omega_{2}^{1}-\omega_{4}^{3} \wedge \omega_{2}^{4} \\
d \omega_{1}^{4}=-\omega_{2}^{4} \wedge \omega_{1}^{2}-\omega_{3}^{4} \wedge \omega_{1}^{3}, \quad d \omega_{2}^{4}=-\omega_{1}^{4} \wedge \omega_{2}^{1}-\omega_{3}^{4} \wedge \omega_{2}^{3} \\
d \omega_{4}^{3}=-\omega_{1}^{3} \wedge \omega_{4}^{1}-\omega_{2}^{3} \wedge \omega_{4}^{2}
\end{gathered}
$$

which are the integrability conditions. Therefore, by the fundamental theorem, there exists an isometric immersion of M into $N_{2}^{4}(c)$, which is maximal and has normal curvature K_{v}.

Let us note the following fact.
Proposition. Let M be a spacelike maximal surface in $N_{2}^{4}(c)$. If the normal curvature K_{v} of M is identically zero, then M lies in a totally geodesic $N_{1}^{3}(c)$.

Proof. When M is isotropic, by (2.9), $K=c$ and M is totally geodesic. When M is non-isotropic, from the argument in the proof of Theorem 1, we have $\omega_{4}^{1}=\omega_{4}^{2}=\omega_{4}^{3}=0$, and we get the conclusion.

Proof of Theorem 2. For $f: M \rightarrow N_{2}^{4}(c)$, let a, b and ω_{B}^{A} be as in the proof of Theorem 1. For each $\theta \in[0, \pi]$, let $h(\theta)$ be a symmetric section of $\operatorname{Hom}\left(T M \times T M, T^{\perp} M\right)$ such that

$$
\left(h_{i j}^{3}(\theta)\right)=\left(\begin{array}{cc}
a \cos 2 \theta & a \sin 2 \theta \\
a \sin 2 \theta & -a \cos 2 \theta
\end{array}\right), \quad\left(h_{i j}^{4}(\theta)\right)=\left(\begin{array}{cc}
-b \sin 2 \theta & b \cos 2 \theta \\
b \cos 2 \theta & b \sin 2 \theta
\end{array}\right)
$$

and set

$$
\begin{aligned}
& \omega_{1}^{3}(\theta)=\omega_{3}^{1}(\theta)=(a \cos 2 \theta) \omega^{1}+(a \sin 2 \theta) \omega^{2}=\omega_{1}^{3} \cos 2 \theta-\omega_{2}^{3} \sin 2 \theta, \\
& \omega_{2}^{3}(\theta)=\omega_{3}^{2}(\theta)=(a \sin 2 \theta) \omega^{1}-(a \cos 2 \theta) \omega^{2}=\omega_{1}^{3} \sin 2 \theta+\omega_{2}^{3} \cos 2 \theta, \\
& \omega_{1}^{4}(\theta)=\omega_{4}^{1}(\theta)=-(b \sin 2 \theta) \omega^{1}+(b \cos 2 \theta) \omega^{2}=\omega_{1}^{4} \cos 2 \theta-\omega_{2}^{4} \sin 2 \theta, \\
& \omega_{2}^{4}(\theta)=\omega_{4}^{2}(\theta)=(b \cos 2 \theta) \omega^{1}+(b \sin 2 \theta) \omega^{2}=\omega_{1}^{4} \sin 2 \theta+\omega_{2}^{4} \cos 2 \theta .
\end{aligned}
$$

Let $\omega_{2}^{1}(\theta)=-\omega_{1}^{2}(\theta)=\omega_{2}^{1}$ and $\omega_{4}^{3}(\theta)=-\omega_{3}^{4}(\theta)=\omega_{4}^{3}$, for convenience. Then by the computation, we can see that $\left\{\omega_{B}^{A}(\theta)\right\}$ satisfy the structure equations. Hence, for each $\theta \in$ $[0, \pi]$, there exists an isometric maximal immersion $f_{\theta}: M \rightarrow N_{2}^{4}(c)$ with the same normal curvature K_{ν}.

Let $\tilde{f}: M \rightarrow N_{2}^{4}(c)$ be another isometric maximal immersion with the same normal curvature K_{ν}. By Lemma 1, we may choose the frame $\left\{\tilde{e}_{A}\right\}$ so that

$$
\tilde{\omega}_{1}^{3}=a \tilde{\omega}^{1}, \quad \tilde{\omega}_{2}^{3}=-a \tilde{\omega}^{2}, \quad \tilde{\omega}_{1}^{4}=b \tilde{\omega}^{2}, \quad \tilde{\omega}_{2}^{4}=b \tilde{\omega}^{1}
$$

Then as in (3.1) and (3.2), we have $\tilde{\omega}_{2}^{1}=\omega_{2}^{1}$ and $\tilde{\omega}_{4}^{3}=\omega_{4}^{3}$. Also as in (3.5), there exists a coordinate system $\left\{\tilde{x}^{1}, \tilde{x}^{2}\right\}$ such that

$$
\tilde{\omega}^{i}=\left\{(K-c)^{2}-K_{\nu}^{2}\right\}^{-1 / 8} d \tilde{x}^{i} .
$$

Let θ be the angle between $\partial / \partial x^{1}$ and $\partial / \partial \tilde{x}^{1}$. Then using

$$
\frac{\partial}{\partial \tilde{x}^{1}}=\cos \theta \frac{\partial}{\partial x^{1}}+\sin \theta \frac{\partial}{\partial x^{2}}, \quad \frac{\partial}{\partial \tilde{x}^{2}}=-\sin \theta \frac{\partial}{\partial x^{1}}+\cos \theta \frac{\partial}{\partial x^{2}}
$$

together with $\left[\partial / \partial \tilde{x}^{1}, \partial / \partial \tilde{x}^{2}\right]=0$, we find that θ is constant. We note that

$$
e_{1}=(\cos \theta) \tilde{e}_{1}-(\sin \theta) \tilde{e}_{2}, \quad e_{2}=(\sin \theta) \tilde{e}_{1}+(\cos \theta) \tilde{e}_{2}
$$

By the computation, we can see that the connection forms along \tilde{f} with respect to the frame $\left\{e_{i}, \tilde{e}_{\alpha}\right\}$ are the same as those along f_{θ} with respect to $\left\{e_{i}, e_{\alpha}\right\}$. That is, with respect to those frames, \tilde{f} and f_{θ} have the same second fundamental forms and normal connections. Therefore \tilde{f} and f_{θ} coincide up to congruence.

4. Proof of Theorem 3.

(i) As in Section 3, from the exterior derivative of (2.11), we can get

$$
a\left(2 \omega_{2}^{1}-\omega_{4}^{3}\right)=* d a
$$

Noting that

$$
\begin{equation*}
K-c=-K_{\nu}=2 a^{2} \tag{4.1}
\end{equation*}
$$

we have

$$
2 \omega_{2}^{1}-\omega_{4}^{3}=\frac{1}{2} * d \log (K-c)
$$

at points where $K>c$. Taking the exterior derivative of this equation, together with (2.6) and (4.1), we obtain the equation (1.3).
(ii) We may assume that M is a small neighborhood. Let $\left\{\omega^{i}\right\}$ be an orthonormal coframe field with dual frame $\left\{e_{i}\right\}$ and connection form $\omega_{2}^{1}=-\omega_{1}^{2}$. Let E be a 2-plane bundle over M with metric \langle,$\rangle and orthonormal sections \left\{e_{\alpha}\right\}$ such that $\left\langle e_{\alpha}, e_{\beta}\right\rangle=-\delta_{\alpha \beta}$. Set $a=\sqrt{(K-c) / 2}$. Let h be a symmetric section of $\operatorname{Hom}(T M \times T M, E)$ such that

$$
\left(h_{i j}^{3}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad\left(h_{i j}^{4}\right)=\left(\begin{array}{cc}
0 & a \\
a & 0
\end{array}\right),
$$

and set

$$
\begin{array}{ll}
\omega_{1}^{3}=\omega_{3}^{1}=a \omega^{1}, & \omega_{2}^{3}=\omega_{3}^{2}=-a \omega^{2}, \\
\omega_{1}^{4}=\omega_{4}^{1}=a \omega^{2}, & \omega_{2}^{4}=\omega_{4}^{2}=a \omega^{1}
\end{array}
$$

We define a compatible connection ${ }^{\perp} \nabla$ of E so that

$$
{ }^{\perp} \nabla e_{3}=\omega_{3}^{4} e_{4}, \quad{ }^{\perp} \nabla e_{4}=\omega_{4}^{3} e_{3},
$$

where

$$
\begin{equation*}
\omega_{4}^{3}=-\omega_{3}^{4}=2 \omega_{2}^{1}-\frac{1}{2} * d \log (K-c) \tag{4.2}
\end{equation*}
$$

By the computation, we can show that $\left\{\omega_{B}^{A}\right\}$ satisfy the structure equations. Therefore, there exists an isometric immersion f of M into $N_{2}^{4}(c)$, which is maximal and isotropic.

Let $\tilde{f}: M \rightarrow N_{2}^{4}(c)$ be another isotropic isometric maximal immersion. By Lemma 2, we may choose the frame $\left\{\tilde{e}_{\alpha}\right\}$ so that, with respect to the frame $\left\{e_{i}, \tilde{e}_{\alpha}\right\}$,

$$
\tilde{\omega}_{1}^{3}=a \omega^{1}, \quad \tilde{\omega}_{2}^{3}=-a \omega^{2}, \quad \tilde{\omega}_{1}^{4}=a \omega^{2}, \quad \tilde{\omega}_{2}^{4}=a \omega^{1}
$$

Then as in (4.2), we have $\tilde{\omega}_{4}^{3}=\omega_{4}^{3}$. With respect to the frames $\left\{e_{i}, \tilde{e}_{\alpha}\right\}$ and $\left\{e_{i}, e_{\alpha}\right\}, \tilde{f}$ and f have the same second fundamental forms and normal connections. Hence \tilde{f} and f coincide up to congruence.

5. Proof of Theorem 4.

When M is isotropic, from the equation (1.3), we have either $K=c$, or $K=c / 3(c<$ 0). In the following we consider the case that M is non-isotropic.

As K is constant, using the equations (1.1) and (1.2), we get

$$
\begin{gathered}
\Delta K_{v}=2(5 K-c) K_{v}+\frac{2 K_{v}^{3}}{K-c}=: P\left(K_{v}\right), \\
\left|\nabla K_{v}\right|^{2}=-4 K(K-c)^{2}+2(K+c) K_{v}^{2}+\frac{2 K_{v}^{4}}{K-c}=: Q\left(K_{v}\right),
\end{gathered}
$$

where ∇ is the Riemannian connection of M. By Lemma 3.3 of [1], on $M_{1}=\left\{p \in M \mid \nabla K_{v} \neq\right.$ $0\}$ we have

$$
K Q+\left(P-Q^{\prime}\right)\left(P-\frac{1}{2} Q^{\prime}\right)+Q\left(P^{\prime}-\frac{1}{2} Q^{\prime \prime}\right)=0,
$$

where the prime denotes the differentiation with respect to K_{v}. By the computation, this equation turns to

$$
-4 K(9 K-4 c)(K-c)^{2}+\left(90 K^{2}-86 c K+16 c^{2}\right) K_{v}^{2}-\frac{2(27 K-8 c)}{K-c} K_{v}^{4}=0
$$

which is a nontrivial equation of K_{ν}. Thus K_{ν} must be constant on M_{1}, and we have a contradiction if M_{1} is nonempty. So M_{1} is empty and K_{ν} is constant. Then by (1.1) and (1.2) we have $K=K_{v}=0(c<0)$. By the Proposition, M lies in a totally geodesic $N_{1}^{3}(c)$, and M is congruent to the surface given by \tilde{F} in the introduction. Thus the proof is complete.

6. Proof of Theorem 5.

Assume that M does not lie in any totally geodesic $N_{1}^{3}(c)$. Then by the Proposition, K_{v} is a non-zero constant. When M is isotropic, K is also constant by (2.9). So by Theorem 4, we have $c<0$ and $K=c / 3$. In the following we consider the case that M is non-isotropic.

As K_{ν} is a non-zero constant, using the equations (1.1) and (1.2), we get

$$
\begin{gathered}
\Delta K=10 K^{2}-12 c K+2 c^{2}+2 K_{v}^{2}=: P(K) \\
|\nabla K|^{2}=2(3 K-c)\left\{(K-c)^{2}-K_{v}^{2}\right\}=: Q(K)
\end{gathered}
$$

By Lemma 3.3 of [1], on $M_{1}=\{p \in M \mid \nabla K \neq 0\}$ we have

$$
K Q+\left(P-Q^{\prime}\right)\left(P-\frac{1}{2} Q^{\prime}\right)+Q\left(P^{\prime}-\frac{1}{2} Q^{\prime \prime}\right)=0
$$

where the prime denotes the differentiation with respect to K. By the computation, this equation turns to

$$
10\left(K^{2}-c K+2 c^{2}-4 K_{v}^{2}\right)\left\{(K-c)^{2}-K_{v}^{2}\right\}=0
$$

which is a nontrivial equation of K. Thus K must be constant on M_{1}, and we have a contradiction if M_{1} is nonempty. So M_{1} is empty and K is constant. But by Theorem 4, there are no non-isotropic spacelike maximal surfaces with constant Gaussian curvature and non-zero constant normal curvature in $N_{2}^{4}(c)$. So we have a contradiction. Thus we have proved the theorem.

7. Proof of Theorem 6.

Assume that M does not lie in any totally geodesic $N_{1}^{3}(c)$. Set

$$
M_{1}=\left\{p \in M \mid K>c, K_{v} \neq 0\right\}(\neq \emptyset)
$$

We note that every spacelike maximal surface in $N_{1}^{3}(c)$ may be seen as a spacelike maximal surface with vanishing normal curvature in $N_{2}^{4}(c)$. As M is locally isometric to a spacelike maximal surface in $N_{1}^{3}(c)$, from the above note and Theorem 1, we have

$$
\begin{equation*}
\Delta \log (K-c)=4 K \tag{7.1}
\end{equation*}
$$

on M_{1}.

If M is isotropic, then the equation (1.3) is valid on M_{1}. From (7.1) and (1.3) we have a contradiction. So M is not isotropic.

Set

$$
M_{2}=\left\{p \in M \mid K>c, K_{v} \neq 0, p \text { is non-isotropic }\right\}
$$

Let $F=K_{v} /(K-c)$. Then by (1.1), (1.2) and (7.1) we get

$$
\begin{gather*}
\Delta F=2(K-c) F\left(F^{2}+1\right) \tag{7.2}\\
|\nabla F|^{2}=2(K-c) F^{2}\left(F^{2}-1\right) \tag{7.3}
\end{gather*}
$$

on M_{2}. Let $\tilde{K}, \tilde{\nabla}, \tilde{\Delta}$ denote the Gaussian curvature, the Riemannian connection and the Laplacian of M_{2} with respect to the metric $d \tilde{s}^{2}=(K-c) d s^{2}$, respectively. Then

$$
\begin{equation*}
\tilde{K}=\frac{K}{K-c}-\frac{1}{2(K-c)} \Delta \log (K-c)=\frac{K}{c-K} \tag{7.4}
\end{equation*}
$$

on M_{2}, where we use (7.1) for the second equality. The equations (7.2) and (7.3) can be rewritten as

$$
\begin{gather*}
\tilde{\Delta} F=2 F\left(F^{2}+1\right)=: P(F) \tag{7.5}\\
|\tilde{\nabla} F|^{2}=2 F^{2}\left(F^{2}-1\right)=: Q(F) \tag{7.6}
\end{gather*}
$$

on M_{2}. As $0<|F|<1$ on $M_{2},|\tilde{\nabla} F|^{2} \neq 0$ on M_{2} by (7.6). Hence by Lemma 3.3 of [1], we have

$$
\begin{equation*}
\tilde{K} Q+\left(P-Q^{\prime}\right)\left(P-\frac{1}{2} Q^{\prime}\right)+Q\left(P^{\prime}-\frac{1}{2} Q^{\prime \prime}\right)=0 \tag{7.7}
\end{equation*}
$$

on M_{2}, where the prime denotes the differentiation with respect to F. Noting that $0<|F|<1$ on M_{2}, we have by (7.4)-(7.7), $K=8 c / 9$ on M_{2}. As $K>c$ on M_{2}, we find that $c<0$. But by Theorem 4, there are no spacelike maximal surfaces with constant Gaussian curvature $8 c / 9$ in $N_{2}^{4}(c)$ where $c<0$. So we have a contradiction.

Therefore, M lies in a totally geodesic $N_{1}^{3}(c)$.

References

[1] J. H. Eschenburg, I. V. Guadalupe and R. A. Tribuzy, The fundamental equations of minimal surfaces in $C P^{2}$, Math. Ann. 270 (1985), 571-598.
[2] I. V. Guadalupe and R. A. Tribuzy, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73 (1985), 1-13.
[3] K. Kenmotsu, Minimal surfaces with constant curvature in 4-dimensional space forms, Proc. Amer. Math. Soc. 89 (1983), 133-138.
[4] H. B. LaWson, Complete minimal surfaces in S^{3}, Ann. of Math. 92 (1970), 335-374.
[5] B. O'NEILL, Semi-Riemannian Geometry with Applications to Relativity, Academic Press (1983).
[6] M. SAKAKI, Minimal surfaces with the Ricci condition in 4-dimensional space forms, Proc. Amer. Math. Soc. 121 (1994), 573-577.
[7] M. SAKAKI, Spacelike minimal surfaces in 4-dimensional Lorentzian space forms, Tsukuba J. Math. 25 (2001), 239-246.

Present Address:
Department of Mathematical System Science, Faculty of Science And Technology, Hirosaki University,
Hirosaki, 036-8561 Japan

