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 Spaces of Polygons in the Plane

 and Morse Theory
 Don Shimamoto and Catherine Vanderwaart

 1. INTRODUCTION. The side-side-side theorem of high school geometry states
 that, if the corresponding sides of two triangles have the same lengths, then the
 triangles are congruent. In other words, after an appropriate sequence of rotations,
 reflections, and translations, either triangle can be placed exactly on top of the other.
 If one imagines physically moving around triangles while remaining in the plane, then
 only the orientation-preserving motions-rotations and translations-are available.
 For instance, any triangle having side lengths 2, 3, and 4 can be translated and rotated
 into one of the two positions in Figure 1.

 2  3

 4

 4

 2  3

 Figure 1. The two triangles of side lengths 2, 3, and 4.

 For polygons in the plane having more than three sides, the lengths of the sides no
 longer determine the polygon. For example, a quadrilateral required to have all sides
 of equal length can take the shape of an infinite number of noncongruent rhombuses.

 In this article we think of polygons having prescribed side lengths as forming a
 "space." For triangles, the space consists typically of two points, which represent a
 specific triangle and its mirror image. But for multisided polygons, the space is more
 complicated and more interesting. Indeed, according to recent results, many (and, in
 some branches of mathematics, all) important spaces are topologically equivalent to
 generalized versions of spaces of polygons. (See the last paragraph of the introduction

 for elaboration on this point.)
 To formalize this, let positive real numbers £\, 2 ...* * * , be given, where we always

 assume that n > 3. These will be our side lengths. For convenience, we write i=
 (i\, e2 ... , 4n), a vector in R". We describe a polygon by listing its vertices. Thus the
 set of all planar polygons having prescribed side lengths is given by:

 P(t) = {(Pi, P2 . .. , Pn) E (R2)n : P2 - Pl = 1, IP3 - P21 =2, . *.

 IPn - Pn-11 = n-1, \Pl - PnI = in}.

 A representative element of P( ) is shown in Figure 2.
 The elements of P( -) are also called closed chains or polygonal linkages. The

 space of polygons P( - ) is easy to write down and convenient to work with in this
 form, but the convenience comes at a price. Namely, the term "polygon" must now be
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 Figure 2. A polygon in the plane with side lengths £l, £2,..., n.

 taken somewhat loosely, since the definition of P( -) allows some of the vertices to
 coincide and the edges may intersect at points other than vertices.

 Two polygons (p, ..., p,) and (q, ...., q,) are called equivalent if there is a com-
 position a of rotations and translations of the plane that takes one onto the other, that

 is, a(pi) = qi for all i. One can then consider the set of equivalence classes; this is
 called the moduli space of polygons with side lengths i\, ..., n,. Alternatively, after a

 translation and rotation, any polygon may be placed so that one vertex, say pi, is at the
 origin and an adjacent side, say the one connecting pi and p,, lies along the positive

 x-axis. Thus the set of equivalence classes is represented by the subset of P( i) given
 by:

 M( ) = {(p, ,..., n) eP():p= (0, 0), pn = (n, 0)}.

 It is in this form that we will work with the moduli space.

 The purpose of this article is to study the topology of M ( T). For instance, gener-
 ically, it is a smooth orientable manifold. The approach is to consider a larger space in

 which in is allowed to vary while i1,..., in-1 remain fixed. The individual M(7*)
 then appear as strata parametrized by e,. The changes in these strata as in varies can
 be tracked using some basic principles from Morse theory that show how to use crit-
 ical points of functions of several variables-maxima, minima, saddle points, and the
 like-to obtain information about the topology of manifolds. The idea to use Morse
 theory to study configuration spaces of linkages is well known (see particularly Haus-
 mann [7] and also Kapovich and Millson [11] and Milgram and Trinkle [17]). The
 main general results in this article are contained in these references, but the arguments

 here have been simplified so that, for the most part, they follow from standard parts
 of the upper-level undergraduate mathematics curriculum. The paper concludes by ap-
 plying the results to an example-the topology of spaces of pentagons-in which the
 answers and methods can be visualized easily. For instance, we recover the fact, ob-
 served by several authors, that the space of equilateral pentagons is topologically a
 surface that is like a torus, only with four holes instead of one.

 This material was developed as background for a problem on which we had be-

 gun to work in the summer of 2002. The intent of the article is that it be accessible

 to advanced undergraduates, say those who have studied algebra and analysis, includ-
 ing an introduction to manifolds (e.g., the material that usually precedes the statement
 of Stokes's theorem). Indeed, part of the appeal of the topic is that it provides a sit-

 uation in which so many "textbook" techniques can be applied. The only pieces of
 background material that do lie outside the standard undergraduate curriculum are the

 principles from Morse theory alluded to earlier, so these are introduced and explained
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 as we go.' In general, the paper is written as an extended calculation with expository
 review material interspersed as necessary.

 Finally, to provide some context, it might be worthwhile to mention a few places

 where related spaces have appeared fairly recently. (The following sampling is not sys-
 tematic. For a thorough survey, see Connelly and Demaine [4].) For instance, suppose
 that one restricts one's attention to honest polygons, that is, the vertices are required
 to be distinct and edges can intersect only at common endpoints. Then there is the
 recent theorem of Connelly, Demaine, and Rote that states that any polygon can be
 continuously deformed (or "unfolded") into a convex one [5]. This has implications in
 robotics. Or, leaving the plane, the moduli space of polygons in R3 has a symplectic
 structure, which opens up a stable of new techniques, including some from algebraic
 geometry. This has been used by Kapovich and Millson [12] and Hausmann and Knut-
 son [8], among others. One can also study polygons in manifolds other than Euclidean
 space, where distances between vertices are measured along the manifold. One of the
 early examples of this is the work of Kirk and Klassen [15], who studied certain repre-
 sentations of the fundamental groups of a type of 3-dimensional manifold and showed

 that these representations correspond to polygons on a 3-dimensional sphere.

 Returning to the plane, one might allow linkages that are not necessarily polygo-
 nal, in other words, sequences of points where the distances between certain points
 are prescribed but the edges need not form a polygon. In this setting, Kapovich and
 Millson proved a universality, or realization, theorem that shows that moduli spaces of

 linkages are really quite common. To state their result, suppose that X is a compact
 real algebraic set in R" (i.e., the locus of zeroes of a polynomial in n variables with
 real coefficients). Then there exists a planar linkage whose moduli space is homeomor-

 phic to a union of disjoint copies of X [13]. King showed that, if one allows linkages
 in which the distances between some vertices are permitted to vary up to prescribed
 maximum values and the positions of some vertices may be fixed, then there exists a
 linkage whose moduli space is homeomorphic to X on the nose [14]. In particular, this

 is true for any compact manifold X. These results provide a resolution to questions
 that had remained open for over a hundred years.

 2. PRELIMINARY EXAMPLES. We begin by examining a couple of concrete ex-
 amples in order to clarify what a moduli space of polygons is and to introduce the types
 of questions in which we are interested. Triangles were discussed in the introduction,
 so let us consider here an example involving quadrilaterals, say the moduli space of all
 quadrilaterals with side lengths £~ = 5, £2 = 3, £3 = 1, and £4 = 8. In keeping with
 our conventions, p\ = (0, 0) and p4 = (8, 0) are fixed, so only p2 and p3 are allowed
 to vary. Since £i = 5, P2 is constrained to be on the circle of radius 5 centered at pi.
 It can't be just anywhere on this circle, however: it is at most £2 + -3 = 4 units away
 from p4. Hence p2 is restricted to lie on an arc subtended by an angle going from,
 say, a radians above the positive x-axis to -a below. If p2 happens to be one of the
 endpoints of this arc, then p2, p3, and p4 are collinear. For all other locations of P2,
 there are exactly two choices of p3 satisfying £2 = 3 and £3 = 1, situated symmetri-
 cally about the line through P2 and p4. One might imagine p2 sliding from the top of
 the arc to the bottom and then back up, tracing with it a sequence of quadrilaterals as
 in Figure 3. (In the figure, the two possibilities for p3 for a given location of p2 appear
 horizontally opposite one another.)

 A few observations are immediate. First, in constructing these quadrilaterals, there
 is essentially one degree of freedom-as we have presented it, it is the location of p2

 1The amount of Morse theory needed is small. A reader seeking a fuller treatment of this material, including
 proofs, can find it in the first thirteen pages of Milnor [18].
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 P2

 5 3

 a P3 1
 P = (0,0) 8 P4= (8,0)

 -a!

 Figure 3. The moduli space of quadrilaterals with £1 = 5, £2 = 3, £3 = 1, £4 = 8.

 along the arc. In other words, the moduli space M ( ) is one-dimensional. Second,
 by interpolating between the quadrilaterals shown in Figure 3, any quadrilateral in the
 moduli space can be continuously deformed into any other. Since each quadrilateral
 represents a point in M ( ), this means that, as a topological space, M ( ) is con-
 nected. Finally, every quadrilateral in the moduli space appears somewhere along the
 continuum suggested by the figure, so that the entire moduli space consists of a loop's

 worth of quadrilaterals. More precisely, M( 7) is homeomorphic to a circle. We have
 determined the topological type of M ( ) completely.

 We might hope to use our answer in this example to obtain information about mod-

 uli spaces for other combinations of side lengths. It seems reasonable to expect that, if

 the side lengths change only slightly, the moduli space won't change very much either.
 For example, if we decrease £4 from 8 to 7.9, the specific quadrilaterals are different,
 but the overall structure of a loop of quadrilaterals remains the same. As a general rule,
 this sort of reasoning is correct. The danger is that, after a while, small changes can
 build up into big ones, and it seems reckless to assert that the moduli space stays the
 same no matter what.

 For instance, suppose that we keep L\ = 5, 2 = 3, and 3 = 1, but let £4 = 4. An
 example of such a quadrilateral is shown in Figure 4.

 Again, there is one degree of freedom in the placement of p2, but now the triangle
 inequality implies that P2 cannot lie anywhere on the x-axis. Therefore, by the inter-
 mediate value theorem, no quadrilateral with P2 above the x-axis can be continuously
 deformed into one with P2 below the x-axis. In other words, the moduli space has
 become disconnected. It now has two components, each homeomorphic to a circle.
 Somewhere along the line, as £4 decreases from 8 to 4, something happens. We might
 try to find out what it is and where it occurs.

 Towards that end, in sections 3 and 4 we establish some basic facts about the topol-

 ogy of a moduli space of n-gons. In particular, we find its dimension. Then in sec-
 tions 5 and 6 we study techniques that provide information about how the topology
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 P2

 5  3

 P3
 1

 p =(0, 0) 4 P4 = (4, 0)
 Figure 4. A quadrilateral with 41 = 5, £2 = 3, 3 = 1, 4 = 4.

 can change as the side lengths vary. In section 7 we apply this to spaces of pentagons,
 where it is not so easy to determine intuitively what the moduli spaces should be, yet
 the answers turn out to be tangible geometric objects. We'll see examples in which we

 can predict how the moduli spaces morph into one another as the side lengths change.

 We encourage the reader to follow that discussion by returning to the present section
 to work through the corresponding details for quadrilaterals.

 Before we can do any of this, however, we must develop the appropriate theoretical
 background. It is to this task that we now turn.

 3. POLYGONS WITH ONE VARIABLE SIDE: THE SPACE OF ARMS. The

 techniques described in this article apply to smooth maps. In this section and the next
 we show that the spaces in which we are interested are smooth manifolds, so that
 the techniques may be used. (Roughly speaking, a manifold M of dimension m is a
 space that can be identified locally with Rm. That is, M can be covered by open sets,

 called coordinate patches, each of which is homeomorphic to an open subset of Rz.
 The homeomorphisms assign m-dimensional coordinates to the associated patches. A

 manifold M is called smooth if whenever two patches overlap the coordinates in one
 depend smoothly on the coordinates in the other. The degree of smoothness here can
 be made part of the structure as well, but for the sake of simplicity we always assume
 smooth maps to be of class C".)

 We begin by looking at a space larger than .M( t), namely, the moduli space of
 all n-gons in R2 having one flexible side. These are polygons satisfying the conditions
 that:

 (1) the first vertex pl is fixed at the origin;

 (2) the first n - 1 sides have prescribed lengths 1, ... , ,-1, respectively; and

 (3) the remaining side is constrained to lie along the x-axis, although no restriction
 is imposed on its (nonzero) length.

 In other words, let

 W = {(p2, p3 ., P n) e (R2) n-1 : p21 = , IP3 - P2 = 2, ...,

 |Pn - Pn-1 = en-1, Pn = (Xn,0), xn # 0}. (3.1)

 The polygon space M ( ) sits inside W as the subset Xn = -in. We refer to the ele-
 ments of W as arms and to W as the space of arms associated to M ( 7). An example
 of an arm is given in Figure 5. We prove in Proposition 1 that W is an orientable man-

 ifold, so let us review briefly the most common approach for obtaining such a result.
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 P3

 P2

 l1

 l2

 l n-1

 P n-1

 p =(0, 0) Pn = (xn, 0)
 Figure 5. An arm.

 Regular Value Theorem. Let U be an open subset of Rm, and let f: U -+ R" be
 a smooth map. Suppose that x in R" is a point such that for each p in f-l(x) the
 Jacobian matrix Df(p) has rank n. Then f-1(x) is a smooth orientable manifold
 that, if nonempty, is of dimension m - n.

 Proof. The part that f -(x) is a smooth manifold of dimension m - n is completely
 standard and is a consequence of the implicit function theorem (see, for instance,
 Munkres [19, p. 207 and Exercise 2, pp. 208-209] or A. Browder [3, p. 259], among
 analysis texts currently in use). The part about orientability is no secret either, but it
 tends to be omitted from introductory treatments, so we indicate the argument here.

 One way to orient M = f -1 (x) is to orient the tangent space TM at every point p
 in M (i.e., to find a consistent system of ordered bases for each TM). Let NM =
 (TM)' denote the space of normal vectors to M at p. It suffices to find an orienting
 basis w1, ..., wn for each of these normal spaces, since we can then define an ori-

 entation on TM by declaring that an ordered basis vl ..., ,,-n for TM belongs to
 the orientation if and only if v1 .... , v w,-n , w,.... Wn gives the standard orientation
 of Rm.

 The normal space is easier to work with than the tangent space. The function f is
 constant along M, hence the Jacobian Df(p) sends the entire (m - n)-dimensional
 vector space TM to 0. Since Df(p) has rank n, it must map the complementary
 space NM isomorphically onto R". Thus for j = 1, ..., n there is a unique wj in

 NpM such that Df(p) . wj is the standard basis vector ej = (0,..., 0, 1, 0,..., 0) in R". The vectors w, ..., w, define an orientation on NM in a canonical way. U

 A point x in R" satisfying the assumptions of the theorem is called a regular value
 of f. This includes the vacuous case where f-1(x) is empty. All other x in R" are
 called critical values of f. Similarly, over on the domain side a point p of U is called
 a regular point if Df (p) has rank n and a critical point if not.

 The regular value theorem is true for smooth maps between manifolds f: M -+ N
 as well, only now one must work locally, choosing local coordinates to convert f
 to a map between Euclidean spaces and computing the Jacobian in terms of these
 coordinates. The value of an individual partial derivative depends on the choice of

 coordinates, but the rank of Df(p) does not. Moreover, f-1(x) is again orientable if
 M is orientable.

 Proposition 1. The space of arms W is a smooth orientable manifold of dimension
 n -2.

 Proof Consider the open subset U of (R2)"-1 = R2n-2 consisting of all sequences

 (P2, P3, ... Pn), where pj = (x 1, yj) and xn i 0. The conditions (3.1) defining W as
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 a subset of U determine a function F: U -+ R" given by:

 F(p2,...,pn)

 = (IP212, IP3 - P212, ..., IPn - Pn-1 2, Yn)

 = (x + y2, (x3 - X2)2 + (Y3 - Y2)2 . , (Xn - Xn-1)2 + (,n - Yn-1)2, Yn), (3.2)

 so W = F- (2, e2,..., _, 0). (The function F is related to a function known
 in other contexts as the rigidity map; see Asimow and Roth [2], for example.) The

 proposition follows from the regular value theorem provided that (e2, -,2 ... , _, 0)
 is a regular value of F. Hence it suffices to show that DF(p) has rank n for each

 p = (p2, * *. , Pn) in W.
 Regarding the Jacobian, let us fix some notation. We view F as a function of the

 variables (x2, Y2, 3, ..., Xn, Yn) in that order. Thus DF(p) is the n x (2n - 2) ma-
 trix whose columns are the partial derivatives of F with respect to these variables.

 From (3.2) we infer that DF(p) has the form:

 2x2 2y2 0 0 ... 0 0

 -2(x3 - x2) -2(y3 - Y2) 2(x3 - x2) 2(y3 - Y2) ... 0 0

 0 0 0 0 ... 2(xn - xn-1) 2(yn - Yn-1)
 0 0 0 0 ... 0 1

 (3.3)
 Here it is convenient to group the columns into pairs and decompose (3.3) into 1 x 2
 blocks. In this form, DF(p) is the n x (n - 1) matrix whose (i, j)th entry is the block

 [ 8Fi ]Fi]
 8xj+i ayjl1 '

 where Fi denotes the ith component of F. Then the expression for DF(p) in (3.3)
 becomes:

 S P2 0 0 ... 0 0
 -(P3 - P2) P3 - P2 0 ... 0 0

 0 -(P4 - P3) P4 - P3 ... 0 0

 0 0 0 ... -(pn-Pn-1) Pn - Pn-1

 0 0 0 ... 0 e2
 (3.4)

 where e2 = [0 1].
 If there were a linear dependence relation among the rows of (3.4),

 0lP2 -02(P?3 - P2), 2(P3 - Pi) - O3(P4 - P3),..., (On-l(Pn - Pn-1) + ne2

 = (0, 0, . .. , 0)

 would hold for some scalars wl, ..., wn. Working component-by-component from left

 to right, it would follow that p2, P3 - P2, p4 - P3, ... Pn - Pn-1, and e2 were all
 scalar multiples of one another, in which case the entire arm would lie along the y-axis.
 This would imply that x, = 0, contradicting the fact that p is an element of U. Thus
 the rows of DF(p) are independent, and DF(p) has rank n, as desired.
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 4. CRITICAL POINTS OF THE ENDPOINT MAP. As noted earlier, the moduli
 space M( ) sits inside the space of arms W as the subspace with pn = (in, 0).
 Another way to get at this is to make use of the "endpoint map" g: W -+ R defined
 by:

 g(p2, . . , Pn) = Xn

 (= the x-coordinate of pn). That is, g records the position along the x-axis of the ter-

 minal point of an arm. Then M ( ) is the level set g-' (£n), so M ( ) is a manifold
 whenever ,in is a regular value of g.

 Another reason to focus on regular and critical values comes from a basic principle

 of Morse theory. This says that, as far as level sets are concerned, the critical points

 and critical values are the only places where something interesting happens. To ex-
 plain, suppose that we start with a large value of x and study what happens to g- (x)

 as x decreases in a continuous way. If x > 1 + " " - + ,n-1, then g- (x) is empty. If
 x = 1 + ... + n-,1 (= the maximum value of g), then g-' (x) is a single point, corre-
 sponding to the arm's being fully extended to the right. For x immediately below the
 maximum, g-'(x) turns out to be homeomorphic to an (n - 3)-dimensional sphere,
 as we shall see. As x continues to decrease, the level sets may become more com-
 plicated, but Morse theory says that they remain diffeomorphic to one another except
 when x crosses through a critical value. In particular, between any two consecutive
 critical values, the level sets g-' (x) are all topologically the same. Right at a critical
 value, a singularity appears, which is what makes changes in the level sets possible.
 Even then, however, each change is localized near a critical point. Therefore, the type

 of a particular g- (x) depends on the critical values through which a point passes on
 its way to x. We discuss the specific nature of the transitions at critical values later, but
 for now this may be enough motivation for going ahead and finding the critical points
 of g.

 Definition. An arm c = (c2, c3, ..., Cn) is called a straight line configuration if all the
 ci lie on the x-axis.

 Proposition 2. The critical points ofg are precisely the straight line configurations.

 Proof First, we show that every straight line configuration c = (2, ..., Cn) is a crit-
 ical point. To do this, we choose local coordinates for W in a neighborhood of c and
 compute the Jacobian of g in terms of these coordinates. Since g is real-valued, be-
 ing a critical point is the same as the Jacobian's having rank zero (i.e., being the zero
 matrix). Thus we want to show that all the partial derivatives of g = Xn are zero at c.

 To find local coordinates, we apply the implicit function theorem to the function F
 in (3.2) that defines W. Write ci = (ai, 0). As in (3.3), DF(c) can be written in the
 form:

 2a2 0 0 0 ... 0 0 0 0
 -2(a3 - a2) 0 2(a3 - a2) 0 ... O 0 0 0

 0 0 0 0 ... -2(an - an-) 0 2(an - an-l) 0
 0 0 0 0 ... 0 0 0 1

 (This is the nonblock form, where the entries are individual partial derivatives.) The
 point is that columns 2, 4, ..., 2(n - 2) are all zero. Since DF(c) has rank n, the re-
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 maining n columns must be linearly independent. These are the columns correspond-
 ing to the partial derivatives with respect to the variables x2, x3, ..., x,n-, x,, y,. Now

 recall that W is the level set F- (2, ..., _, 0). So the implicit function theorem
 says that, in a neighborhood of c within W, one can solve for x2, x3, ... , Xn-1, X,, y,
 in terms of the other variables Y2, Y3, ..., Yn-1. In other words, Y2, Y3, ..., Yn-1 may
 be used as local coordinates to describe W near c. We must show that, at the point c,

 Djx, = 0 for j = 2,.... n - 1, where Dj denotes a/ayj.
 In fact, we have:

 Lemma 3. At c, Djxi = Ofor i = 2,..., n and j = 2,..., n - 1.

 Proof Fix j, and proceed by induction on i. For any point in W, x + y2 = 2 , so
 differentiating with respect to yj gives

 2x2 DjX2 + 2y2 Djy2 = 0.

 For the straight line configuration c, x2 = a2 y 0 and y2 = 0. Hence Djx2 = 0.
 Similarly, when i > 2 consider the (i - 1)th edge. It satisfies

 (xi - Xi-1)2 + (Yi - Yi-1)2 - e' -l,
 which implies that

 2(xi - xi-1)(Djxi - Djxi-1) + 2(yi - yi-1)(Djyi - Djyi-1) = 0.

 Again, at the point c, ai = ai;_ and yi = yi-1 = 0, leaving Djxi = Djxi-1. The latter
 is zero by induction. This proves the lemma. U

 Returning to the proof of Proposition 2, we now know that c is a critical point.
 Conversely, we must show that, if p = (P2, ... , Pn) in W is not a straight line config-
 uration, then it is not a critical point. We do this by showing that x, can be taken as
 one of the local coordinates for W in a neighborhood of p. It then follows that

 ag dXn= 1=0
 at p, hence that p is not a critical point.

 To find local coordinates near p, we follow the same strategy as earlier; namely,
 we examine DF(p) and look for n linearly independent columns. The variables corre-
 sponding to the columns not chosen may then be taken as local coordinates. In choos-
 ing independent columns, we thus wish to avoid the column corresponding to x,, which
 is the next-to-last one.

 Suppose that it is not possible to do so. Then removing the next-to-last column
 necessarily drops the rank of DF(p) to n - 1. The resulting matrix S has the form

 P2 0 ... 0 0
 -(P3 - P2) P3 - P2 ... 0 0

 0 -(P4 - P3) ... 0 0
 S-2

 0 0 ... Pn-1 - Pn-2 0
 0 0 ... -(pn- Pn-1) yn - Yn-1
 0 0 ... 0 2
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 This is the block form (3.4), except that the entries in the last column here are scalars

 rather than vectors in R2. By assumption, the n rows of S satisfy a nontrivial linear
 dependence relation:

 1P2 - 02 (p3 - P2), .... wn-2(Pn-1 - Pn-2) - n-1(Pn - Pn-1),

 n-(yn - yn-) + -n = (0, .. , 0)

 for some scalars 01, ..., con. If all of w1, ..., o n-1 are 0, then so is wn. Since the rela-
 tion is nontrivial, this cannot be. Accordingly, at least one of Cl ,...., ,n-_ is nonzero.
 As in the proof of Proposition 1, it follows that P2, P3 - P2, ... , Pn - Pn-1 are all
 scalar multiples of one another; in other words, p is a straight line configuration, con-
 trary to assumption. The contradiction shows that, even with the x,-column removed,
 DF(p) still has rank n. Hence x, can be taken as one of the local coordinates near p,
 completing the proof of Proposition 2.

 It is now immediate that, generically, our moduli spaces of polygons are manifolds.

 Corollary 4. Let M (7 ) be the moduli space of polygons of side lengths L1, ..., in.
 Assume that M (i ) is nonempty and contains no straight line configurations. Then

 M (i ) is a compact smooth orientable manifold of dimension n - 3.

 For instance, this formalizes our intuition from section 2 that a moduli space of
 quadrilaterals is one-dimensional.

 Proof The assumption says that M(--) contains no critical points of g. Since
 M(7 ) = g81(L,), this means that n, is a regular value. In light of the regular value
 theorem, M (7 ) is an orientable (n - 3)-manifold. Moreover, M ( -) is compact,
 since it is a closed bounded subset of (R2)n-1 = R2n-2: it is closed as the preim-

 age of a point and bounded because every p = (P2, ..., Pn) in M(- 7) satisfies
 \Pi | ( , +- * * + n-1, for all i.

 We introduce some notation that will prove its value in what follows. Suppose that

 c = (c2, C3,..., Cn) is a straight line configuration, where ci = (ai, 0). For conve-
 nience, set c\ = (0, 0). Each of the arm edges of c lies along the x-axis. We wish
 to distinguish between those that go to the right and those that go to the left.

 Definition. Suppose that c is a straight line configuration. For i = 1, 2, ..., n - 1
 define

 S+1 if ai+l > ai,
 i -- -1 if ai+i < ai.

 (See Figure 6 for an example.)

 In this notation, ai+l - ai = ifi. Thus g(c) = a, = E n-'(ai+i - a) = i1 Ei i-
 The nonzero numbers of this form are the critical values of g. In addition, M ( 7*)
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 ^., cc = (a4, 0) c5 = (a5,0)
 c = (0,0) C2 =(a2, 0)

 Figure 6. A straight line configuration: E1 = E3 = E4 = +1, while E2 = -1.

 contains no straight line configurations if and only if In is not of the form Cin
 for any choices of Ei = ±1.

 5. THE HESSIAN. We now introduce the other principle from Morse theory that we
 shall use. Let f: U - R be a smooth real-valued function defined in an open subset U

 of Rm, and let c be a critical point of f. In calculus, one typically learns, at least for
 functions of one or two variables, that information about the type of critical point (e.g.,

 maximum, minimum, or saddle) is provided by the second-order derivatives. If f is a
 function of more than two variables, this generalizes in the following way.

 Let H(c) denote the m x m matrix whose (i, j)th entry is the second-order par-
 tial derivative (Dijf)(c). The matrix H(c) is called the Hessian of f at c. Assume
 that H (c) is nonsingular, in which event c is a nondegenerate critical point. A result
 known as the "Morse Lemma" states that, near c, f has a particularly simple canonical
 form; namely, it is a sum and difference of squares. More precisely, there exist local

 coordinates u\, ..., um in a neighborhood of c with respect to which c corresponds to
 the origin and f has the form

 f(ui, ..., Um) = f(c) ± u - u2 ± ... - Um. (5.1)
 The number of coefficients equal to -1 in this representation is called the index

 of c. As a result, near c, the level sets of f are easy to describe-they are quadric
 hypersurfaces-and their specific shape is determined by the index.

 The Morse lemma is a differentiable version of the familiar linear theorem that

 every real symmetric matrix (or, equivalently, every real symmetric bilinear form) can
 be diagonalized. (The appropriate matrix and bilinear form here are the Hessian H (c)
 and the quadratic terms in the Taylor approximation to f at c, respectively.) To review
 the algebra, let A be an m x m real symmetric matrix. Then there exists a nonsingular

 matrix P such that PAPt is diagonal:

 di

 PAPt d2 d. . (5.2)
 dm

 (In fact, P can be taken to be an orthogonal matrix, in which case (5.2) is known
 as the spectral theorem, and the diagonal entries are the eigenvalues of A.) We call
 the number of di that are negative the index of A. The connection with (5.1) is that,
 for a nondegenerate critical point c, the index of c is equal to the index of H(c) [18,
 pp. 5-8].

 In practice, it is often simpler to work with H(c) than to find a diagonalizing co-
 ordinate system u , ..., um. Thus in this section we compute H(c) for a critical point
 of the endpoint map g = xn. In the next section we discuss how to find the index, and
 then we find it.

 April 2005] SPACES OF POLYGONS IN THE PLANE AND MORSE THEORY

 c3 = (a, 0)  £3

 299

This content downloaded from 130.58.65.20 on Wed, 19 Oct 2016 15:46:08 UTC
All use subject to http://about.jstor.org/terms



 So suppose that c = (c2, ... , Cn) is a straight line configuration. As in the proof of

 Proposition 2, Y2 Y3, * * . Yn-1 may be used as local coordinates for W in a neighbor-
 hood of c. The Hessian H(c) is then the (n - 2) x (n - 2) matrix whose entries are
 the various

 82

 (Dijg)(c) = (Dijxn)(c) = (c),

 where 2 < i < n - 1 and 2 < j < n - 1. (More precisely, this partial derivative is the
 entry in row i - 1 and column j - 1.) We determine these partials by direct calcula-
 tion.

 The main idea is to proceed inductively by implicitly differentiating the equation

 (Xk+1 - Xk)2 + (Yk+1 - k)2 =

 for the kth edge of the arm, where as usual (xl, yi) = (0, 0) is fixed. Differentiating
 first with respect to yi, then with respect to yj, gives

 (Xk+1 - Xk) ' (DiXk+1 - Dixk) + (Yk1+ - Yk) ' (Diyk+1 - Diyk) = 0

 and

 (DjXk+ - DjXk) . (DiXk+1 - DiXk) + (Xk+1 - Xk)(DijXk+ - DijXk) (5.3)

 + (Djyk+l - Djyk) (Diyk+l - Diyk) + (Yk+1 - Yk)(DijYk+ - DijYk) = 0.

 Now Y2 * * * Yn-1 are the independent variables, so Diyk = 0 unless i = k, whereas
 Dijyk = 0 always holds. Moreover, at the critical point c, DiXk = 0 by Lemma 3, and
 Xk+1 - Xk = ak+1 - ak = Ekk. At c, therefore, (5.3) simplifies to

 Ek k(DijXk+1 - DijXk) + (Djyk+l - Djyk) ' (Diyk+1 - Diyk) = 0,

 giving the inductive relation

 Ek

 DijXk+1 --(Dyk+ - Djyk) ' (Diyk+l - Diyk) + DijXk. (5.4)
 £k

 (Note that Ek = ±1, SO Ek = 1/Ek.)
 Since the product on the right-hand side of (5.4) vanishes unless each of i and j is

 k or k + 1, this splits up into essentially three cases, as follows:

 (a) if (i, j) = (k, k) or (k + 1, k + 1), then DijXk+1 = -(Eki/k) + Dijxk;
 (b) if (i, j) = (k, k + 1) or (k + 1, k), then DijXk+1 = (Ek/4k) + Dijxk;

 (c) if i or j is different from both k and k + 1, then DijXk+ = Dijxk.

 Using (a)-(c), we can calculate Dijxn by backtracking until we reach Dijx1 = 0.
 Again, there are three cases to consider:

 Case 1: j = i.

 Diixn = Diin-1 = ... = Diixi+l (by (c))

 = - + Diixi (by (a))
 Li(

 Ei Ei-1 Diixi_1 (by (a))
 L, £,_
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 - -1+ Diixi (by (c))
 ei i-1

 Ei Ei-1

 i - 1

 Case 2: j = i ± 1 (i.e., ii - jl = 1).

 Di,i+lXn = Di,i+lXn-1 =... = Di,i+lXi+ (by (c))

 -- Di,i+li (by (b))

 = - + Di,i+lX1 (by (c))

 and likewise Di,i-\Xn = Ei-l/ i-l.
 Case 3: i - jl > 2.

 Dijxn = Dijxn-1 = = DijX = 0 (by (c)).

 This covers all the second-order partials. The end result is that H(c), the Hessian of

 g at c, is the following (n - 2) x (n - 2) tridiagonal matrix:

 E1E2 E2 o ... O 0
 £1 £2 £2

 e2 2 E3 e3 0

 £2 £2 £3 £3

 0o 3 63 4 . 0 0 £3 £3 £4

 S0 En-3 En-2 En-2
 -n-3 £n-2 n-2

 o 0 . E n-2 En-2 En-1
 in-2 n- n- -

 (5.5)

 6. INDICES OF CRITICAL POINTS. To apply the Morse lemma (5.1) to the level
 sets of g (i.e., the moduli spaces .M ( )), we compute the index of the Hessian (5.5).
 As before, let c = (c2, ..., Cn) be a straight line configuration with ci = (ai, 0), so

 an = g(c) = <i Eii is the corresponding critical value.

 Proposition 5. The point c is a nondegenerate critical point of g. Indeed, let N denote
 the number of edges of c that go to the right (i.e., the number of Ei among E1, ..., En-1
 that are +1). Then the index of c is given by the formula

 index(c) = N-1 if an > 0.
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 Before proving this, we present some general preliminaries on how to compute the
 index of an m x m symmetric matrix A. Recall that the index is defined to be the

 number of negative diagonal entries di after A has been diagonalized as in (5.2).
 If all the diagonal entries are positive (in which case the index is zero), A is called

 positive definite. There is a standard test for determining whether A fits into this cat-

 egory. Namely, if Ai denotes the i x i submatrix consisting of the first i rows and
 columns, then di is positive for all i if and only if det Ai is positive for all i. It turns
 out that the determinants of the A, can be used for other values of the index as well,

 though this seems to be less familiar. Perhaps the simplest way to state it is as follows,

 under the assumption that the Ai are nonsingular.

 Lemma 6. Let A be an m x m real symmetric matrix such that Ai is nonsingular for
 all i. Then there exists a nonsingular matrix P such that the following hold:

 (a) Q = PAPt is diagonal as in (5.2);

 (b) di # Ofor all i; and
 (c) det Ai and det Qi have the same sign for all i.

 The proof for the positive definite case still works, so we do not repeat it here (see, for
 example, Artin [1, pp. 242, 247]). U

 We comment at the end of this section about the case when some of the Ai are
 singular, but for now let us carry forward the assumption that they are not. Since
 det Qi = d ... di = di det Q, -, we see that di is negative if and only if det Qi and
 det Qi-1 have opposite signs. By the lemma this is equivalent to det Ai and det Ai-1
 having opposite signs. In other words, we consider the sequence:

 1, det Ai, det A2, ..., det Am = det A. (6.1)

 Corollary 7. Under the assumption that Ai is nonsingular for all i, the index of the
 symmetric matrix A is the number of sign changes in the sequence (6.1). U

 We will apply this to the Hessian H(c) of our straight line configuration momen-
 tarily, but first we need to know something about the determinants of its submatrices.
 This is provided by the next calculation.

 Proposition 8. Let B denote the following m x m symmetric tridiagonal matrix:

 ~ bl + b2 -b2 0 ... 0 0
 -b2 b2 + b3 -b3 ... 0 0
 0 -b3 b3 + b4 ... 0 0

 B =

 0 0 0 ... b-l + bm -bm
 S 0 0 0 ... -bm bm + bm+1 _

 Then

 detB = m+l "'bi"bm+l,
 where "^" means "omit."
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 Proof We proceed by induction on m. The result is clear when m = 1 and m = 2. For
 m > 2, expand the determinant along the last column and use induction:

 det B = (bm + bm+1)bl..bi..bm

 -b2 b2 + b3 ... 0 0

 + bm det ..
 0 0 ... bm-2 + bm-1 -bm-1

 0 0 ... 0 -bm
 Then expand along the bottom row of the second term, again using induction, and
 simplify:

 det B = (bm-bm+l) b bi " bm - b2 bl 1.. . b -. . bm1i i=1 i=1

 m m m-1

 =bm bl .b. - ibm + Lbi bi- bm+bl - bm bl bi-bm i=1 i= 1 i= 1

 m

 =bb + b', "bi" bm+\
 i=1

 m+1

 = bl.bii..bm+i.
 i=1

 This paves the way for computing the index of the Hessian (5.5).

 Proof of Proposition 5. Let Hi denote the submatrix H(c)i. For the time being, we
 continue to assume that all the Hi are nonsingular. Recall that the size of H(c) is
 (n - 2) x (n - 2). We prove that the conclusion of Proposition 5 predicts the index of
 Hi correctly for i = 1,..., n - 2. Proposition 5 itself is then the case i = n - 2.

 We argue by induction on i, counting the number of sign changes in the sequence
 1, det H1, det H2, ..., det Hi. By Proposition 8 and (5.5) the determinants of these var-
 ious submatrices are given by

 detHj = (.- )"(- ( )
 = (- e "1) ' .l(-(

 (6.2)
 j+1

 = (-1) aj+2.

 (We have again made use of the fact that Ek = 1/Ek.)
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 If i = 1, then

 det H1 = a3

 Hence the 1 x 1 matrix H1 has index 1 or 0 according as 6162a3 is positive or negative.
 If a3 > 0, then either E1 and 62 are both +1, in which case index(Hi) = 1 and N = 2,
 or one of E1, 62 is +1 and the other is -1, in which case index(Hi) = 0 and N = 1.
 (The case 61 = 62 = -1 is impossible: both edges can't go the left when a3 > 0.)
 Similarly, if a3 < 0, either e1 = 62 = -1, so index(H1) = N = 0, or 61 and E2 have
 opposite signs and index(H1) = N = 1. The upshot is that the formula in Proposition 5
 gives the correct index in each of these cases.

 Assume inductively that the proposition is correct for Hi_ . The question of whether
 the sign changes from det Hi_ to det Hi depends on the recurrence relation between
 these determinants. By (6.2) this is:

 Ei+1 ai+2
 det Hi =-- det Hi-1. (6.3) ei+1 ai+1

 Thus, in going from Hi-_ to Hi, the index will either go up by 1 or stay the same
 according as 6i+lai+2/ai+l is positive or negative. Recall that E6i+ records whether the
 edge from ai+1 to ai+2 goes to the right or left.

 Again we break everything down into cases depending upon the signs of ai+l and
 ai+2:

 Case 1: ai+1 > 0 and ai+2 > 0. In this case, by (6.3) the index goes up if and only
 if Ei+, = +1 (i.e., if and only if N increases by 1). Since the proposition is correct for
 Hi-l, it remains correct for Hi.

 Case 2: ai+l < 0 and ai+2 < 0. This is identical to Case 1.
 Case 3: ai+l < 0 and ai+2 > 0. Here 6i+1 must be +1, so by (6.3) the index does

 not change. If there were N edges going to the right before, there are N + 1 of them
 afterward, and the index in both cases is N, as it should be.

 Case 4: ai+l > 0 and ai+2 < 0. This is similar to Case 3, only now ,i+1 = -1, the
 index goes up by 1, and the number of edges going to the right remains the same. If
 there are N such edges, the index would be equal to N - 1 before by induction, then
 would increase to N afterwards, again in accordance with Proposition 5.

 Thus Proposition 5 is correct in all cases. This completes the proof, except for the
 assumption that Hi is nonsingular for all i. By (6.2) this is equivalent to assuming
 that a3, a4, ..., an are all nonzero. In fact, the terminal endpoint an is required to be
 nonzero by definition of an arm. Thus Hn-2 = H (c) is always nonsingular. In particu-
 lar, this justifies the assertion that c is nondegenerate.

 It is possible, however, that some of the intermediate ai are zero. If this happens, at
 least two fixes are available. On the algebraic side, one can use the fact that, if some
 of the determinants in the sequence (6.1) are zero, but never two in a row, then the
 zero terms can be omitted and the number of sign changes still equals the index. This

 is stated in Gantmacher [6, pp. 303-304], where it is attributed to Gundenfinger. The

 drawback to this approach is that one can no longer simply cite the standard proof for
 positive definiteness. In any case, for a straight line configuration c the edges of the

 arm have nonzero length, so no two consecutive ai are ever zero. Hence the modified
 criterion for computing the index applies. After further bookkeeping (i.e., more case-
 by-case analysis), one can check that the previous arguments still go through.

 Perhaps a more appealing alternative is that W is invariant, up to diffeomor-
 phism, under permutations of the prescribed lengths. Specifically, any point p =
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 (p2, P3, ..., Pn) of W determines edge vectors v1 = P2, v2 = P3 - P2, ..., Vn-1 =

 p, - pn-1. But conversely, these vectors determine p as well, since pi = _-l vj for
 all i. Thus W may be described as the set of all (vl, v2, ... , ,n-1) in (R2) n-1 such

 that Ivli = i, Iv21 = e2, . .. Ivn- I = n-1, and ZE = vj is a nonzero vector along the
 x-axis. This last condition is preserved under permutations of the indices.

 In other words, suppose that o is a permutation of 1, 2, ..., n - 1, and consider the

 side lengths ea,(1) ... G(,-1) in that order. If W' denotes the space of arms associated
 with this sequence, then permutation of the vj gives a diffeomorphism 5: W -+ W'.
 Moreover, W' has its own endpoint map g': W' - R, which is invariant under a (i.e.,
 g = g' o a). It follows that any critical point c of g corresponds under a to a critical
 point c' of g' having the same index.

 Now let c = (c2, ... , C) be a critical point of g, possibly with some ci with i 7^ n
 at the origin. If a, > 0, then there is a net displacement to the right along the arm.
 Permute the edges so that all the ones to the right come first, followed by those going
 to the left. If a, < 0, put all the edges to the left first. In this way, we obtain a new
 critical point c' in W', none of whose intermediate vertices c\ are at the origin. By the
 arguments already given, Proposition 5 is valid for c' and, since permutations affect
 neither the index nor the number of edges pointing to the right, it is valid for c as well.

 7. SPACES OF PENTAGONS. We apply the preceding results to study a particular
 class of polygons, namely, pentagons. The reason for singling out this case is that,
 as long as it contains no straight line configurations, a moduli space of pentagons is
 a compact orientable manifold of dimension two (i.e., a surface). This follows from
 Corollary 4. Since there is a classification theorem for surfaces, the Morse-theoretic
 information that we have presented can be interpreted in precise topological ways.

 (For polygons with more than five sides, the Morse theory approach is still useful, but
 more sophisticated tools from topology are needed to interpret the information.)

 Thus let five positive numbers £1, 2 .. * * , 5 be given, and assume that is is not of

 the form i4, ii for any choice of Ei = +1. Let W be the associated space of arms,
 and let g: W - R denote the endpoint map. Then W is a 3-dimensional manifold, £5

 is a regular value of g, and M( ) = g-1 (£S).
 As discussed in section 4, the strategy is to examine the level sets g- (x) as x de-

 creases from some large value to 15. For this, we may assume that x is always positive.
 The topological type of the level sets can change only when x crosses through a critical

 value. So suppose that y is a critical value, say y = g(c) = i=1 Ei1i for some critical
 point c = (c2, ... , 5) in W. By the Morse lemma (5.1) there are local coordinates
 u1, u2, and u3 in a neighborhood of c in which c is the origin, g has the form

 g = y u± u± u,

 and the number of negative squares is the index. Hence, for values x near y, the level

 set g -(x) looks like y u2 u2 u = x, or

 ±uu u± u = x - y, (7.1)

 locally near c.
 For instance, suppose that c has index 3, so that g = y - u - u - u near c.

 Clearly, y is a local maximum. For this choice of signs, the level set (7.1) is empty
 when x > y, a point when x = y, and a sphere when x < y. In other words, in de-
 scending through a critical value of index 3 the change that occurs in the level sets is
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 that a sphere appears. Similarly, a critical point of index 0 signifies a local minimum,

 and crossing through the associated critical value corresponds to a sphere disappear-
 ing.

 Suppose that c has index 2. Then the level sets -u\ - u2 + uJ = x - y are quadric
 surfaces of the type shown in Figure 7. Of course, this figure displays what the level

 sets look like only within a neighborhood of c inside W. Away from the critical point,
 however, the level sets remain essentially unchanged. Thus a more global view of how
 the level sets are changing might look something like the picture in Figure 8. Referring
 to this picture, one says that, in going from left to right, a handle has been attached.

 x>y  x=y  x<y

 Figure 7. The level sets -u - u2 + u2 = x - y.

 x>y x=y x<y

 Figure 8. The level sets g1 (x) as x passes through a critical value of index 2.

 By similar reasoning, passing through a critical value of index 1 corresponds to
 removing a handle. These results are summarized in Figure 9.

 Index of

 critical point Effect on level set

 3 Sphere appears.

 2 Attach a handle.

 1 Remove a handle.

 0 Sphere disappears.

 Figure 9. Effects of crossing through a critical value.

 The various critical values g(c) = 4 i> i are easily described in terms of

 1, ..., £4. Let T - i £i£. By Proposition 5 a critical point of index 3 with positive critical value must have all four Ei equal to +1. The corresponding critical value is T.
 A critical point of index 2 has three Ei equal to +1 and the remaining one equal to -1.
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 The corresponding critical value has the form (£1 + - ' + _£4) - 2£i = T - 2£i for
 some i. Similarly, critical points of index 1 have values of the form T - 2(£i + £j)
 for distinct i and j, and those of index 0 have values of the form T - 2(£i + £j + k)
 for distinct i, j, and k.

 The topology of a given M (- ) depends on where £5 is in relation to these crit-
 ical values. By keeping track of the critical values that go by as x decreases to £5,
 one obtains a description of M (7 ) in terms of attaching a certain number of handles

 to spheres. This would determine MA( 7) completely, except for one detail: mod-
 uli spaces need not be connected. Thus, for example, attaching a handle might mean
 increasing the number of holes in the surface by one, or it might mean joining two
 previously disconnected components. Figure 10 provides an illustration.

 (a) (b)

 Figure 10. Two situations for attaching a handle.

 Fortunately, there is a simple criterion for deciding when a moduli space of poly-
 gons is connected that depends on the relation between the second and third longest

 sides and the total perimeter. An elementary ad hoc proof can be given in the special
 case of pentagons by adapting the ideas of Walker [21, chap. 2], but the techniques are
 unrelated to what we have been doing. So instead we state without proof the result in

 the general case, which is due to Kapovich and Millson [11, p. 431] and Lenhart and
 Whitesides [16].

 Proposition 9. Arrange the n terms £1, ..., n in nonincreasing order (i.e., from
 largest to smallest). Choose the second and third terms in this list; call them b and

 c, respectively. Let P = , £;. Then the moduli space M ( 7 ) is connected if and
 only ifb + c < P/2. U

 For completeness, we note that when M( 7) is disconnected it has exactly two
 components and that the elements of one are precisely the reflections in the x-axis of
 the elements of the other. Also, as stated, Proposition 9 allows the degenerate possi-

 bility that M (7 ) is connected because it is empty. There is a criterion that addresses

 this issue; namely, if a denotes the largest number among £l, ... , e, then M ( 7) is

 nonempty if and only if a < P/2 (again see [11] or [16]).
 To observe the preceding ideas in action, consider pentagons with £l = 9, £2 = 8,

 £3 = 4, and £4 = 3 for various values of g5. For the associated endpoint map g, we
 have T = 24. This is the maximum value of g, corresponding to a critical point of
 index 3. Following the process described earlier for finding critical values, the positive
 critical values of index 2 are y = 18, 16, 8, and 6, while those of index 1 are y = 10
 and 2. There are no positive critical values of index 0. So, for instance, when 5S first
 decreases below 24, the moduli space becomes homeomorphic to a sphere. It stays

 that way until £5 drops past 18, at which point a handle is attached (i.e., it turns into a
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 torus). Continuing in this fashion and making use of Figure 9 and Proposition 9, one
 obtains the evolution in the moduli spaces portrayed in Figure 11(a).2 (To elaborate a

 bit further on the case 8 < £5 < 10, we can repeat an argument given in section 2 to
 see why removing a handle when £5 drops below 10 leaves the two components shown.

 Namely, if 8 < £5 < 10, vertex p2 of the pentagon cannot lie on the x-axis because
 of the triangle inequality. Thus those pentagons with P2 above the x-axis and those
 with P2 below the x-axis lie in different components, and reflection in the x-axis maps
 each component homeomorphically onto the other. Alternatively, this is predicted by
 the comments following Proposition 9.)

 24 < £5 0 (the empty set)

 18 < 5 < 24

 16 <£5 < 18

 10<£5<16

 4 < £ 0 (the empty set)

 8 <£ < 10

 6<e5<8 2<£~<4

 2 < < 6

 0<5 <2 0<£ <2

 (a) (b)

 Figure 11. Two families of moduli spaces of pentagons for various s5: (a) 1\ = 9, £2 = 8, £3 = 4, £4 = 3;
 (b) £1 =£2 = £3 = 4 = 1.

 If information of this type fails to help the reader get through the day, perhaps
 an example that comes to mind more naturally is the case of equilateral pentagons,
 say with £\ = ... = £5 = 1. Here, T = 4, a critical value of index 3, as usual. The
 only other positive critical value is y = 2, which has index 2. This comes from four
 distinct critical points, one for each choice of which three of the first four edges point

 to the right. In order to reach 5S = 1, one must pass through all these critical levels.

 Furthermore, the moduli space is connected (1 + 1 < 5/2). Thus the moduli space of
 equilateral pentagons is a sphere with four handles attached (i.e., a four-holed torus)
 as shown in Figure 11(b). This reproduces a result that seems to have appeared in print

 first in the work of Havel [9], where Morse theory is applied to the critical points of an
 oriented area function.

 2For a different method of obtaining results like these, see Thurston and Weeks [20, pp. 113-116] or
 Walker [21, chap. 2].
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 For pentagons more generally, the techniques described here yield at most four
 critical points of index 2. As a result, a moduli space of pentagons can be a torus
 having at most four holes. According to the universality theorem of Kapovich and
 Millson, a torus with more holes can still be realized as the moduli space of some
 linkage; however, this linkage will not be polygonal. For a discussion of how to obtain
 such higher genus surfaces, see Jordan and Steiner [10].
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 Four Limes

 To color a globe to perfection

 That passes a rigid inspection,
 However you choose

 You need four different hues

 And a circular sense of direction.

 They say that space ends in a curve,
 And whatever goes straight there will swerve.

 It's mainly a menace
 To those who play tennis,

 Since no one can hit back a serve.

 Prodigious divisions of fractions-

 Though better than horrid subtractions-

 For you, if you fidget

 When facing a digit,
 They're not one of life's main attractions.

 The dx/dy of a sine
 Equals plus a cosine-that's fine.

 But dx/dy
 Of a cosine is sly,

 With a sign that appears out of line.

 -Submitted by Bob Scher, Mill Valley, California
 (By the author's definition a "lime" is a "clean limerick.")
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