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Spaces of order arcs in hyperspaces
by

Carl Eberhart, Sam ‘B. Nadler, Jr.*
and William O. Nowell, Jr. (Lexington, Ky.)

Abstract, Let X be a metric continunm and let 2X and C(X) denote respectively the space of
closed subsets and the space of subcontinua of X topologized with the Hausdorff metric. An order
arc in 2¥ (C(X)) is an arc a contained in 2% (C(X)) such that if A, Bea, then AC B or BCA. Let
reX) (I'(C(X))) denote the space of order’ arcs in 2¥ (C(X }) together with the smgletons {4},
A €2X (C(X)), topologized with the Hausdorff metric on 2**, In this paper we prove that if X is
tocally connected, then I'(2¥) is homeomorphic with the Hilbert cube Q and if, in addition, X con-
tains no arc with interior, then I‘(C(X)) is homeomorphic with Q.

1. Introduction, Let X be a continuum (i.e., 2 compact connected metric space
containing more than one ‘point). The kyperspaces of X are the spaces 2%, consisting
of all nonempty closed subsets of X, and C(X), consisting of the connected elements
in 2%, each with the Hausdorff metric H. Basic facts about hyperspaces may be found
in [13] and [9].

An order arc in 2% (resp., C(X)) is an arc ac2X (resp. acC (X)) such that if
4, Bew, then A< B or B< A, Order arcs in hyperspaces were first constructed in [2],

. as a part of the proof of the followmg

1.1, TueorEM. For any contmuum X 2X ond C(X) are each arcwise ‘conmected
cominua

However, the fact that the construction in 2] yielded an arc was not noted until
later in [10, Lemma 5]. Since the publication of these two papers, order arcs have
been used extensively in studying hyperspaces. However, spaces of order arcs have
undergone almost no investigation. In this paper we investigate the spaces

I = {&x=2*: a is an order arc} U {{4}: 4&2%}
and

P(CX)) = {xe=C(X): o is an order arc} v {{4}: de C(X)}

* The second author was partially supportcd by National Research Councll (Canada) grant
no. A3616.. . 3
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with the metric obtained from the Hausdorff metric for 22, which we denote by H?

(see also [13, (1.-31.1)]). Elements of the form {4}, A€ 2X or C(X), are included
in order that the two space$ be compact. Such singleton elements are, of course,
not arcs, but, without confusion, we will call I'(2%) (resp., I'(C(X) the space of order
ares in 2% (resp., C(X)). We will also use the notation Fy(Y) = {{y}: ye ¥} to
denote the subspdace of singletons in 2, where Y is any continuum. Note that Fy(¥)
is naturally isometric to Y.

Except for the compactness of the spaces, which was proved in [10], and some
results in [13], stated as 2.1 through 2.3 below, no results about I'(2¥) and I'(C(X))
have appeared in the literatare. Cur main purpose in this paper is to study the structure
of I'(2%) and T'{C(X)) when X is a Peano continuum (i.e., a locally connected con-
tinuum). We also obtain some results for X not necessarily Peanian.

The following important results in the theory of hyperspaces motivate much
of our discussion. (The symbol =~ means “is homeomorphic to”, @ denotes the
Hilbert cube; and a free arc in X is an arc y <X such that y without its endpoints is
an open subset of X) .

1.2. TaeoreM. Let X be a contimuum. Then the fo}lowing dare equivalent'[yll’f]w

(a) X is locally connected; {b) 2% is locally connected; (o) 2%.is an AR (z i, absolute
retract); (d) C(X) is locally connected; (e). C(X) is an’ AR, o .

1.3. TugoreM. Let X be a Peano contimum: Then 2%~ Q and, firthermore,
CX)~Q if and only if X contains no free arc ([4] end [5)).

In [13, (1.27.3)] it 'was noted that I'(2*) has the same homotopy type as 2¥

(see 2.3 below), and questions were taised concerning possible analogues of 1.2
and 1.3 for spaces of order arcs. Theorem 4.3 below provides an analogue for 1.2.
We also show (Theorein 5.2) that, if X is a Peano continuum, I'(?¥)= Q and, if, in
addition, X contains no free arc, then I'(C(X)}~ Q. Example 5.3 shows that X Pea-
nian need not imply that I'(C(X))~ Q. We do not know which Peano continua X
have the property that I'(C(X)=Q.

2. Preliminaries. In this section we summarize the results from the theory of
hyperspaces and continua and from infinite dimensional topology which will be used
later in the paper. For sets 4 and B, 4N\B denotes the complement of B in 4. By
a mapping or map we mean a continnous function,

The first tool we meed is the notion of segments, which is due to Kelley [9].
A Whitney map for 2¥ is a map w: 2X — [0, + ) such that o{{x}) = 0 for cach
x e X and w(4)<w(B)if 4, Be2¥ and A< B # A. A segment with respect to w from
Aoe2* 10 A;€2¥ is a map o: [0,1]— 2% such that o(0) = 4y, a(l) = 4,
a(t)ce(t,) if 0<r,<1,<1, and

o(e(®) = 1-) 0(c@)+1ola(l))
for each t€]0, l} Let

S.2%) = {a [o, 1]-—-;2"] cis a segment or a constant function}

e ©
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and

So{CX)) = {0 €S, 2N o(t)e C(X) for each te[0, 1]},

and let each of these be topologized by the usual “supremum metric” for continuous
functions. These two spaces are called spaces of segments. The following theorem

indicates' the fundamental relationship between spaces of segments and spaces of
order arcs,

2.1, TreeoreM [13, (1. 30)] For any continuum X and any given thmey map ©

Jor 2%, S 2N=T@) and S(CE)=I(C(X)).  Moreover, the function
: S 2¥)— T'(2%) defined by f(6) = o([0,1]) is a homeomorphism and
faiscco) = ricen).

Thus spaces of order arcs and individual order arcs are parametrized in a well-
behaved manner by segments. For this reason, the study of spaces of order arcs is
facilitated by using segments. Throughout the paper we will refer to the homeo-
morphism f,, defined in the statement of Theorem 2.1.

Properties of hyperspaces are reflected in spaces of order ares. For example,
the following retraction theorem guarantees that a hyperspace has the same homo-
topy type as the corresponding order arc space.

2.2. THEOREM {see [13, (1.203.3)]). For any contimmm X, F,(2*) and F, 1(C(X))

are strong deformation retracts of I'(2*) and I'(C(X)) respectively.
. Proof. Let f, be the homeomorphism defined in Theorem 2.1. Define homo-
topies k: S5 %[0, 11— (2" and h: F¥)x[0,11=-T(2% by ko,
= ¢([0, 1-s]) and h(z, 5) = k{f; ), .s'). Then 4 is clearly a strong deformation
retraction. Moreover, it follows from the final zquality in Theorem 2.1 that the
restriction of h to I'(C(X))x[0,1] is a strong deformation retractlon onto
F,(CX)). m

2.3. COROLLARY (see [13, (1.27.3)]). For any continuum X, I'(2X) and I’ (cxy)
are arewise connected continua of the same homotopy type as 2% and C(X) respectively.

Proof. By [10, proof of Lemma 4], I'(2¥) and I'(C(X)) are compact. Therefore,

’ the corollary is an immediate consequence of Theorems 1.1 and 2.2. M

We now state four lemmas about order arcs which will be used throughout
this paper. The first three are a mixture of results and parts of proofs in [10]. The
fourth one is, for the most part, 2.3 of [9]. We indicate where they appear in [13] so
that. their proofs may be found easily by the reader.

2.4, Lemma (see [13, (1.49)]). Let A be a nondegenerate subcontimmm of 2%,
Then A is an order arc if and only if A, Be A implies Ac=B.or Bcd.

2.5. Lemma (see [13, (1.5) and (1.6)]). If « is an order arc in 2%, then ﬂnc and Ue
are elements of & and, in fuct, are the two end pomts of o

2.6, Lemma (see [13, (1.1D]. If e e (29 suaﬁ that ﬂae U(X), then ou:C(X)
Henee (C(X)):= {2 I'@Y; (a e CE)). -

o 27 Lavmia (sée {13, (1 Ei 4

3 — Fundamenta Mathemaﬂcne CXI1I

- 5 Then the fallowmg are equwalent
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(1) For any Whitney map o, there exists some o € S,(2%) such that a(0) = 4,
and o(1) = A4,; ‘
(2) There exists some o€ I'(2%) such that (\a = A, and Jo = 4,;

(3) do=A, and each component of A, intersects 4. .

Next we recall some notions which will be used in case X is a Peano continuum.
A metric d for X is said to be convex provided that, given x, y & X, there exists some
z € X such that d(x, 2) = d(z, ¥) = $d(x, y). If d is convex, then for any two distinct
points x, y € X, there is some arc y = X which is isometric to the interval [0, d(x, M
and whose end points are x and y [11]. Consequently, balls with respect to a convex
metric, that is, sets of the form {y e X: d(x, N<t), xe X, t20, are always arcwise
connected.

If X is a Peano continuum, then there is a convex metric for X which yields the
original topology ([1] or [12]). Thus, for the sake of simplicity, we will assume that
the given metrics for Peano continua are convex.

For any £20 and any 4 e2*, we define

K(4) = UA{x‘E X: d(x,d)<e .

‘We will use the fellowing well known result.

"2.8 Lemma. If a continuum X has @ convex metric d, then the Sfimcetion
@: 2*x[0, +00)—2X defined by ¢(4, 1) = K(Ad) is continuous.

For an arbitrary metric d, the function ¢ defined above need not be continuous.
For necessary and sufficient conditions for such “continuity of balls”, see [14].
Also note that, if X has a convex metric, then, for any e P(C(X)) and for any
120, {p(4,t): Aea}e(C(X))- ‘

We conclude this section by observing that the proof of Theorem ‘5.2 uses
Theorem 2.9 below, which is a version of a recent resnit by Toruficzyk. The proof of
this theorem utilizes a considerable amount of Q-manifold theory, but its application
in this paper demands only an understanding of the following basic terminology.
A closed subset A of a separable metric space Y is a Z-sef in Y provided that, for
each &>0, there exisis 2 mapping f;: ¥ Y\A suoh that (f,(3), y)<e for each
ye Y. A mappin_g g: Y — Yis a Z-map provided that g[¥]is a Z-set in Y., (Basic
properties of Z-sets may be found in [3].)

2.9. TaeOREM J16]. Let ¥ be a compact AR. If the identity map. of Y onto Y is
the uniform limit of Z-maps, then Y= Q.

3. The order arc spaces as retracts. The results of this section concern the exis-
tence. of retractions onto the spaces of order arcs, In the mext section we use these
results to characterize when the spaces of order arcs are in fact absolute retracts.

3.1. LemMa. There exists a retraction R: I'(2%) — L(CX)) if and only if there
exists a retraction r: 2X— C(X). : ‘

Proof, Suppose the retraction R is given. Let i; 2¥ — I'(2*) be the natural
embedding i(4) = {4}. Let g: IF(C(X))m» C(X) be defined by ¢(a) = M. By

icm
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the proof of Theorem 2.2, ip is a retraction. It therefore follows easily that
r = gRi: 2X— C(X) is a retraction. ’ -

Now suppose the retraction 7 is given. Note that, for any segment & € S,(2%)
and any ¢ [0, 1], r e o ([0, 7]) is a continuum. Let f,, be the homeomorphism from
Theorem. 2.1. Since union is continuous [9, p. 23], it is routine to verify that the
function y: I'(2%)x {0, 1].— 2% defined by

7(“: f) ={J {f" 0‘(1): tef0,i}, 0 =fm-i(a)}
is continuous. : :

Define R by R(¥) = {y(z, t): te [0, 1]}. Xf « is any fixed order arc in 2%, then
R(2) is the continuous image of [0, 1] and thus a continrum. Moreover, if ¢, <?;,
then by definition y(a, t;)=y{x,?;). Thus by Lemma 2.4 R(2) is an ordet arc.
Since (\R(x) = y(z,0) = r(Ne) € C(X), by Lemma 2.6 R(@)eI(CX)). The
continuity of R follows immediately from the continuity of . Since r is a retraction,
it is clear that R is a retraction. M

3.2. COROLLARY. If X is a Peano continuum, then I'(C(X)) is a retract of I (2%).

Proof. If X is a Peano continuum, then it follows from Theorem 1.2 that C(X)
is a retract of 2. W :

Remark. C(X) is not always a retract of 2% [7], so I'(C(X)) is not always
a retract of I'(2%). At the present time, there is no known example of a non-locally
connected contintium X for which C(X) is a retract of 2%

3.3. LeMMA. For any continuum X, Fy(T'(2%) is a retract of 273,

Proof. Let f,, be the homeomorphism from S,(2%) onto I'(2*) defined in 2.1.
For each o €27*" and each re [0, 1], let

y(, 1) = U {[fa ' @](1): weof}.

By using the continuity of ;' * and of the union function [9, p. 23}, it follows easily
that the formula above defines a continuous fuaction y: 2" x [0, 11~ 2%. For
each o € 27%™) Jet

R(a) = {y(sf,0): tel0, 1]}, ©

Since y is continuous, R(&) is a subcontinuum. of 2% for each o €27*™, Also, for
each o €27, y(of, t)<9(H, 1) if t; <ty Thus, by Lemma 2.4, we have that
R(af)e I (2%) for each of e27%, Also, since 7 is continvous, R is continuous. There-
fore, by letting r(af) = {R(of)} for each & €2"%7, we see that r is the desired
retraction from 2"% onto F,(r(2%). &

4. Locally connected spaces of order arcs. In 4.1 and 4.2 below we assume that X
is a Peano continuiim whose metric d is convex. In Section 2 we noted. that; under
these assumptions, the function @: 2¥ x [0, +o0) — 2% defined by ¢(4, ?) = K,(4)
is continuous. We now consider a similar function $: F'@¥)x [0, +o0) — I'(2%), -
defined by PIRRRERS e b e, E e T

Loy P, ) (K deod

o
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We first note-that the'range of @ is‘indeed I"(2%); The proof of this statement uses

Lemma 2.4 in the same way this lemma was used to prove similar statements in 3.1,

and 3.3. . :
4.1. LeMMA. The function Q‘cvlf.:ﬁned above is. continuous.

Proof. The lemma follows easily by using the homeomorphisny £, of 2.1 and

by using Lemma 2.8. @
4.2. Lemma. For any «& I'(2%) and any &>0, the set
L # = {fel(2N: HXz, f)<e}
is pathwise connected. S o
Pro of; Choose any B e #. We will prove that there is a path in & from o to §.
Let-r = H*(z, B), so r<e. Then for any #e [0, r], it'is clear that
HY{K(4): Adea},q)<r<E.

Thus we can define a path f: -[0, r] —» B by f () = &(a, 1), where & is the map from
Lemma 4.1. Let y.= f(r) = {K(4): A €a}. Since f (0) = «, fis a path from « to y.
‘We will complete the proof by showing that there is also a path in 48 from Btoy.

The pictur.c abové illustrates the strategy. We begin the construction by proving
that there is a segment from ) to y. It'is an elementary exercise to show that

H*a, f) = r implies -that H(Nea, NP)<r. It is also obvi
o 4 =TI ous that = .
Thus -we have _ ) . at 1y . K(Ne).

@) NB<=Ny.

Now let C be any component of [y and let ¢ be any element: of C. Since
7 = E{N«), there exists some a e e such that d(a, c)<r. Lot

D= {xeX: da,x)<r}.

As was noted i‘n‘Section 2, since d is a convex metric, D is arcwise connected. M‘ore-'.
over, by definition DeX,(Ne) = Ny, so. D<C. But since H(No, )<, there

e ©
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exists some b e (\f such that d{e, by<r and, thus, be C: Since C was arbitrary,
we have BERER SRR

(b) Each component of (y contains some point of Ns.

Therefore, by Lemma 2.7, it follows from (a) and (b) that there is some segment
o € S,(2¥) such that ¢(0) = Af and «() =Ny - T

Define a map g: [0, 1]~ I'(2") by g(ty = {s(t) v B: Be f}. The continuity
of g is obvious and it is easy to use Lemma 2.4 to verify that, for each r & [0, 1},
g(t) is indeed an element of %), Moreover, for any ¢€[0,1] and any A&
o()cye K (4). Thus it follows that if Aea and Be§ such that H(4, B<r,
then H(A, o(t) © B)<r. Therefore, it is clear that H Y, g (1)<, that is, g (1) & &,
for each £ € |0, 1]. Finally, note that g(0) = 8 and, although g(1) need bot be the
same as 7, we have Ng() = N7 : < '

Define & map 4: [0, 11—+ I'(2%) as follows: Let # be any homeomorphism of
[0, 1] onto y such that A(0) = Ny and k(1) = Uy, and let

B = ) sty o ) v B Bef}. L

It is again routine to prove that k is continuous and that k(t) € # for ecach te [0, 1].
Note, moreover, that #(0) = g(1). Finally, it is an easy exercise to show that
H%(x, p) = r implies that |J f< KU «). Then, since EfUw) = Uy = n(L), it follows
that (1) U B = (1) for each Bef and hence h(1) = y. :

Therefore, the maps ¢ and 4 can be used to define the desired path in '@ from B
toy M . . ‘ o ‘

‘We now combine our previous results to conclude that the spaces of order arcs
are locally conmected (in fact, are AR's) precisely when X is a Peano continuum.

43, Turorem. Let X be a continuum. The following are equivalent:

(a) X is locdlly connectéd. - ) o

(b) I'(2%) is locally connected.

(c) I'(2*) is an' AR. Csad

“(d) T(C(XY) is locally connected.

&) I'(C(X)) is an AR~ . . .

Remark. Theorem 5.2 in the next section will allow us to add to this list of
‘equivalent conditions the following: . - S o - )
() I'(2%) is a Hilbert cube.. .. " ‘ ‘ . .

Proof of theorem. Statement (a) implies statement (b) by Lemma 4.2. State-
ment (b) implies staternent (¢} as 8 consequence: of Thearem 1.2 and Lemma 3.3.
Statement (c) implies statement (a) as a consequence of Theorems 2.2 and 1.2,
Therefore, (a), (b).and (¢) are: equivalent. T ;

Together (a) and (¢) imply (e) as a-consequence of Corgllary 3.2. Clearly,
(e) implies (d). Finally, (d) implies (a), again as:a.consequence of Theorems. 2.2
and 1.2, M SRRV EE A A

5. r25a Hilbert cube. The following lémna isused in the proof of Theorem 5.2.
The proof of the leama is. an adapiation of [6; Lemma 5:4] and [15; Letma 4.2).
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5.1. LemMA. Let X be a Peano continuum and let Y be a closed subspace of X
having non-empty interior, Then
- 309 = (2e T@9: Yo}
is a Z-set in I'(2%). If Y contains no free arcs in X, then

Y{C(X)) = {ae T(CX)): Yo}
is a Z-set in I'(C(X)).
Proof. Suppose finst that ¥ contains an arc J which is free in X, Wlthout loss
of generality we assume that X has a convex metric and that J is isometric to the i in-

terval [—1, 1]-with the usual metric; o, in order to simplify notation, we identify J
with this interval, Let

M={4e2": 0¢4 and An[-1,1] £ ).

For each deM, 1f An[-1,0] # O, let .a~ =supdn[-1,0], and if
Anlo, 1] # @, let a* =infd [0, 1]. The following defines a map f: M — 2%,

. {a*} if Adn[-1,0] =0
F(4) =4{a"} if 4n[0,1]=0
et e} i An[~1,00% 8= 4n[0,1].
Now let N == {(4, Bye2*x2%; AcB}. It is easy to verify that the following defirics

a map g: N— 2% Whenever A [~1,1]% @, ket t = inf{|si: se 4 A [—1, 133
Then let

2 » fAdn[=1,1]=0

_ _JBu if <<,

S4B =35 (i) o =1, 12211, 1-21) if 0<r<},
Bul~1, 1DN(=1,1) if£=0

Note that, for every 4e2¥, J£g (4, 4). Now define a map k: FE—I 2Ny (2%
by )
By ={g(nB,B): Bep}.

It follows easily from Lemma 2.4 that, for any fe I (2%), h(B) is indeed an element
of I'(2%), and it follows from the definition of g that A(B) ¢ I'y(2¥). The continuity
of A follows from the continuity of § and of the map which takes g to B [13,
(1.203.3)]. Finally, given any £>0, it is clear that J can be chosen sufficiently small
that /4 is within & of the identity map on I'(2%), We have thus proved for this case
that I'y(2%) is a Z-set in I'(2%).

Now consider the case that Y contains no free arcs in X. It is then shown in the
proof of [6, Lemma 54] that, given 2>0, there is a map g: 2% = 2X\2%, where
2% = {4€2¥: Y<Ad}, such that '

(1) if A< B, then g(A)cg(B),

{2) if Ae C(X), then g(4) e C(X), and
“ {3) g.is within & of “the identity on 2%.

icm
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Then a map k: I'(2¥) ~ F(2XINT(2%) is defined by - .
h(p) = {g(B): Be
It follows from (3) that & is within ¢ of the identity on I'(2*). Furthermore, it follows
from (2) that h(I'(C(X)))=T(C(X)), so the restriction A|reex, provides a map
I(CX) — F(CNT(C(X)) which is within & of the identity on I'(C(X)). M

Ideas used in the proof of the following theorem aré similar to those used in [1 6]
to give a proof of the Curtis-Schori hyperspace theorem.

5.2, THEOREM. Let X be a Peano continuum. Then F(ZX)~ Q and, lf in addition X
contains no free arc, then T'(C(X))= Q.

Proof. In view of Theorems 2.9 and 4.3, it suffices to prove the following:
Given >0, there exists a Z-mapf: I'(2%)— I'(2%) such that, for any ¢ e T (2%),
HY (o, f () <e.

. Assume that the metric d for X is convex. For given >0, define f to be
F(@) = {Kys(4): A€} By Lemma 4.1, 1 is continuous. It is also clear that, for
any ael(2%), H¥o,f(@)<2/3<e Since d is convex, f[I(CG)]=T(CX)).
Finally we will show that f and f|I'(C(X)} are Z-maps, that is, their images are
Z-sets in I'(2¥) and I'(C(X)) respectively.
There exists a finite set {x,,...,x,}JcX so that the set of closed balls
={xeX: dlx,x)<e3}, i=1,..,n covers X. By Lemma 5.1, I'p{2%) is
a Z-set in I'(2%) for each 7, and, if X contains no free arcs, F,,,(C(X)) is a Z-set
in T(C{X)). Leta & ['(2¥) and Jet 2 & M. Since {B;} covers X, there exists some i such
that d(a, x)<e3. If xeB;, then d(x, d)<2ef3, hence B;cKo,pn(Ne) = £ ().
Therefore, since % was arbitrary, f [I'(29)]aI'5,(25) U ... U [y (2%). In like manner
[F(C(X))]cFBI(C(X Y U .. uTg (25). Since a closed subset’ of a finite union
of Z-sets is again a Z-set (see [3, Theorem 3.13), [T (2%)] is 2 -Z-set in I'(2%) and,
if X contains no free arcs, f[I'(C(X))] is a Z-set in I'(C(X)). M

By Theorem 4.3, if X is any.Peano continuum, then- F(C(X)) is an AR. The-
orem 5.2 gives a sufficient condition for I'(C(X)) to be a Hilbert cube. The following
example indicates that I'(C (X)) is not a Hilbert cube for every Peano continuum X.

53. EXAMPLE. Let S*.be the umit circle S§* = {(x,y)eR’: xi+y* = 1)
Then I'(C(SY)= Q.

Proof. 1t is well known that for any ge Q, {q} is a Z-set in . Thus it suf-
fices to 'show that {{§*}} is not a Z-set in I'{C($*)). The function g: T(C(S?))
— Fy(C(SY) defined by g(¥) = {7} is continuous [13, (1.203.3)]). Hence, for any
given £>-0, there exists some §>0 such that if y € I'(C(S?)) and H3(y, {4}) <3 for
some 4 € C(SY), then H*(g(y), y)<e. Now suppose {{S'}} is a Z-set in I'(C(S")).
Then, for § as above, there exists a mapping /% I'(C(S*)—T(CESIN{S*}}
such that f is within & of the identity map on I'(C(S™). Let k be the restriction of

gof to F,(C(SY)). Note that

(1) k maps Fy(C(SY)) into Fy(CSHN{S}-

Let {A} € F,(C(SY)). Since £ is within & of the identity, H2(f({A}), {4} <?.
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Hencé, taking y = f({4}), we have from the definition of & that H Ha(y), v) <.
Thus, by the triangle inequality, H(k({d}), {4})<e+d. Hence

(2) k is. within g+44 of the identity of F,(C(S")),

- Finally, recall that

(3) F(C(SY) is naturally isometric to C(sh. .

Since ¢ and & may be chosen as small as we please, we see from (1), (2) and (3)
that {S'} is a Z-set in C(S). But it is well known that C(5%) is a 2-cell with S,
as a point of C(SY), in its interior (see [13, (0.55)]). Thus {S7} cannot be a Z-set
in C(SY) {8, VI 2, p. 75]. The contradiction proves that I'(C(S*)® Q.
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A éeﬁeralization of a theorem of Skala
by

Helmut Liinger (Vienna) .

Abstract. Let n21, let (4, ) be some algebra of type n+1 satisfying
(@) S (F{X0s ves Xy Fig eees P) = F (s S o1, D1, ey I),s o ,f(xn,yl, oy 2)) FOT 81 Xay vy Fms
Prser Yn€A
and put

= {xe Al f(x,x,...,x) = x for avy x, ..., X € A},
SiM) = {xe 4] f(x, X1, 00, Xn) = x; for any xy, .., 2 €M} (I€i<n, MCA)
and
S(M) = S(M)u...u SalM) (MCA).
The following-result of H. Skala (cf. [1]) is generalized:

TreoREM 1. Let [C132 3 and assume f(%q, ooy Xn} € {X0, i, Xn} JOr any Xo, ..., xn€ d. T a.e.0

0)-ae A\C.
(i} ae S(Cu {a}).

Inthe followmg if xe 4 orif xS A then x(i)} denotes the sequence x, % of
length i (1<i<n). ‘

LemMa 1. Let B A satisfying

O fix,y,..,)) =x for any x,ye B
and let a€ A such that (o) and (f):

() fa,x,..,x) = x forany xeB.

® f(a, B(i~1),a,B,..,B)sB U {a} for my i =1,..,n

Further let a, ..., a,, b, by, ...,b,€ B and assume f(a, ay, ..., a,) = b. Finally,
suppose by = b whenever a, = b (1<i<n). Then f(a, by, .., b) = b.

Proof. We prove ¢; = f(a, by, ., By dpyqy ooy @) = b for any i =0,...,n
by ifduction on i. ¢, = b is our hypothesis. Now, let 0 <j<# and suppose Ciy = b
to be already proved. If ¢, = b then b; = b = a; whence ¢; = b. If, otherwise,
a, # b then f(f(a, by, ey byuy, 4,541, vers )y Gy ws@)) = b by (), (b) and (&)
whence f(a,byy ..., bj_y, 8, dpyq, ..., @) = b by (P), (¢) and (b) and therefore

=f(f(a, bl) -":b:)—l’as‘al;'+1) L] an): bj: (LR} b]) =f(b, bj! v bj) 2 b
by (a), (b) and. (o).

|
]
.
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