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SPACES OF COMPLEX NULL GEODESICS
IN COMPLEX-RIEMANNIAN GEOMETRY

BY

claude Lebrun

Abstract. The notion of a complex-Riemannian n-manifold. meaning a complex
«-manifold with a nondegenerate complex quadratic form on each tangent space
which varies holomorphically from point to point, is briefly developed. It is shown
that, provided n > 4, every such manifold locally arises canonically as the moduli
space of all quadrics of a fixed normal-bundle type in an associated space of complex
null geodesies. This relationship between local geometry and global complex analysis
is stable under deformations.

Introduction. The present work provides a general framework analogous to (but
distinct from) Penrose's twistor correspondence (Penrose [15], Atiyah et al. [2]) for
the study of real-analytic pseudo-Riemannian geometry on manifolds whose dimen-
sion exceeds three, in which points of the original manifold correspond to compact
complex submanifolds (quadrics) in an associated complex manifold. The natural
intermediate step in the construction is to consider complexification of the geometry,
leading to the notion of a complex-Riemannian manifold (implicitly present, for
instance, in the work of Penrose). In fact, it is really the conformai structure that is of
fundamental importance, and so, having briefly introduced holomorphic metrics in
Chapter I, we proceed to establish the fundamental facts of holomorphic conformai
geometry in Chapter II. Finally, in Chapter III we develop our generalized "twistor"
correspondence.

A brief historical note is in order. A special case of this correspondence (where the
complex-Riemannian manifold is complex Euclidean 4-space) proved to be useful
for the study of Yang-Mills fields (Issenberg et at. [7], Witten [18]) several years ago.
In the wake of this discovery, the present author first sketched his ideas on the
subject in 1979 in the informal Twistor Newsletter of the Oxford Mathematical
Institute; a more fully developed version became the author's Ph. D. thesis (LeBrun
[10]), which forms the basis of much of the present, more refined, paper. (Several
results are completely new, however, such as the theorems in III.4, 5.) In dimension
four, some recent results have shown these notions to be of genuine physical interest;
within the last year, a beguiling theory of the Dirac (Manin [13]) and wave (LeBrun
[11]) operators, fitting neatly within this general framework, has emerged. For the
present, however, we will examine only the big picture, relegating this (arguably
more beautiful) restricted case to treatment elsewhere.
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210 Claude Lebrun
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I. Complex-Riemannian geometry

1. Holomorphic metrics. Let 3Jc be a complex manifold. A holomorphic metric g on
9JÍ will mean a holomorphic covariant symmetric 2-tensor g G Y,mB(Q2T'*iiR) which
is nondegenerate in the sense that the "index-lowering" map T'Wl -» T'*Wl: db
q(v, • ) is an isomorphism of the holomorphic tangent bundle of 9JÎ to its dual.

If U C Wl is a region of 9JÎ parameterized by local holomorphic coordinates
z',... ,z", we have

n

fl|</ =   I   o,]kdz'®dzk,
,,k = \

where daJk = 0, QJk = Qkj V;, k, and det[g>/t] ̂  0.
Examples. The paradigmatic holomorphic metric is that of complex Eudlidean

«-space (C",'2'j=x(dzJf2). More generally, let 3JÎ C C" be a complex submanifold,
and let Tt0 C 3JÎ be the open set where the restriction of the complex Euclidean
metric g to Wl is nondegenerate; then g \,m  is clearly a holomorphic metric.

Let us emphasize immediately that g is not a pseudo-Riemannian metric on the
underlying smooth manifold of 9J?. Nonetheless, holomorphic metrics are directly
relevant to Riemannian geometry. If (M, g) is a real-analytic pseudo-Riemannian
«-manifold, we can always find a "complexification" a: M =->a3Jt, where 30? is a
complex «-manifold, and then construct a holomorphic metric on some neighbor-
hood of M such that a*g = g; the pair (9Jc, g) is then germ-unique at M. Of course,
not all holomorphic metrics arise in this way, since the complexification of a
real-analytic pseudo-Riemannian manifold possesses the extra structure (in a suita-
bly "symmetric" neighborhood) of an antiholomorphic involution ("complex conju-
gation") <£: Wl -> Wl such that 6*g = g and (S2 = 1. If (9JÎ, g) admits such an

e
involution E, the fixed point set M will be called the real slice of ( 9JÎ, g, © ) provided
that M#0. Such a slice is always naturally a real-analytic pseudo-Riemannian
manifold.

We will refer to a pair (9JÎ, g), where 9JÎ is a complex manifold and g is a
holomorphic metric on 9JÍ, as a complex-Riemannian manifold.

Notice that a complex manifold 9JÎ will not generally admit any holomorphic
metric: for a complex-Riemannian manifold the tangent and cotangent bundles are
isomorphic, and hence the odd Chern classes must all be of order 2. (See, e.g.,
Milnor and Stasheff [14].)

2. Holomorphic affine connections. Let 3JÍ be a complex manifold and V an affine
connection on the smooth manifold underlying 9JÎ (i.e. on 9JÎ with its complex
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spaces of complex null geodesics 211

structure "forgotten"). Extend V to a connection on the complexified tangent
bundle C73Ji := C®RräJi by linearity and consider the holomorphic tangent
bundle 7"2W as a vector-subbundle of CTW (namely, as the ( + /)-eigenspace of the
complex structure tensor). We will then say that V is a holomorphic affine connection
on 9JÍ iff the covariant derivative of every holomorphic vector-field is a holomorphic
tensor-field. A holomorphic affine connection thus defines a holomorphic derivation
0^ß' ®e 0 on the sheaf 0 of holomorphic vector-fields; conversely, every such
derivation arises from a unique holomorphic affine connection. In terms of local
coordinates, a holomorphic affine connection appears as

JUJ±+UlX) = l^dz'+dXdz*-)®±
\    dzJ 9z-y /     \dzk rzk      j     dzJ

+ [^-dzk + ^idzk \ <8> -^ + YLU1 dzk® — + d. U'dzk ® —.,
\ 9^ dzk        I      dp **J 3F

where the summation convention applies for both barred and unbarred indices, and
where

r¿=r¿>     3iy, = o    vj,k,i.
By the torsion tensor Tv of a holomorphic connection V, we shall mean the

holomorphic tensor such that Tv + Tv is the torsion of V as a smooth affine
connection (see, e.g., Hicks [6]) and hope this will not cause any serious confusion
for the reader. (The reason for our convention will become apparent presently.)
Thus, our torsion is just the ordinary torsion restricted to the holomorphic tangent
bundle, with components given by Tfa = Y fa — Y/k. Following common usage, a
holomorphic connection V will be called symmetric iff Tv = 0.

Proposition. Let (9JÎ, g) be a complex-Riemannian manifold. There is a unique
symmetric holomorphic affine connection V on W satisfying Vg = 0.

Proof. Formally identical to the usual theorem of smooth Riemannian geometry
(e.g. cf. Hicks [6]). In a coordinate chart the connection symbols Y fa are given by the
Levi-Civita expression

^/ = ky'"(3,g/m + 3/g,m-3mg,/)

where 3A := d/dzk and [Qjk] = [g^]'1 as matrices.
We now define the complex geodesics of a complex manifold 9JÎ with holomorphic

connection v to be the connected inextendible immersed complex curves which can
be given holomorphic parameters fEUCC such that d/dll^(d/dl) = 0, the
above expression being independent of the extension of d/di to the germ of a
vector-field on 9JÍ. Of course, the underlying real connection of V also has
geodesics, which are precisely the real-analytic curves produced by restricting a
parameter I of the above type to the real line al +af = c G R for a G C\{0} a
constant; thus, if/: T9Jc -» T9JÎ is the almost-complex structure-tensor of 9JÎ, and if
exp v : 2) -» 9JÍ is the exponential map of the smooth connection underlying v
(where % C TW is the maximal domain of definition), then the unique complex
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212 Claude Lebrun

geodesic y tangent to v — Uv, v G TWl\0,m (where 0m is the image of the zero
section of ¥1 ), is given by

7 = expv[span(u, Jv) C\ W],

at least in some neighborhood of the base point of v. We will often refer to
"complex geodesics" merely as "geodesics", provided that the context is such that no
confusion is likely to arise from this usage.

Let (95?, g) be a complex-Riemannian manifold and V a holomorphic affine
connection on TO satisfying Vg = 0 (but not necessarily Tv — 0). Then for any
local holomorphic vector field v satisfying vA vc = 0, we have

vJ3(q(v,v)) = 2g(u,t>JVt>) = 0,

from whence it follows that a complex geodesic with a nonzero tangent v at some
point satisfying q(v, v) = 0 has the property that every tangent vector w at any
point of the geodesic satisfies q(w, w) = 0. A holomorphic vector v G T'Wl will be
called null if q(v, v) = 0, and a complex v-geodesic with null tangents will be called
a complex null V-geodesic. If Tv = 0, we will simply call such a geodesic a complex
null-geodesic.

3. Geodesics and symplectic geometry. In this section we will see a very different
way of defining the geodesics of a complex-Riemannian manifold, using the ideas of
Hamiltonian mechanics (cf. Arnold [1], Weinstein [16]). This alternate definition will
prove useful as we concentrate our attention on the null geodesics.

Let Wt denote any complex manifold, and let 9 := 7"* 2ft denote, for the sake of
brevity, the total space of its holomorphic cotangent bundle. Then 6} is equipped, by
construction, with a holomorphic 1-form 6 G Y(9, ß1), called the canonical form of
6y, defined by

(e,v)\p:= (p,tt*v)    V/>G<3\

where v is any local section of T'9 and -n: *¿P -» 2ft is the canonical projection. If
(f',... ,zn): % -> C is a holomorphic chart on 2ft, then we may define holomorphic
functions

zJ:=m*zJ,   Sj:p*+(p,d/d2J),      j=l,...,n,

on 77"'[%], yielding a holomorphic chart (z\... ,z", £„... ,£„): tt"1^] -> C2" on <3>;
with respect to these coordinates we have

It is now evident that the 2-form w := 30 G TCéP, ß2), which will be called the
(holomorphic) symplectic form of ldP, induces an isomorphism Jm: r'*? -» T'*"?:
u i-^ w(t>, • ) because, using the above local coordinates, w |w-i¡^] = 3fy A 3z-'.

Suppose now that S C ty is a smooth complex hypersurface, i.e. a one-codimen-
sional holomorphic submanifold of 'S1. Imitating the above procedure, we may define
a map J-: T'S -» T'5: « h» ¿(u, ■ ), where w denotes the restriction of u to 5. This
time, however, we do not get an isomorphism; rather, the kernel D C T'S of J - is a
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one-dimensional holomorphic distribution. (Since J u is an isomorphism, dim D <
codim S = 1; but dim D > 0 because £> is skew and S is odd dimensional:

det[ô,jk]=det[-ô>kj] = (-\)2"-]det[C:jk}

with respect to any local frame.) Therefore D is tangent to a holomorphic foliation
of S by complex curves. These curves will be called the phase-space trajectories of S,
and their images under it: 9 -» 2ft will be called the trajectories of S.

Now suppose that 2ft is equipped with a complex-Riemannian metric g. Using the
index-lowering map b of g, we may define a smooth hypersurface

S,:= b[{v G 7"2ft I v =£ 0, g(o, o) = t}]
for any t G C. The trajectories of S, turn out to be surprisingly familiar objects.

Proposition. Suppose that y: U -» 2ft, U C „C, is a geodesic parameterized so
that y'JVy' = 0, and let t = g(y', y'). Then the curve y: U -> 9: f -> by'(f) « a
phase-space trajectory of &,, and every space-space trajectory of any &, arises in this
way. Thus, the geodesics (respectively, null geodesics) o/2ft are just the trajectories of
S0 U &x (respectively, &0).

Proof. We will check that D of an arbitrary &, is horizontal with respect to the
torsion-free metric connection V and satisfies ir^D |b(/)) = [p] at a chosen (but
arbitrary)/; G &,, thus implying the proposition. Choose "normal coordinates" (zy)
about 7r( p) so that 0 G C" corresponds toir(p) and affinely parameterized complex
lines in C" through 0 satisfy y'J vy' = 0. Then (3;gA') |0 = 0 because Tjk vanishes at
0. But èô, n tt-'I0?!] is given by {((z'),(^)) \ ̂ %$k. = t,(^) * 0}, so that for
(zj) = 0 the conormal bundle of &, is spanned by Qjk^d^k. But since
■JJfl-'^ö/^2*) = -Q>J%d$k'lt follows that g7*¿jd/dzk spans D. Since the vanishing
of Yjk at 0 makes a vector w at ((0), (£,)) horizontal precisely if (rff-, w) — 0 Vy, /) is
horizontal. And since b((f,)) = ñJkS¡9/dzk, we are done.    D

II. Holomorphic conformal geometry

1. Conformal structures. Let (2ft, g ) be a complex-Riemannian manifold. If/:
2ft ->C\{0} is a non vanishing holomorphic function, /- g is also a holomorphic

6.
metric on 2ft. We will say that two holomorphic metrics are conformally equivalent if
one is obtained from the other in this fashion.

We will now consider a structure on a complex manifold which amounts locally to
the specification of a conformal equivalence class of holomorphic metrics. We take
the time to do so because our approach to complex-Riemannian geometry will entail
viewing conformally invariant objects as more primitive than objects depending on
the metric. ("Conformally invariant" just means "depending only on the conformal
class".)

Let 2ft be a complex manifold. By a holomorphic conformal structure on 2ft we will
mean a holomorphic line subbundle i: E =* o2 7"*2ft of the holomorphic quadratic
forms on the tangent bundle such that the "index lowering" map \j: 7"2ft -» 7"*2ft
® £*: t)h»»J[(i® id£.)(l)] is an isomorphism, where J denotes contraction and
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214 Claude Lebrun

where the complex number 1 is thought of as a section of the canonically trivial line
bundle E ® E*. A nonvanishing local section of E will be a holomorphic metric on
its domain of definition, and any two such sections are conformally equivalent on
the intersection of their domains; such a section will be called a local representative
metric of the conformal structure.

Keeping in mind that E ® E* is canonically trivial, we could instead define a
conformal structure as a holomorphic metric taking values in a line bundle, namely
(i ® id£.)(l) G r3K0((O27"*2ft) ® £*). This is completely equivalent provided one
introduces the obvious notion of the equivalence of two such forms as induced by
isomorphism of the respective " value" line bundles.

Example. To see a holomorphic conformal structure admitting no global repre-
sentative metric, consider a complex vector space V, of dimension at least 3,
equipped with a nondegenerate quadratic form g G G^V*. Let Q C PV be the
quadric variety

Q= {[o]EPV|g(t>,t>) = 0}.
Then g restricts to Q as a holomorphic metric of homogeneity 2. Moreover, this
conformal structure is unique, for, by chern class considerations, the value line-
bundle of any conformal metric must be the square H®2 of the inverse Hopf bundle;
but the restriction of such a metric to any projective line in Q is then a section of
(ßp])2(2) s 0(-2) and so vanishes. But, by contrast, Q admits no global holomor-
phic metric because c,(7"Q) =£ 0 (and H2(Q, Z) is free).

The most intuitively clear picture of a holomorphic conformal structure is as a
holomorphically varying assignment of "null cones" in the holomorphic tangent
bundle. A holomorphic tangent vector v G T'x 2ft on a complex manifold 2ft with
conformal structure E C 02(7"*2ft) is said to be null if Qx(v, v) = 0 for some (and
hence for any) nonzero element ax of Ex; in other words, a vector is null iff it is null
for any local metric representing the conformal structure. The null cone at x G 2ft is
just the set of all null vectors in TjW.

If we define the null quadric bundle of the conformal structure E by

Q*= {M EP7"2ft|ünull},
where P7"2ft is the projectivized holomorphic bundle and square brackets denote the
projective equivalence class of a nonzero vector, then D£ is a holomorphic fiber-
bundle over 2ft with typical fiber the nonsingular quadric

Q„-2 = |k..".*JePB_I|¿zy2 = o|,

where « is the complex dimension of 2ft. Elements of Q£ will be called null
directions.

We now prove a converse to the above.

Proposition. Suppose that Q C Pfl is a holomorphic bundle of nonsingular
quadrics. Then £l is the null quadric bundle of a unique holomorphic conformal
structure over 2ft.
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Proof. Let 0(2) be the sheaf on P7'2ft of holomorphic functions of homogeneity
2 on the fibers. (In other words, local sections of 0(2) are functions / on conical
regions of 7"2ft which satisfy f(Xv) = X2f(v) for X G C.) Let 0Q(2) be the sheaf of
such functions restructed to Q£, and let 3(2) be the ideal sheaf defined by
0 - 3(2) -» 0(2) - 0O(2) -* 0. What we must show is that any point x G 2ft has a
neighborhood U such that there is a section g G Y(w~\U), 3(2)) vanishing identi-
cally on no fiber of the canonical projection map fc>: P7"2ft -* 2ft. For some
g G Y(U, O2 7"*2ft), we would then have g(v) = q(v, v), and g would be a repre-
sentative metric of the promised conformal structure.

Let us define sheaves Tand Ton 2ft as the following complete presheaves:

% = lV(l/),©(2)),       % = lV(i/),0o(2));
i.e. T= w°0(2), T= w*0Q(2) in the language of Godement [4]. I claim these sheaves
are locally free and are in fact sections of vector bundles V and V whose fibers are
given by

Vx = Y(*-\x), 0(2)),       Vx = Y{v-\x), 0D(2)).
In the case of Tthis follows immediately from the local triviality of 7"2ft. In the case
of Tit is also immediate once we recognize that if Ux C 2ft is Stein and small enough
so that Q \u is trivial, we have

H\*-\UX) n &,€) = H\Q„_2x l7„0) = O
and so line bundles over £t\v are classified by their Chern classes; thus

r(w-'(í/,),0Q(2))sr(í/1)®cr(Q„_2,0(2)).

If we now define @ to be the sheaf on 2ft defined by "pushing down" 3(2),

®v=T(v-\U)t%(2)),

we see that @ is kernel of a morphism V -* V of holomorphic vector bundles. But
fiberwise, V -* V has 1-dimensional kernel as follows from the definitions. Hence <&
is the sheaf of holomorphic sections of a line-bundle EGO2 7"*2ft, as claimed.    D

Remark. The hypotheses of the proposition assumed that £} was locally trivial.
But Kodaira and Spencer [9] say that we need merely suppose that Q is holomorphic
and has fibers isomorphic to Q„_2, since the latter is a rigid manifold.

This then justifies our earlier statement that a holomorphic conformal structure is
simply a holomorphic null-cone distribution.

2. Null geodesics and conformal connections.

Proposition. Let(Wl, g) be a complex-Riemannian manifold and let f: 2ft -» C\{0}
s

be a nonvanishing holomorphic function. Then g andf- g have the same null geodesics.

Proof. In 1.3, it was shown that the trajectories of

S0:= b[{vET'm\v^0,Q(v,v) = 0}]
are precisely the null geodesics of (2ft, g). But replacing g with /g leaves S0
unchanged.    D
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Now if ( 2ft, E ) is a complex manifold with holomorphic conformal structure, we
may construct a hypersurface S0 C 7"* 2ft by using the above prescription for all
local sections of E. The null geodesics of (2ft, E) are then defined to be the
trajectories of S0. Thus, a curve is a null geodesic of (2ft, E) iff it is inextendible and
arises locally as a metric null geodesic of any local section of E.

Example. Let Q„ C Pn+, be a nonsingular quadric. Then the null geodesics of the
canonical conformal structure on Q„ discussed in II. 1 are just the projective lines in
P„+1 contained in Q„.

Remark. While the null geodesics themselves are conformally invariant, the
"autoparallel" tangent fields X, satisfying A'JvA'^ 0, are not; indeed, the "real
slices" of null geodesics, obtained by flowing along the real projections of the
complex fields X, change if the metric is rescaled by a holomorphic function.
However, the symplectic formulation makes it clear that the corresponding cotan-
gent fields g (A', •) are conformally invariant, since such a field, specified along a
fixed null geodesic, is precisely a phase-space trajectory of S0. This fact will be
pertinent in III.3.    □

Let ( 2ft, E ) be a complex manifold with holomorphic conformal structure, and let
£5.£ -> 2ft be the null quadric bundle of E. If y is a null geodesic in 2ft, and if we
define the lift y of y to be

y= {(x,Txy)\xEy) C £5£,

then the collection of all such lifts is a holomorphic foliation of £5. £ by complex
curves.

More generally, a conformal connection t on a complex manifold with holomor-
phic conformal structure E will mean a family of null complex curves, precisely one
of which is tangent to any null direction, such that the lifts foliate £5. E holomorphi-
cally. Equivalently, a conformal connection is a holomorphic foliation of £}£ by
curves such that the tangent bundle 25 C 7"£5.£ of the leaves satisfies w#<725 = q
V<7 G QE, where it: £5.£ -» 2ft is the canonical projection.

The curves of the family r will be called T-geodesics.
Example. Let (2ft, g) be a complex-Riemannian manifold, and let V be any

holomorphic affine connection on 2ft such that Vg = 0. Then the lifts of the null
V-geodesics foliate £1 holomorphically, and thus define a conformal connection.

Conversely, we have

Theorem. Let t be a conformal connection on (2ft, E) and g a nonvanishing section
of E C O2 7"*2ft on U C 2ft. Then there exists a (nonunique and generally nonsymmet-
ric) holomorphic affine connection V on Usuch that

(1) Vg = 0,and
(2) the null V-geodesics are the (null) T-geodesics within U.

Proof. Let 25 0 be the subbundle of 7"£5.£ tangent to the (standard) foliation of
£5. £ by lifted null geodesics, and let 25 denote the corresponding line distribution for
T-geodesics. Since 7^25 = •nifq%0 = q,Vq G £5,£, 25 — 250 is a holomorphic vector
field v of homogeneity 1 tangent to the fibers of it.
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Consider for a moment an 0(1) vector field w on the standard quadric Q C P„_,.
(Recall that Q : = {[z]\ 2"= x(zJ)2 = 0}.) Then w is given by

WJ\lu] = A{,uV   Vu G C"3.2(uj)2 = 0
;'

for a unique tensor A on C" satisfying

Ai,= -A*„   Ai, = 0,   and   A{, + A*, + tlJk = 0.
(Examination of the standard "Euler" exact sequence 0 -» 0(1) -> 0(2) ® C -»
0(7"Pn_,) X 0(1) -» 0 on Q yields such a representation—without algebraic con-
straints on A—because //'(Q, 0(1)) = 0; the result then follows from an easy, if
tedious, tensor calculation.) By the same token, there is a unique holomorphic
( 2 )-tensor field A on U with

(a)0;mA^ = -g,mA7„
(b)A{,. = 0,
(c)Sm[^,] = 0,

such that

u|„ = A(m,m)   Vh.3.[h] G £}£.

Now define a connection V on U by

XJvy:= XAVY - A(T, A"),
where V is the Levi-Civita connection of g. Then (a) implies vg = 0. We can
therefore define the null geodesics of V and the associated foliation of £5.£; call the
corresponding direction field 25'. If X is a vector field along a V geodesic satisfying
XJVX- 0, we have XlvX = ä(X, X); so, if X is null, the vertical part, with
respect to V, of the horizontal lift, with respect to V, of X at the vector X is just
v \x. Hence 25' = 25, proving the theorem.    D

Remark. Notice that we have constructed a particular connection representing t,
which is characterized by the conditions (a)-(c). Without such extra conditions,
however, there is a certain freedom in the choice of v; for example, it is easy to
verify that V, defined by

X1VY= XJVY + A*(X,Y),
where A is a holomorphic 3-form and # denotes the raising of an index with respect
to g, has the same geodesics as V and satisfies v = 0.

Now notice that (a) and (c) imply that A* ■ = 2àJ[lk] in an orthonormal frame.
Hence <Z, A(X, Y))= (Y,T$(Z, X)), where T- is the torsion of V. (If we relaxed
(c), the totally skew part of A would appear on the right with a factor of -2.) We
may therefore characterize the particular representative connection we have pro-
duced by the fact that Â = 0 and

(a)(T^ykj = 0,
(b)(r«)^fl(]M = o.

Conversely, every holomorphic vector-valued 2-form satisfying (a) and (b) arises in
this way for just one conformal connection. Also notice that if g is replaced by/- g,
the field T^ is unchanged; the argument is exactly that given for the proposition.
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We will now introduce a convenient abuse of language by identifying the
conformal connection t with the vector-valued 2-form T^. In particular, we shall say
that t = 0 precisely if the T-geodesics coincide with the null geodesics.

3. Null geodesics as ^characteristics. In this section we encounter yet another
definition of a null geodesic. This definition, arising from the PDE concept of a
bicharacteristic (cf., e.g., Guillemin and Sternberg [5]), has a venerable history going
back to Monge. Our inclusion of it, however, is in fact the product of rather
utilitarian motives—it will save us some work in III.3.

If (2ft, E) is a complex manifold with conformal structure, and if S C 2ft is a
nonsingular complex hypersurface, then we will say that S is characteristic or null iff
every covector orthogonal to S is null; thus, S is null precisely if any local section of
E restricts to S as a degenerate quadratic form on each tangent space. A characteris-
tic hypersurface S therefore comes equipped with a line subbundle N C T'S of its
tangent bundle which can be described either as the orthogonal space of T'S (with
respect to E) or as the kernel of the index-lowering map (associated with the
degenerate induced conformal structure of S). The integral curves of N then give a
canonical foliation of S by null curves, the so-called bicharacteristics of S.

Proposition. The bicharacteristics of any null hypersurface are null geodesics.
Conversely, every null geodesic locally arises in this way.

Proof. As the assertion is local in character, we may assume that S is given by the
vanishing of a holomorphic function / with df ¥= 0, and also that the conformal
structure is represented by a holomorphic metric g. If V denotes the standard
connection associated with g, and if v '■ — grad(/) = (V/)#, then, because S is null,
one has g(i>, v) = fh for some holomorphic function «. Introducing indices as a
bookkeeping device, with the convention that indices are to be raised and lowered
with respect to g, we have

Va V,ufr = vavaVbf=vavhVj   (because 7"v = 0)

= vavhva = l2VbVva = {Vbfl = {hvbf+{fWbh

= {hvb   when/=0.

Thus the flow lines on S of the vector field v are geodesic, as was to be proven.
Conversely, every null geodesic is locally contained in a null hypersurface to which

it is orthogonal. To see this, let U C 2ft be geodesically convex with respect to some
fixed metric g representing the conformal structure on U and letting x G U define
Cx C U to be the union of all null geodesics in U through x; I then claim that
Cx\{x} is a characteristic hypersurface having the null geodesics through x as its
bicharacteristics. It is obvious that Cx\{x) is a hypersurface because it is the
(isomorphic) image, under the holomorphic exponential map of {v G TjWl | v ¥"
0, q(v, v) = 0}. By the use of this same exponential map and homogeneous coordi-
nates on the null quadric of x we can also find, for any fixed up G 7!,'(Cx\{x)) and a
fixed vector field v on Cx in a neighborhood of the null geodesic y connecting x top,
with v tangent to the null geodesics generating Cx and satisfying Vvv = 0, a vector
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field u defined in a neighbourhood of y with u(p) = up, [u, v] = 0, and lim,,^ u(y)
= 0. Then

Vvq(u,v) = q(\7vu,v) = q(vuv,v) =±Vuq(v,v) = 0,

and so q(u, v) = 0. This shows that Cx is characteristic and orthogonal to all its null
geodesic generators, which proves the claim.    D

III. Spaces of complex null geodesics

1. Civilized manifolds. Let (2ft, V) be a complex manifold with holomorphic
connection. We will say that 2ft is geodesically convex with respect to V iff it is
geodesically convex with respect to the underlying smooth connection of V, i.e., iff
each two points of 2ft are connected by a unique real geodesic of V varying
continuously with the endpoints. By a classic theorem (Whitehead [17]), any mani-
fold with smooth connection has a neighborhood basis consisting of geodesically
convex sets; thus, the supposition of geodesic convexity imposes no local loss of
generality on the geometry.

If (2ft, E, t) is a complex manifold with holomorphic conformal connection, we
define the space 2c(2ft, E, t) of complex null geodesics of (2ft, E, t) to be the set of
leaves of the foliation of C£ by lifted null T-geodesics with the quotient topology.

Theorem. Let (2ft, g, V) be a complex-Riemannian manifold with metric connection
for which it is geodesically convex. If (E,t) is the conformal connection determined by
(g, V), then 2c(2ft, E, t) is a complex manifold in a unique way making the quotient
map q: £5.£ -» ?î a holomorphic map of maximal rank.

Proof. Let -n: 0£ -» 2ft be the canonical projection, £ G £5.£ any point, x '= 7r(£).
We begin by constructing a neighborhood IV(£), which is the domain for a
Frobenius chart for the foliation of Q£, by lifted T-geodesics and such that every
fiber of q intersects W in a path-connected set.

To this end, let W0 3 £ be the domain of a chart

<p: W0^P CC2"-2
e

(where P is a polydisc) such that <p(£) = 0 and the components <p2,.. .,q>2"~2 are
constant on every path-component of any fiber of q intersected with W0; such
complex Frobenius charts can easily be shown to exist by application of the smooth
Frobenius theorem. Let r: C2"-2 -» C2"-3 be projection to the last 2« — 3 compo-
nents, and let \z '.= <p~*r~\z) for z G C2"-3, so that, in particular, 10 is the
path-component in W0 of the lifted null T-geodesics through £. Finally, let U C 2ft be
a precompact V-geodesically convex neighborhood of x with smooth boundary
dU ̂  S2"~\ and let U be chosen to be sufficiently small so that U (~) 7r[l0] has
frontier contained in 3£/.

Let S := W0n 7r'[3t/], and let f := r<p |s: S -> C2""3. Because U C 2ft is geo-
desically convex, r~'(z) is a connected smooth curve for all z and, by construction,
r~'(0) « S1. Since f is a regular mapping, and because f"'(0) is compact, there is a
tubular neighborhood A of f_1(0) such that A « r"'(0) X B for B C C2"^3 in such a
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fashion that f |A looks like projection to B; this is easily seen by covering f-l(0) with
a finite number of Frobenius charts for the foliation of S by the fibers of f. Thus, by
the Jordan curve theorem, for z G B we have that r~'(z) then bounds a unique disc
in 1., and m carries this disc onto an entire null geodesic in U. Hence defining
W '■— (np)"'(B) n tr~\U), we see that a path-component of any fiber of q in W
represents an entire null V-geodesic in U, and so the geodesic convexity of U
guarantees that each fiber of q meets W in a path-connected set. Hence the map
qr"': B -» 3? is an injection. By general properties of foliations, it is therefore a local
homeomorphism, since q is an open map. Moreover, the transition functions
between any two such local charts are holomorphic, as can be seen by using a finite
sequence of overlapping Frobenius charts on £5. £ to compare any two such charts for
2c with overlapping domains.

Thus, to prove the claim, all that really remains is to check that 2? is a Hausdorff
space. Because 2Î has a countable basis, it suffices to check that a sequence in 2? can
converge to at most one point. If we have a sequence of null geodesics yy in 2ft
converging to two distinct null geodesics y and y, we could then find wJy Xj, yjy
Zj G Yj-, w, x G y; and y, z G y such that w- -» w, Xj -» x, yj -» y, and z}, -» z in 2ft. If
"D C TW is the domain of the exponential map, and if 4) = Re-1^), where Re:
7"2ft s T2ft: t)HJ(t) + ÍJ), then <p: <3) - 2ft X 2ft via <p(t>) = (tt(v), exp(Re(v))) is
a biholomorphism, where -n: 7"2ft -» 2ft is the canonical projection. If we now look
at the sequences <p~\wj, x,) and <p"'(v^, yd, we notice that [<p~](wj, Xj)] =
[<p~Xwj, yj)], where square brackets denote projective classes in P7"2ft. Since P7"2ft
is Hausdorff we therefore have

[<f\w, xj\ = lim [V'íw,-.*;)] = lim [ç»"'(wy, yj)] =[<p"'(w, y)],
j^OO j- 00

and so the null geodesic y = exp Re(^) n Ccp'^vv, x)) contains >>. In the same way, y
contains z. But since 2ft is geodesically convex, there is only one geodesic containing
bothy and z, and that geodesic is, by hypothesis, y. Hence y = y, and 2î(2ft, E, t) is
Hausdorff.    D

This concludes the proof.
From now on, we will say that (2ft, E, t) is civilized if (a) 2î(2ft, E, t) is a

complex manifold, and if (b) q is injective on each fiber of the canonical projection
£5 £ -» 2ft. Evidently, geodesically convex neighborhoods are civilized.

2. The skies of 2ft. Let (2ft, E, t) be a complex «-manifold with civilized
conformal connection. Associated with every point of 2ft is an (« — 2)-quadric
Qx C 2c(2ft, E, t), given by q[w~'(*)]» which we will call the sky of x; thus, Qx
consists of all T-geodesics through x. (The term "sky", suggested by Yu. I. Manin, is
inspired by Lorentzian geometry, where null geodesics represent light rays. The
present author originally used the more cumbersome phrase "celestial quadric" [cf.
LeBrun [10]] to refer to the same object.) If we choose to think of 2ft as [Qx \x G 2ft},
then the conformal connection (E, t) is given to us for free, since Xj G 2ft are points
on a common T-geodesic iff Pi Qx ¥" 0. We shall presently see, however, that, if
«=7^3, {Qx} is inherent to the complex manifold 2i(2ft, £, t): geometry on 2ft
becomes global complex analysis on 9?.
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To make this precise, we begin with a

Proposition. Let N -» Qx be the normal bundle (7"5ft \q)/T'Qx. Then the holo-
morphic isomorphism type of N depends only upon the dimension n. Moreover, N
satisfies:

(a)

C    ifn^3andn>l,
C4   ifn = 3,

(b)//'(0(N)) = O,
(c) //'(0(N 0 N*)) = 0.

Proof. We know that the jacobian of the quotient map q: £}£ -» 5ft has maximal
rank at all points, and q carries every fiber of w: £5.£ -» 2ft isomorphically into 5ft.
The induced map from the normal bundle of ir~](x) C £5.£ to that of Qx C 5ft is
therefore surjective. But the normal bundle of Tr~\x) is just the trivial bundle with
fiber 7^ 2ft. Moreover, the horizontal lift of a null vector v at [v] is in the kernel of
q,, which gives an inclusion of the universal line bundle U -» Qx into the kernel of
7^'2ft -» N. By a dimension count, we therefore have an exact sequence

0 -> H* -. rx'2ft - N - 0,
j

where H is the restriction to Qx of the hyperplane-section line-bundle on P(rx'2ft)
and; is the tautological inclusion. In particular,

N»(rp„_,)|Qii_2®H*.

The formulae (a)-(c) now follow by straightforward manipulation of the above exact
sequence and the vanishing of //''(©(H®"1)) for 0 < p < n - 2.    D

Corollary. If n ¥= 3 the family {Qx \ x G 2ft} is complete in the sense of Kodaira
[8].

Remark. For « = 3 the incompleteness of the family of skies has interesting
consequences; cf. LeBrun [12].

Definition. Let 3E be a complex (2m + l)-manifold. A normal quadric in 3£ is an
w-quadric embedded holomorphically in 3E with normal bundle (7"Pm+1) |Q   0 H*.

Thus, Qx is a normal quadric in 5ft(2ft, E, t).

Theorem. Let £ be a complex (2m + Yy-manifold, m > 2, and let 2) be the set of
normal quadrics in £. Then f) is a complex (m + 2)-manifold with conformal connec-
tion induced by intersection relations. If £ — 5ft(5ift, E, t), 2ft C§ as an open subset
with the induced conformal connection.

Proof. That the space of all normal quadrics has the structure of a complex
(m + 2)-manifold (if m > 2) is a direct consequence of the proposition and Kodaira
[8], for the latter tells one that the local moduli space of compact complex
m-manifolds near a normal quadric has dimension m + 2, using clauses (a) and (b)
of the proposition; but (c) and the rigidity of quadrics imply, by Kodaira and
Spencer [9], that a small deformation of a normal quadric is again a normal quadric.

//°(0(N)) s
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Now define a family of curves in the moduli space 3J by setting, for each x G •£,
yx : = {Q G 3J | x G Q}. Indeed, if 3 = {(x, Q) | x G 3J | x G Q}, then 3 is a holo-
morphic quadric bundle over 3J, the "total space of the family 3J", and the above
curves are given by yx = pr2(prf'(x)), where pr, and pr2 are the canonical projec-
tions of 3 to 3E and 3J, respectively. Moreover, again by general properties of
complete analytic families, the jacobian of pr, induces an isomorphism between 7^3)
and //°(Q, 0(N)), where N -» Q is the normal bundle in 3E. Because N is, by
hypothesis, the standard normal bundle, there is a holomorphic conformal structure
induced on 3) by defining v G 7"3J to be null iff the corresponding section of N has
a zero. Further, this identifies 3 with £5.£. The foliation of 3 by the fibers of pr, then
defines a conformal connection t on 3J having the path components of the y/s as the
T-geodesics.    D

Notice that we have not asserted that 3J is civilized; in fact, this need not be the
case. If SU C C4 is defined implicitly by

C4\lft := {(z,,z2,z3,z4)|z] + z, +i(z2-z2) = z3 = z4 = 0},

and if 1 C 5ft(C4,2dz/,0) is the set of all null lines meeting [ft, then 3J = 1ft.
(3J C C4, as can be shown by noticing that 5ft(C4) is the complement of a normal
2-quadric in a hypersurface of bidegree (1,1) in P3 X P3, and all normal quadrics in
5ft can thus be written explicitly as products of projective lines. But every point in the
complement of 5ft is on a null line missing 1ft, namely a null line of the form
zx = -iz2 + p, z3 — z4 = 0, where p is an arbitrary real constant.) But 1ft is not
civilized, since its space of null geodesics is not Hausdorff—for the two null
geodesics in 1ft described by

(a) z, = iz2,   z3 — z4 = 0,   zx+ z2 + i(z2 — zj) > 0,

(b) z, = iz2,   z3 = z4 = 0,   z, + z2 + i(z2 — z2) < 0

are both limit points of the sequence of null geodesics given by zx = iz2 + f-,
z3 = z4 = 0 where J, G C, f, -» 0.

On the other hand, the situation is very far from disastrous; the failure of the
Hausdorff property for the space of T-geodesics of 3) is all that can go wrong. If we
say that (2ft, E, t) is precivilized if (2ft, E, t) is a possibly non-Hausdorff complex
manifold, with conditions on q as before, then it is immediate that 3J is precivilized.
This problem goes away completely, of course, if we allow, in contrast to our
original definition, for some geodesics to be disconnected.

If 2ft is a connected complex «-manifold, n > 3, with civilized conformal connec-
tion (E, t), we shall define the dominion D(2ft, E, t) to be the space of all normal
quadrics in 5ft(2ft, E, t), and the connected dominion D0(2ft, E, t) to be the compo-
nent of D(2ft, E, r) containing 2ft.

A primary goal of the remaining part of this chapter will be to provide hypotheses
under which D0(2ft, E, t) = 2ft; it will be hoped that these hypotheses actually force
2ft = D(2ft, E, r). Notice that some sort of hypotheses are necessary, since if 2ft is
civilized and x G 2ft, 2ft\x is also civilized and 5ft(2ft) = 5ft(5ift\x), showing that
x GD(2ft\x).
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Note, by the way, that the above definitions may be made if n = 2, but the
accompanying theory is not only trivial in character but also different from the
high-dimensional case. (For example, D(2ft) always has four components when
« = 2, while D( 2ft ) is connected, at least for simple examples, when « = 4.) As a
matter of taste, we will ignore « = 2.

3. Contact structures and torsion. In this section we characterize the vanishing of
conformal torsion in terms of the existence of a contact form on 5ft.

Let £ be a complex (2m + l)-manifold. A holomorphic contact form on £ is a
holomorphic 1-form 6 taking values in a line bundle L — 36 and satisfying

(*•*) e a(30)a"Vo.
This expression may be interpreted simply as holding in terms of any local
trivialization of L; but since, for any holomorphic function/,

ß A (3(/0))Am =f0 A (/30 + 3/ A 0)Am =/",+ 10 A (30)Am,

it follows that d A (d6)Am is a well-defined section of 0(2m+,)(L*(,"+1))l and so, by
(***), one has

|j8(m+l) s g*

where K — £ is the canonical line bundle A(2m+ ])T'*£. In particular, the line bundle
L is completely determined by £ if H\£,Zn+x) = 0.

A holomorphic contact structure is an equivalence class of contact forms under the
relation that d G rñ'(L) is equivalent to 6 G rß'(L) iff there exists an isomorphism
\p: L s L such that \p6 = 6. More in the spirit of our description of conformal
structures, one may instead say that a contact structure is a holomorphic distribution
D of hyperplanes (i.e. the orthogonal spaces of some twisted holomorphic 1-form)
for which the Frobenius integrability obstruction is nondegenerate. If £ admits such
a structure, we will say that £ is of contact type.

Remark. All holomorphic contact forms in dimension 2m + 1 are locally equiva-
lent to that determined by the form

m

« := dz2m+x +  2 ZjdzJ+m
7=1

on C2m+1; a contact structure is a "flat" structure (cf., e.g., Arnold [1]). Thus, we
may think of a contact structure on I as a reduction of the maximal atlas of A' to a
subatlas with transition functions $yA- satisfying <S>*Ka = fa for some holomorphic
function / in C2m+1.

Theorem. Let 2ft be of dimension > 3. Then 5ft(2ft, E, t) is of contact type iff
t = 0. Moreover, the contact structure of 5ft(lift, E) is unique.

Proof. Let us begin by showing that 5ft(2ft, E) is of contact type, which we will
do by use of the notion of the reduction of a symplectic manifold (cf. Weinstein [16]).
Using the notation of 1.3, let S C 9 '■= 7"*2ft be a smooth complex hypersurface,
w G H°(9, ß2) the holomorphic symplectic form of 9, to the restriction of co to S,
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and D '■= ker(J-). We will suppose that the foliation of S by phase-space trajecto-
ries tangent to D has a complex manifold Çtas its space of leaves, and let p: S -* 9be
the quotient map. Then I claim that there is a 2-form û G H°(9, ß2) such that
p*w = ¿i. Since ¿> is, by construction, normal to D, it suffices to show that if
t; G 0(D) then Lvw = 0. But this is immediate from dû = du \s = 0, since Lvû =
v J dû + d(vJcb). Thus ¿> = p*w for some 2-form w.

Since p*dû> — dû — 0, and since p*: ß- -» ß^ is an inclusion (p^ being a projec-
tion), dû — 0. Also, since rank(J« ) = rank(J-), J-: T'9 ^ T'*9is an isomorphism.

Now carry out the above construction for the hypersurface S0 of nonzero null
covectors on 2ft when 2ft is equipped with a conformal structure E. Because the
scalar multiplication map m,\ 7"*2ft -» 7"*2ft: <p -» rtp, where /£Ct:= C\{0},
satisfies m*u = r«, it will follow that the phase-space trajectories of £0 are taken
onto phase-space trajectories by m,. Indeed, the quotient 9/C+ is just 5ft(2ft, E), so
that 9 -» 5ft is a principal C^-bundle. Let us now define a line bundle L -» 5ft by
L : = 9 X C/C#, where C+ acts on 9 X C by the family of maps

m,: 9XC ^9X C: (x,s) \^> (m,x, ts);

thus, 9 is L* with the zero-section removed. Since each fiber of the canonical
projection X: L* -> 5ft is a complex vector space, there is a standard holomorphic
identification of A*[L*] with the holomorphic tangent bundle of the fibers of À, thus
giving rise to a standard ^-invariant holomorphic vector field X on 9 (i.e., on
L*\0m), defined by X\p := X*(p). We may now define a 1-form 6 G Tß'(L) by
X*6 '■— Xlü. This makes sense because XJû is normal to the fibers of X and
satisfies

m*(XAû) = XAm*û = t(XAû),

so that w( Jf, Y) is a section of L for any C^-invariant vector field Y.
Note that since X may also be defined as the derivative of the complex 1-parame-

ter group of biholomorphisms in» me,, we also have

Lxû = d(e'û)/dt |,=0 = w.

0 is now a contact form on 5ft. Indeed, we may locally trivialize L -» 5ft by picking
a local section of a of f-> 5ft, thus identifying 0 with the C-valued 1-form a*(XJû).
But

a*(*J¿>) A (¿a*(A-Jà))A(""2) = o*[(XJâ) A (¿(XJà))A("~2>]

= a*[(XJ&) A (L^)A<"-2)] = a*[A-j(û)A(n_1)]

cannot vanish because (w)A("_1)Gr(iF, ß2"-2) is a non vanishing holomorphic
volume element (this being just an invariant way of saying det[w-A] ¥= 0), and X is
transverse to the image of a.

Conversely, suppose that 5ft(2ft, E, t) admits a contact form 6: T'5ft -» L. By a
previous remark, L®*"-0 = A2"-37"5ft. Thus

L®(*-i) |    S(A"-2T'QX) 0 (A"-'N),
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where N -> Qx is the normal bundle. But we saw in the previous section that
N s (H* 0 7"P„ | ) \Q, where Qx is identified with the standard quadric in P„, and
H -> P„_, is the line bundle of chern class + 1. Hence

L®"-' |Q< s (K*Q) 0 (K*Q 0 HQ<"-2>) 0 (HQ XHQ')S HQ \

wher^ Kq -» Q is the canonical bundle A"~27'*Q and HQ -» Q is the restriction of
H - P„_, to Q. Hence L|Q = HQ. However, H°(Qm, ß'(HQ)) = 0 provided that
m > 2. (This is true because through every point of Qm there passes an (m — 2)-
quadric's worth of projective lines contained in Qm, spanning the tangent space of
Qm; and since //'(P„ ß'(l)) s //'(P,, 0(-l)) = 0, it follows that every global section
of ßg(HQ) is orthogonal to every such projective line and, so, vanishes.) Hence if
2î(2ft, E, t) admits a holomorphic contact structure, every quadric Qx is everywhere
orthogonal to the contact form; in particular, if 5ft is of contact type,
span{ry'Qx C 7Y'5ft | x G y C 2ft} is not all of TJ31. This will imply that t = 0 by the
argument that follows.

Suppose that D C 7'5ft is a distribution of (2« — 4)-planes to which every Qt is
tangent in the sense that T'QX C D. Fix a particular x, G 2ft and define the light
cone Cx of x, to be, as in II.3, the set of points in 2ft connected to x, by T-geodesics

Cx¡:= {x2G2ft|QX|nQX2^0}.

Then Cx\xx is a hypersurface in lift with tangent space at x2 given by

TXCX¡ ={aE H°{QXt, 0(N)) | a 1^^ G D/T'Q^ ,

where N denotes, as before, the normal bundle 7'5ft/7"Qx of QXi, since D/T'QX
= 7"QX| at QXi n QX2. But this expression depends only on the T-geodesic Qx D
Qx . Thus, if two points of 2ft are joined by a T-geodesic y, their light cones are
tangent along y. Therefore Cx is tangent to the null cone at x2 (i.e. to the set of null
vectors at x2). The T-geodesics through x, are therefore contained in a hypersurface
Cx to which they are orthogonal, and so, by II.3, they are (torsion-free) null
geodesics. So t = 0.    D

4. Metric geometry: *, -operators as cohomology classes. Let (2ft, g) be a complex-
Riemannian «-manifold. We will say that e G r0(A"7"*2ft) is a holomorphic metric
volume element for (2ft, g) if (e(vx,... ,vn))2 = 1 for one, and, hence, for every,
orthonormal basis {v,,...,vn) for each holomorphic tangent space 7^2ft, x G 2ft.
Clearly, if there is such a volume element, there are exactly two of them.

Notice that (2ft, g) will admit a holomorphic metric volume element if //'(2ft, Z2)
= 0, since e is metric iff e 0 e = a, where, letting K := A"7"*2ft, a G T0(K®2) is
defined by (a, ß 0 j8> := #i!</(j8), ß) for all ß G K*; /: K* * K is used in this
expression to indicate the lowering of all indices with g. (The canonical morphism
g -» a, which is homogeneous of degree « in g over 0, also gives us an isomorphism
E®n = K®2 on any complex «-manifold with conformal structure.)

Now let (2ft, g, e) be a complex-Riemannian «-manifold with holomorphic metric
volume element. The * -operator * : 7"*2ft -» A"-17"*2ft is defined by
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where # = (b)-' is the index-raising map of g. We may observe that this operator
determines g up to an overall factor of e2"'k/(»-¿\ k G Z and. in particular,
determines not only the conformal class of g, but also the Levi-Civita connection V,
provided that « > 2. Indeed, in a local frame,

eah...c(Xedb••■<■) = A(w- l)!gad,

so the conformal class may be read off by contracting * with an arbitrary element of
K*; and since the conformal change g -* /• g is accompanied by * -» /("~2)/2* , the
observation follows.

If (2ft, E) is a complex «-manifold with conformal structure, *: 7'*2ft -»
A"_,7"*2ft will be called a * -operator for (2ft, E) if it locally arises as a * -operator
in the former sense. If « > 2 and //'(lift, Zn_2) — 0, a * -operator always arises from
a global metric and metric volume form. By a minor abuse of language, we will
simply say that * is in the conformal class E if it is a *  operator for (lift, E).

Theorem. Let (2JÍ, E) be a complex n-manifold, « > 3, with civilized conformal
structure for which every null geodesic is contractible. Let 5ft = 5ft (2ft, E), and let
L -> 2Í be the value line-bundle of the contact form on 5ft as in §3. (Thus L*®("~ " = K.)
Then there is a natural one-one correspondence between (a) cohomology classes in
//""2(5ft, 0(L*®("~2))) vanishing on no quadric Qx, and (b) * operators on 2ft in the
conformal class E.

Proof. Let us begin by identifying £5.£ with the bundle G£ of null covectors by
the index-lowering map b of E, let q: £5.£ — 5ft be given by q = q ° (b)-', and w:
D£ -» 2ft by it = m ° (b)"', so that

Q£
q ¡/ \ir

1ft lb 2ft
q \ /-n

O*
commutes. Then q*0(L) = 0(1) in a natural way; cf. §3, proof of the theorem. Then,
by duality,

H"-2(QX, 0(L*®("-2))) = H"-2(tt-\x), 0(2 - «))

= [//°(7f-1(x),ß'^2(«-2))]*.

But we may certainly produce a holomorphic volume element w on ■fr~\x) by
setting, for all va with vava = 0,

a>|0,:= wavbebac-d\/w.3.wava=l,

where eb'"'' is in the fixed conformal class. Moreover, since this volume element
never vanishes, we have given a holomorphic trivialization of (A"~27"*Q„_2) 0
H®"-2, so any other such volume element is perforce a constant multiple of the
element we already have. Thus, since eba c is dual to eab.. .c, we have given a natural
identification of Hn2(Qx, 0(L*(""2)))\{O} with *, -operators atx in the conformal
class E. We have defined a map (a) -» (b) by following through the above evaluation
pointwise; we need to see now that this evaluation is an isomorphism.
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Let q '0(L*(" 2)) be the topological inverse sheaf of 0(L*<n 2)). There is a short
exact sequence

0 - q-|0(L*",-2)) - 0(2 - «) -ßl(2 - «) - 0
4

of sheaves on £5.£, where d- is differentiation up the fibers of q and ßi is dual to
holomorphic vector fields tangent to the fibers of q. But the index-raising map of E
identifies ßi with 0(-l) 0 7r*(E). By the Leray spectral sequence of m (Godement
[4]), H»(£iE, 0(-l) 0 #*©(£)) =. 0 Mp, because HP(Q„_2, 0(-l)) = 0 Vp. Thus, the
long exact sequence of the above short exact sequence is just the collection of
isomorphisms

Hp( £5* ,q-'0(L*("~2))) ~ Hp(Cl%, 0(2 - «)).

Again, by application of the Leray spectral sequence, our calculation of
Hp(Qn_2, 0(2 - «)) for/? = « - 2 implies that

//"-2(C*,0(2-«)) = YQ"(E*).

Finally, the pull-back map

q-|://"-2(5ft,0(L*("-2))) - H"-2(£iE,q-'0(L*("-2)))

is an isomorphism (Buchdahl [3]) because the fibers of q are contractible.    □
In fact, the above theorem holds even when t ^ 0, but the bundle L — 5ft must

then be defined in a rather unnatural way, using 2ft. In fact, we may do this as
follows: for every T-geodesic y C 2ft, let

L* = {(pGr(y,0(r*2ft|7))|<p#istangenttoyand(p#JV(p = O},

where V is the canonical connection preserving some local metric g and representing
t. We must check that this is conformally invariant in order to see that it is well
defined; but since a conformal change in g induces exactly the same change in v as
it does in the Levi-Civita connection, the necessary calculation has already been
performed in II.2. Having defined L, it is immediate that q*0(L) = 0(1), which is the
only property required for the proof of the theorem.

5. Reflexive manifolds. Recall that we defined the dominion D and connected
dominion D0 of a manifold with civilized conformal connection in §2. We now define
a complex manifold 2ft with civilized conformal connection (E, t) to be reflexive
(respectively, c-reflexive) if 2ft = D(2ft, E, t) (respectively, 2ft = D0(2ft, E, t)).

Theorem. Let 2ft be a complex n-manifold, « > 3, with civilized conformal connec-
tion (E,t) and satisfying:

(1) 2ft is Stein;
(2) K 0 E* is trivial;
(e) every null geodesic is contractible.

Then (2ft, E, t) is c-reflexive.

Proof. Because of condition (3), every holomorphic section of K 0 E is obtained
(cf. §4) by integrating an element of //"_2(lft, 0(L*("~2>)) over all skies. But such
integration may be carried out over all normal quadrics, yielding a holomorphic
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section of some line-bundle V -* D(2ft, E, t) with V \w = E* 0 K; thus, the restric-
tion map

r(D0(2ft, E, t), 0(V)) - T(2ft, ©(K 0 E*))

is an isomorphism. Let *, be a global nonvanishing section 0(K 0 E) on 2ft, and let
a be its extension to D0(2ft, E, t). Let W C D0(2ft, E, t) denote the zero locus of a,
and let 32ft denote the frontier of 2ft in D0(2ft, E, t).

I claim that 32ft C W. For if x G 32ft with a(x) ^ 0, let xyG 2ft be a sequence
with Xj -> x, and let / be a holomorphic function on 2ft with f(x j) -» oo, using
condition (1). Letting a, denote the extension of/*, to D0(2ft, E, t),

a(x)= lim *,(*,)= ( lim/-'(xy))( lim a,(*,)) = 0a,(x,) = 0.

By the same argument, the extension of any holomorphic section of K 0 E to
D0(2ft) must vanish identically on 32ft.

But now, since 32ft C W, it has real codimension at least 2, so D0(2ft) — 32ft is
connected. Therefore D0(2ft) = 2ft U 32ft, and since by construction W n 2ft = 0,
32ft = W. Let x G W be a nonsingular point, and let z be a function on a
neighborhood of x with dz ¥= 0 such that z = 0 defines W near x. If Xj is a sequence
of points of 2ft converging to x, and if/is a holomorphic function on 2ft tending to
infinity along <xy>, let am be the extension of/"1*, to D0(2ft) for m positive integers.
In a neighborhood of x, for some nonnegative integers km and some nonzero
sections gm of V, we have am = zk™gm. But /= om/om„x = zk--k--'(gm/gm_x) is
singular when z = 0, so km < km_] Vm, which is a contradiction since all the km
must be nonnegative. Thus W can have no smooth points and so is empty.    D

Added acknowledgement. I would like to thank T. Ekedahl for pointing out a
flaw in the original version of the proof.

Remarks, (a) Notice that hypothesis (2) is only topological in nature, since 2ft is
assumed to be Stein; one just needs c,(K 0 E*) = 0. If 2ft is simply connected, this
happens precisely if c,(2ft ) = 0.

(b)IfT = O,V = (K0£*)D.
(c) If 2ft is geodesically convex with respect to some metric representing (E, t),

then 2ft will automatically satisfy the hypotheses of the theorem; in fact, (2) and (3)
are trivial. As for showing that 2ft is Stein, this follows from the observation that an
exhaustion of 2ft by geodesically convex regions is an exhaustion by holomorphically
convex regions.

(To see that a precompact geodesically convex region 1ft is holomorphically
convex, consider a complex hypersurface £ in 2ft obtained by exponentiating a
hyperplane in the tangent space of some point £ on the boundary of 1ft ; £ can always
be chosen so that £ n 1ft = 0, using the fact that 1ft is geodesically convex. £ is now
defined by a global holomorphic function z, and z"1 \m is a holomorphic function on
1ft blowing up at £.)

Conjecture. If (2ft, E, t) is c-reflexive, it is reflexive.
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6. Deformation theory. In this section, we consider deformations of the space 5ft of
complex null geodesics of a civilized manifold, showing that, suitably interpreted, a
small deformation of a space of complex null geodesics is again a space of complex
null geodesics.

Recall that (lift, E, t) was defined to be precivilized if 5ft(2ft, E, t) is a possibly
non-Hausdorff complex manifold. In this case, we will say that a complex manifold
5ft is a generalized space of T-geodesics for (2ft, E, t) if there is a surjective local
biholomorphism 5ft -» 5ft which is injective on every sky Qx. Thus, points of 5ft are
collection of disjoint T-geodesics.

Theorem. Let p: 91 — C be a holomorphic map of maximal rank such that
p"'(0) s 5ft(2ft, E, t) for some civilized complex n-manifold 2ft, « ¥= 3, with civilized
conformal connection (E,r). Then there is a neighborhood % of p"'(0) in % such that
p~\t) Í) 9i is a generalized space of r,-geodesics for some complex n-manifold 2ft, with
conformal connection (E,,r,).

Proof. This is very much like the theorem of III.2. We will define a quadric
Q C 91 to be p-normal if the normal bundle of Q relative to the fibers of p is the
standard bundle N of III.2. (This makes sense because the function p |Q is
necessarily constant by the maximum principle.) Because //'(Q,N © C) = 0 and
dimc//°(Q,N © C) = « + 1, the rigidity of Q and N implies that the parameter
space for all /»-normal quadrics is a complex (n + l)-manifold 911. Moreover, the
induced projection p: 9H -» C is of maximal rank. Let % be the set swept out by
quadrics in the family 91L. Then % is open, because every point in N © C is the
value of some local section. By Theorem III.2, the result follows.    D

7. Reality structures, Of-manifolds, and all that. Finally, we consider the extra bit
of structure that arises on the space of null geodesics of a civilized complexification.
If E: 2ft t» 2ft is a complex conjugation (Ë2 = 1) carrying some conformal structure

e
E onto its complex conjugate, then £ carries null geodesics to null geodesics
(because null hypersurfaces are taken to null hypersurfaces, and the kernel of the
restricted index-lowering map on such a surface will be carried onto the complex
conjugate of the corresponding kernel by ©), so for lift civilized there is an induced
map Ê: 1ft(lift, £) ^» 5ft(2ft, E) satisfying 62 — 1; we will call such a map a reality

G
structure for 5ft. The "real" skies Qx satisfying Ê[QX] = Qx correspond precisely to
the real points of lift. Fixed points of © correspond to real null geodesics of the
induced pseudo-Riemannian conformal structure on the real slice M C lift; thus, if
M is Riemannian, 6 acts without fixed points.

This picture carries through to the more general case when M is endowed with a
real conformal torsion tensor tr, which can then be extended to some complexifica-
tion as a holomorphic conformal torsion tensor t; it is more-or-less immediate that
the T-geodesics are carried onto T-geodesics. The distinguishing feature of the
torsion-free case is, as pointed out in §3, the presence of a holomorphic contact
structure on lift; this structure is automatically taken onto its complex conjugate by
ê.
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Conversely, if £ is a complex (2m + l)-manifold, m 3= 2, acted on by a antiholo-
morphic involution Ê, there is an induced antiholomorphic involution on the space
3J of all normal quadrics in £, giving 3] the structure of a complexification of the set
of fixed quadrics, which then inherits a pseudo-Riemannian conformal structure
from 3).

To see that this discussion is not devoid of content, consider a real-analytic
pseudo-Riemannian manifold (M, g) with complexification ( 2ft, g ), and let U C 2ft
be a geodesically convex subregion meeting M. Then U'■= U n S[t/] is also
geodesically convex and nonempty. (<7, [g]) then has an induced reality structure.
Moreover, by §5 we know that U n M is at least an entire connected component of
the set of real normal quadrics in 5ft (Í/, [g]).

If we suppose that (M, g) is Riemannian, then the union of all real skies in
5ft (Í/, [g]) is a real-analytic 0?-manifold (of real dimension 3« — 4 and of generic
type) which can be identified (as a smooth manifold) with the quadric bundle of null
directions in P(C <8>R TM) |Mni/. In fact, the CR distribution is spanned by the
holomorphic tangent spaces of the fibers (skies) and the 1-dimensional distribution
given at [v] by the horizontal lift of [v]. Thus, we may glue all of these locally
defined CR-manifolds together to associate a single real-analytic 0?-manifold to all
of M. Embedding this manifold creates a precivilized complexification for M—the
space of all normal quadrics in this ambient space.

As one might expect, this CR-manifold can be constructed even when M is merely
smooth, but now the 0?-manifold is not embeddable unless the original conformal
structure is real-analytic with respect to some atlas. But this is really another story
altogether, and it will be more appropriate to give a separate account of it elsewhere.

Appendix. Metrics as cohomology classes. In light of III.4, it seems reasonable to
ask if metrics—as opposed to the closely related »[-operators—can be represented as
cohomology classes on the space of null geodesic 5ft. In fact, this can be done.

Theorem. Let (lift, E) and L -» 5ft(2ft, E) be as in III.4. Then

//'(5ft, 0(L*)) =T(2ft, 6(E)).

Thus, metrics in the conformal class E correspond to elements of //'(5ft, 0(L*))
vanishing on no sky Qx, x G lift.

Proof. The short exact sequence on £5*,

0 - q"'0(L*) - 0(-l) -ßl(-l) - 0,
rf,

yields   the   isomorphism  8:   H°(Q\(-l)) " /7'(q-'0(L*))   because   //°(0(-l)) =
//'(0(-l)) = 0. Since ß^(-l) = tt*0(£), the theorem follows.    D

Note that the isomorphism cannot be realized by integrating over skies. Thus, it
does not appear that the present theorem could easily be employed to produce an
alternative version of III.5.
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