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Abstract. We consider the set of all tilings by dominoes (2 • 1 rectangles) of a 

surface, possibly with boundary, consisting of unit squares. Convert this set into a 

graph by joining two tilings by an edge if they differ by a flip, i.e., a 90 ~ rotation of 

a pair of side-by-side dominoes. We give a criterion to decide if two tilings are in 

the same connected component, a simple formula for distances, and a method to 

construct geodesics in this graph. For simply connected surfaces, the graph is 

connected. By naturally adjoining to this graph higher-dimensional cells, we obtain 

a CW-complex whose connected components are homotopically equivalent to 

points or circles. As a consequence, for any region different from a torus or Klein 

bottle, all geodesics with common endpoints are equivalent in the following sense. 

Build a graph whose vertices are these geodesics, adjacent if they differ only by the 

order of two flips on disjoint squares: this graph is connected. 
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Introduction 

In this paper we consider tilings of a region consisting of unit squares by dominoes, 
i.e., pairs of adjacent squares. Tilings of a rectangle of integral sides were counted by 

Kasteleyn [5]. More recently, Lieb and Loss [6] showed how to count tilings of 

general regions by making use of determinants. Conway and Lagarias [1] studied the 

problem of tiling a subset of R 2 with a given set of tiles, by group-theoretical 

techniques. Thurston [10] adapted these techniques to study domino tilings, produc- 

ing a necessary and sufficient condition for a simply connected region of the plane to 
be tileable by dominoes. 

We are interested in studying T, the set of all possible tilings of a fixed region. 

Given a tiling, we perform a flip by lifting two dominoes and placing them back in a 

different position: clearly, the two dominoes must form a square of side 2. Two 

tilings are adjacent in T if we move from one to the other by a flip. Turn T into a 

graph by joining adjacent tilings by edges and define connected components of T 

and distance between tilings in the usual way. We obtain a very operational criterion 

(the equivalent Theorems 1.1, 1.2, and 3.1) for two tilings to belong to the same 

connected component of T; as a corollary, if the region is simply connected, T is 

connected. Our techniques provide us with a fair understanding of the combinato- 

rial, topological, and metric structure of T: thus, for example, each connected 

component of T is a lattice and we describe in Theorem 3.2 a simple formula for the 

distance between tilings and a characterization of shortest routes between points. In 

a sense, detailed in Section 3, all such routes are equivalent: a topological version of 

this statement is that T induces naturally a CW-complex whose connected compo- 

nents are contractible (Theorem 3.4). More generally, we consider quadriculated 

surfaces (defined in Section 4) and obtain analogous results to Theorems 3.1, 3.2 
(Theorem 4.1), and 3.4 (Theorem 4.3). 

1. Connected Components of T 

Let A be a finite subset of the lattice 7/z. We say that two points of A are adjacent 
ff the distance between them is equal to 1. In this case we say they are connected by 

an edge, the line segment joining them. The set A thus receives a graph structure. 

Closely related to A is the set A _ R 2, the interior of the union of closed squares of 

side 1 (in the usual position) with centers in A: we often identify A and , 'I and a 

point p of A with the unit square whose center is p. The graph A is called 

connected (or simply connected) if A is. Without real loss, we always assume A to be 

connected. A covering of A by edges is a set of edges such that each point of A is 

the extremity of precisely one edge. Equivalently, we speak of tilings of A by 

dominoes, each domino covering two unit squares sharing an edge. 
A point of 7/2 is called white (resp. black) if the sum of its coordinates is even 

(resp. odd); ,'1 is therefore painted black and white like a chessboard. Edges of A 

connect points of different colors. Clearly, if A admits a tiling, the number of white 

squares equals that of black squares. In Fig. 1.1 A is not tileable even though the 

color condition is satisfied. 
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Fig. 1.1. A nontilcable region. 

Our first aim is to state a necessary and sufficient condition for two tilings to be 

in the same connected component  of T. In order to do this, we define combinatorial 
invariants for these components.  We start with an explicit and easily computable 

description of such invariants, which is then rephrased in the vocabulary of homol- 
ogy theory. 

A cut of A is a simple oriented polygonal line in ,4 consisting of a sequence of 

edges of squares and joining two points in the boundary of .4. The flow of a tiling 

across a cut is defined to be the number of dominoes crossing the cut, where the 
domino is counted positively (resp. negatively) if its white square is to the left (resp. 

right) of the cut. 

Consider a cut of .4 disconnecting it into two sets - 4 / a n d  -4r to the left and right 

of the cut, respectively. The flow of any tiling of .4 across this cut is clearly given by 

the number  of white squares in "4/ minus the number of black squares in A l :  this 

must be equal to the number  of black squares in lzl r minus the number  of white 

squares in "4r" For a cut which does not disconnect A ̂, on the other hand, the flow 

may admit different values for different tilings, as in Fig. 1.2. It is easy to see, 
however, that for a fixed cut, adjacent tilings in T ( A )  have the same flow: these are 

therefore invariants for the connected components of T. This is one implication of 

Theorem 1.1 below. 

Theorem 1.1 (Combinatorial Version). Assume A has genus n. Choose n disjoint cuts 

in .,t which jointly do not disconnect.4. Two tilings t 1 and t 2 are in the same connected 

component o f  T if and only i f  their flows across each of  the n chosen cuts are equal. 

In particular, if A is simply connected, T is connected. We give two other 

equivalent versions of this theorem and prove the last one after constructing the 

necessary tools. 

Ca) 

I I 
I I ! 

(b) (c) 

Fig. 1.2. Cut and flows. 
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Fig. 1.3. A, A, and A*. 

Let us see how we can associate to two tilings t 1 and t 2 a n  element of HI( / I ;  Z), 

which we denote by [t I - rE]. We first build two CW-complexes A and A* with 

A __c.4 _ A* and such that the inclusions are homotopy equivalences. For A, the 

0-cells are the points of  A (the centers of the squares of A"), the 1-cells are the 

edges between points of A, and the 2-cells are the open unit squares with all vertices 

in A. For A*, the 2-cells are the squares of ,4, the 1-cells are their sides, and the 

0-cells their vertices, where the common side of two adjacent squares gives us only 

one 1-cell, as do the common vertices of adjacent squares but common vertices of 

nonadjacent squares are not identified unless the two squares are adjacent to a third 

one. In Fig. 1.3 we show A (big dots), A (big dots and thin lines) and A* (thick lines); 

notice that point p gives rise to two 0-cells in A*. For future use, call A* the set of 

0-cells of A*. 

We are interested in a few related homology and cohomology moduli of the 

above spaces. Since the two CW-complexes are homotopy equivalent to A, 

H i ( A * ;  ~ ' )  = H i ( A ;  7/). By Poincar6-Lefschetz duality (see Sections 26 and 28 of [4]), 

on the other hand, H i ( A ; 7 / ) =  H I ( A  *, OA*; 7/). The equality is induced by the 

natural identification between CI(A; 7/) and CI(A *, 0A*; 7/), where C k and C k are 

the usual spaces of  k-complexes or cocomplexes. 

Consider each edge (or domino) as a 1-cell in A and orient it from black to white; 

domino tilings correspond therefore to elements of CI(A; 7/) with the boundary 

always equal to the sum of all white vertices minus the sum of all black vertices. The 

difference between two domino tilings t~ and t 2 is therefore a closed element of 

CI(A; 7/): call the corresponding homology class [ t  I --  t2] .  In Fig. 1.4 we show how, 

given two tilings t I and t 2 ( F i g .  1.4(a) and (b), resp.), we represent the class [t 1 - t 2] 
in Fig. 1.4(c), consisting of a sum of cycles in H1(,4; 7/). 

I 

I 

I 
(a) 

) 

II 
! 

1.4. 

t - - l )  

I _ , _ _  _+ 

( I 

Co) 

The homological difference of  tilings. 

(c) 
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(a) (b) (c) 

Fig. 1.5. The cohomological difference of things. 

This homology class turns out to have the following properties: 

(a) It l - q ] = 0 .  

(b) [t I - t 2] = - [ t  2 - t~]. 

( c )  [ q  - t 2]  + [t2 - t3] = [t~ - t3].  

(d) If t 1 and t 2 are adjacent, It 1 - t 2] = 0. 

Properties (a)-(c) are obvious. If t 1 and tz are adjacent, the cycle [q  - t  2] is 

precisely the boundary of one of the 2-cells introduced in our construction, hence is 

exact, and (d) follows. 
We defined [t a - t 2] as an element of Hi(A;  Y). From the duality stated above, 

we can also think of [t~ - t 2] as an element of HI (A *, aA*; 7/); let us see a direct 

way of interpreting this cohomology class. In Fig. 1.5(a) we show the cocomplex 

corresponding to the tiling in Fig. 1.4(a): notice that the cocomplex is represented in 

A* while the complex was represented in A. The way to obtain the cocomplex from 

the tiling should be clear: take the 1-cells (edges) on boundaries of dominoes to 0 

and 1-cells crossing dominoes, when oriented so that the white square is at the left, 

to 1. The cocycle corresponding to the cycle in Fig. 1.4(c) is shown in Fig. 1.5(b); 

notice that it is 0 at the boundary and therefore corresponds to a class in 

HI(A *, Ok,*; 2v), as claimed. 
Consider the cocomplex in CI(A*; 7/) taking any edge to 1 if oriented with white 

at the left: the difference ( t )  between this cocomplex and four times the cocomplex 

associated with a tiling t is a cocycle since it takes the boundary of any square to 0; 

notice that its value on 0A* does not depend on t. Since A* is a closed disk with 
holes, the map induced by inclusion from Hi(A*; 7/) to HI(0A*;  7/) is injective. The 

cohomology class in Hi(A*; 7/) corresponding to ( t )  does not therefore depend on 

the tiling t. In Fig. 1.5(c) we represent ( t )  for the tiling in Fig. 1.4(a): in order to 

recover the tiling from the cocomplex, place center edges of  dominoes over the triple 
arrows; in particular, different tilings correspond to different cocomplexes. We make 

use of the cocycle ( t )  in the next section. 
To a cut F we associate an element [F] ~ Ha(A;  Z) = Hi(A; 7]) as follows. Each 

element of C 1 (for A) is mapped to an integer: a 1-cell which does not cross F is 

taken to 0; if the 1-cell crosses F, it is taken to + 1, according to orientation (if the 

1-cell crosses F from fight to left it is taken to 1). This map is a cocycle, i.e., the 
boundary of  a 2-cell is taken to 0. This is the usual construction of a cohomology 
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class from a curve such as a cut. Since the cohomology of a disk with n holes D is 
known to be generated by the classes of n such curves not disconnecting D, the n 

cuts mentioned in Theorem 1.1 form a basis of  H i ( A ;  7/). Notice that the flow of a 

tiling t across a cut F is [F] (t); the difference between flows for two tilings t I and t 2 
is the usual pairing (between cohomology and homology) [F] ,-, [t I - t2]. In particu- 

lar, if [t 1 - t2] = 0, the flows of t 1 and t 2 coincide on any cut. 

Theorem 1.2 (Homological Version). The filings t I and t 2 are in the same connected 

component  o f  T i f  and only i f  [t 1 - t 2] = 0. 

Both versions, Theorems 1.1 and 1.2, are equivalent. Indeed, from the remarks 

above, triviality of the class [t 1 - t 2] is equivalent to the equality of the correspond- 

ing flows across the cuts mentioned in Theorem 1.1. 

2. Height Sections 

In [10] Thurston, using group-theoretical methods, constructed a three-dimensional 

object associated to a tiling of a simply connected region, the graph of a height 

function. Height sections, which are appropriate extensions of the concept of height 

functions, are the main tools in our proofs of Theorems 3.1 and 3.2. The height 

section (or function) corresponding to t is in fact obtained by integrating ( t ) ;  we 

nevertheless give an elementary and independent description of these objects. 

Consider a (parametrized) polygonal line consisting of edges of  unit squares with 
1 2 vertices in (7 /+  ~) . We assign numerical values to the parametrized vertices by a 

sort of integration process: in particular, it may happen that two different values 

correspond to a point on the line. Take an initial value (say 0) and assign it to the 

origin of  the polygonal line. When walking along an edge with a white (resp. black) 

square to its left, add (resp. subtract) 1 to the value at the starting point of  the edge 

in order to get the value at the endpoint. Notice that if the line joins P to Q and the 

integration process starting with a for P leads to b for Q, then integration from Q 

to P along the same line starting with b yields the same value a at P. 
I f  the endpoint coincides with the starting point of the line, how do the two values 

assigned to this point relate? It is not hard to see that we add (resp. subtract) 4 each 

time we surround a white (resp. black) square counterclockwise, with reversed signs 

for opposite orientation. By the obvious additivity properties with respect to paths of 

integration, the value obtained when returning to the original point is the following. 

For each white (resp. black) square, taken 4 (resp. - 4) times the winding of the path 

around it and sum over all squares. 

Thus, the value mod 4 at the endpoint does not depend on the integration path, 
and is given (up to a global additive constant) by the function ~0: (7 /+  �89 _., 7//(4) 

1 defined as r  y)  = 0 if Ix] = x - �89 and [yl = y - ~ are both even, tp(x, y)  = 1 if 

Ix] is odd and [y] is even, r  y)  = 2 if Ix]  and [yJ are both odd, r  y )  = 3 if Ix] 
is even and [y] is odd. However,  integration along the boundary of a domino, or, 

more  generally, of  a simply connected tileable region assigns the same value to the 

starting point and endpoint. Notice that the situation above is very similar to two 
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other more familiar constructions: the calculation of the area of a planar region by 

Green's theorem and the computation of a complex integral by adding residues. 

We now discuss height functions and their relation to tilings in the case when the 

closure of A is a closed disk. Assume therefore that the closure of A is a 

(topological) closed disk. Let A* ___ (Z + �89 be, as above, the set of vertices of 

squares in A. Choose a basepointpo = (x  o, Yo) ~ A*, Po in the exterior boundary of 

A, and base value v o E 7/so that v 0 mod 4 = q~(x0, Y0). Given a tiling t, we define a 
function 0 from A* to 7/at a typical point p by integrating along any path contained 

in the boundaries of the dominoes, starting from the basepoint P0 with initial value 

v o = O(po) and reaching p with value O(p). This function does not depend on 

choices of paths. Indeed, as in the paragraph above, 0 is locally well defined; our 

hypothesis on the global topology of A guarantees that 0 is also globally well 

defined. Given any path contained in the boundaries of the dominoes joining points 

PI and P2, integration along this path starting with O(pl) yields 0(pz). Also, 

different choices of basepoint or base value produce the same height function up to 

an additive constant in 47/. We call 0 the height function of t; in Fig. 2.1 we show an 

example of a domino tiling and the corresponding height function. 

Two points in A* are called adjacent if the distance between them is 1 and the 

segment joining them is in the closure of A. It is easy to see that a height function 

satisfies the following properties: 

(a) O(x, y)  mod 4 = qffx, y). 

(b) The values of 0 at adjacent points never differ by more than 3. 

(c) The values of 0 at points which are adjacent along a segment contained in 

the boundary of A differ by 1. 

Conversely, given a function ~" satisfying conditions (a)-(c) as above, we obtain a 

tiling t as follows: join two adjacent points in A* if the values of ~" at such points 

differ by 1, thus obtaining the contours of the dominoes of t. It remains to prove 

that the construction actually gives rise to a tiling by dominoes. Indeed, each square 

of A is surrounded by four points of A* and from conditions (a) and (b) exactly 

three of these sides are drawn in the above process: the fourth one (which cannot lie 

on the boundary, by (c)) indicates which way the domino covering our square goes. 

Furthermore, the height function 0 corresponding to t is equal to r,  up to an 

additive constant in 47/: these two constructions are the inverse of each other. We 

0 1 0 1 0 1 

- 2  - 1  2 3 2 

- 3  0 1 4 1 

- 2  - 1  2 3 2 

1 0 1 0 1 

Fig. 2.1. A height function. 
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thus defined a bijection between the space of tilings T and the class of functions 

satisfying the three conditions above, i.e., height functions, modulo additive con- 
stants in 47/. 

Let us consider how to extend these concepts to the general case. First, there can 

be nasty points in (7/+ �89 with all four edges arriving at it being part of the 

boundary of A: as we have already seen in the construction of A*, such a point 

ought to be interpreted as two points in A* with adjacency relations defined in the 

obvious way that assures the local good behavior of A and A*. Of course, height 

functions are free to assume different values at these two points. 

A more serious problem comes from the consisten~ of 0 along boundaries if ,4 

is not simply connected. If inside one of the holes of A the number of white squares 

is different from the number of black squares, no height function can exist because 

we get multivaluedness when following the boundary. Still, it is easy to construct 
such regions which admit tilings, as in Fig. 1.2. 

In cohomological terms it is clear what is going on. The height function 0 was 

obtained by integrating ( t ) :  this was possible because this cocycle is exact, i.e., 
corresponds to the cohomology class 0 in HI(A*;7/). In other words, ( t )  is the 

coboundary of 0. Now, the cohomology of a disk is trivial but if A is not simply 
connected HI(A*;7/) is nontrivial and it may well happen (as in the example 

mentioned in the previous paragraph) that the cohomology class of ( t )  is nonzero. 

What we need is not height functions but height sections of a certain fiber bundle 

with base space A* and fiber 7/. In this bundle a fiber is not an additive group: there 

is no natural 0 nor addition on each fiber. We are allowed to add an integer to an 

element of a fiber (thus getting another element of the same fiber) or to subtract 

elements of the same fiber (thus getting an integer). We are also allowed to compare 

elements of the same or neighboring fibers, but otherwise we are not allowed to 

compare elements of different fibers. The congruence class mod 4 of an element of a 

fiber is, however, well defined. 

We begin the construction by choosing a basepoint P0 in A*. Consider next the 

set .9 ~ of all paths in A* going from P0 to some other point of A*, i.e., functions E 

from sets of the form {0, 1 . . . . .  m} to A* such that E(0) is the basepoint and E(i) and 

E(i + 1) are always neighbors in A*. Our bundle is obtained from .~ • Z by a 

quotient: the projection from ~ • Z to A* just takes a pair (path, integer) to the 

endpoint E(m) of the path. Two pairs (El, kt)  and (E2, k 2 )  a r e  identified if the 

following conditions hold. First, E1 and E2 must have the same endpoint. Second, 

consider E, the path obtained by following E1 and then following E2 backward; let l 

be the sum of the windings of E around white squares not in.4 minus the sum of the 

windings of E around black squares, again not in ,,1: identify the two pairs if 

k 1 - k 2 = 4l. This defines the desired height bundle, or ~ .  The allowed operations 

on this bundle have the obvious definitions in terms of representatives of the 

equivalence classes. 
Another essentially equivalent interpretation for ,~  is as a (not necessarily 

connected) covering space for A, or, equivalently, A*. Indeed, take the fibers as 

defined over A* and extend them to edges of A* by the provided identification 

between neighboring points. Finally, define fibers over the squares of A* in the 

natural way: this is possible for each square because the four identifications around 
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it are compatible. The name "height section" should generate no confusion: it is 

always to be understood as a section of Yf restricted to A*. 

We construct the height bundle for the region shown in Fig. 2.2(a), in a manner 

which is slightly different from the one described above. Start by drawing cuts as 

indicated, and consider the sub-CW-complex B of A*, obtained by removing the 1- 

and 2-cells intersecting the cuts. Take now the cartesian product B • 7/. This is 

necessarily isomorphic to the restriction of ,,~ to B, since B is contractible. In order 

to construct Z,  it suffices to extend this bundle to the missing cells. This is done by 

choosing appropriate additive shifts between consecutive fibers, indicated again in 

Fig. 2.2(a). How are those shifts obtained? Consider, for example, the two paths r 

and r in the figure; the equivalence relations defined in the construction of,,~ yield 

(r - 4 )  = (r 0). Of course, a different choice of cuts would give rise to isomor- 

phic bundles. To construct an isomorphism, start by identifying (arbitrarily, but 

respecting orientation) a pair of fibers with the same basepoint and extend (in the 

only possible way) the identification to the entire bundle. It is only necessary to 

check that the above construction yields a well-defined map: this follows from the 

definition of the bundles. Thus, from now on, we speak of the height bundle over 

A*. 

We define the height section corresponding to a tiling t by integration just as we 

did for height functions: the bundle X is constructed in such a way that the 

definition of the section does not depend on choices of paths. Indeed, for two 

arbitrary paths along boundaries of dominoes with same starting point and endpoint, 

integration yields two values at the endpoint which are identified in the construction 

. . . . .+ . - - . . . . ,+ - -  

z + 4  z �9 

- 1  - 2  - 2  

-I -I -2 
i 

0 1 O[ 1 

(b) 

Fig. 2.2. 

- 4  - 3  0 1 0 1 4 5 

!i i,i 
- 4  - 3  -3 [  4 5 

1-41-  01,41o 
(c) 

The same height section for different cuts. 
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of the bundle. As with height functions, basepoint and base value contribute only 

with a constant in 47/. Figure 2.2(b) shows an example of a tiling and its height 

section; Fig. 2.2(c) shows how we would write the same height section with a 

different set of cuts. The large difference between numbers on neighboring points at 

opposite sides of cuts does n o t  correspond to a jump of the height section: 

remember that such neighboring fibers are attached with an additive shift. Again, a 

different choice of cuts would not have changed the height section itself, but only 

the notation employed. 

A height section satisfies conditions (a)-(c) with the appropriate invariant inter- 
pretation: in conditions (b) and (c), the difference between values of the section at 

neighboring points is to be computed using the identification of neighboring fibers 
intrinsic to the definition of the bundle, and n o t  as a difference between the 

(cut-dependent) integers used in our examples. We again have a natural bijection 

between T and the class of sections of X satisfying the three conditions, modulo 

constants in 4Z. 

We now list some convenient properties of height sections. The difference of two 

height sections is a function with domain A* and values in 47/; this is well defined up 

to an additive constant. Consider a cut F connecting two points xa and x b in 

different boundary components of A*. Let ]'1 and f2 be the flows across F of two 

tilings t I and t 2. We claim that 

0 2 ( X b )  -- 01 (Xb)  -- 0 2 ( X a )  "[- 01(Xa)  = - 4 ( f 2  - f t ) "  

From the previous remark, the left-hand side is a well-defined integer. Indeed, the 

function 0 2 ( x )  - 0 1 ( x )  - 02(xa) + 01(Xa), from the cut F to the integers, can be 

computed, starting at x = x a (where it is clearly equal to 0) and ending at x = x b by 
the integration processes, yielding the result. Also, two tilings are adjacent iff their 

corresponding height sections differ at a single (interior) point by +4  once the 

additive constants have been chosen so that they agree at a boundary point. Finally, 

the maximum or minimum of two or more height sections is again a height section, 

since properties (a)-(c) are preserved. 

It is clear from property (c) of height sections (in particular, functions), that if two 

height sections for the same region agree at one point of the boundary, they agree 

on the entire connected component of the boundary containing that point. We may 

thus assume without loss that height sections always agree on the exterior boundary. 

Our main interest, however, is on relating height sections for tilings t 1 and t 2 with 

It 1 - t  2] ---0. In this case the corresponding height sections agree on the entire  

boundary. Indeed, consider two sections 01 and 02 which agree on the exterior 

boundary. The identity above, which relates the values of the sections at one point of 

the boundary to the values at another point, immediately yields equality of the 

sections at all boundary components, since flows for both tilings are equal, by the 

equivalence between Theorems 1.1 and 1.2. 

There is then a lattice structure (and a partial order) on T ( A ) ,  induced by the 

corresponding order on height sections: remember that height sections are assumed 

to agree on the exterior boundary. 
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3. Distances in T 

We state yet a different version of Theorems 1.1 and 1.2. 

Theorem 3.1 (Height Section Version)�9 The tilings t 1 and t 2 are in the same 

connected component o f  T if and only if their corresponding height sections 01 and 02 
coincide on the whole boundary. 

As shown at the end of the previous section, [t  1 --  t2] = 0 iff the corresponding 

height sections agree on the whole boundary: the equivalence between Theorems 1.2 

and 3.1 is now clear�9 A corollary of this theorem is that each connected component 

of T is a lattice, with a maximum and minimum height section. The nontrivial part 

of Theorem 3.1 reduces therefore to the following: there is always a path (in T(A) )  
�9 , . t 

joining two height sections, colnodmg on the boundary of A*, in which consecutive 

height sections differ at a single point�9 

Theorem 3.2. Suppose the filings t 1 and t 2 are such that their corresponding height 

sections 01 and 02 coincide on the whole boundary. Then t 1 and t 2 are in the same 

component o f  T ( A )  and 

d( t l , t2 )  = �88 ~ 101(p) - 02(p)[. 
pEA* 

Also, the diameter o f  a connected component o f  T ( A )  is the distance between the 

minimum and the maximum of  all height sections in that component. 

As we shall see, Theorems 3.1 and 3.2 follow easily from the lemma below. 

I.emma 3.3. Let 01 < 02 be two height sections coinciding on the boundary o f  A*. 

Then, there is a height section 03, adjacent to 01, with 01 < 03 <_ 02. 

Proof. To satisfy adjacency, the new section 03 must be constructed as follows: 

choose a point P0 in A* and define 0 3 ( p )  = 0 1 ( p )  for p § P0 and 0 3 ( P 0 )  = 

01 (P0)  + 4. The section 03 is a height section iff conditions (a)-(c) hold. Condition 

(a) is trivially satisfied. Condition (c) is satisfied provided P0 lies in the interior of 

A*. Condition (b) holds if and only if P0 is a local minimum of 0 I. Indeed, local 

minimality and condition (a) guarantee that, if p is a neighbor of Po, 01(P) - 01(P0) 

= 1 or 3. Thus, 0 3 ( p )  --  0 3 ( P 0 )  = - 3  or - 1 .  Finally, to obtain 01 < 03 < 02, we 

must choose Po with 01(Po) < 02(Po). We only have to prove then that such a point 

Po exists. Consider that (nonempty) part B of the domain where 02 - 0 1  is 

maximum; we will see that there must be such a Po in B. 

When height sections are just height functions, select Po so that 01(po) is 

minimum in B. We prove that Po is a local minimum in A*. Let p be a neighbor of 

Po. If  p is in B, we have 01( p ) >  01(p o) by hypothesis. If p is not in B, let 

x i = Oi(Po); conditions (a)-(c) allow two possible values for each of Oi(p): call these 

Yi and z i with Yi < Xi < Zi" Clearly, z 2 - z I = x 2 - x l =  Y2 - Yl and, since p ~ B, 

02(p) - 01(p) < 02(Po) - 01(Po), whence 01(p) = z I and 02(p) = Y2, proving our 
claim in this second case�9 
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The difficulty in the proof for sections lies in the fact that it does not make sense 

to look for global minima. From the previous arguments, however, a local minimum 

in B (which is necessarily a local minimum in A*) is what we need. Suppose by 

contradiction that no such local minima exist: every point in B has a neighbor where 

01 is smaller. Since B is finite, a cycle P0, Pl  . . . . .  PN- 1, PN = P0 of points of B with 

Ol(Pi) > Ol(Pi+l) exists. Assume without loss that the cycle is simple (i.e., has no 

self-intersections), turns counterclockwise in the plane, and enclosed a minimum 

area. It is clear that this minimum area is greater than 1. 

We claim that Ol(Pi) -- Ol(Pi+l) = 1. Indeed, if this is not the case, the differ- 

ence equals 3. The edge joining Pi and Pi+ 1 is the central edge of  a domino which is 

common to both filings t I and t 2. The two points to the left of the oriented segment 

PiPi+l also belong to B, and we may therefore insert these two points between Pi 

and Pi+ 1 thus obtaining a new cycle with a smaller enclosed area. If  the new cycle is 

not simple, take a simple subcycle of it. 

Also, the segments PiPi+ 1 and Pi+ l Pi+2 form a right angle, since otherwise we 

would have a difference of  3 on one of the two edges. Finally, we cannot have Pi, 

P i + I ,  Pi+2, and Pi+3 vertices of the same square traversed counterclockwise: 

otherwise, omit Pi+l and Pi+2 to get a cycle with a smaller area. It follows that the 

polygonal line joining midpoints between consecutive points of the cycle never turns 

left and this contradicts the fact that the cycle turns counterclockwise. []  

Proof of Theorems 3.1 and 3.2. This lemma (plus induction) tells us that we can 

move from a smaller to a larger height section by flips; in particular, we can go from 

any height section to the maximum, thus proving the connectivity of classes of height 

sections with given boundary values (Theorem 3.1). The inequality d(t 1, t 2) > 
1 

Z,p~A* 101(P) -  02(P)I is an obvious consequence of the fact at the end of the 

previous section relating height sections of adjacent tilings. As to the nontrivial half 

of  the distance formula, a shortest path is to move from one section to the maximum 

of the two and then to the other; we could equally well have first moved to the 

minimum and the distance would be the same. Our claim about the diameter follows 

from the distance formula; this, of course, finishes the proof of Theorem 3.2. []  

It is clear from the proof above that we know which flips to perform in order to 

get closer to a tiling t 2 starting from a tiling tl: simply compute both height sections 

and look for local minima of  t I below t 2, or local maxima of t 1 above t 2. In this 

sense there is a local characterization of the shortest paths in the graph T(A). 

Some of  these paths should dearly be considered equivalent. For instance, let tl 

and t 2 be the filings (a) and (d) in Fig. 3.1: the two paths (abd) and (acd) are such an 

example. We render this notion precise by turning T into a CW-complex. The 0-cells 

are just the elements of T and the 1-cells connect adjacent tilings so that the notion 

of  a connected component of  T remains unaltered. The 2-cells are glued along 

squares whose edges are two independent flips (i.e., occurring on disjoint squares); in 

Fig. 3.1 there is a 2-cell whose boundary is composed of the four 1-cells connecting 

the filings in (a) to (b), (b) to (d), (d) to (c), and (c) to (a). Similarly, 3-ceUs 

correspond to three independent flips, and k-cells to k independent flips. The 

above-mentioned equivalence of paths is of  course homotopy and it turns out that all 

shortest routes between filings are homotopic, as follows from the theorem below. 
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(a) (b) 

(c) (d) 

Fig. 3.1. Two independent flips. 

Theorem 3.4. Each connected component of T is contractible. 

Proof. For an arbitrary tiling t o (i.e., a 0-cell) we contruct a homotopy from the 

identity to a constant function taking the entire connected component to t 0. Start by 

those points which are furthest from to: from each such point t there are a few (say 

k) possible flips. All these flips must necessarily approach the base tiling and must 

be independent; t is therefore the vertex of a k-cell corresponding to these k flips 

and it is easy to deform this cell, a k-dimensional cube, onto the walls of the cell that 

do not touch t without moving these walls. Repeat the process for all tilings 

different from t 0, taking distances in decreasing order. []  

4. Quadriculated Surfaces 

In this section we generalize the constructions and results of the previous sections to 

the situation where A* is not a subset of the plane but a quadriculated surface. The 
idea of  a quadriculated surface is very natural but its definition is somewhat 

technical: start with a finite collection of squares of unit side and glue certain pairs 

of sides (taking orientation of the sides into account) in such a way that the following 

two conditions hold. First, two sides of  the same square are never identified. Two 

vertices of  different squares are identified if they are the corresponding extremes of 

identified sides. Given an edge of a square and an incident vertex we can either 

replace the edge by the other edge on which the vertex lies or, if the edge is 

identified with an edge of some other square, pass to that edge and to the 

corresponding vertex. Performing these two operations in alternation, we see that a 

vertex in the surface (i.e., after identifications) corresponds to a sequence of vertices 
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of squares; it is clear that such a sequence is either finite (if we reach the boundary, 

i.e., a nonidentified side) or periodic. Our second condition is that periodic se- 

quences must have length 4; intuitively, this says that the angles at vertices of  

squares are ~r/2 so that it is impossible to surround a point with less than or more 

than four squares. Of course, the surface may be nonorientable or not consistently 

colorable in black and white. As in the planar case, we consider only connected 

surfaces. 

We can easily construct a quadriculated torus and a quadriculated Klein bottle by 

identifying opposite sides of a (quadriculated) rectangle in the usual way. More 

generally, any quadriculated torus can be constructed by taking the quotient of ~2 

by a sublattice of  7/2; the construction of  the general quadriculated Klein bottle is 

similar. It is easy to see that these are the only quadriculated surfaces with no 

boundary. Quadriculated cylinders and quadriculated M/Sbius bands are even easier 

to construct: start with any simply connected region in the plane and glue along 

congruent boundaries. 

As for Euclidean manifolds, it is easy to define a developing map [9] from the 

universal cover of a quadriculated surface to the plane. Similarly, define the 

holonomy of a quadriculated surface: it is a homomorphism from the fundamental 

group of the surface to the group of isometries of 7/2. If  the surface is a topological 

disk, it has trivial holonomy and may be thought of  as some kind of Riemann surface 
over 2r2. 

The notion of  a domino tiling of a quadriculated surface is clear, as is the notion 

of a flip. As in the previous simpler situation, we want to characterize the connected 

components of  T. 

We now describe the correct generalization of  [t 1 - t 2 ]  , ( t ) ,  and height sections. 

The cell complexes A and A* are easily defined, as are A and A*. Consider the 

original homological construction of It 1 - t2]: we draw an edge for each domino of 

either tiling, orienting those in t 1 from black to white and those in t 2 from white to 

black. The obvious difficulty in generalizing this construction is: there are no white 

or black squares now, and it may even be impossible to assign color globally in a 

coherent way. This makes it clear that Hi(A*; 7/) is not the right place to try to 

define [ t  1 - -  t2]: we must instead use homology with local coefficients. Homology and 

cohomology with local coefficients are briefly described for the situation of  interest 

in the Appendix. More precisely, let -ow 1 be a 7/-bundle over A* constructed as 

follows: put in 7/fibers over each square and glue fibers on neighboring squares by 

identifying k on one fiber with - k  on the other. The gluing instructions provide us 

with fibers over edges and create no obstruction toward defining the fiber over a 

vertex because of our second condition on quadriculated surfaces; notice that on 

each square there is a privileged generator for the fiber, originally labeled 1, which 

we call positive. A more global characterization of  -2"1 is that its fiber twists along a 

given closed curve in A* iff this curve passes through an odd number of squares. If  

we try to color squares alternatedly black and white we find that this is similar to 

constructing a section of  .o~1: in particular, A* is bicolorable iff -ow. 1 is trivial. It is now 

clear that our definition of  [ t  1 - -  t 2 ] makes sense as an element of Hi(A; -Z~'l): edges 

of  any tiling t (i.e., edges connecting the centers of the two squares composing a 

domino) are oriented so that their boundaries come out as two points with positive 

coefficients. 
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The cohomological construction of [t 1 - / 2 ]  or ( t )  is of course similar but it has 
to be performed with different coefficients, as is to be expected from duality anyway. 

Let therefore -2"2 by a 7/-bundle constructed over A* as follows: first put in fibers 

over each square as before, but now each generator of the fiber corresponds to a 
possible orientation for the square. Glue fibers on neighboring squares so that 

orientations do not match (thus constructing the fibers over edges); again, our 

second condition on quadriculated surfaces states that the fiber is well defined on 

vertices. Equivalently, .2" 2 twists along a given closed curve iff the curve inverts 
either color or orientation, but not both. The (very general) version of Poincar6 

duality for sheaves (as in [8]) guarantees that Hi(A*; -~'1) = Hi(A*, 0A*; -22); we 
provide a sketch of a direct proof  of  this isomorphism in the Appendix. Also, over 

any edge of a square, there is a natural correspondence between orientations for the 

edge and generators of the fiber of .o~" 2 over the edge: choose an adjacent square, 

orient the square, and take the corresponding generator of the fiber of -2" 2 to 
correspond to the counterclockwise orientation for the edge. It is now easy to define 

( t )  ~ CI(A*; -22): for edges not crossing dominoes, take the corresponding genera- 
tor; for edges crossing dominoes, take - 3  times the same generator. Again, this 

gives us an element of Hi(A*; .22)  whose restriction to the boundary does not 

depend on the tiling t but it is important to notice that since the map induced by the 

inclusion from HI(A*; .22) to HI(0A*;  .22) is usually not injective, this does not 
mean that the cohomology class of ( t )  does not depend on t: in Fig. 4.1 the two 

tilings of the torus produce ( t ) ' s  which are not cohomologous in Hi(A*; .22) = 7/2 

(notice that .22 is trivial). On the other hand, the hypothesis [t 1 - t  2] = 0 (in 

Hi(A*;.21) = HI(A *, 0A*; .22)) guarantees that ( t  1) and (t 2) are cohomologous (in 
Hi(A*; .22))" 

As an additional example, consider the cylinders in Fig. 4.2(a) and (b) and the 

MSbius bands in Fig. 4.2(c) and (d). In Fig. 4.2(a) .21 and .22 are both nontrivial 

and HI(A; -~1) (which by eoincar6 duality equals HI (A *, 0A*; .22)) is trivial (as dis- 
cussed in the Appendix); all tilings are therefore homologous and the reader can 

easily check that T is connected. In Fig. 4.2(b) .21 and .22 are both trivial and 

HI(A; .z~l) = 7/; there are four connected components in T classified by [t 1 - t2]. In 

Fig. 4.2(c) .21 is trivial, .22 is not, and Hi(A;-~1) = 7/; T has three components in 

Fig. 4.2(c), again classified by [t 1 - t2]. Finally, in Fig. 4.2(d) .21 is nontrivial, .22 is 

trivial, HI(A; .21) = 0, and T is connected. 
Our  next step is to construct the height bundle X and the height section 0 in it; 

examples are given in Fig. 4.3. It is convenient to construct both simultaneously and, 

unlike the previous simpler situation of planar regions, the structure of ,,~ depends 

to a certain extent on the tiling t. The fibers of  X are to be copies of 7/ with no 

distinguished zero and not even a privileged orientation defining order on fibers; we 

(a) (b) 

Fig. 4.1. Two tilings of a toms. 
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Ca) Co) 

(c) (d) 

Fig. 4.2. Titings of cylinders and M/Sbius bands. 

are allowed to add to an element of a fiber of X an element of the corresponding 

fiber of  .2" 2 and we are allowed to compare for "equality" elements of neighboring 

fibers. In order to build , ~  and 0, take -~2 on the vertices of A* and "forget" the 

zero section and the exact way of identifying two neighboring fibers: we take the old 

zero section to be 0 (by definition) and glue neighboring fibers with an additive shift. 

This shift is described, of  course, by ( t ) ,  so that ( t )  is the "derivative" of 0 by 

construction. As before, , ~  can be thought of  as a covering space over A*. 

Since X is not the same for all t we have to explain how we can ever compare 

different height sections. The first observation is that the structure of X depends on 

the cohomology class of ( t )  in Ha(A*;-~z) only. Indeed, if ( t  1) and (t  2) are 

cohomologous, their difference is by definition a coboundary and therefore a sum of 

coboundaries of "delta functions," i.e., functions with support given by a single 

vertex. Construct a discrete path from t 1 to t 2 by adding one such "delta function" 

at each step. The intermediate cocomplexes in this path usually do not correspond to 

tilings at all but they still allow for the construction of , ~  (and even 0) at 

intermediate steps. The isomorphism of consecutive height bundles (but not sec- 

tions) is clear and our claim follows. If, furthermore, [t] - t 2 ] = 0 (as an element of 

HI (A *, aA*; .2"2)), the "delta functions" are all in the interior of A* and, for the 

same procedure of taking intermediate bundles and sections, consecutive sections 

coincide on the boundary. Thus, in this case, 01 and 02 are sections coinciding on 

0A* of  the same bundle ~ .  We are thus ready to compare 01 and 02 in the relevant 

case [t I - t 2] = 0 if 0A* is nonempty, by the connectedness of A*. If  OA* is empty, 

however, we have to consider if the above construction of  intermediate bundles and 

sections introduces any ambiguity in the identification of  the two height bundles. For 

planar regions, height sections were well defined up to a constant. If  -~2 is trivial, 

i.e., if it admits at least one nonzero section, the same thing happens. Otherwise, 

height sections are well defined given ~ .  the difference between two of them 

(obtained by integration from the same tiling) is a section of -~2, hence 0. Thus, if 

0A* is empty and -~2 is nontrivial, there is no ambiguity in comparing height 

sections, but if OA* is empty and -~2 trivial we are free to add constants (i.e., 
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sections of -~2) to any of the two sections. In any case, [t: - t2] = 0 if and only if the 

height bundles for t I and t 2 are isomorphic and the height sections 01 and 0 2 
coincide on boundaries. 

We should be able to characterize height section by properties similar to (a)-(c)  

above. Properties (b) and (c) do not change: just remember  to interpret them as 

taking place inside ~'~ (and not some cut-dependent system of coordinates you may 

want to use). Property (a), however, has to be rephrased a bit more carefully. Inside 

each fiber of X there is a class of elements with the "right" congruence mod 4, i.e., 

those elements which differ from the height section used for the construction of ,,~ 

by a multiple of 4. We call the union of such subsets ,,~, a subset of ,~, ~ is not 

quite a fiber bundle however since it is defined only over A* and cannot be naturally 

extended to A* since the height section itself is only defined over A*. Property (a) 

now says that a height section must assume values in X~. It should be clear that 

again these properties characterize height sections. 

In Fig. 4.3 we show the height sections for the four tilings in Fig. 4.2. Notice how 

simple it is to construct such height sections: work as if the region were planar and 

at the end the identifications will be automatically provided. In these examples a 

value x for the height section on a point at the left cut corresponds to a value of 

1 - x, x, - 3  - x, and x in Fig. 4.3(a)-(d), respectively, for the corresponding point 

at the right cut. 

The M6bius band in Fig. 4.3(c) illustrates an interesting point when compared 

with the tilings in Fig. 4.4. Here,  the cohomology group HI(A*; -~'2) is isomorphic to 

7//(2). As discussed, the structure of X depends on the cohomology class of ( t )  in 

Hi(A*;-~2) only. However, two different tiling t: and t 2 for this region induce 

cohomology classes ( t : )  and (t 2) differing by a multiple of 4 in Hi(A*; -~2) which 

are therefore equal. The height section in Fig. 4.4(a) does not appear at first to be in 

the same bundle as Fig. 4.3(c) but an appropriate renaming of the fibers as in Fig. 

4.4(b) shows that, as predicted, the bundles are indeed isomorphic (they have the 

same gluing instructions) even though the subsets ~ are different in the two cases. 

3 2 3 2 3 

(a) (b) 

- 4  - 3  - 4  - 3  0 1 0 1 0 

o, 1 
(c) (d) 

Fig. 4.3. Height sections in cylinders and M6bius bands. 
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0 1 0 1 - 2  - I  - 2  - I  

-:I :I- oI :I ::I _:I ::I 
(a) (b) 

4 5 4 5 0 1 0 1 

o o - ,  -31-, 
(c) (d) 

Fig. 4.4. Different names for the same height section. 

Similarly, the height section in Fig. 4.4(c) can be renamed as in Fig. 4.4(d) to fit 

inside the bundle for Fig. 4.3(c) but the values of the section at the boundary are 

different. 

This shows that if t t and t 2 are in the same connected component, then 

[t I - t 2] = 0. It is disconcerting at this point to realize that the converse is false: in 

the simple example shown in Fig. 4.5, A* is a cylinder, "~'1 and "~'2 a r e  both trivial, 

and the reader will have no trouble checking that [/1 - / 2 ]  = 0 (or in computing 

height sections). No flip, however, is possible. 

If we try to follow the proof  of Lemma 3.3 in this example, we see what the 

problem is. The height sections differ by 4 along the entire central zig-zag (which 

actually contains all points of  A* not on the boundary). No point is, however, a local 

minimum or maximum for any of the two height sections. 

Let us consider this counterexample from a slightly different point of  view. By a 

ladder we mean a sequence of parallel dominoes side by side such that two 

neighboring dominoes always touch along one edge of the longer side, each domino 

in the ladder has two neighbors in it and these two neighbors touch the domino at 

different squares. In Fig. 4.5 the two tilings consist of two ladders each. The 

important thing about ladders is that they are totally immune to flips. So, if t I and t 2 

are in the same connected component, then [t 1 - t 2 ]  = 0 and t 1 and t 2 have 

precisely the same ladders. It may surprise the reader that this rather ad hoc 
condition is actually necessary and sufficient. 

a a /~ 

, o ]1 
(a) (b) 

Fig. 4.5. Ladders. 
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Theorem 4.1. Two domino tiling t I and t 2 a r e  in the same connected component of  T 

if  and only if  [t: - t2] = 0 and t 1 and t 2 have precisely the same ladders. Furthermore, 
i f  this is the case, the distance between them is given by 

d(t l  ,t2 ) = 1 ~ 101(p) _ 02(p)l; 
p ~ A *  

in the case where there is no boundary and 2"2 is trivial, the additive constants in the 

height sections are to be chosen so that the fight-hand side is minimum. 

The right-hand side of  the distance formula makes sense (and is an integer): 

Oa(p) and Oz(p) are in the same fiber of X, 01(p) - 02(p) is an element of the 

corresponding fiber of 2" 2 , whose absolute value is in 7/. As with Theorems 3.1 and 

3.2, we isolate the inductive step in a lemma. 

Lemma 4.2. Let A* be a quadriculated surface and let tl and t2 be two different tilings 

of  it with [t I - t2] = 0 and such that neither of  them hasladders; let 0 a and 02 be the 
corresponding height sections. Assume that 0 n and 02 coincide on a nonempty set 

(possibly the boundary). Then there is a tiling t 3 of  the same region, obtained from t: by 

a flip and such that the corresponding height section 03 always lies between 01 and 02. 

Proof. As in Lemma 3.3, let B be that part of the domain where 101 - 021 is 

maximum; by hypothesis, B is neither empty nor equal to A*. We claim there is a 

point of  B where we can perform a flip on t 1 in order to obtain t3: we  call such a 

point (with a certain abuse of notation) a local minimum of 01. Again as in Lemma 

3.3, therefore, our aim is to prove the existence of such a local minimum. Suppose by 

contradiction there is no such point: we show the existence of a ladder. 

Let p and p '  be two neighboring points in B. We say that, when moving from p 

to p ' ,  01 changes as i f  trying to get further from 02 if Ix I - 02(p')[ < [01(p') - 

02(p')l, where x 1 is the element of  the fiber of X over p '  which belongs to ~ ,  is 

different from 01(p'), and satisfies Ix 1 - 01(p)l < 3. A point p in B is a local 

minimum of 0: if and only if it has no neighbor p '  in B such that, when moving 

from p to p ' ,  01 changes as if trying to get further from 02. Thus, since B is finite, 

there is a cycle Po, P : , . . . ,  PN- 1, PN = Po of points of B such that, when going from 

Pi to Pi+ 1, 01 changes as if trying to get further from 02. Call such cycles monotonic. 
We may interpret a cycle as a 1-complex; we call two monotonic cycles adjacent if 

their difference is the boundary of  a square in A*. Two monotonic cycles are 

homotopic if they can be joined by a sequence of adjacent monotonic cycles; thus, 

monotonic cycles break into homotopy classes. If a cycle does not reverse orienta- 

tions, we can consistently speak of  left and right; since an orientation-reversing cycle 

yields an orientation-preserving one by running along it twice we assume from now 

on, without loss, that we are dealing with orientation-preserving cycles. It makes 

sense therefore to speak of  the left and right of a cycle and, given two adjacent 

cycles, we can naturally order them by saying that one is to the left and the other 

one to the right. 
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Claim. Inside each homotopy class there are leflmost and rightmost monotonic cycles. 

Proof. Supposing the opposite, it would always be possible to push a cycle to the 

left (say), obtaining a closed sequence Co, c 1 . . . . .  CM-1, CM = CO of adjacent mono- 
tonic cycles such that ci+ 1 is to the left of c r The  contradiction arises from proving 

that the existence of a closed sequence of cycles as above implies that A* is a torus 

or a Klein bottle and that the height sections 01 and 02 never coincide. By going to 

the universal cover and using the developing map as in [9], each cycle c i becomes a 

periodic line ~i in 72 2, the period being an orientation-preserving isometry of ~2 
preserving ?7 2, thus either a translation or a rotation of period 2 or 4. If the period of 

5 0 is not a translation, the curve c0 surrounds a certain signed area, which decreases 

in the process of passing from (i to Ci+l, contradicting the fact that the isometric 

curves C M and C 0 enclose equal areas; thus, the period is a translation. Also, any 

isometry taking the infinite curve C 0 to CM is another translation, since rotations 

would move remote  points by distances far greater than M; also, the two transla- 

tions are linearly independent since passing from C i to Ci+ 1 moves curves to the left. 

The cycle c o gives rise to a closed curve in A* by connecting neighboring points; 

similarly, the points ci(O) are joined to produce a second closed curve, based on the 

same point c0(0). These curves can be interpreted as elements of  ~-I(A*, c0(0)) and 

the above translations are their representations under holonomy. By extending the 

discrete homotopy of cycles to a map from the rectangle [0, N]  x [0, M] to A* we 

see that these two elements of ~r~(A*, c0(0)) commute,  thus generating a copy of 722 

inside 7rl(A*, Co(0)). The only compact  surfaces, however, for which the fundamental  

group contains a copy of ?72 are a torus or a Klein bottle, since any other surface is 

hyperbolic and there is no copy of ?72 inside the isometries of the hyperbolic plane 

(see [9]). Since this construction is performed in B, B = A* and the two height 

sections never meet.  The proof  of the claim is thus complete. []  

Consider these two extreme cycles: they behave very similarly to the least-area 

cycle in the proof  of Lemma  3.3. In fact, repeating the same steps, we see that the 

polygonal line joining midpoints between consecutive points of the leftmost (resp. 

rightmost) cycle never turns left (resp. right). Now, since these two cycles are 

homotopic these two polygonal lines turn by the same angle and it follows that 

neither turns at all: both cycles are zig-zag lines exactly like boundaries of ladders. 

Furthermore,  t~ and t 2 must each have a ladder to the left of the leftmost cycle or to 

the right of the rightmost cycle since we cannot have arrived at the boundary. This 
contradicts the hypothesis and ends the proof  of  the lemma. [] 

Proof  o f  Theorem 4.1. All we have to prove is that if [ t  I - -  t 2] = 0 and t I and t 2 

have the same ladders, then t 1 and t 2 a r e  in the same component  and the distance 

between them is smaller than or equal to the expression at the right-hand side in the 

statement of the theorem. Let therefore tl and t 2 be tilings as above. Start by 

removing all ladders from A*: we have to prove that the tilings on each connected 

component  of  whatever remains are in the same connected component  of  T. It is 

clear that on each such connected component  height bundles for t~ and t 2 are 

isomorphic and the height sections coincide on whatever remains of the old 
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boundary and differ by a constant on boundaries of removed ladders. We claim that 

we can never have a connected component of the boundary consisting of the 

boundary of a ladder only: indeed, if this happened, the only way to tile the 

neighborhood of this boundary component would be with a new ladder. It follows 

that 01 and 0 z coincide on the entire boundary of  each connected component of 

whatever remains after removing ladders. We can therefore assume without loss of 

generality that t I and t 2 have no ladders. 

When A* has boundary, Lemma 4.2 (plus induction) finishes with the proof. If A* 

has no boundary, we must consider two cases. If .72 is nontrivial, the two height 

sections must coincide at some point by topological reasons: if they did not, their 

difference would yield a global choice of generators for .72 (the difference is to be a 

positive multiple of the chosen generator), hence a trivialization of .72 (since the 

fiber is one-dimensional). If .72 is trivial, add a constant to 02 in order to make the 

right-hand side of the distance formula minimum: it is clear that now 01 and 02 

coincide at some point. [ ]  

As in the planar case, we know which flips to perform in order to get closer to a 

tiling t 2 starting from a tiling tl,  assuming, of course, [t 1 - t  2] = 0. Start by 

computing the (isomorphic) height bundles and the height sections 01 and 02 which 

must coincide on the boundary. In case there is no boundary and .72 is trivial, adjust 

the additive constant to make the distance minimum (this may allow for one or two 

answers). Now flip at any local extremum of 01 if that takes the section closer to 02. 

Again, there is a local characterization of shortest paths in T. However, not all paths 

are homotopic anymore. 

Theorem 4.3. I f  A* has a boundary or .72 is nontrivial, all connected components o f  

T are contractible. I f  A* is a toms or a Klein bottle and .72 is trivial, there are two kinds 

o f  connected components o f  T: some consist o f  one single isolated point which 

corresponds to a tiling constructed entirely from ladders; others are homotopy equivalent 
to 51 . 

Proof. When A* has a boundary or .2" 2 is nontrivial, the proof is entirely analogous 

to the planar case. From now on, assume the other situation. Notice first that if a 

tiling contains a ladder, it must consist of  ladders only: only a ladder fits beside a 

ladder. We now prove that a tiling with height section 01 which admits no flips must 

be of this type. Assume first that A* is a toms, the quotient of R 2 (quadriculated by 

712) by a two-dimensional sublattice L of 7/z. Raise the tiling to the universal cover 

in order to obtain an L-periodic tiling of  the plane. Taking 02 to be 01 + 4, as in 

Lemma 4.2, a monotonic cycle c must exist which, raised to the universal cover Rz, 

must connect the origin to some other point of L; without loss, this point is of the 

form (x, y)  with x > y > 0. By the triviality of .2 2, x and y must be of  the same 

parity. Raise 01 to a height function ~1 in the plane: we can assume without loss 

that 01(0, 0) = 0. Also, the value of 01 decreases along the lifted monotonic cycle Y. 

The value of 01(x, y)  must be precisely - 2 x :  a smaller value is impossible for any 

height function by conditions (a)-(c) and a larger value does not allow for a 

monotonic decreasing path from the origin to (x, y). If  x -- y (in which case x > 0) 
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0 1 0 0 1 0 0 1 0 4 1 4 4 5, 4 

-:I-:-:1-:1 :t-:t : :t : :I :I :I :t : :1 
(a) (b) (c) (d) (e) 

Fig. 4.6. A closed geodesic. 

the monotonic path 6 must be a zig-zag going from the origin to (x, y)  which cannot 

cross dominoes and must therefore be a side of  a ladder. Otherwise, the values of 

the height function at 0 and (x, y)  are enough to dictate the values on a parallel- 

logram with vertices at these points. Since, as in the proof of Lemma 4.2, monotonic 

cycles exist through every point, the whole height function is well determined and 

the tiling must look like a garden variety brick wall, constructed from ladders going 

both ways. We take care of the Klein bottle by going to the orientable double cover, 

which is a torus. 

For  the other cases we claim that the universal cover of the corresponding 

connected component of T consists of  all height sections without identifying sections 

which differ by a constant. It is clear that this is a covering map and what the 

CW-complex structure for this space must be. It is enough to prove that this space is 

connected and contractible since the quotient group will obviously be 7/, or, more 

precisely, 47/. Since after identifications this space is known to be connected, it is 

enough to prove that we can move by flips from a section 01 to 01 + 4. From the 

previous paragraph, we can perform some flip on 01, without loss an increasing one, 

to obtain 02; but now 02 intersects 01 + 4 at the flipped point and by Lemma 4.2 

and Theorem 4.1 we can move 02 to 01 + 4 by flips. The proof that the space of 

sections is contractible is similar to what we already saw in the previous cases, the 

fact that there are infinitely many cells being no source of trouble: a point contained 

in a cell such that its furthest vertex from the base section is at a distance d starts 

moving at time 1 /2  d. 

This argument also shows that the generator of the fundamental group of a 

connected component of T is the path from 0 to 0 + 4. Actually, such a closed path 

is a deformation retract of the connected component,  but we give no details. In 

Fig. 4.6 we show the four steps of  such a cycle (a closed geodesic!) for the only non- 

trivial component  of T(A*), where A* = R 2 / ( 2 7 / )  2 (move from (a) to (b) to (c) to 

(d) to (e)). []  

5. Final Remarks 

A. Calisson Tilings 

A calisson is the union of  two equilateral triangles with a common side. Calisson 

tilings of simply connected regions in the plane admit height functions [10] with a 

strong visual interpretation: by looking at a calisson tiling, you can see it as a figure 
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of a pile of (three-dimensional) cubes, the calissons being their faces [2]. In close 

analogy with what we did in this paper, we can define height sections for calisson 

tilings of other regions. In this context we perform a flip by lifting three calissons 

forming a hexagon and placing them back in the only possible different configura- 

tion. Clearly, two tilings are adjacent by a flip if their height sections differ at a 

single point. Under  the pile-of-cubes interpretation, a flip corresponds to adding or 

removing a cube. Thus, for simply connected regions, the space of tilings is 

connected and the distance between two tilings is given by the number of noncom- 

mon cubes. Height sections might be useful for a more careful study of the space of 
calisson tilings of more complicated regions. 

B. The Adjacency Matrix of A 

The adjacency matrix of A is of the form 

(o 

provided white vertices are listed before black vertices. The sign of det M is not 

natural: it depends on the order in which the vertices are listed. Tilings of A* 

correspond to monomials in the expansion of the determinant of M. Indeed, such a 

monomial  (up to sign) corresponds to a set of l ' s  in M with exactly one element in 

each row or column: each 1 gives rise to an edge of A and it is clear that the 

associated set is a covering by edges. Tilings are thus naturally divided into two 

classes according to the sign of the corresponding monomial  and we say that two 

tilings have the same or opposite parities if the corresponding monomials have the 

same or opposite signs (there is, however, no natural definition of an "even" and an 

"odd" tiling). It is easy to see that adjacent tilings have opposite parities. 
The absolute value of the determinant of M is the difference between the 

number  of tilings of each parity: in [3] it is shown that, when A* is a simply 

connected surface, this difference is 0 or 1. On the other hand, if A is not simply 

connected, this difference can have any value (see [3] or consider instead a 4 x 

(2n - 1) rectangle with n - 1 vertical isolated dominoes removed from its interior). 

Since A being simply connected implies the connectivity of  T(A), it might be 

thought that the correct generalization to nonsimply connected regions would be 

that, on each connected component  of T(A), this difference is still 0 or 1. In the 

examples shown in Fig. 5.1, however, there are always three connected components 

with differences of 1, - 2 ,  and 1 (in the natural order). Indeed, in both cases it is 

easy to see that de t (M)  = 0 by considering the element of the kernel indicated in 

the figure; the fact that there are three connected components follows from 

Theorem 1.1, by merely constructing tilings with different flows, and it is just as easy 

to see that two of these components have a single element each, always with the 

same parity: our  claim follows. 
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Vectors in the kernels. 
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--1 
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C. Higher Dimensions 

The obvious generalization of Theorem 1.1 to higher dimensions is false even if A* is 
a topological closed ball contained in 7/n (although the definition of I t  1 - -  t2 ]  still 
works, and properties (a)-(d) as above still hold). In dimension 3 let 

A = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1,0), (0, 1,1), 

(0, 1,2), (1, O, 1), (1, O, 2), (1 ,1 ,0) ,  (1,1,1)}.  

The tiling 

([0, 1], 1,0),  ([0, 1], O, 2), (1, [0, 1], 1), (0, O, [0, 1]), (0,1, [1,2]) 

has no adjacent tilings (since there is no square to flip) but is not the only one: 
consider 

(0, [0, 1], 0), (0, [0, 1], 1), (0, [0, 1], 2), (1, O, [1,2]),  (1, 1, [0, 1]). 

As another example, now in dimension 4, let A = {0, 1} 4 be the cube of side 2. The 
tiling 

([0,11, O, O, 0), ([0, 11, 1, 1, 1), (0, O, 1, [0, 1]), (0, 1, [0,1], 0), 

(0, [0, 1], O, 1), (1,1,  O, [0, 1]), (1, O, [0, 1], 1), (1, [0, 1], 1, O) 

again has no neighbors but is not the only one. By the way, we know of no 
satisfactory extension of the idea of height sections to higher dimensions: the 
definition of ( t )  as an (n - 1)-cocycle still works but, even if this is exact, its integral 
is not close to being unique. 
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Appendix. Homology and Cohomology with Local Coefficients 

This Appendix contains a brief review of the main facts about homology and 

cohomology with local coefficients which are necessary or convenient for us. More 

specifically, we apply the general constructions to our examples. Readers who know 

enough about the subject to compute homology and cohomology in simple examples 

and who are acquainted with Poincar6 duality in this context are encouraged to skip 

this Appendix. There are good expositions of the subject in [11] and [7]; for the more 

general theory of sheaves, the reader may consult [8]. 

We begin with a description of Hi(A;-~1); as in the usual homology, this is 

obtained from a chain complex of additive groups C 2 ---} C 1 --} C O by taking the 

quotient Z 1 / B  1, where Z 1 is the kernel of the second boundary map and B 1 is the 

image of the first. Recall that the fiber of -~'1 over a square of A* has a positive and 

a negative generator; thus, the fiber of .2" 1 over vertices of  A also has a positive and a 

negative generator. Hence, the generators of the fiber of  -~1 over an edge of A are 

positive on one end and negative on the other. Over a square of A, the generators 

are alternately positive and negative over the four vertices. The additive groups C i 

are generated by (formal) products of  an oriented /-cell in A by a generator of the 

fiber over it. Thus, generators of C O are vertices with an orientation, i.e., a sign, as in 

Fig. A.l(a). Similarly, generators of C 1 and C 2 are indicated in Fig. A.l(b) and (c); 

the second equality in (b) is a notational convenience. The action of the boundary 

maps Ci§ 1 ~ Ci over generators is indicated in Fig. A.l(d)  and (e); notice that the 

composition of both is zero. 

We provide a similar description of the relative cohomology group H I ( A  *, 0A*; 
-~2)- Again, our first task is to construct C 2, C 1, C ~ and the coboundary maps. The 

fiber of .2" 2 over a square of A* is isomorphic to 7/. An orientation for the square 

and a sign (which again alternates between neighboring squares) determine a 

generator of the fiber: changing one of these ingredients alters the generator. Thus, 

the additive group C 2 is generated by the map taking a given oriented square of A* 

(a) (b) (c) 

+I ~-'} + .  ~ +  
(d) (e) 

Fig. AA. The spaces Ci(A; -~'1) and their boundary maps. 
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+ _ + 

(a) (b) (c) 

+ 

(d) (e) 

Fig. A.2. The spaces Ci(A *, .2" 2) and their coboundary maps. 

to the generator of -22 over this same square corresponding to the orientation of the 

square and the plus sign: we denote such generators as in Fig. A.2(a). Generators of 

C 1 are maps taking a given nonboundary-oriented edge of A* to the generator of -22 

defined as follows: choose any of the two adjacent squares to the edge, orient it so 

that the induced orientation on the boundary equals the original orientation of the 

edge, and take the generator of -22 over it corresponding to its orientation and the 
plus sign. It is easy to check that this map does not depend on the choice of the 

adjacent square; we denote the generators of C 1 as in Fig. A.2(b). Generators of C O 

are maps taking an interior vertex of A* to one of the generators of the fiber of -22 

over it; the choice of the generator is indicated by an orientation and signs for the 

neighboring squares as in Fig. A.2(c). Coboundary maps over generators are indi- 

cated in Fig. A.2(d) and (e). In order to obtain the cohomology group Hi(A*; -22), 

drop the restrictions that edges or vertices must be interior. 

We recall the basic facts concerning Poincar6 duality. Ordinary Poincar6 duality 

[4] works by identifying Ck(M) for a given triangulation with C"-k(M) for the dual 

triangulation, where M is an n-dimensional oriented closed manifold (the orienta- 

tion is used in the identification procedure). This identification commutes (up to 

signs) with boundary and coboundary operations and thus induces, by taking quo- 

tients, the identifications between Hk(M) and H"-k(M). In Lefschetz duality [4] we 
work with oriented n-manifolds with boundary and identify Ck(M) with Ck(M, aM), 
again by looking at dual triangulations. More generally, we can consider local 

coefficients -2 and, still for an oriented manifold with boundary, essentially the same 

construction yields an identification between Ck(M; -2) and C"-k(M, aM; -2). One 

way to eliminate the orientability hypothesis is to let the cohomology coefficients 

take care of the problem [8]: if -20 is the 27-bundle over M with generators 

corresponding to (local) orientations, the appropriate generalization of Poincarr's 

construction provides the identification 

Ck( M; .~) = cn-k( M, aM; -2 | -20)" 

By taking quotients, we obtain the duality we need: 

Hk(M; ..~) = Hn-k(M, •M; -2 | (*) 
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Going back to our context, it is easy to see that .72 =.21 | where .2" 0 is 

constructed as above. The identification 

Hi(A; .21) = H i ( A * ,  dA*; .22) 

is a special case of (*).  Notice, however, that our descriptions of the chain and 

cochain complexes yield an explicit construction of  this bijection: just match corre- 

sponding letters in Figs. A.1 and A.2. 

We compute the homology groups which appear  in Fig. 4.2. Whenever  the 

coefficient bundle is trivial, we deal  with the usual homology group with coefficients 

in Z [11], and this takes care of  (b) and (c). Otherwise, by invariance of homology 

under deformation retracts, we are reduced to computing Hi(S1; -2), where -2  is 

the nontrivial Z-bundle over S 1. Consider the very simple CW-decomposi t ion of the 

circle with a single edge having both extrema attached to the same 0-cell. The 

groups C O and C 1 are both cyclic and the boundary map takes a generator  of C 1 to 

twice a generator  of C2; thus, Hi(S1; -2 )  = O, as claimed, and n0(s1;  .~') = Z/ (2) .  

In the comments concerning Fig. 4.4, we state that Hi(A*;  .2 2) = 77/(2), where A* is 

a M/Sbius band and .22 is nontrivial: again, by invariance under deformation 

retracts, it suffices to compute Hi(S1;  .2") with - 2  as above. The groups C O and C 1 

are both cyclic and C 2 is trivial; the coboundary takes a generator  of C O to twice a 

generator  of C 1, so that Hi(S1;  -2)  = 7//(2) and H~ -2)  = 0. 
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