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Abstract. We describe an alternative approach to some results of Vassiliev ([Va1])
on spaces of polynomials, by applying the “scanning method” used by Segal ([Se2]) in
his investigation of spaces of rational functions. We explain how these two approaches are
related by the Smale–Hirsch Principle or the h-Principle of Gromov. We obtain several
generalizations, which may be of interest in their own right.

1. Introduction

Polynomials and rational functions. The principal motivation for this
paper derives from work of Vassiliev ([Va1], [Va2]), in which he describes
a general method for calculating the cohomology of certain spaces of poly-
nomial functions (and more generally, “complements of discriminants”). As
his paradigmatic example, he takes the space Pdn(R) of real polynomials of
the form

xd + ad−1x
d−1 + . . .+ a0

which have no n-fold real roots (but may have complex ones of arbitrary mul-
tiplicity!) There is a “jet map” Pdn(R) → ΩRPn−1 given by f 7→ [f ; f ′; . . .
. . . ; f (n−1)], and the image of this map lies in a component Ω[d]RPn−1,
where [d] = d mod 2. One then has:

Theorem (Vassiliev). If n ≥ 4, the jet map Pdn(R) → Ω[d]RPn−1 is a
homotopy equivalence up to dimension ([d/n] + 1)(n− 2)− 1.

To say that a continuous map f : X → Y is a homotopy equivalence up
to dimension d means that the induced homomorphism f∗ : πj(X)→ πj(Y )
of homotopy groups is bijective when j < d and surjective when j = d.

It follows from the theorem that the d(n−2)-skeleton of the space Pndn (R)
realizes the first d+1 cells in the well known cell decomposition Ω[d]RPn−1 '
ΩSn−1 ' e0 ∪ en−2 ∪ e2(n−2) ∪ . . . of the based loop space of the sphere.
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Homological considerations show that Pndn (R) has no homology above di-
mension d(n− 2), so in fact Pndn (R) realizes these first d+ 1 cells exactly.

Vassiliev also considers the space SPdn(C) of complex polynomials with-
out n-fold complex roots, but states an analogue of the above theorem only
for n = 2 (and for homology groups), which gives a well known theorem of
May and Segal (see [Se1]) on the configuration space of distinct points in C.
For arbitrary n ≥ 2 one has the following theorem, whose proof we shall
give later on:

Theorem (Theorems 2.4 and 2.9). The jet map

SPdn(C)→ Ω2
dCPn−1, f 7→ [f ; f ′; . . . ; f (n−1)],

is a homotopy equivalence up to dimension (2n − 3)[d/n] if n ≥ 3, and a
homology equivalence up to dimension (2n− 3)[d/n] if n = 2.

In particular, for n ≥ 3, we have a homotopy equivalence

(1) lim
d→∞

SPdn(C)→ Ω2
0CPn−1.

Remark. We deliberately write SPdn(C)—rather than Pdn(C)—in the
complex case, because SPdn(C) is a subspace of the symmetric product
SPd(C) (the space of all complex polynomials of degree d). Note that Pdn(R)
is not a subspace of SPd(R).

To summarize, we may say that the space of real polynomials without
n-fold real roots is a model for ΩRPn−1, and the space of complex polyno-
mials without n-fold complex roots is a model for Ω2CPn−1. We shall show
later that the space of complex polynomials without n-fold real roots is a
model for (the universal covering of) ΩCPn−1, and that the space of real
polynomials without n-fold complex roots is a model for the subspace of
Ω2CPn−1 consisting of maps f : C∪ {∞} → CPn−1 such that f(z) = f(z).

Let Hold(S2,CPn−1) denote the space consisting of all holomorphic
(i.e. algebraic) maps h : S2 → CPn−1 of degree d which satisfy h(∞) =
[1; 0; . . . ; 0]. Concerning this space, one has the following theorem of [Se2]:

Theorem (Segal). For n≥2 the inclusion Hold(S2,CPn−1)→Ω2
dCPn−1

is a homotopy equivalence up to dimension d(2n− 3).

This theorem implies that

(2) lim
d→∞

Hold(S2,CPn−1) ' Ω2
0CPn−1.

Combining (1) and (2), we obtain (for n ≥ 3) the existence of a homotopy
equivalence

(3) lim
d→∞

SPdn(C) ' lim
d→∞

Hold(S2,CPn−1).
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It turns out that there is an explicit description of this homotopy equiva-
lence:

Proposition (Corollary 2.8). The jet map

SPdn(C)→ Hold(S2,CPn−1), f 7→ [f ; f ′; . . . ; f (n−1)],

induces the homotopy equivalence (3).

It was proved by Vassiliev ([Va1], [Va2]) that, if n ≥ 2, there is a stable
homotopy equivalence between SPndn (C) and Hold(S2,CPn−1). The case n =
2 of this result was first proved in [CCMM]. In [GKY2] (and independently
in [Kl2]) it was shown that these spaces are in fact homotopy equivalent
when n ≥ 3.

Broadly speaking, two methods of proving theorems of the above types
appear in the literature. One may be described as “comparison of spectral
sequences”, after defining a suitable filtration of each of the spaces con-
cerned. This was introduced in [Va1], [Va2] and independently in [CCMM].
The other uses a “scanning construction”; this method, due to Segal, was
developed in [Mc1], [Mc2], [Se2], [Bo], [GKY1], and [Gu1]. We shall use
the scanning method here to give proofs of the above results (including Vas-
siliev’s original theorem). We shall also prove various further generalizations,
which we describe next.

Equivariant homotopy equivalences. The spaces SPdn(C), Pdn(R) are ex-
amples of a more general construction. Let X,Y be subspaces of C, and
let PdY,n(X) denote the space of complex monic polynomials f of degree
d such that (i) f(X) ⊆ X and (ii) f has no n-fold roots in Y . Thus,
PdC,n(C) = SPdn(C) and PdR,n(R) = Pdn(R), and we have seen that these
spaces provide finite-dimensional models for Ω2CPn−1 and ΩRPn−1 res-
pectively.

In a similar way, we shall see that the spaces PdC,n(R) and PdR,n(C) provide
models for loop spaces (as mentioned above). Now, R is the fixed point set
of the involution θ : C→ C, θ(z) = z, and this involution extends naturally
to PdC,n(C) and PdR,n(C), and to the corresponding loop spaces. Using θ, the
four results concerning PdY,n(X) (with X,Y = R or C) can be summarized
as follows:

Theorem (Theorem 3.7). There is a θ-equivariant homotopy equivalence

lim
d→∞

PdY,n(C)→ Map(Y +, S2n−1)

(if n ≥ 4), where Y = R or C, Y + = R ∪ {∞} or C ∪ {∞}, and Map
indicates the space of basepoint preserving continuous maps.

By [JS], a G-map φ : A → B of G-spaces is an equivariant homotopy
equivalence if and only if the maps φH : AH → BH of fixed point sets are
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homotopy equivalences for all subgroups H of G. In the above theorem, G
is a group with two elements, so it has precisely two subgroups.

In [Se2], Segal pointed out that the map limd→∞Hold(S2,CPn−1) →
Ω2

0CPn−1 is an equivariant homotopy equivalence in the same way; this is
equivalent to two statements, one for complex rational functions and one
for real rational functions. In this case also we have two additional “mixed”
spaces (which were not discussed by Segal).

Holomorphic maps. Another generalization of Vassiliev’s theorem is ob-
tained by imposing “conditions of bounded multiplicity” on the polyno-
mials appearing in Segal’s theorem. If we change the basepoint condition
for f ∈ Hold(S2,CPn−1) to f(∞) = [1; . . . ; 1], then f corresponds to an
n-tuple (p1, . . . , pn) of complex monic polynomials of degree d such that
p1, . . . , pn have no common root. For m ≥ 2, we may define a subspace
Holmd (S2,CPn−1) of Hold(S2,CPn−1) by imposing the additional condition
that each pi belong to SPdm(C). The scanning construction then shows that
Holmd (S2,CPn−1) is a model for the double loop space Ω2An,m, where

An,m = {(v1, . . . , vn) ∈ (Cm–{0})n | ((v1)1, . . . , (vn)1) 6= (0, . . . , 0)}.
The space An,m is an example of (the complement of) a “subspace arrange-
ment”; the topology of such spaces has been studied intensively (see, for
example, part III of [GM], as well as [Va1]).

Segal’s method extends to the case of Hol(S2, X), where X is a toric va-
riety (see [GKY1], [Gu1], [Gu2]). By imposing conditions of bounded multi-
plicity on these spaces, we obtain many further results of the above type. In
each case, a subspace of Hol(S2, X) gives a (finite-dimensional) topological
approximation to the double loop space of the complement of a certain sub-
space arrangement. The “equivariant” results mentioned above also extend
to these examples.

The above results may be generalized in a different way by replacing
C by an open Riemann surface Σ, and S2 (= C+) by the one-point com-
pactification Σ+. One obtains (for example) an equivalence up to some
dimension between SPdn(Σ) and the space Map(Σ+,CPn−1) of based maps.
(Here, SPdn(Σ) is interpreted as a subspace of the dth symmetric product
SPd(Σ).) For simplicity we shall restrict our exposition in this paper to the
case Σ = C, referring to [Mc1] for the method of extension to general Σ
(and to open manifolds Σ of arbitrary dimension). However, it should be
emphasized that the extension to manifolds other than C appears to be an
advantage of the scanning method.

Finally, we mention that the space Hol(S2, X) may be identified set-
theoretically (although not topologically) with the space “Hol(S1, X)” which
plays a role in the Gromov–Floer theory of holomorphic curves (see for
example [Fu]). It is noted in Section 3 of [CJS] that Hol(S1,CPn−1) is
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homotopy equivalent to the universal covering space of ΩCPn−1. This fact
can be proved by the methods described here, using n-tuples (p1, . . . , pn) of
polynomials which have no common root on S1.

The h-Principle. The “scanning method” applies to all these examples
because in each case the space of polynomials involved can be identified
with a certain space of “labelled configurations”. By a labelled configuration
we mean a finite set of distinct points (usually in C) where each point z
is labelled by an element m of a fixed partial monoid M . The set of all
such labelled configurations is topologized in the usual way, except that two
labelled points (z1,m1), (z2,m2) are allowed to move towards each other
and coalesce (1), producing a new labelled point (z,m1 + m2), if the sum
m1 +m2 exists in M . More generally still, Kallel ([Kl1]) has formulated the
notion of “particle space”.

A deeper explanation for the existence of results of the above type is
suggested by Vassiliev, in terms of the Smale–Hirsch Principle. In its most
general form, this is also known as the h-Principle of Gromov (see [Gr]). The
relevant version of this principle says that—under certain conditions—the
space of maps M → N whose k-jets avoid a “discriminant variety” S in
the jet space Jk(M,N) is homotopy equivalent to the space consisting of
all sections of the bundle Jk(M,N) − S → M . We shall describe a precise
relation between the scanning method and the h-Principle. The existence
of such a relation should not be surprising, as the scanning method was in
fact based on earlier ideas of Gromov (see [Mc2]). However, the connection
with Gromov’s work has been obscured in recent years by an emphasis
(in the algebraic topology literature) on configuration spaces, so it seemed
worthwhile to explain here the original point of view. Indeed, it might be
argued that the h-Principle gives the most natural approach to all “stable”
results of the type considered here.

The paper is organized as follows. In §2 we discuss for simplicity only
the fundamental examples SPdn(C) and Hold(S2,CPn−1), and the relation
between them. Various modifications of these examples (including Vassiliev’s
original situation) are described in §3. Finally, in §4, we present the most
general situation, and we explain the relation with the h-Principle.

Acknowledgements. We thank Sadok Kallel for sending us his pre-
prints [Kl1], [Kl2], and Dai Tamaki for informing us about the work [Kt]
of Fumiko Kato. Similar results to our Theorem 2.2 were obtained indepen-
dently both in [Kl2] and in [Kt]. The first author was partially supported
by a grant from the US National Science Foundation, and the third author
by a grant from the Ministry of Education of Japan.

(1) This is somewhat different to the usual notion of labelled configuration in topology,
where M is simply a set. In that case, distinct labelled points are never allowed to coalesce.
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2. The fundamental example

Basic definitions. For any space X, we denote by SPd(X) the dth sym-
metric product of X. By definition, this is the quotient space Xd/Σd, where
the symmetric group Σd acts on the d-fold product Xd in the natural way.
An element of SPd(X) may be identified with a formal linear combination
α =

∑k
i=1 dixi, where x1, . . . , xk are distinct points of X and d1, . . . , dk are

positive integers such that
∑k
i=1 di = d. We shall refer to α as a “configu-

ration” of points, the point xi having multiplicity di.
In this section we shall be concerned with a subspace SPdn(X) of SPd(X),

defined as follows:

Definition 2.1. For n ≥ 2, SPdn(X) = {∑k
i=1 dixi ∈ SPd(X) | di < n

for all i}.
Thus, SPdn(X) is obtained by imposing a condition of “bounded multi-

plicity”, namely that all points xi (of any configuration) have multiplicity
less than n. There is a filtration

Cd(X) = SPd2(X) ⊆ SPd3(X) ⊆ . . . ⊆ SPdd+1(X) = SPd(X)

where Cd(X) denotes the space of “configurations of d distinct points” in X.
If A is a closed subspace of X, we define

SPdn(X,A) =
{ k∑

i=1

dixi ∈ SPdn(X)
∣∣∣ di < n if xi ∈ X −A

}/∼

where α ∼ β if and only if α∩ (X−A) = β ∩ (X−A). Thus, for SPdn(X,A),
points in A are “ignored”. When A is nonempty, there is a natural inclusion
map

SPdn(X,A)→ SPd+1
n (X,A)

given by “adding a fixed point in A”. We define

SPn(X,A) =
⋃

d≥1

SPdn(X,A).

As a set, SPn(X,A) is bijectively equivalent to
⋃
d≥0 SPdn(X − A) (disjoint

union), but these two spaces are not in general homeomorphic. For example,
if
∑k
i=1 dixi ∈ SPn(X,A) with x1, . . . , xk ∈ X − A, then a point xi can

move into A and “disappear”. In particular, SPn(X,A) is connected if X is
connected.

We shall usually take X to be an open subset of the complex numbers C.
Note that SPdn(C) can be identified with the space of complex polynomials
of degree d which are monic, and all of whose roots have multiplicity less
than n. (The polynomial

∏k
i=1(z − xi)di corresponds to

∑k
i=1 dixi.) In this
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special situation, there is a “stabilization map”

SPdn(C)→ SPd+1
n (C)

which may be defined (up to homotopy) as follows. If Ud = {z ∈ C | |z| < d},
it is obvious that SPdn(C) is homeomorphic to SPdn(Ud). Via this identifica-
tion, the required map

SPdn(Ud)→ SPd+1
n (Ud+1)

is defined by
∑k
i=1 dixi 7→ x +

∑k
i=1 dixi, where x is a fixed point of

Ud+1 − Ud.
The scanning construction for configuration spaces. To investigate the

space limd→∞ SPdn(C), we use the “scanning map”

sdn : SPdn(C)→ Ω2 SPn(U, ∂U)

where U = {z ∈ C | |z| < 1}. To define this, we write U(w) = {z ∈ C |
|z − w| < ε}, where ε > 0 is fixed. Let α =

∑k
i=1 dixi ∈ SPdn(C). Then the

map

sdn(α) : C ∪∞ → SPn(U, ∂U)

is defined by

z 7→ α ∩ U(z) ∈ SPn(U(z), ∂U(z)) ∼= SPn(U, ∂U).

Note that sdn(α) is a basepoint preserving map: the point ∞ is always
mapped to the empty configuration in SPn(U, ∂U).

As SPdn(C) is connected, the image of sdn lies in a connected component
of Ω2 SPn(U, ∂U), which we denote by Ω2

d SPn(U, ∂U). We shall see later (2)
that SPn(U, ∂U) ' CPn−1; it is then easy to show that Ω2

d SPn(U, ∂U) is
the “dth component” in the usual sense. The main reason for introducing
the map sdn is:

Theorem 2.2. For n ≥ 3,

lim
d→∞

sdn : lim
d→∞

SPdn(C)→ lim
d→∞

Ω2
d SPn(U, ∂U) ' Ω2

0 SPn(U, ∂U)

is a homotopy equivalence. For n = 2, limd→∞ sdn is a homology equivalence.

P r o o f. The proof is similar to the argument of §3 of [Se2]. A detailed
exposition, more suited to the purposes of the present article, is given in
Proposition 3.1 of [Gu1]. Since this is an important argument, however,
which will reappear in §4 in connection with the h-Principle, we shall sketch
the main ideas here (cf. [Mc2]).

(2) This fact, as well as our Theorem 2.2, was noted independently by Kallel ([Kl2])
and Kato ([Kt]).
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For real numbers x, y ≥ 0, let D[x,y] = {z ∈ C | x ≤ |z| ≤ y}. Consider
the commutative diagram

SPn(D[0,1], D[2/3,1]) SPn(D[0,1], D[0,1/3] ∪D[2/3,1])

Map(D[0,2/3], SPn(U, ∂U)) Map(D[1/3,2/3], SPn(U, ∂U))

r //

s1

²²
s2

²²
r′ //

in which the maps r, r′ are the natural “restriction” maps, and the maps
s1, s2 are given by scanning. (Here, Map indicates continuous maps.) The
map of the theorem is closely related to the map of fibres of the horizontal
maps. To obtain the map of the theorem one must modify the method as
explained in [Se2], but we ignore these modifications here as our purpose is
merely to explain the main points of the argument. After this modification,
the map r becomes a quasifibration. It is an elementary fact that the map
r′ is a fibration. The theorem will follow if we prove that the maps s1, s2 of
total spaces and of base spaces are homotopy equivalences.

In the case of s1, this is trivially so. To deal with s2, we shall need some
new notation. Let Rx = {z ∈ C | Re z ≥ x} and Lx = {z ∈ C | Re z ≤ x}.
Then consider the commutative diagrams

SPn(D[0,1], D[0,1/3] ∪D[2/3,1]) SPn(D[0,1], R1/6 ∪D[0,1/3] ∪D[2/3,1])

SPn(D[0,1], L−1/6∪D[0,1/3]∪D[2/3,1]) SPn(D[0,1], R1/6∪L−1/6 ∪D[0,1/3]∪D[2/3,1])

//

²² ²²
//

and

Map(D[1/3,2/3],SPn(U, ∂U)) Map(L1/6 ∩D[1/3,2/3],SPn(U, ∂U))

Map(R−1/6∩D[1/3,2/3],SPn(U, ∂U)) Map(L1/6∩R−1/6∩D[1/3,2/3],SPn(U, ∂U))

//

²² ²²
//

Both diagrams are homotopy Cartesian. There are compatible maps from
the first diagram to the second, given by scanning, one of which is the map
s2. The remaining three maps are homotopy equivalences (because s1 is).
Hence s2 must be a homotopy equivalence also, as required.

The scanning construction for algebraic maps. It is illuminating to con-
vert Theorem 2.2 to a result about polynomial functions with singularities
of a certain type. This gives the connection with the work of Vassiliev ([Va1],
[Va2]) mentioned in the introduction. We need the following definition:
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Definition 2.3. (1) For n ≥ 2, SPdn(C) denotes the space of (not neces-
sarily monic) complex polynomial functions f(z) =

∑
aiz

i of degree exactly
d such that every root of f has multiplicity less than n.

(2) For n ≥ 2, and any nonempty open subset X ⊆ C, SPn(X) denotes
the space of complex polynomial functions f(z) =

∑
aiz

i such that every
root of f in X has multiplicity less than n, and such that f is not identically
zero.

Both SPdn(C) and SPn(X) are topologized as subspaces of the space
of all complex polynomials. Note that SPn(C) is bijectively equivalent to
the disjoint union

⋃
d≥0 SPdn(C), but these spaces are not homeomorphic

because SPn(C) is connected—roots of polynomials in SPn(C) are allowed
to move to infinity and “disappear”.

There is a version of the scanning map for SPdn(C), namely

scan : SPdn(C)→ Map(C,SPn(U)), f 7→ (z 7→ f |U(z)),

(where, as in the definition of the earlier scanning map, we use the canonical
identification U(z) ∼= U). Here, Map(A,B) denotes the space of continuous
maps from A to B. The definition of SPdn(C) suggests that we consider as
well the jet map:

jet : SPdn(C)→ Map(C,Cn–{0}), f 7→ (f, f ′, . . . , f (n−1)).

We shall describe a relation between the scanning map for configurations
and these two natural maps.

The maps

p : SPdn(C)→ SPdn(C), q : SPn(U)→ SPn(U, ∂U)

given by assigning to a polynomial function its roots are the key to this
relation. It is obvious that p is a principal fibre bundle, with fibre C∗. More-
over, this is a trivial bundle because there is a section, defined by assigning
to a point of SPdn(C) the corresponding monic polynomial. Similarly, the
“fibre” of the map q is the space of all polynomials in SPn(U) whose roots
lie outside U , and this is homotopy equivalent to C∗. We claim that q is
in fact a quasifibration. This may be proved using the well known crite-
rion of Dold and Thom, as in the proof of a similar assertion in Lemma
3.3 of [Se2]. Namely, we filter the base space SPn(U, ∂U) by the number
of points in U , and use the fact that q is a (trivial) fibre bundle over each
successive difference in this filtration. The Dold–Thom “attaching map”
has the effect of multiplying polynomials with no roots in U by a fixed
polynomial z − α, where α lies outside U . Since α may be moved contin-
uously to 1, the corresponding map of C∗ is a homotopy equivalence, as
required.
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The scanning maps for SPdn(C) and SPdn(C) are related by the following
commutative diagram. (Diagrams of this type will play a central role in this
paper.)

SPdn(C) Map(C,SPn(U)) Map(C,Cn–{0})

SPdn(C)/C∗ Map(C,SPn(U)/C∗) Map(C,Cn–{0}/C∗)

SPdn(C) Map(C, SPn(U, ∂U)) Map(C,CPn−1)

scan //

²²

jet0 //

²² ²²
//

=

²²

//

'
²²

∼=
²²

The first and second columns are induced by p and q respectively. The map
jet0 is induced by the map f 7→ (f(0), f ′(0), . . . , f (n−1)(0)). Note that the
first row of the diagram is simply a factorization of the jet map SPdn(C)→
Map(C,Cn–{0}).

Taking into account the behaviour of the scanning map at ∞, we see
that the second row of this diagram gives a map into Ω2

dCPn−1, which we
denote by

jdn : SPdn(C)→ Ω2
dCPn−1.

With all the necessary preparations behind us, we can now prove our first
main result concerning this map:

Theorem 2.4. For n ≥ 3,

lim
d→∞

jdn : lim
d→∞

SPdn(C)→ lim
d→∞

Ω2
dCPn−1 ' Ω2

0CPn−1

is a homotopy equivalence. For n = 2, limd→∞ jdn is a homology equivalence.

P r o o f. Consider the above commutative diagram, in which jdn is (essen-
tially) the second row. The first part of the second row, i.e. the scanning
map SPdn(C)→ Map(C,SPn(U)/C∗), gives rise to the map of Theorem 2.2.
Hence it is a homotopy equivalence (in the limit d → ∞) if n ≥ 3, and a
homology equivalence if n = 2.

We claim that the jet map

jet0 : SPn(U)→ Cn–{0}, f 7→ (f(0), f ′(0), . . . , f (n−1)(0)),

is a C∗-equivariant weak homotopy equivalence. (This implies that the sec-
ond part of the second row is a weak homotopy equivalence, and hence that
the map in the statement of the theorem is a weak homotopy equivalence.
But each space in this statement has the homotopy type of a CW-complex,
so the map is actually a homotopy equivalence, and the proof of the theorem
is complete.) To prove the claim, we use the same direct argument as for
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Proposition 1 of [Ha] to show that the inclusion

SPn(U)→
{
f(z) =

∑

i≥0

aiz
i
∣∣∣ (f(0), f ′(0), . . . , f (n−1)(0)) 6= (0, . . . , 0)

}

is a weak homotopy equivalence. On replacing ai by tai for i ≥ n, and letting
t→ 0, we deduce that SPn(U) is weakly homotopy equivalent to

{
f(z) =

n−1∑

i=0

aiz
i
∣∣∣ (a0, a1, 2!a2, . . . , (n− 1)!an−1) 6= (0, . . . , 0)

}
.

The jet map is therefore equivalent to the map

Cn–{0} → Cn–{0}, (a0, . . . , an−1) 7→ (a0, a1, 2!a2, . . . , (n− 1)!an−1),

which is certainly a weak homotopy equivalence. Moreover, all maps here
are clearly C∗-equivariant.

Remark. A consequence of (the last part of) this proof is that the space
SPn(U, ∂U), which appears in the scanning construction for configurations,
is homotopy equivalent to CPn−1.

Segal’s theorem on rational functions. We shall give a brief description
of (the stable version of) Segal’s theorem ([Se2]) on holomorphic maps, in
the spirit of the above discussion.

Definition 2.5. For n ≥ 2, let Q(n−1)
d (C) be the space of all n-tuples

(α1, . . . , αn) with αi ∈ SPd(C) such that α1 ∩ . . . ∩ αn = ∅.
Alternatively, Q(n−1)

d (C) is the space of n-tuples (p1, . . . , pn) of complex
polynomials of degree d which are monic and coprime. The polynomials
p1, . . . , pn may be regarded as the homogeneous coordinates of a holomorphic
map F = [p1; . . . ; pn] from CP 1 = S2 = C ∪ {∞} to CPn−1. We have
F (∞) = [1; . . . ; 1] and [F ] = d ∈ π2CPn−1. Conversely, it is well known that
any holomorphic map F : CP 1 → CPn−1 satisfying the last two conditions
corresponds to an element of Q(n−1)

d (C). This means that Q(n−1)
d (C) may

be identified with the space Hold(S2,CPn−1) of such maps.

There is a natural inclusion map idn : Q(n−1)
d (C) = Hold(S2,CPn−1) →

Ω2
dCPn−1. In [Se2], Segal proves:

Theorem 2.6. For n ≥ 3,

lim
d→∞

idn : lim
d→∞

Q(n−1)
d (C)→ Ω2

0CPn−1

is a homotopy equivalence. For n = 2, limd→∞ idn is a homology equivalence.

We sketch the proof here, making only a rearrangement of the proof
given in [Se2].
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Definition 2.7. (1) For n ≥ 2, Q(n−1)
d (C) denotes the space of n-tuples

(p1, . . . , pn) of (not necessarily monic) complex polynomial functions of de-
gree exactly d such that p1, . . . , pn have no common root.

(2) For n ≥ 2, and any nonempty open subset X ⊆ C,Q(n−1)(X) denotes
the space of n-tuples (p1, . . . , pn) of complex polynomial functions such that
p1, . . . , pn have no common root in X, and such that no pi is identically
zero.

There are scanning maps

Q(n−1)
d (C)→ Map(C,Q(n−1)(U, ∂U))

(in which the definition of Q(n−1)(X,Y ) is analogous to that of SPn(X,Y ))
and

Q(n−1)
d (C)→ Map(C,Q(n−1)(U)).

The analogue of the jet map in the present situation is the inclusion
Q(n−1)
d (C) → Map(C,Cn–{0}). The analogue of jet0 is simply evaluation

at 0. The analogue of the earlier commutative diagram is:

Q(n−1)
d (C) Map(C,Q(n−1)(U)) Map(C,Cn–{0})

Q(n−1)(C)/(C∗)n Map(C,Q(n−1)(U)/(C∗)n) Map(C,Cn–{0}//(C∗)n)

Q(n−1)(C) Map(C,Q(n−1)(U, ∂U)) Map(C,CPn−1)

scan //

²²

eval0 //

²² ²²
//

=

²²

//

'
²²

'
²²

The only new feature here is that (C∗)n does not act freely on Cn–{0}; for
this reason it is necessary to use the homotopy quotient Cn–{0}//(C∗)n in
order to ensure that each vertical map is a fibration with fibre (C∗)n. (Note
however that (C∗)n acts freely on Q(n−1)(U), because of the condition that
no component of any element of Q(n−1)(U) is identically zero.)

The proof of Segal’s theorem now proceeds as in the case of Theorem
2.4. First, the map under consideration is given by the second row of the
diagram (after imposing the basepoint condition at ∞). Next, the scan-
ning map Q(n−1)

d (C)→ Ω2
dQ(n−1)(U, ∂U) is a homotopy equivalence (in the

limit d → ∞), as in Theorem 2.2. And finally, we argue as in the proof
of Theorem 2.4 that eval0 gives a (C∗)n-equivariant homotopy equivalence
Q(n−1)(U) ' Cn–{0}. (There is an additional complication in the present
situation as we have excluded from Q(n−1)(U) those (p1, . . . , pn) which have
some component identically zero. However, the removal of this infinite-
codimensional space of functions does not affect the homotopy type—see
Section 4 of [Se2].)
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Remark. It follows from the homotopy equivalence Q(n−1)(U) '
Cn–{0} that the space Q(n−1)(U, ∂U) is homotopy equivalent to the ho-
motopy quotient Cn–{0}//(C∗)n. This, in turn, is homotopy equivalent to
the “fat wedge” Wn(CP∞) of n copies of CP∞ (see Section 2 of [Se2]).

The first row of the above diagram is simply the natural inclusion map.
Thus, we have shown that the natural inclusion Hold(S2,CPn−1) →
Mapd(S

2,CPn−1) may be identified up to homotopy with the scanning map
Q(n−1)
d (C) → Ω2

dQ(n−1)(U, ∂U), which is a homotopy equivalence (in the
limit d→∞). This completes our sketch of the proof of Segal’s theorem.

Now we describe the relation between Theorem 2.4 and Segal’s theorem.
Theorem 2.4 says that a certain map

jdn : SPdn(C)→ Ω2
dCPn−1

is a homotopy equivalence (when d→∞). Theorem 2.6 says that a certain
map

idn : Q(n−1)
d (C)→ Ω2

dCPn−1

is a homotopy equivalence (when d→∞). We have a map

T dn : SPdn(C)→ Q
(n−1)
d (C), f 7→ (f, f + f ′, . . . , f + f (n−1)),

(this modification of the usual jet map ensures that the right hand side is
an n-tuple of monic polynomials of degree exactly d). All these maps are
related by the following commutative diagram:

SPdn(C) Ω2
dSPn(U) ' Ω2

dCPn−1

Q(n−1)
d (C) Ω2

dQ(n−1)
d (U) ' Ω2

dCPn−1

jdn //

Tdn
²² ²²

idn //

where the right hand vertical map is induced by the (modified) jet map
SPn(U) → Q(n−1)(U). Exactly as in the proof of Theorem 2.4, one can
show that this jet map is homotopic to the identity map.

It follows from this that we have a factorization jdn ' idn ◦ T dn . Hence:

Corollary 2.8. The limit (as d→∞) of T dn : SPnd (C)→ Q(n−1)
d (C) is

a homotopy equivalence for n ≥ 3, and a homology equivalence for n = 2.

It turns out that there is a much more precise relation between SPnd (C)
and Q(n−1)

d (C). In the introduction we referred to the result proved in
[GKY2] (a sketch proof was also given in [Kl]) that SPndn (C) and Q(n−1)

d (C)
are homotopy equivalent. (This generalizes an earlier result of Vassiliev
([Va1], [Va2]), which shows that they are stably homotopy equivalent.) To
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provide some motivation for this, we need “unstable” versions of Theo-
rems 2.4 and 2.6. Regarding Theorem 2.4, we have:

Theorem 2.9. The map jdn : SPdn(C)→ Ω2
dCPn−1 (defined earlier) is a

homotopy equivalence up to dimension (2n−3)[d/n] if n ≥ 3, and a homology
equivalence up to dimension (2n− 3)[d/n] if n = 2.

P r o o f. It follows from [Ar] that the stabilization map SPdn(C) →
SPd+1

n (C) is a homology equivalence up to dimension (2n − 3)[d/n]. (Fur-
ther details concerning this result are given in the Appendix.) Taken to-
gether with Theorem 2.4, this gives the homology statement of the theorem.
If n ≥ 3 both spaces are simply connected, so we obtain the homotopy
statement as well.

Segal considered the stabilization map Q(n−1)
d (C) → Q(n−1)

d+1 (C) in Sec-
tion 5 of [Se2]. He obtained the following unstable version of Theorem 2.6:

Theorem 2.10. The inclusion map idn : Q(n−1)
d (C) → Ω2

dCPn−1 is a
homotopy equivalence up to dimension (2n − 3)d if n ≥ 3, and a homology
equivalence up to dimension (2n− 3)d if n = 2.

The last two theorems show that SPndn (C) and Q(n−1)
d (C) have isomor-

phic homology groups up to dimension (2n − 3)d − 1, which indicates the
plausibility of the result of [GKY2] that they are homotopy equivalent. Anal-
ogous results for spaces of the type PndY,n(X) and Qn−1

Y,d (X) (see the next
section), where X and Y are R or C, are proved in [KY1].

3. Further examples of the same type

A theorem of Vassiliev. We now turn to Vassiliev’s original result (men-
tioned in the introduction), which concerns real polynomials.

Definition 3.1. Pdn(R) denotes the space of real polynomials of degree
d which are monic, and all of whose real roots have multiplicity less than n.

The space Pdn(R) is a subspace of SPd(C) (but it is not a subspace of
SPdn(C) because no conditions are imposed on the nonreal roots). We have
a “horizontal scanning map”

Pdn(R)→ ΩPn(I, ∂I)

where I = [−1, 1] and

Pn(I, ∂I) =
{∑

dixi ∈ SP(I × [−1, 1], ∂I × [−1, 1]
∣∣∣ di < n when xi ∈ R

}
.

This is defined by associating with a configuration α the map

x 7→ α ∩ V (x) ∈ Pn(V (x), ∂V (x)) ∼= Pn(I, ∂I),

where V (x) = {z ∈ C | |Re(z)− x| < ε}.
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The analogue of Definition 2.3 here is:

Definition 3.2. (1) For n ≥ 2, Pdn(R) denotes the space of (not neces-
sarily monic) real polynomial functions of degree exactly d, all of whose real
roots have multiplicity less than n.

(2) For n ≥ 2, and any nonempty open subset X ⊆ R, Pdn(X) denotes
the space of real polynomial functions f(x) =

∑
aix

i such that every root
of f in X has multiplicity less than n, and f is not identically zero.

As in the case of complex polynomials, there is a horizontal scanning
map

scan : Pdn(R)→ Map(R,Pn((−1, 1))), f 7→ (x 7→ f |V (x)),

and a jet map

jet : Pdn(R)→ Map(R,Rn–{0}), f 7→ (f, f ′, . . . , f (n−1))|R.
We have a commutative diagram analogous to the ones in the last section:

Pdn(R) Map(R,Pn((−1, 1))) Map(R,Rn–{0})

Pdn(R)/R∗ Map(R,Pn((−1, 1))/R∗) Map(R,Rn–{0}/R∗)

Pdn(R) Map(R,Pn([−1, 1], {−1, 1})) Map(R,RPn−1)

scan //

²²

jet0 //

²² ²²

=

²²

// //

'
²²

'
²²

Let jdn : Pdn(R)→ ΩdRPn−1 be the second row of this diagram. We can now
give a proof of Vassiliev’s result concerning Pdn(R) as d→∞.

Theorem 3.3. For n ≥ 4,

lim
d→∞

jdn : lim
d→∞

Pdn(R)→ Ω0RPn−1

is a homotopy equivalence. For n = 3, limd→∞ jdn is a homology equivalence.

P r o o f. This is exactly analogous to the proof of Theorem 2.4.

Related examples. There is a family of related examples which includes
the spaces SPdn(C), Pdn(R):

Definition 3.4. Let X,Y be subspaces of C. Then PdY,n(X) denotes the
space of complex monic polynomials f of degree d such that (i) f(X) ⊆ X
and (ii) f has no n-fold roots in Y .

We shall consider the four examples obtained by taking X,Y = R or
C. It will be convenient to express these results in terms of spheres rather
than projective spaces; note that Ω2S2n−1 may be identified with the iden-
tity component of Ω2CPn−1, and that ΩS2n−1 may be identified with the
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universal covering space of ΩCPn−1. First, we have PdC,n(C) = SPdn(C) and
PdR,n(R) = Pdn(R), and we have seen in Theorems 2.4 and 3.3 that these pro-
vide finite-dimensional models for the loop spaces Ω2CPn−1 and ΩRPn−1.

Concerning PdR,n(C) we have:

Theorem 3.5. For n ≥ 3, there is a homotopy equivalence

lim
d→∞

PdR,n(C)→ ΩS2n−1.

P r o o f. The method of Theorem 3.3 (using a horizontal scanning map)
applies equally well here.

Concerning PdC,n(R), there is a similar statement, but this time involving
the involution θ : C→ C, θ(z) = z (and its natural extension to Cn).

Theorem 3.6. For n ≥ 3, there is a homotopy equivalence

lim
d→∞

PdC,n(R)→ (Ω2S2n−1)θ,

where (Ω2S2n−1)θ is the subspace of Ω2S2n−1 consisting of maps f which
satisfy the condition θ(f(z)) = f(θ(z)) for all z ∈ C ∪ {∞}.

P r o o f. The method of Theorem 2.4 can be modified by imposing “θ-
equivariance” at the appropriate (3) points.

As we pointed out in the introduction, Theorems 2.4, 3.3, 3.5 and 3.6
may be summarized in a single statement. To avoid special cases which occur
for low values of n, we assume n ≥ 4 in the following version.

Theorem 3.7. There is a θ-equivariant homotopy equivalence

lim
d→∞

PdY,n(C)→ Map(Y +, S2n−1)

(if n ≥ 4), where Y = R or C, Y + = R ∪ {∞} or C ∪ {∞}, and Map
indicates the space of basepoint preserving continuous maps.

There is an analogous family of results relating to Segal’s Q(n−1)
d (C)

(the definition of this space was given in §2). We may introduce a space
QY,(n−1)
d (X) for any subsets X,Y of C, in which the polynomials p1, . . . , pn

are required to satisfy the modified conditions (i) pi(X) ⊆ X and (ii)
p1, . . . , pn have no common root in Y . There are four basic examples. First
we have QC,(n−1)

d (C) = Q(n−1)
d (C) and QR,(n−1)

d (R). Then there are two
“mixed” spaces, QC,(n−1)

d (R) and QR,(n−1)
d (C). The first of these is the space

of “real” algebraic maps CP 1 → CPn−1, and this space (for n = 2 at least)
has already been discussed by Segal in [Se2].

We have the following analogue of Theorem 3.7:

(3) In fact, the validity of the equivariant scanning argument in the case of more
general finite group actions has already been noted in [Se3].



Spaces of polynomials 109

Theorem 3.8. There is a θ-equivariant homotopy equivalence

lim
d→∞

QY,(n−1)
d (C)→ Map(Y +, S2n−1)

(if n ≥ 4), where Y = R or C, Y + = R ∪ {∞} or C ∪ {∞}, and Map
indicates the space of basepoint preserving continuous maps.

Spaces of holomorphic maps “with bounded multiplicities”. Segal’s result
on the space Hol(S2,CPn−1) may be generalized by imposing conditions of
bounded multiplicity on the various polynomials involved. The appropriate
generalization of Definition 2.5 is:

Definition 3.9. For n,m ≥ 2, let Q(n−1),m
d (C) be the space of n-tuples

(α1, . . . , αn) ∈ SPdm(C)× . . .× SPdm(C) such that α1 ∩ . . . ∩ αn = ∅.
We denote by Holmd (S2,CPn−1) the subspace of Hold(S2,CPn−1) which

corresponds to Q(n−1),m
d (C). Observe that we have a filtration

∅ = Hol1d(S
2,CPn−1) ⊆ . . . ⊆ Hold+1

d (S2,CPn−1) = Hold(S2,CPn−1).

Corresponding to Definition 2.7 we have:

Definition 3.10. (1) For n,m ≥ 2, Q(n−1),m
d (C) denotes the space of n-

tuples (p1, . . . , pn) with pi ∈ SPdm(C) such that p1, . . . , pn have no common
root.

(2) For n,m ≥ 2, and any nonempty open subset X ⊆ C, Q(n−1),m
d (X)

denotes the space of n-tuples (p1, . . . , pn) with pi ∈ SPdm(X) such that
p1, . . . , pn have no common root in X.

We can now proceed in the usual way. The only new task is to study the
jet map

jet0 : Q(n−1),m(U)→ An,m,

(p1, . . . , pn) 7→ ((p1(0), . . . , p(m−1)
1 (0)), . . . , (pn(0), . . . , p(m−1)

n (0))),

where

An,m = {(v1, . . . , vn) ∈ (Cm–{0})n | ((v1)1, . . . , (vn)1) 6= (0, . . . , 0)}.
As in the proof of Theorem 2.4, it can be shown that jet0 is a (C∗)n-
equivariant homotopy equivalence. This leads to the following generalization
of Theorem 2.6, for the analogous map jdn,m : Q(n−1),m

d (C)→ Ω2
dAn,m:

Theorem 3.11. Let n ≥ 2. For m ≥ 3,

lim
d→∞

jdn,m : lim
d→∞

Q(n−1),m
d (C)→ Ω2

0An,m

is a homotopy equivalence. For m = 2, limd→∞ jdn,m is a homology equiva-
lence.
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The subset An,m/(C∗)n of (CPm−1)n consists of elements ([v1], . . . , [vn])
such that at least one of the points [v1], . . . , [vn] lies in the “big cell” {[v] ∈
CPm−1 | (v)1 6= 0} ∼= Cm−1. Hence it is homotopy equivalent to the fat
wedge Wn(CPm−1), i.e. the set of all ([v1], . . . , [vn]) such that at least one of
[v1], . . . , [vn] is equal to the basepoint [1; 0; . . . ; 0] of CPm−1. Thus, Theorem
3.11 gives a homotopy equivalence

lim
d→∞

Q(n−1),m
d (C)→ Ω2

0Wn(CPm−1).

This shows that the space An,m has a natural interpretation, which is con-
sistent with Segal’s original approach (for the case m =∞).

4. The h-Principle

Spaces of polynomials with roots of bounded multiplicity. As preparation
for the h-Principle, we shall give a general formulation which includes all
the examples considered so far in this paper. Let FD(C) denote the space of
n-tuples (p1, . . . , pn) of (not identically zero) complex polynomials satisfying
conditions of the following types:

(i) “degree conditions” (e.g. deg pi = di, where D = (d1, . . . , dn) is
fixed),

(ii) “coprime conditions” (e.g. certain subsets pi1 , . . . , pik of p1, . . . , pn
have no common factor),

(iii) “bounded multiplicity conditions” (e.g. all roots of pi have multi-
plicity less than mi, where M = (m1, . . . ,mn) is fixed).

Concrete examples of spaces FD(C) satisfying conditions of type (i) and
(ii) are provided (4) by the spaces HolD(S2, X∆), where X∆ is a smooth
toric variety defined by a fan ∆ (see [GKY1], [Gu2]). These examples may
be modified in obvious ways by imposing conditions of type (iii). We may
also consider the analogues of the earlier spaces PdY,n(X) or QY,(n−1)

d (X) for
FD(C).

We regard (p1, . . . , pn) as a holomorphic map C → Cn − A, where A
is the union of linear subspaces corresponding to condition (ii). In the case
of HolD(S2, X∆), the arrangement A depends only on the fan of X, so we
write A = A∆. We then have X∆

∼= Cn − A∆/(C∗)n−dimX∆ for a certain
(free) action of (C∗)n−dimX∆ (see [Co] and [Gu2]).

For a nonempty subset X ⊆ C, we define F(X) in the same way, except
that conditions (ii) and (iii) now apply only to the roots of p1, . . . , pn which
lie in X (and condition (i) is omitted). Just as in §2 and §3, we have a jet
map

(4) More precisely, the space FD(C)/(C∗)n of n-tuples of monic polynomials corre-
sponds to the space of based holomorphic maps.
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jet : FD(C)→ Map(C,Cn
′ −A′),

where Cn′ − A′ is the “prolongation” of Cn − A determined by condition
(iii). This factors as the top row of the following diagram:

FD(C) Map(C,F(U)) Map(C,Cn′ −A′)

FD(C)/(C∗)n Map(C,F(U)/(C∗)n) Map(C,Cn′ −A′//(C∗)n)

scan //

²²

jet0 //

²² ²²
// //

The action of (C∗)n on F(U) is always free. If the action of (C∗)n on Cn′ −
A′ is free, we may replace the homotopy quotient Cn′ − A′//(C∗)n by the
ordinary quotient.

As in the proof of Theorem 2.4, we can show:

Lemma 4.1. The map jet0 : F(U) → Cn′ − A′ is a (C∗)n-equivariant
homotopy equivalence.

Because of the interpretation of F(C)/(C∗)n and F(U)/(C∗)n as config-
uration spaces, the scanning method (as in Theorem 2.2) leads to:

Lemma 4.2. The map scan /(C∗)n : FD(C)/(C∗)n → Ω2
D F(U)/(C∗)n is

a homotopy equivalence in the limit D →∞.

We deduce (from the lemmas and the diagram) the following generaliza-
tion of Theorems 2.2 and 2.6:

Theorem 4.3. The jet map induces a map

jD : FD(C)/(C∗)n → Ω2
D(Cn

′ −A′),
and limD→∞ jD is a homotopy equivalence (or homology equivalence, if the
roots of any polynomial in the definition of FD(C) are required by condition
(iii) to be distinct).

In the special case where FD(C)/(C∗)n = HolD(S2, X∆) for some toric
variety X∆, we have Cn′−A′ = Cn−A and Ω2

D(Cn′−A′) ' Ω2
D(Cn−A) '

Ω2
DX∆. In this case the map jD of Theorem 4.3 may be identified with the

natural inclusion HolD(S2, X∆)→ Ω2
DX∆.

In general, Theorem 4.3 exhibits FD(C)/(C∗)n (which is a “space of
polynomials with roots of bounded multiplicity”) as a model for the double
loop space of Cn′ −A′. This, in turn, is homotopy equivalent to the double
loop space of a “generalized wedge product” of finite-dimensional complex
projective spaces (see [GKY1] and the remarks following Theorem 3.11 in
the previous section).

The h-Principle. Let M,N be smooth manifolds. A smooth map f :
M → N may be regarded as a section of the trivial bundle M × N → M ,
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and its k-jet jk(f) : M → Jk(M,N) is then a section of the k-jet bundle
Jk(M,N)→M . Thus we have a map

jk : Map(M,N)→ Sec(Jk(M,N)), f 7→ jk(f),

where Map and Sec denote smooth maps and smooth sections, respectively.
This map is not in general surjective; an element s of Sec(Jk(M,N)) is said
to be holonomic or integrable if there exists an element f of Map(M,N)
such that jk(f) = s.

More generally, if S is a closed subspace of Jk(M,N), we define

MapS(M,N) = {f ∈ Map(M,N) | jk(f)(M) ∩ S = ∅},
SecS(Jk(M,N)) = {s ∈ Sec(Jk(M,N)) | s(M) ∩ S = ∅}.

Then we have

jSk : MapS(M,N)→ SecS(Jk(M,N)), f 7→ jk(f),

and the image of this map consists of all sections which satisfy the integra-
bility condition.

The Smale–Hirsch Principle, or the (parametrized) h-Principle of Gro-
mov, says that, under certain conditions on M,N and S, the map jSk is a
homotopy equivalence. Under such favourable conditions, the integrability
condition is therefore “irrelevant from the point of view of topology”. An
extensive treatment of the h-Principle and its generalizations can be found
in [Gr]. Even to summarize this work briefly here would not be feasible; we
just mention that examples of situations where the Principle holds are often
found when M and N are open manifolds, or when S is not too large.

For example, let dimM < dimN , and let J1(M,N)−S be defined by the
condition that the derivative has maximal rank. Thus, MapS(M,N) is the
space of smooth immersions of M in N . Smale and Hirsch studied immer-
sions of M = Sm in N = Rn and discovered that regular homotopy classes
of such immersions are in one-to-one correspondence with the elements of
πmVm(Rn), where Vm(Rn) is the Stiefel manifold of m-frames in Rn. This is
consistent with the h-Principle, as SecS(J1(M,N)) is homotopy equivalent
to Map(Sm, Vm(Rn)) in this case.

As another example, let M and N be complex manifolds, and take
J1(M,N)−S to be defined by the condition that the derivative is C-linear.
In this case we have MapS(M,N) = Hol(M,N). On the other hand the
space SecS(J1(M,N)) is homotopy equivalent to Map(M,N) (since the
space of C-linear transformations is an R-linear subspace of the space of
R-linear transformations). So the h-Principle holds if and only if the inclu-
sion Hol(M,N)→ Map(M,N) is a homotopy equivalence. This is certainly
false in general (see [Gr]), in particular when M = N = S2. However,
Segal’s theorem indicates that something can be salvaged in this case. In
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the remainder of this section we shall describe how Theorem 4.3 may be
approached via the h-Principle.

Our starting point is Vassiliev’s observation that limD→∞ FD(C) is
(weakly) homotopy equivalent to the space of smooth maps f : C→ Cn−A
such that the image of jet(f) lies in Cn′ − A′ and such that jet(f) satisfies
the same “condition at ∞” as elements of FD(C). Let us denote this space
by F∗(C). Theorem 4.3 is therefore equivalent to the statement that the jet
map

j : F∗(C)/(C∗)n → Ω2
0(Cn

′ −A′)
is a homotopy equivalence. This statement, which concerns only smooth
maps, may be deduced from the h-Principle, as we shall now explain.

Let us denote by F (C) (and similarly for F (X)) the space of smooth
maps f : C → Cn − A such that the image of jet(f) lies in Cn′ − A′. We
claim that the h-Principle is valid in this case, at least for any surface X
which is constructed by successively attaching two-dimensional disks to the
two-dimensional disk U . This may be proved by induction. For the case
X = U , the validity of the h-Principle is proved by “shrinking U down to
a point”. The inductive step is achieved by using the fact that the functor
F converts (certain) cofibrations into fibrations (see the last part of our
explanation of the proof of Theorem 2.2, for a special case). The details of
this argument are explained, in greater generality, in [Ha] and [Po].

Now we consider the usual commutative diagram, but this time for the
functor F (rather than for algebraic maps):

F∗(C) Map∗(C,F(U)) Map∗(C,Cn′ −A′)

F(C)/(C∗)n Map∗(C,F(U)/(C∗)n) Map∗(C,Cn′ −A′//(C∗)n)

scan //

²²

jet0 //

²² ²²
// //

The map j is given by the bottom row. It suffices, therefore, to show that
the top row is a homotopy equivalence. (The conditions at ∞ in the top
row are defined to be those which descend to the given conditions at ∞
in the bottom row; the symbol Map∗ indicates that these conditions are in
force.) The fact that the top row is a homotopy equivalence requires two
observations:

(1) the jet map F(U)→ Cn′ −A′ is a homotopy equivalence, and
(2) the scanning map F∗(C) → Map∗(C,F(U)) is a homotopy equiva-

lence.

We have already seen that (1) is true, as it begins the inductive argument
for the proof of the h-Principle for F. To prove (2), we consider the following
commutative diagram:
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F({|z| < 2}) F({1 < |z| < 2})

Map∗({|z| < 2},F(U)) Map∗({1 < |z| < 2},F(U))

//

²² ²²
//

in which the horizontal maps are given by restriction and the vertical maps
are given by scanning. The horizontal maps are fibrations, and—by the h-
Principle for the cases where X is a disk or an annulus—the vertical maps
are homotopy equivalences. Hence the map of fibres is also a homotopy
equivalence. But this is the scanning map F∗(U) → Map∗(U,F(U)), which
is homotopic to the map of (2).

Appendix. For completeness, we shall give here the proof of Arnold’s
result on the homology of SPdn(C), which was used in the proof of Theorem
2.9. Rather than quote directly from [Ar] (where a minor error occurs in the
statement), we shall sketch an argument along the lines of [Va1].

Theorem A1 ([Ar]). For n, d ≥ 2, the stabilization map SPdn(C) →
SPd+1

n (C) is a homology equivalence up to dimension N(d, n), where

N(d, n) =
{

(2n− 3)[d/n] if [d/n] < [(d+ 1)/n],
∞ if [d/n] = [(d+ 1)/n].

P r o o f. For brevity we shall write SPdn = SPdn(C) and SPd = SPd(C),
and we omit explicit mention of coefficients in (co)homology. Let Σd

n ⊆ SPd

denote the discriminant variety consisting of all polynomials f ∈ SPd which
have at least one root of multiplicity n. Since SPdn = SPd − Σd

n, Alexander
duality gives

(∗) Hk(SPdn) ∼= H2d−k−1(Σd
n) if 0 < k < 2d,

where we use the notation H∗(X) = H∗(X), with X = X ∪ {∞} the one-
point compactification of (a locally compact space) X.

Let I : C→ C[d/n] be the Veronese embedding, I(z) = (z, z2, . . . , z[d/n]).
Let f ∈ Σd

n. Assume that f has at least s distinct roots z1, . . . , zs of
multiplicity n. In this case, we denote by ∆(f ; {z1, . . . , zs}) the (s − 1)-
dimensional open simplex in C[d/n] with vertices I(z1), . . . , I(zs). (Note that
since s ≤ [d/n], the points I(z1), . . . , I(zs) are in general position.)

Define the geometric resolution G = G(Σd
n) of Σd

n by

G = G(Σd
n) =

⋃

f∈Σdn, {z1,...,zs}
{f} ×∆(f ; {z1, . . . , zs}) ⊆ Σd

n × C[d/n].

Projection onto the first factor is a surjective open proper map G → Σd
n,

and this extends naturally to a map π : G → Σd
n. It is known that π is a

homotopy equivalence ([Va1]).



Spaces of polynomials 115

Define the subspaces {Fp}p≥0 of G by

Fp = {∞} ∪
( ⋃

f∈Σdn, s≤p
{f} ×∆(f ; {z1, . . . , zs}

)
.

There is an increasing filtration

F0 ⊆ F1 ⊆ . . . ⊆ F[d/n] = F[d/n]+1 = . . . = G ' Σd
n

and so we have a homology spectral sequence E1
p,q = Hp+q(Fp − Fp−1) ⇒

Hp+q(Σd
n).

If we take Erp,q = Ep,2d−1−q
r , we obtain from (∗) a cohomology spectral

sequence

Fdn = {Ep,qr , dr : Ep,qr → Ep−r,q+1−r
r }, Ep,qr ⇒ Hq−p(SPdn).

Since there is a fibre bundle Fp − Fp−1 → Cp(C) with fibre homeomorphic
to R2d−1−(2n−1)p if 1 ≤ p ≤ [d/n], it follows from the Thom isomorphism
theorem and Poincaré duality that

Ep,q1 =
{
H(2−2n)p+q(Cp(C)) if 1 ≤ p ≤ [d/n],
0 otherwise.

Similarly we have a cohomology spectral sequence

Fd+1
n = {′Ep,qr , d′r : ′Ep,qr → ′Ep−r,q+1−r

r }, ′Ep,qr ⇒ Hq−p(SPd+1
n ),

such that

′Ep,q1 =
{
H(2−2n)p+q(Cp(C)) if 1 ≤ p ≤ [(d+ 1)/n],
0 otherwise.

Note that the stabilization map SPdn → SPd+1
n extends naturally to a

map SPd → SPd+1 and this induces a map Σd
n → Σd+1

n . This map extends to
the open embedding Σd

n×C→ Σd+1
n (up to homotopy), which preserves the

corresponding filtrations. Because one-point compactification is contravari-
ant for open embeddings, we obtain a map s : Σd+1

n → Σd
n × C = Σd

n ∧ S2.
Hence the stabilization map Hj(SPd+1

n )→ Hj(SPdn) corresponds to the map

H2d+1−j(Σd+1
n )→ H2d−1−j(Σd

n)

which is the composition

H2d+1−j(Σd+1
n ) s∗−→ H2d+1−j(Σd

n × C) suspension−−−−−→∼= H2d−1−j(Σd
n).

Since the above homomorphism preserves the filtrations, this induces a ho-
momorphism of spectral sequences {φp,qr : ′Ep,qr → Ep,qr | r ≥ 1, (p, q) ∈
Z× Z}.
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As the corresponding maps between filtrations are natural, the diagram

F ′p − F ′p−1 Fp − Fp−1

Cp(C) Cp(C)

s //

²² ²²
= //

is commutative (for 1 ≤ p ≤ [d/n]). From the above description of Fp−Fp−1

as a bundle, we have:

(i) If [d/n] = [(d+ 1)/n], then φp,q1 is an isomorphism for all p, q.
(ii) If [d/n] < [(d+ 1)/n], then φp,q1 is an isomorphism if p ≤ 0, and if

1 ≤ p ≤ [d/n] and (2− 2n)p+ q ≥ 0.

We now apply the comparison theorem for spectral sequences. For (i),
the result is immediate, so assume that [d/n] < [(d+ 1)/n]. Then since

(2− 2n)p+ q ≥ 0 if and only if q ≥ (2n− 2)p,

for 1 ≤ p ≤ [d/n] the dimension q−p ≥ (2n−3)p attains the maximal value
(2n− 3)[d/n]. Hence the induced homomorphism Hj(SPd+1)→ Hj(SPdn) is
an isomorphism if j ≤ (2n− 3)[d/n]. By the universal coefficients theorem,
the same result is valid for homology groups, so the proof is complete.

Corollary A2 ([Ar]). If [d/n] = [(d+1)/n] and n ≥ 3, the stabilization
map SPdn(C)→ SPd+1

n (C) is a homotopy equivalence.
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