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Abstract. Our aim is to bring the theory of analogous polytopes to bear
on the study of omnioriented toric manifolds. By way of application, we
simplify and correct certain proofs of the first and third author on the rep-
resentability of complex cobordism classes. These proofs concern quotient
polytopes; the first involves framed embeddings in the positive cone, and the
second considers the role of orientations in forming connected sums. Anal-
ogous polytopes provide an illuminating context within which to deal with
several of the details. Our modified connected sum incorporates an oriented
cube of appropriate dimension, and is directly relevant to the proof that
any complex cobordism class may be represented by an omnioriented toric
manifold. We illustrate the results by means of 4–dimensional examples.

1. Introduction

The theory of analogous polytopes was initiated by Alexandrov [1] in the
1930s, and extended more recently by Khovanskii and Puhlikov [10]. Our aim
is to apply this theory to the algebraic topology of torus actions, in the context
of Davis and Januszkiewicz’s work [5] on toric geometry.

Davis and Januszkiewicz explain how to construct a 2n–dimensional toric
manifold M from a characteristic pair (P, λ), where P is a simple convex poly-
tope of dimension n, and λ is a function with certain special properties which
assigns a subcircle of the torus Tn to each facet of P . By construction M admits
a locally standard Tn action, whose quotient space is homeomorphic to P .

Every such polytope is equivalent to an arrangement H of m closed half-
spaces in Rn, whose bounding hyperplanes meet only in general position. The
intersection of the half-spaces is assumed to be bounded, and defines P . The
(n−1) dimensional faces form the facets of P , and general position ensures that
any face of codimension k is the intersection of precisely k facets. In particular,
every vertex is the intersection of n facets, and lies in an open neighbourhood
isomorphic to the positive cone Rn

>. For any characteristic pair (P, λ), it is
possible to vary P within its combinatorial equivalence class without affecting
the θ-equivariant diffeomorphism type [5] of the toric manifold M .

For a fixed arrangement, we consider the vector dH of signed distances from
the origin O to the bounding hyperplanes in Rn; a coordinate is positive when

Key words and phrases. analogous polytopes, complex cobordism, connected sum, framing,
omniorientation, stable tangent bundle, toric manifold.

The first and second authors were supported by the Russian Foundation for Basic Research,
grants number 04-01-00702 and 05-01-01032. The second author was supported by an EPSRC
Visiting Fellowship at the University of Manchester.

1



2 VICTOR M BUCHSTABER, TARAS E PANOV, AND NIGEL RAY

O lies in the interior of the corresponding half-space, and negative in the com-
plement. We then identify the m-dimensional vector space RH with the space
of arrangements analogous to H. Under this identification, dH corresponds to
H itself, and every other vector corresponds to the arrangement obtained by
the appropriate parallel displacement of half-spaces. For small displacements,
the intersections of the half-spaces are polytopes similar to P . For larger dis-
placements the intersections may be degenerate, or empty; in either case, they
are known as virtual polytopes, analogous to P .

In [4], the first and third authors consider dicharacteristic pairs (P, `), where
λ is replaced by a homomorphism ` : TH → Tn. This has the effect of ori-
enting each of the subcircles λ(Fj) of Tn, and leads to the construction of an
omnioriented toric manifold M ; [4, Theorem 3.8] claims that a canonical stably
complex structure may then be chosen for M . The proof, however, has two
flaws. Firstly, it fails to provide a sufficiently detailed explanation of how a
certain complexified neighbourhood of P may be framed, and secondly, it re-
quires an orientation of M (and hence of P ) for the stably complex stucture to
be uniquely defined. The latter issue has already been raised in [2, §5.3], but
amended proofs have not been given. One of our aims is to show that analogous
polytopes offer a natural setting for some of the details.

The main application of [4, Theorem 3.8] is as follows.
Theorem 6.11 [4]. In dimensions > 2, every complex cobordism class con-
tains a toric manifold, necessarily connected, whose stably complex structure is
induced by an omniorientation, and is therefore compatible with the action of
the torus.

By [3], this result already holds for additive generators of the complex cobor-
dism groups ΩU

n . So the proof proceeds by considering 2n–dimensional omnior-
iented toric manifolds M1 and M2, with quotient polytopes P1 and P2 respec-
tively, and constructs a third such manifold M , which is complex cobordant to
the connected sum M1 # M2. For the quotient polytope of M , the authors use
the connected sum P1 # P2, over which the dicharacteristics naturally extend.

In the light of the preceding observations, we must amend the proof so as to
incorporate orientations of P1 and P2. However, it is not always possible to form
P1 # P2 in the oriented sense, and simultaneously extend the dicharacteristics.
Instead, we replace M2 with a complex cobordant toric manifold M ′

2, whose
quotient polytope is In # P2, where In denotes an appropriately oriented n–
cube. It turns out that the resulting gain in geometrical freedom allows us to
extend both orientations and dicharacteristics; the result is the omnioriented
toric manifold M1 # M ′

2 over the polytope

P1 � P2 = P1 # In # P2,

which we call the box sum of P1 and P2. We may then complete the proof of
Theorem 6.11 as described in Section 5 below.

In dimension 2, P1 � P2 is combinatorially equivalent to the Minkowski sum
P1 + P2, which is central to the theory of analogous polytopes.

In [4], the authors compare Theorem 6.11 with a famous question of Hirze-
bruch, who asks for a description of those complex cobordism classes which may
be represented by connected algebraic varieties. This is a difficult problem, and
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remains unsolved; nevertheless, our modification to the proof of Theorem 6.11
adds some value to the comparison, in the following sense.

Given complex cobordism classes [N1] and [N2] of the same dimension, sup-
pose that N1 and N2 are connected. Then we may form the connected sum
N1 # N2 in the standard fashion, so that it is also a connected, stably complex
manifold, and represents [N1] + [N2]. If, on the other hand, N1 and N2 are al-
gebraic varieties, then N1 #N2 is not usually algebraic. In these circumstances
we might proceed by analogy with the toric case, and look for an alternative
representative N ′

2 such that N1 # N ′
2 is also algebraic.

For the reader’s convenience we retain most of the notation and conventions
of [4], with two obvious exceptions concerning the half-spaces (2.1). Firstly,
we assume that the set of half-spaces defining any polytope is ordered, and
discuss the effects of choosing alternative orderings as required. Secondly, we
reverse the direction of the inequalitites, so that the normals to the bounding
hyperplanes point outwards, in agreement with Khovanskii.

The contents of our sections are as follows.
In section 2 we recall various definitions and notation concerning simple con-

vex polytopes with ordered facets. We also introduce the space R(P ) of poly-
topes analogous to a fixed example P , and re-interpret the cokernel of an as-
sociated transformation. In section 3 we summarise Davis and Januszkiewicz’s
construction of a toric manifold M over a polytope P having m facets. We also
offer a quadratic description of the auxiliary Tm-space ZP , and define M as its
quotient by the kernel of a dicharacteristic homomorphism.

In Section 4 we amend the definition of omniorientation so as to include an
orientation of M , and recall the stably complex structure which results. In so
doing, we utilise a framing of P as a submanifold with corners of the positive
cone in R(P ). We review the construction of connected sum for omnioriented
toric manifolds in Section 5, by encoding the additional orientations as signs
attached to the fixed points. By way of application, we correct the proof of [4,
Theorem 3.8].

Finally, in Section 6, we exemplify the realisation of 4–dimensional complex
cobordism classes by omnioriented toric manifolds, and comment on analogous
situations in higher dimensions.

We are pleased to acknowledge the assistance of several colleagues in prepar-
ing this article. In particular, Tony Bahri, Kostya Feldman and Neil Strickland
offered trenchant criticisms of [4], which alerted its authors to the need for clar-
ification and correction. Peter McMullen also provided important guidance to
offset the third author’s lack of experience with simple polytopes.

2. Analogous polytopes

We work in a real vector space V of dimension n, equipped with a euclidean
inner product 〈 , 〉. An arrangement H of closed half-spaces in V is a collection
of subsets

(2.1) Hi = {x ∈ V : 〈ai, x〉 6 bi} for 1 6 i 6 m,

where ai lies in V and bi is a real scalar. Unless stated otherwise, we shall
assume that H has cardinality m > n, and that ai has unit length for every
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1 6 i 6 m. We consider Hi as a smooth manifold, whose boundary ∂Hi is its
bounding hyperplane

(2.2) Yi = {x ∈ V : 〈ai, x〉 = b} for 1 6 i 6 m,

with outward pointing normal vector ai.
If the intersection ∩iHi is bounded, it forms a convex polytope P ; otherwise,

it is a polyhedron. We assume that P has maximal dimension n, and that none
of the half-spaces is redundant, in the sense that no Hi may be deleted without
enlarging P . In these circumstances, H and P are interchangeable. We may
also specify P by a matrix inequality AP x 6 bP , where AP is the m×n matrix
of row vectors ai, and bP is the column vector of scalars bi in Rm.

The positive cone Rn
> is an important polyhedron in Rn. It is determined by

the half-spaces

{x ∈ Rn : 〈−ej , xj〉 6 0} for 1 6 j 6 n,

and consists of the vectors {x : xj > 0, 1 6 j 6 n}.
A supporting hyperplane is characterised by the property that P lies within

one of its two associated half-spaces. A proper face of P is defined by its
intersection with any supporting hyperplane, and forms a convex polytope of
lower dimension. We regard P as an n–dimensional face of itself; the faces of
dimension 0, 1, and n− 1 are known as vertices, edges, and facets respectively.
There is one facet Fi = P ∩ Yi for every bounding hyperplane (2.2), so the
facets corresponds bijectively to the half-spaces (2.1). We deem a vertex v and
facet Fi to be opposite whenever v lies in the interior of Hi. If the bounding
hyperplanes are in general position, then every vertex of P is the intersection
of exactly n facets, and has m−n opposite half-spaces. In these circumstances,
P is simple.

From this point on, we deal only with simple polytopes, and reserve the
notation q = q(P ) and m = m(P ) for the number of vertices and the number
of facets respectively. We assume that the ordering o of the half-spaces Hi is
such that the intersection F1 ∩ · · · ∩ Fn of the first n facets is a vertex of P ,
and describe P as strongly ordered by o. We call v the initial vertex of P . The
faces of codimension k may then be labelled with their list of defining facets
and ordered lexicographically, for every 1 6 k 6 n. In particular, the vertices
of P are ordered by this procedure.

With respect to inclusion, the faces form a poset LF (P ), with unique max-
imal element P . This poset fails to be a lattice only because we usually omit
the empty face, which would otherwise form a unique minimal element. Two
polytopes are combinatorially equivalent whenever their face posets are iso-
morphic; this occurs precisely when the polytopes are diffeomorphic as smooth
n–dimensional manifolds with corners. A combinatorial equivalence class of
polytopes is known as a combinatorial polytope, and most of our constructions
are defined on such classes. Nevertheless, it is usually helpful to keep a repre-
sentative polytope in mind, rather than the underlying poset. Examples include
the vertex figures Pv, which are formed by intersecting P with any closed half-
space whose interior contains a single vertex v. Because P is simple, Pv is an
n–simplex for any v.
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For computational purposes, it is sometimes convenient to locate the initial
vertex of P at the origin, and use the first n normal vectors a1, . . . , an as
an orthonormal basis for V . This may be achieved by an appropriate affine
transformation, and does not affect the combinatorial equivalence class of P .

Fixing H, we consider the vector dH ∈ Rm, whose ith coordinate is the signed
distance from the origin O to Yi in V , for 1 6 i 6 m. The sign is positive when
O lies in the interior of Hi, and negative in the exterior. So long as we maintain
our convention that the normal vectors ai have unit length, dH coincides with
bP ; otherwise, the distances have to be scaled accordingly. Every vector dH+h
in Rm may then be identified with an analogous arrangement of half-spaces,
defined by translating each of the half-spaces Hi by hi, for 1 6 i 6 m. Some such
arrangements determine convex polytopes P (h), and others, dubbed virtual
polytopes, do not. In either case, they are described as being analogous to P .
We note that P (h) is given by

(2.3) {x ∈ V : AP x 6 bP + h},

and is combinatorially equivalent to P when h is small, because P is simple. In
particular, we have that P (0) = P .

Examples 2.4.
(1) The zero vector 0 ∈ Rm is identified with the central arrangement H0,

whose bounding hyperplanes contain the origin; the corresponding polytope
P (−bP ) = {0} is virtual. The basis vector ei ∈ Rm is identified with the ar-
rangement obtained fromH0 by translating Hi by 1; the corresponding polytope
P (−bP + ei) = Pi may be virtual, or a simplex.

(2) Any x ∈ V defines a vector AP x ∈ RH. Then bP −AP x is identified with
the arrangement given by translating H by −x; the corresponding polytope
P (−AP x) is the translate P −x, and is congruent to P . As x varies, we obtain
an n–parameter family of analogous polytopes, each of which is congruent to
P .

The Minkowski sum of subsets P , Q ⊆ V is given by

P + Q = {x + y : x ∈ P, y ∈ Q} ⊆ V.

If P and Q are convex polytopes, so is P + Q; moreover, when P is analogous
to Q, so is P +Q. Under the identification of bP +h with P (h), vector addition
corresponds to Minkowski sum, and scalar multiplication to rescaling. In this
context, we denote the m-dimensional vector space of polytopes analogous to
P by R(P ), and consider the identification as an isomorphism

(2.5) k : Rm −→ R(P ), where k(bP + h) = P (h).

We may interpret the matrix AP as a linear transformation V → Rm. Since
the points of P are specified by the constraint AP x 6 bP , the intersection of
the affine subspace bP − AP (V ) with the positive cone Rm

> is a copy of P in
Rm. In other words, the formula iP (x) = bP −AP x defines an affine injection

(2.6) iP : V −→ Rm,
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which embeds P as a submanifold with corners of the positive cone. Since iP
maps the half-space Hi to the half-space {y : yi > 0}, this embedding respects
the codimension of faces.

The composition χP = k ◦ iP restricts to an affine injection P → R(P ), and
Example (2.4)(2) identifies χP (x) as the polytope congruent to P , obtained by
translating the origin to x, for all x in P . Of course, χP (P ) is a submanifold
with corners of the positive cone R(P )>.

Given any shift vector h in Rm, the half-spaces Hi + hi are also ordered by
o, and determine the initial vertex v(h) of P (h). For every 1 6 i 6 m, we
write di(h) for the signed distance between v(h) and the supporting hyperplane
Yi + hi; in other words,

di(h) = bi + hi − 〈ai, v(h)〉 for all 1 6 i 6 m,

and d1(h) = · · · = dn(h) = 0 by construction. We then define the linear
transformation Co : Rm → Rm−n by the formula

(2.7) Co(bP + h) = (dm−n+1(h), . . . , dm(h)).

Using (2.5), we may interpret Co as a transformation R(P ) → Rm−n, which
acts by P (h) 7→ (dm−n+1(h), . . . , dm(h)). Clearly, Co is epimorphic.

Proposition 2.8. As a transformation V → Rm−n, the composition Co ·AP is
zero.

Proof. The di(h) are metric invariants of the polytope P (h), so Co takes identi-
cal values on congruent polytopes. In particular, it is constant on the translates
P − x for all values x ∈ V , and therefore on the affine plane bP − AP (V ). So
Co(AP (V )) = 0, as required. �

Proposition 2.8 shows that o determines a short exact sequence

0 −→ V
AP−→ Rm Co−→ Rm−n −→ 0,

or equivalently, a choice of basis for cokerAP . A matrix (ci,j) for Co is most
easily computed by assuming that the normal vectors a1, . . . , an form an or-
thonormal basis for V , as described in Section 2. Then the basis polytopes Pj

of (2.4)(1) satisfy

di(Pj) =

{
−ai,j if 1 6 j 6 n

δi,j if n + 1 6 j 6 m,

for all n + 1 6 i 6 m, and we deduce that

(2.9) (ci,j) =


−an+1,1 . . . −an+1,n 1 0 . . . 0
−an+2,1 . . . −an+2,n 0 1 . . . 0

...
. . .

...
...

...
. . .

...
−am,1 . . . −am,n 0 0 . . . 1

 .

An alternative strong ordering o′ provides an alternative basis for cokerAP ,
and the corresponding matrix (c′i,j) is obtained by substituting a′n+1, . . . , a′m
into (2.9). This procedure sets up a bijection between strong orderings on P
and matrices of the form (2.9).
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Of course, any (m − n) ×m matrix C of full rank for which CAP = 0 also
yields a basis for cokerAP , and satisfies the following property.

Lemma 2.10. Let C ′ be the (m−n)×(m−k) matrix obtained from C by deleting
columns cj1, . . . , cjk

, for some 1 6 k 6 n; if the intersection Fj1 ∩ · · · ∩ Fjk
is

a face of P of codimension k, then C ′ has rank m− n.

Proof. Let ι : Rm−k → Rm be the inclusion of the subspace

{x : xj1 = · · · = xjk
= 0}

and κ : Rm → Rk the associated quotient map. Then C ′ is the matrix of the
composition C · ι, and the k×n matrix A′ of the composition κ ·AP consists of
the rows aj1 , . . . , ajk

of AP . The data implies that A′ has rank k, and therefore
that κ · AP is an epimorphism; so C · ι is also an epimorphism, and its matrix
has rank m− n. �

3. Toric manifolds

In this section we include a summary of Davis and Januszkiewicz’s construc-
tion of toric manifolds over a simple polytope P . We appeal to their auxiliary
space ZP , for which we provide an alternative description in terms of quadratic
hypersurfaces. Throughout, we use the methods and notation of [4], under the
additional assumption that P is strongly ordered by o. In particular, we de-
note the ith coordinate subcircle of the standard m–torus Tm by Ti, for every
1 6 i 6 m.

For each point p in P , we define the subgroup T (p) by∏
Hi 3 p

Ti < Tm.

If p is a vertex, then T (p) has maximal dimension n; if p is an interior point
of P , then T (p) consists of the trivial subgroup {1}. Davis and Januszkiewicz
introduce the identification space ZP as

(3.1) Tm × P/∼ ,

where (t1, p) ∼ (t2, p) if and only if t−1
1 t2 ∈ T (p). So ZP is an (m + n)-

dimensional manifold with a canonical left Tm-action, whose isotropy subgroups
are precisely the subgroups T (p).

Construction (3.1) may equally well be applied to the positive cone Rm
> , in

which case the result is the complex vector space Cm. Since the embedding iP
of (2.6) respects facial codimensions, there is a pullback diagram

(3.2)

ZP
iZ−−−−→ Cm

%P

y y%

P
iP−−−−→ Rm

of identification spaces. Here %(z1, . . . , zm) is given by (|z1|2, . . . , |zm|2), the
vertical maps are projections onto the quotients by the Tm-actions, and iZ is a
Tm-equivariant embedding. It is sometimes convenient to rewrite Cm as R2m,
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in which case we substitute qj + irj for the jth coordinate zj , and let T act by
rotation.

Then Proposition 2.8 and Diagram (3.2) imply that iZ embeds ZP in R2m

as the space of solutions of the m− n quadratic equations

(3.3)
m∑

k=1

cj,k

(
q2
k + r2

k − bk

)
= 0, for 1 6 j 6 m− n.

In Lemma 4.1, we will confirm that ZP is a framed submanifold of R2m.
The spaces ZP are of considerable independent interest in toric topology,

having originated in [5]. They arise in homotopy theory as homotopy colimits
[9], in symplectic topology as level surfaces for the moment maps of Hamiltonian
torus actions, and in the theory of arrangements as complements of coordinate
subspace arrangements. Details are given in [2], where they play a central
rôle as moment-angle complexes; relationships with combinatorial geometry and
commutative algebra are also developed, and topological invariants described.

In order to construct toric manifolds over P , we need one further set of
data. This consists of a homomorphism ` : Tm → Tn, satisfying Davis and
Januszkiewicz’s independence condition, namely

(3.4) Fj1 ∩ · · · ∩Fjk
is a face of codimension k =⇒ ` is monic on

∏
s

Tjs .

Any such ` is called a dicharacteristic in [4]; the condition (3.4) ensures that
the kernel K(`) of ` is isomorphic to an (m− n)–dimensional subtorus of Tm.
Wherever possible we abbreviate K(`) to K. We write the subcircle `(Ti) < Tn

as T (Fi), and denote the subgroup∏
Hi 3 p

T (Fi) 6 Tn

by S(p); it is, of course, the image of T (p) under `. So (3.4) implies, for example,
that S(w) = Tn for any vertex w of P .

When applied to the initial vertex v, (3.4) ensures that the restriction of ` to
T1 × · · · × Tn is an isomorphism. The homomorphism of Lie algebras induced
by ` may therefore be represented by an integral matrix of the form

(3.5) L =


1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m
...

...
. . .

...
...

. . .
...

0 0 . . . 1 λn,n+1 . . . λn,m

 ,

in terms of appropriate coordinates for Tn.
Since K acts freely on ZP there is a principal K-bundle π` : ZP → M , whose

base space is a 2n–dimensional manifold. By construction, M may be expressed
as the identification space

(3.6) Tn × P/≈
where (s1, p) ≈ (s2, p) if and only if s−1

1 s2 ∈ S(p). Furthermore, M admits a
canonical Tn-action α, which is locally isomorphic to the standard action on Cn,
and has quotient map π : M → P . The fixed points of α lie over the vertices of
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P . The construction identifies a neighbourhood of the fixed point π−1(v) with
Cn, on which the action of Tn is precisely standard. Note that π · π` = %P as
maps ZP → P .

The quadruple (M,α, π, P ) is an example of a toric manifold , as defined by
Davis and Januszkiewicz. Any manifold with a similarly well-behaved torus
action over P is equivariantly diffeomorphic to one of the form (3.6). In this
sense, M is typical, and we follow the lead of [4] in working with (3.6) as our
arbitrary toric manifold.

Additional structure on M is associated to the facial submanifolds Mi, defined
as the inverse images of the facets Fi under π. It is clear that each Mi has
codimension 2, and we may check that its isotropy subgroup is T (Fi) < Tn.
Furthermore, the quotient map

(3.7) ZP ×K Ci −→ M

defines a canonical complex line-bundle ρi, whose restriction to Mi is isomorphic
to the normal bundle νi of its embedding in M .

As explained in [5], the bundles ρi play an important part in understanding
the integral cohomology ring of M . If ui denotes the first Chern class c1(ρi)
in H2(M), then H∗(M) is generated multiplicatively by u1, . . . , um, with two
sets of relations. The first are monomial, and arise from the Stanley-Reisner
ideal of P ; the second are linear, and arise from the matrix form (3.5) of the
dicharacteristic. The latter may be expressed as

(3.8) ui = −λi,n+1un+1 − . . .− λi,mum for 1 6 i 6 n.

The following example is straightforward, but will be used in later sections.

Example 3.9. Let the polytope P be the n–cube In, where I denotes the unit
interval [0, 1] ⊂ R. It has defining half-spaces

(3.10) Hi =

{
{x : −xi 6 0} for 1 6 i 6 n

{x : xi 6 1} for n + 1 6 i 6 2n
,

so the vertices are the binary sequences (ε1, . . . , εn), where εi = 0 or 1. The cube
is strongly ordered by (3.10), with initial vertex the origin. Then iP embeds
In in R2n by iP (x) = (x1, . . . , xn, 1− x1, . . . , 1− xn), and ZP is the product of
unit 3–spheres (S3)n ⊂ (C2)n. The dicharacteristic is specified by the n × 2n
matrix (In : In), and its kernel K is the n–torus

{(t1, . . . , tn, t−1
1 , . . . , t−1

n )} < T 2n.

So M is the product of 2–spheres (S2)n, and (eiθ1 , . . . , eiθn) ∈ Tn acts on the
ith factor S2

i as rotation by θi. The facial bundles are ζ1, . . . , ζn, ζ1, . . . , ζn,
where ζi denotes the Hopf line bundle over S2

i . The integral cohomology ring
of M is generated by the 2–dimensional elements ui for 1 6 i 6 m, and the
relations (3.8) give ui = −un+i. The Stanley-Reisner relations then reduce to
u2

i = 0 for all i.
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4. Stably complex structures, orientations, and framings

On a smooth manifold N of dimension d, a stably complex structure is an
equivalence class of real 2k–plane bundle isomorphisms τ(N) ⊕ R2k−d ∼= ζ,
where ζ denotes a fixed GL(k, C)-bundle and k is suitably large. Two such
isomorphisms are equivalent when they agree up to stabilisation; or, alterna-
tively, when the corresponding lifts to BU of the classifying map of the stable
tangent bundle of N are homotopic through lifts. In this section we identify
the geometric data required to induce such structures on toric manifolds.

According to [4], an omniorientation of a toric manifpld M consists of a
choice of orientation for each νi; since the dicharacteristic ` determines a com-
plex structure on each ρi, it encodes equivalent information. In [2], a choice of
orientation for M is added to the definition, since no such choice is implied by
`. We adopt the latter convention henceforth, and refer to the dicharacteristic
and the orientation of the omniorientation as necessary.

An interior point of P admits an open neighborhood U , whose inverse image
under the projection π is canonically diffeomorphic to Tn × U as a subspace
of M . Since Tn is oriented by the standard choice of basis, the orientations
of P correspond to the orientations of M . We shall therefore take the view
that an omnioriented toric manifold over P is equivalent to a dicharacteristic `
and an orientation of P . A strong ordering o also induces an orientation on P ,
by determining an affine isomorphism between a neighbourhood of the initial
vertex and the positive cone Rn

>. This is independent of the orientation of any
omniorientation on M .

In order to explain the stably complex structure induced on M , it is conve-
nient to study the embedding iZ of (3.2) in more detail.

Lemma 4.1. The embedding iZ : ZP → R2m is Tm-equivariently framed by any
choice of matrix (ci,j) for the transformation Co of (2.7).

Proof. We describe iZ by the m − n quadratic equations (3.3) over P ⊂ Rm
> .

At each point (q1, r1, . . . , qm, rm) ∈ ZP , the m − n associated gradient vectors
are given by

(4.2) 2 (cj,1q1, cj,1r1, . . . , cj,mqm, cj,mrm) for 1 6 j 6 m− n,

and so form the rows of the (m− n)× 2m matrix 2(ci,j)R, where

R =

q1 r1 . . . 0 0
...

...
. . .

...
...

0 0 . . . qm rm


is m× 2m. By definition of iP , the set of integers j1,. . . , jk with the property
that qj1 = rj1 = · · · = qjk

= rjk
= 0 at some point z ∈ ZP corresponds to

an intersection Fj1 ∩ · · · ∩ Fjk
of facets forming a face of P of codimension k.

Lemma 2.10 then applies to show that the matrix obtained by deleting the
columns cj1 , . . . , cjk

of (ci,j) has rank m− n. It follows that 2(ci,j)R has rank
m−n, and therefore that the gradient vectors (4.2) are linearly independent at
z, and so frame iZ .
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Furthermore, each of the gradient vectors (4.2) frames the corresponding
quadratic hypersurface in R2m, and is Tm-invariant. �

Remark 4.3. Lemma 4.1 provides an alternative to [4, Proposition 3.4], which
gives insufficient detail for readers to complete the proof.

Combining the details of Lemma 4.1 with [4, Theorem 6.11] yields an inter-
esting extension of the latter.

Theorem 4.4. Every complex cobordism class may be represented by the quo-
tient of a free torus action on a real quadratic complete intersection.

It is particularly illuminating to describe the framing of iZ in terms of anal-
ogous polytopes, as follows.

Factoring out by the action of Tm yields a framing of the embedding iP ,
and therefore of P as a submanifold with corners of Rm

> . Under the identi-
fication (2.5), the framing vectors may be represented by m − n independent
1–parameter families of polytopes analogous to P . These families are made
explicit by applying the differential d%P to the rows of the matrix 2(ci,j)R. At
the point (q1, r1, . . . , qm, rm) in ZP , the matrix of d%P is given by 2R, so the
framing vectors are the rows of the (m−n)×m matrix 4(ci,j)RRt. When (ci,j)
takes the form (2.9), we may take the jth framing vector to be

fj = (−an+j,1y1, . . . ,−an+j,nyn, 0, . . . , 0, yn+j , 0, . . . , 0)

at y = iP (x), for 1 6 j 6 m − n. Applying (2.5), we conclude that the
corresponding 1–parameter family of polytopes P (fj , t) (for −1 6 t 6 1) is
obtained from P by: retaining the origin at x, rescaling Hk by −an+j,kt for
1 6 k 6 n, fixing every facet opposite the initial vertex except Hn+j , and
rescaling the latter by t.

It is possible to reverse this procedure, and begin with a framing of iP . The
corresponding Tm-equivariant framing of iZ is then recovered by applying the
contruction (3.1). Since P is contractible, all framings of iP are equivalent, and
their lifts to iZ are equivariantly equivalent. In particular, the equivalence class
of the framings described in Lemma 4.1 does not depend on the choice of strong
ordering on P .

We may now return to the tangent bundle τ(M) of M . Our analysis is
nothing more than a special case of a proof of Szczarba [11, (1.1)], and replaces
that given in [4, (3.9)] which takes no account of the orientation on M .

Proposition 4.5. Any omnioriented toric manifold admits a canonical stably
complex structure, which is invariant under the Tn-action.

Proof. Following Szczarba, there is a K-equivariant decomposition

τ(ZP )⊕ ν(iZ) ∼= ZP × Cm,

obtained by restricting the tangent bundle τ(Cm) to ZP . Factoring out K yields

(4.6) τ(M)⊕ (ξ/K)⊕ (ν(iZ)/K) ∼= ZP ×K Cm,

where ξ denotes the (m − n)–plane bundle of tangents along the fibres of π`.
The right-hand side of (4.6) is isomorphic to

⊕m
i=1 ρi as GL(m, C)-bundles.
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Szczarba [11, 6.2)] identifies ξ/K with the adjoint bundle of π`, which is
trivial because K is abelian; ν(iZ)/K is trivial by Lemma 4.1. So (4.6) reduces
to an isomorphism

τ(M)⊕ R2(m−n) ∼= ρ1 ⊕ . . .⊕ ρm,

although different choices of trivialisations may lead to different isomorphisms.
Since M is connected and GL(2(m − n), R) has two connected components,
such isomorphisms are equivalent when and only when the induced orientations
agree on R2(m−n). We choose the orientation which is compatible with those
on τ(M) and ρ1 ⊕ . . .⊕ ρm, as given by the omniorientation.

The induced structure is invariant under the action of Tn, because iZ is
Tm-equivariant. �

The complex cobordism classes represented by the two choices of orientation
in Proposition 4.5 differ by sign. The underlying smooth structure is also Tn-
invariant, and is identical to that induced by Lemma 4.1.

5. Connected Sums

In this section we review the construction of the connected sum of omniori-
ented toric manifolds M ′ and M ′′, bearing in mind from Proposition 4.5 that
we must incorporate the orientations. We omitted this requirement in [4], and
we deal with it here in terms of certain signs associated to the vertices of P .

We assume throughout that the omniorientations on M ′ and M ′′ consist of
dicharacteristics `′ and `′′, corrresponding to matrices L′ and L′′ of the form
(3.5); and of orientations on the manifolds themselves, or equivalently, on P ′

and P ′′. We let P ′ and P ′′ be strongly ordered by o′ and o′′, with initial vertices
v′ and v′′ respectively.

The connected sum P ′#v′,v′′ P
′′ may be described informally as follows. First

construct the polytope Q′ by deleting the interior of the vertex figure P ′
v′ from

P ′; so Q′ has one new facet ∆(v′) (which is an (n−1)–simplex), whose incident
facets are ordered by o′. Then construct the polytope Q′′ from P ′′ by the same
procedure. Finally, glue Q′ to Q′′ by identifying ∆(v′) with ∆(v′′), in such
a way that the jth facet of Q′ combines with the jth facet of Q′′ to give a
single new facet for each 1 6 j 6 n. The gluing is carried out by applying
appropriate projective transformations to Q′ and Q′′. More precise details are
given in [4, §6]. Note that P ′ #v′,v′′ P ′′ inherits no strong ordering, because v′

and v′′ disappear during its formation.
The combinatorial type of the connected sum may be altered, for example,

by choosing alternative strong orderings on P ′ and P ′′. When the choices are
clear, or their effect on the result is irrelevant, we use the abbreviation P ′#P ′′.
The face lattice LF (P ′ # P ′′) is obtained from LF (P ′)∪LF (P ′′) by identifying
the jth facets of each, for 1 6 j 6 n. In particular,

(5.1) q(P ′#P ′′) = q(P ′)+q(P ′′)−2 and m(P ′#P ′′) = m(P ′)+m(P ′′)−n.
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By definition, the connected sum M ′ #v′,v′′ M ′′ is the toric manifold con-
structed over P ′ #v′,v′′ P

′′ using the dicharacteristic `# : Tm′+m′′−n → Tn asso-
ciated to the matrix

(5.2) L# =


1 0 . . . 0 λ′1,n+1 . . . λ′1,m′ λ′′1,n+1 . . . λ′′1,m′′

0 1 . . . 0 λ′2,n+1 . . . λ′2,m′ λ′′2,n+1 . . . λ′′2,m′′

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . 1 λ′n,n+1 . . . λ′n,m′ λ′′n,n+1 . . . λ′′n,m′′

 .

It is diffeomorphic to the equivariant connected sum of M ′ and M ′′ at their
initial fixed points. If M ′ and M ′′ are omnioriented, the construction shows
that the only obstruction to defining a compatible omniorientation on M ′#M ′′

is given by the orientations. We deal with this issue in Proposition 5.4 below.
We write p′ : M ′#M ′′ → M ′ and p′′ : M ′#M ′′ → M ′′ for the maps collapsing

the connected sum onto its constituent manifolds.
We recall from [8] that an omniorientation associates a sign σ(w) to every

vertex w of the quotient polytope P (or, equivalently, to every fixed point of
M). If w is the intersection of facets Fi1 ∩ · · · ∩ Fin , then σ(w) = ±1 measures
the difference between the orientations induced on the tangent space at w by the
dicharacteristic and the orientation of M respectively. The former is determined
by the sum of line bundles ρi1⊕. . .⊕ρin , and σ(w) is given by the Chern number

(5.3) σ(w) = 〈ui1 · · ·uin , µM 〉 ,

where µM denotes the fundamental class in H2n(M) corresponding to the ori-
entation of M .

Proposition 5.4. The connected sum M ′ #v′,v′′ M ′′ admits an orientation
compatible with those of M ′ and M ′′ if and only if σ(v′) = −σ(v′′).

Proof. The facets of P ′#P ′′ give rise to complex line bundles ξi, ξ′j and ξ′′k over
M ′ # M ′′, corresponding to the columns of (5.2). We denote their first Chern
classes by

c1(ξi) = wi, c1(ξ′j) = w′
j , and c1(ξ′′k) = w′′

k

in H2(M ′ # M ′′), for

1 6 i 6 n, n + 1 6 j 6 m′, and n + 1 6 k 6 m′′

respectively. The relations (3.8) become

(5.5) wi = −λ′i,n+1w
′
n+1 − . . .− λ′i,m′w′

m′ − λ′′i,n+1w
′′
n+1 − . . .− λ′′i,m′′w′′

m′′ ,

which imply that

wi = p′ ∗u′i + p′′ ∗u′′i for 1 6 i 6 n.

Since the first n facets of P ′ # P ′′ do not define a vertex, it follows that
w1 · · ·wn = 0 in H2n(M ′ # M ′′), and

(p′ ∗u′1 + p′′ ∗u′′1) · · · (p′ ∗u′n + p′′ ∗u′′n) = p′ ∗(u′1 · · ·u′n) + p′′ ∗(u′′1 · · ·u′′n) = 0.

For any choice of fundamental class in H2n(M ′ # M ′′), we deduce that〈
u′1 · · ·u′n , p′∗µM ′#M ′′

〉
+

〈
u′′1 · · ·u′′n , p′′∗µM ′#M ′′

〉
= 0.
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But the corresponding orientation of M ′ # M ′′ is compatible with those of M ′

and M ′′ if and only if p′∗µM ′#M ′′ = µM ′ and p′′∗µM ′#M ′′ = µM ′′ ; that is, if and
only if

σ(v′) + σ(v′′) = 0,

as required. �

Corollary 5.6. Let M ′ and M ′′ be omnioriented toric manifolds over strongly
ordered polytopes P ′ and P ′′ respectively, with σ(v′)+σ(v′′) = 0; then the stably
complex structure induced on M ′ #v′,v′′ M ′′ by Proposition 4.5 and Proposi-
tion 5.4 is equivalent to the connected sum of those induced on M ′ and M ′′.
Moreover, the associated complex cobordism classes satisfy

[M ′ #v′,v′′ M ′′] = [M ′] + [M ′′].

Proof. The stably complex structures on M ′ and M ′′ combine to give an iso-
morphism

τ(M ′ # M ′′)⊕ R2(m′+m′′−n) ∼= ξ1 ⊕ . . .⊕ ξn ⊕ ξ′n+1 ⊕ . . .⊕ ξ′m′

⊕ ξ′′n+1 ⊕ . . .⊕ ξ′′m′′ .
(5.7)

As explained in [4, Theorem 6.9], the isomorphism (5.7) belongs to one of the
two equivalence classes specified by Proposition 4.5 over M ′ # M ′′. The choice
of orientation is then provided by Proposition 5.4.

The equation of cobordism classes follows immediately, because the con-
nected sum is cobordant to the disjoint union. �

Proposition 5.4 implies that we cannot always form the connected sum of
two omniorented toric manifolds. If the sign of every vertex of P is positive, for
example, then it is impossible to construct M # M directly; we illustrate this
situation in Example 6.1. Such restrictions are vital in making applications to
complex cobordism theory. Corollary 5.6 confirms that the complex cobordism
class [M ′ #v′,v′′ M ′′] is independent of the strong orderings o′ and o′′, and
therefore of the initial vertices.

Example 5.8. In example 3.9, an omniorientation is defined on S = (S2)n by
investing the cube In with its natural orientation as a submanifold of Rn. The
stably complex structure induced by Proposition 4.5 takes the form

τ(S)⊕ R2n ∼= ζ1 ⊕ ζ1 ⊕ · · · ⊕ ζn ⊕ ζn

This structure bounds because ζi⊕ ζi is trivial over S2
i for every i, and extends

over the disc D3
i . The signs of the vertices are given by

σ(ε1, . . . , εn) = (−1)ε1 . . . (−1)εn ,

so those of adjacent vertices are opposite.

We are now in a position to illustrate our principal philosophical point; that
good alternative representatives can be chosen for a complex cobordism class
[M ], when M itself is an omnioriented toric manifold which is not amenable to
forming connected sums.
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Lemma 5.9. Let M be an omnioriented toric manifold of dimension > 4, over
a strongly ordered polytope P ; then there exists an omnioriented M ′ over a
polytope P ′ such that [M ′] = [M ] and P ′ has vertices of opposite sign.

Proof. Suppose that v is the initial vertex of P . Let S be the omnioriented
product of 2–spheres given by example (3.9), with initial vertex w.

If σ(v) = −1, define M ′ to be S #v,w M over the polytope P ′ = In #v,w

P . Then [M ′] = [M ], because S bounds; moreover, adjacent pairs of non-
initial vertices of In have opposites signs, which survive under the formation
of P ′, as required. If σ(v) = +1, we make the same construction using the
opposite orientation on In (and therefore on S). Since −S also bounds, the
same conclusions hold. �

We may now complete the proof of our amended [4, Theorem 6.11].

Theorem 5.10. In dimensions > 2, every complex cobordism class contains a
toric manifold, necessarily connected, whose stably complex structure is induced
by an omniorientation, and is therefore compatible with the action of the torus.

Proof. Following [4], we consider cobordism classes [M1] and M2], represented
by 2n-dimensional omnioriented toric manifolds over quotient polytopes P1 and
P2 respectively, It suffices to construct a third such manifold M , over a quotiemt
polytope P , whose cobordism class is [M1] + [M2].

To achieve this aim, we replace M2 by M ′
2 over P ′

2 following Lemma 5.9.
We are then guaranteed to be able to construct M1 # M ′

2 over P1 # P ′
2, using

appropriate strong orderings on P1 and P ′
2. The omniorientation on M1 # M ′

2

defines the required cobordism class, by Corollary 5.6 and Lemma 5.9. �

We refer to the polytope P of Theorem 5.10 as the box sum P1 � P2 of P1

and P2, because it is constructed by connecting them with an itermediate cube.
The following observation of [4] is unaffected: for any complex cobordism class,
the representing toric manifold may be chosen so that its quotient polytope is
a connected sum of products of simplices.

6. Examples and concluding remarks

We were taught the importance of adding an orientation to the original defi-
nition of omniorientation by certain 4–dimensional examples of Feldman [6]. In
this section we describe and develop his examples (noting that 4 is the smallest
dimension to which Proposition 5.4 is relevant). They lead to our concluding
remarks concerning higher dimensions.

Example 6.1. The complex projective plane CP 2 admits a standard omnior-
ientation, arising from its structure as a complex projective toric variety. The
polytope P is the standard 2–simplex ∆(2), strongly ordered by the standard
basis for R2, with initial vertex at the origin. Then ZP is the unit sphere
S5 ⊂ C3. The dicharacteristic is specified by the 2× 3 matrix

(
1 0 −1
0 1 −1

)
, and its

kernel K is the diagonal subcircle

Tδ = {(t, t, t)} < T 3.
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So T 3/Tδ is isomorphic to T 2, and (t1, t2) acts on [z1, z2, z3] ∈ CP 2 to give
[t1z1, t2z2, z3]. Every facial bundle is isomorphic to ζ. The integral cohomology
ring of M is generated by 2–dimensional elements u1, u2, u3, and the relations
(3.8) give u1 = u2 = u3; the Stanley-Reisner relations reduce to u3

1 = 0. Every
vertex of ∆(2) has sign +1.

The complex cobordism class [CP 2] is an additive generator of the cobordism
group ΩU

4
∼= Z2, which immediately raises the question of representing 2[CP 2].

This is not, however, possible by omniorienting CP 2 #CP 2, because no vertices
of opposite sign are available in ∆(2), as demanded by Proposition 5.4. Instead,
we appeal to Lemma 5.9, and replace the second CP 2 by the omnioriented toric
manifold (−S)#CP 2 over P ′ = I2 #∆(2). Of course (−S)#CP 2 is cobordant
to CP 2, and P ′ is a pentagon. These observations lead naturally to our second
example.

Example 6.2. The omnioriented toric manifold CP 2 #(−S)#CP 2 represents
2[CP 2], and lies over the box sum ∆(2) � ∆(2), which is a hexagon. Figure 1
illustrates the procedure diagramatically, in terms of dicharacteristics and ori-
entations. Every vertex of the hexagon has sign 1.
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(−1,−1)

# # =

Figure 1. The omnioriented connected sum CP 2 # (−S) # CP 2.

Our analysis is supported by a result of [8], which identifies the top Chern
number of any 2n–dimensional omnioriented toric manifold as

(6.3) cn(M) =
∑
w

σ(w).

Given the quotient polytope P , it is convenient to refine the notation of (5.1)
by writing

q(P ) = q+(M) + q−(M),
where q±(M) denotes the number of vertices with sign ±1 respectively. Then
(6.3) shows that q(M)−q−(M) is a cobordism invariant of M . This is illustrated
by Example 6.1, for which c2(CP 2) = 3 and q−(CP 2) = 0. It follows by
additivity that c2(M) = 6 for any omnioriented toric manifold representing
2[CP 2]; and therefore that the quotient polytope has 6 or more vertices. In
particular, as observed by Feldman, M cannot be constructed over an oriented
copy of ∆(2) # ∆(2), which is a square!

An independent additive generator of Ω4 is represented by (CP 1)2, which
has second Chern number 4, and may certainly be realised over the square.
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Our third example shows a related 4–dimensional situation in which the
connected sum of the quotient polytopes does support a suitable orientation.

Example 6.4. Let CP
2 denote the underlying toric manifold of (6.1), in which

the dicharacteristic is unaltered but the orientation of ∆(2) is reversed. There-
fore every vertex has sign −1, and we may construct CP 2 # CP

2 as an om-
nioriented toric manifold over ∆(2) # ∆(2). Figure 2 illustrates the procedure
diagramatically, in terms of dicharacteristics and orientations.
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Figure 2. The omnioriented connected sum CP 2 # CP 2.

Of course [CP
2] = −[CP 2]. So [CP 2] + [CP

2] = 0 in ΩU
4 , and the resulting

manifold bounds by Proposition 5.6.

One other observation on 2–dimensional box sums is also worth making.
Given k′- and k′′-gons P ′ and P ′′ in R2, it follows from (5.1) that

q(P ′ � P ′′) = q(P ′) + q(P ′′) and m(P ′ � P ′′) = m(P ′) + m(P ′′).

Thus q(P ′ � P ′′) = m(P ′ � P ′′) = k′ + k′′. So P ′ � P ′′ is a (k′ + k′′)-gon, and
is combinatorially equivalent to the Minkowski sum P ′ + P ′′ whenever P ′ and
P ′′ are in general position.

A situation similar to that of Example 6.2 arises in higher dimensions, when
we consider the problem of representing complex cobordism classes by smooth
projective toric varieties. For any such V , the top Chern number coincides
with the Euler characteristic, and is therefore equal to the number of vertices
of the quotient polytope P ; so q−(V ) = 0, by (6.3). Moreover, the Todd genus
satisfies Td(V ) = 1.

Remarks 6.5. Suppose that smooth projective toric varieties V1 and V2 are
of dimension > 4, and have quotient polytopes P1 and P2 respectively. Then
cn(V1) = q(P1) and cn(V2) = q(P2), yet q(P1 # P2) = q(P1) + q(P2) − 2, from
(5.1). Since cn is additive, no omnioriented toric manifold over P1 # P2 can
possibly represent [V1] + [V2]. This objection vanishes for P1 � P2, because it
enjoys an additional 2n − 2 vertices.

The fact that no smooth projective toric varienty can represent [V1] + [V2]
follows immediately from the Todd genus.

Example 6.6. For any non-negative integers r and s such that r + s > 0,
the cobordism class r[CP 2] + s[CP 1]2 is represented by an omnioriented toric
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manifold M(r, s). Its quotient polytope is the iterated box sum

P (r, s) =
(

�r ∆(2)
)

�
(

�s I2
)
,

which satisfies q−(P (r, s) = 0. Applying the Todd genus once more, we deduce
that M(r, s) cannot be cobordant to any smooth toric variety, so long as (r, s) 6=
(1, 0) or (0, 1).

Higher dimensional examples of this phenomena are given by ... These ex-
amples suggest that we might study omnioriented toric manifolds for which
q−(M) = 0, as a natural generalisation of smooth projective toric varieties. In-
deed, by considering q− in more detail, we may ask further and deeper questions
about the representability of cobordism classes.

Remarks 6.7. Suppose that an omnioriented toric manifold L has quotient
polytope Q, and that its associated stably complex structure bounds. Since
cn(L) = 0, it follows from (6.3) that q(Q) is even, and that half the vertices
have sign +1, and half −1. We may then construct a generalised version of our
connected sum, by forming the omnioriented toric manifold M1 # L # M2 over
P1 # Q # P2. Interesting possibilities for L include the bounded flag manifolds
Bn of [4], in which case Q is also In, and products such as S2 × CPn−1, in
which case Q is I ×∆(n− 1).

We may further generalise the procedure by connecting three or more pMj

over appropriate vertices of Q. Mention q− here ...
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