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Abstract. We characterize several classes of test functions, among them
Bjorck’s ultra-rapidly decaying test functions and the Gelfand-Shilov spaces of
type S, in terms of the decay of their short-time Fourier transform and in terms
of their Gabor coefficients.

1. Introduction

The definition of the Fourier transform on the level of distributions is
founded on a solid theory of spaces of test functions that are invariant
under the Fourier transform.

In the standard theories, classes of test functions are defined by separate
conditions on time and frequency. The typical example is the Schwartz class
S, where a member ¢ € § is defined by the rapid decay of all derivatives
D? ¢ and D? . However, many applications, for instance the concept of
phase space content in quantum mechanics, or the local frequency spectrum
in signal analysis, require a joint time-frequency description of functions.
This point of view motivated us to look closely at the joint time-frequency
behavior of test functions and distributions. In the context of time-frequency
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analysis, such an investigation is carried out conveniently by means of the
short-time Fourier transform and its relatives, such as the radar ambiguity
function or the Wigner distribution. Earlier results in this direction have
been obtained by Janssen [20] and Cho [5] for certain Gelfand-Shilov spaces
and by the authors for the Schwartz class [17]. The investigation of certain
small modulation spaces (Banach spaces contained in &) and the duals
in [14, 25, 27] can also be seen in this context.

Our objective is a more comprehensive analysis of spaces of test functions
and corresponding distributions. We will investigate the time-frequency
behavior of functions in Bjorck’s spaces of ultra-rapidly decaying test
functions [1] and in the Gelfand-Shilov spaces or Gevrey classes [13, 18].
These classes of test functions are refinements of the Schwartz class and
occur often in the theory of partial differential equations [18]. Our main
result yields a characterization of these spaces by their joint time-frequency
behavior (Theorems 2.7, 3.8 and 3.11). From the point of view of time-
frequency analysis these characterizations are quite natural, though not yet
established in analysis. To persuade the reader of the convenience and
usefulness of these characterizations, we give three applications. Firstly,
we will give a new proof of Kashpirovskij’s theorem [22] which shows that
the usual definition of spaces of test functions can be weakened and can be
done solely by decay conditions without using derivatives (Cor. 2.9 and 3.9).
Secondly, we give a significant improvement of Janssen’s theorem on the
window design for Gabor frames in Thm. 4.2. Thirdly, we then characterize
ultra-rapidly decaying test functions by their Gabor coefficients.

The paper is organized as follows: In Section 2, we introduce Bjorck’s
ultra-rapidly decaying test functions and ultra-distributions, and investigate
their joint time-frequency behavior by using the techniques developed
in [17]. In Section 3, a similar program is carried out for the spaces of
type S (or Gevrey classes) of Gelfand and Shilov. Their characterization by
means of the STFT is more challenging and will be given in Theorem 3.8
and Corollary 3.11. Finally, in Section 4 we present a different perspective
on spaces of test functions in terms of so-called modulation spaces and give
another characterization of ultra-rapidly decaying test functions by means
of Gabor frames.

1.1. The short-time Fourier transformation (STFT). Our main tool
for the investigation of test functions and distributions will be the short-time
Fourier transform.

Definition. The short-time Fourier transform (STFT) of a function or
distribution f on R? with respect to the non-zero window g is defined as

(Vo f) @, €) = /R g e d = (FTo 9)©) = (£, M Ta g) |
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where as usual T, f(¢) = f(t—=x) is the translation operator and M f(t) =
e2™€t £(t) is the modulation operator.

The quantity V, f(z,§) is a measure for the amplitude of the frequency
band near £ at time z. We will heavily use the following properties of the
STFT.

Lemma 1.1. For functions f, fi, g, gi, and h € S(R?), the STFT has
the following properties.

(i) (Inversion formula)

[ 0upw. M T hdnds = () 5.
RaxR4
(ii) (STFT of the Fourier transforms)

(V) ) = e 2™ (V, f)(—y, 1) .

(iii) (Fourier transform of the STFT)

—

Vo), y) = €™ f(—y) gn) -

The proofs are straightforward calculations and can be found, e.g.,
in [14, 17].

1.2. Notation. We use standard multi-index notation and write 2P =
(z1,...,2q) PP = Hle o, DP = Hle ;z—Z, a<f=o; <P, Vi=
1...d and o, 3 € NI. Using the multinomial zcoeﬂ‘icients *) = H?Zl (f)
yields (a+b)? =}, (P) a” b»~". We shall denote the Euclidean norm by
||z|| and the £*-norm by ||z||; = Z?Zl |z;|, while by the absolute value of a

vector, we mean the vector of absolute values |z| = (|z1],. .., |z4]).

2. Ultra-rapidly decaying test functions and
tempered ultra-distributions

2.1. Weight functions. In general, a weight function is simply a non-
negative, locally integrable function on R?.

Following [28], we define M to be the collection of all nonnegative
functions w on R? such that w(t) = o(||t||), where o(r) is an increasing
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continuous concave function on [0, co) with

o(0) =0,

o0
/ a(r) dr < oo,
o 14712

o(r) > c+dlog(l+r) forsomece R, d>0.

Consequently, w € M implies that w is subadditive, i.e., w(t;+ty) <
w(t1) + w(ty) for all ¢1, to € R, and thus we have for A > 0 that m = e*?
is submultiplicative, i.e., m(0) = 1 and

m(ti+ts) <mt)mta) Vb, b2 € R
A standard class of weight functions is given by
mg(t) = (1 + |1t)])°® for s € R.

For s > 0, the function m is submultiplicative, and we have ws = log(ms) €

M.

Definition. For w € M, the space S, (R?) of ultra-rapidly decaying
test functions [28] is the Fréchet space of functions on R? generated by the
family of seminorms

1) Aw={[* D g e DUl A > 0, pg € NG}

Its dual is the space S, (R?) of tempered ultra-distributions. Here continuity
of a linear functional f means that there exist constants C', A\, p > 0 and
integers M, N > 0 such that for all g € S,,(R?),

e [fal<c( X el 3 e 0t ).
llplls <M llgllL <N

Obviously, if we choose w(t) = log(1 + [#]l), we obtain S, (R?) = S(R?),
the Schwartz space [26], and consequently S, (R?) = S'(R?), the space of
tempered distributions.

Lemma 2.1. Given w € M, we have for A > 0 that

e (F* D e < On [ e [|1€* 9]

for a constant C' depending on A only.
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Proof. We show first that
/ = Pult) g=2Xw(e—t) gy < 0y o= Mule) |
Rd
For [[t—z|| < [|z]|/2, we have [|t|| > ||z]|/2, so

/ 672)\(w(t)+w(z7t)) dt < / 672)\w(z/2) 672)\w(t7z) dt
Rd

e
llt—z <152

+/ e—2Mut) g—22w(2/2) gy
le—a> L5

< 672)\w(z/2) 2/ ef)\w(t) dt
> iy

< ef)\w(z) O\

)

where in the last inequality, we made use of w(z) = o(||z||) with o concave
and o(0) =0, thus o(]|lz/2]l) > (¢(0) + o(llzll))/2 = o(llzll) /2.
Now, we use

1) < ”ezm f||L°° e 22w 4nq lg(t)] < ”ezmug”Loo 672)\w(t),

SO
[(F *g)@)| < (If]*g]) (x)
2w 2w —2Xw(t) ,—2 w(z—t)
<1 Sl e gl [0 at
< [ f]| oo €22 9] oo O
which implies the claim. ([l

2.2. STFT on S,(R?) and S, (R?). For a fixed non-zero window
g € Su(R?), the STFT is well-defined for f € S, (R?) and maps a tempered
ultra-distribution on R¢ to a function on RY xRY.

Now we want to show how the STFT reflects properties of ultra-rapidly
decaying test functions and of tempered ultra-distributions. First, we need
an algebraic lemma for interchanging the operators e** D? and M¢ T,.
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Lemma 2.2. For g € S, (R?), we have

(@) D'MeTeg) =) (5) 2rie)” M Tu(* D" g)
r<p
(11) HeAw DP (ME T, g) HLDO < e)\w(z) Z (I;) |(27m£)r| ||e)\w DP" g”Loo )
r<p

Proof. (i) Obviously, we have
(2.3) (eM” T, g) (t) = eMv(® gt—x) =T, (eAw(H'z) g(t)) .
Furthermore, Leibniz’s rule implies

(DP M£ h) t) = Dp(€2ﬂi§th(t)) — Z (f) (Dr eZm’Et) (Dpfrh(t))

r<p

- (Z (+) (2i€)" M DP " h) (t).

r<p

(2.4)

Combining (2.3) and (2.4) yields

(07 Mg (T ) = € (3 () 2y Me D (1))

r<p

= (B)(2ri&)" M¢(eX T,(DP " g))

r<p

= Z (2mi&)" M¢ (T, A o) (ppr 9)) .

r<p

(ii) follows from (i) by using the isometry property ||Me T, hllr- =
||h||L~ and the submultiplicativity e (%) < eAw(t) grw(z) ad

Corollary 2.3. Time-frequency shifts act continuously on S, and
weak *-continuously on S,,.

Proof. We have to show that for g € S,,(R?),

1. )\w(t) Dp M TI _ _ 0
W (Me Ta g = 9)| 1

and

fim e DI T, g~ )] . =0
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for all A\, u > 0, p, ¢ € N!. According to Lemma 2.2, we have

€2 DP (M Tp g = 9)][ . < [|€X( (Mg T2 D” g = D? g)]| ..

4N 3 (2)[(2mie) | D7 g
r<p
r#0

The convergence of the first term, as ||z||, ||]| — 0, is immediate for g € C*
with compact support. Since compactly supported functions are dense in
S, (R?), the convergence in the general case follows from a 3 e-argument.
The terms in ) converge to 0, because r # 0.
The convergence of ||e”w(7) Dq(M?ﬁg - §)|| Lo 18 treated similarly.
Consequently, for f € S, (R?), we have for all g € S,,(R?) that

< T, f,g > <f7 M§g>:<fag>7

which shows the weak*-continuity in S, (R?). O

lim lim
llz]l,lI€]l—0 llz]l,lI€]l—0

This last statement implies that the STFT of a tempered ultra-
distribution is a continuous function on the time-frequency plane. We can
say more about its growth, and we can also characterize elements of S,, (R%)
by the decay properties of their STFT, as the following results show.

Theorem 2.4. Let g € S,(RY) and f € S, (RY). Then V,f is
continuous, and there are constants C, A\, u > 0 such that

(Vo f)(@,&)| < Crv@rm® v g e R
Proof. The continuity of f as a linear functional on S,,(R?) yields by (2.2)

|(Vo )@, &)| = |(f,Me Ty g)|
co X |evronna),

lIplln <M

+ 3 ||l prerme M, Teg) | m).
lal<N
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With the identity of Lemma 2.2, we obtain

|(ng)(w,§)|§0< > @Y () |2rig)"| M DP T gl

llplla<pM r<p

n Z ehw(€) Z () |(=2miz)*| ||e* DI—* §||L°<>> :

llglli<N $¢

Since g € S,,(R?), the right hand side can be written as C (e**(®) g(|&], .. .
1€al) 4+ e* ) p(jzy], ..., de|))> where p and g are polynomials of degree N
and M on R?. Consequently we obtain |V, f(z,&)| < C' eNw(@tuw(€) for
all \' > A, p/ > p. The continuity of V, f follows from Corollary 2.3. O

)

Corollary 2.5. Let g € S(R?) and f € S'(R?). Then V, f is continuous,
and there are integers M, N > 0 and a constant C > 0 such that

(Ve )@, O] <C (L +llzD™ (L+11ENY ¥ @, E€RT.

Proposition 2.6. Let g € S,,(R?) be fived. Assume that F : R*¢ — C
has ultra-rapid decay, i.e., that for all A > 0, there is a constant C\ > 0
such that

|F(z,8)] < Cy e M@ +w@)

Then the integral

(2.5) for= [[ | Fe.o T gt do
R2d

defines a function f in S, (R?).

Proof. The integral in (2.5) is absolutely convergent in t. Thus we
may differentiate under the integral sign as long as the resulting integral
is absolutely convergent, uniformly on compact sets. The latter is certainly
true by virtue of the assumptions on g and F. Thus we obtain with
Lemma 2.2

(X DP f)(b) = / / F(z, &) eM® DP (Mg T, g) (t) dwdé

=> / / F(z,6) (2mi€)" Mg T, (0 T DP g) () dad

r<p
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SO

e D7 £l <32 () / / |[F(z,&)]|(2mig)"| ) || D" g|| . dwde

r<p

<c / / P, )| Po, ) dade

where €' = max,<, ||e>‘“’ D”f”g”Loo and

d
P@,&) =Y (7) [2ri&)"| er ) = @ T (1 + 127&;1)7
j=1

r<p

Similarly, the identity

(e D? f)(r) = / / F(z,&) e D (2™ M_, T¢ §) (1) dedé

= Z // (x, &) (—2mix)®

s<gq

- 28T M_, T (et +9) DI §) (1) dwdg
yields the estimate

e D* Pl < D [[ 1P, 01 Qe dad,

where D = max,<, ||e’“” D?# /g\”Loo and Q(z,&) = erw(® ngl(l +
|27rxj\)qf .

The assumption on F implies ||e*” D? f||L~ < oo and |[[e#* D? f||p~ <
oo for all A\, u > 0, and consequently f € S, (R?). O

Theorem 2.7. Let g € S,,(RY) \ {0} be fized. Then for f € S, (R?), the
following are equivalent:

(i) f € Su(R).
(ii) For all A > 0, there is C > 0 such that

|(Vof)(@,6)| < Cre” AMw(z)+w(e)) V (z,6) e R

(ii) V,f € Su(R2).
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Proof.  (ii) = (i). For the special case F' = V,f in (2.5), we obtain
the inversion formula (Lemma 1.1.(ii)). Thus by Proposition 2.6, we have
f € Su(RY).

(i) = (ii). Let A > 0 and write g(t) = g(—t). Then

— eZAw(z)

eV f)(@, )

f) glz—t) e ™% dt
Rd

< ePwl@) / )] |g(z—1t)| dt
Rd

= M0 (1] % |g]) (@)
< [l (1] [aD)]| poe
< Cox [[€™ fllpe [le* ™ Gllpe =: C
(by Lemma 2.1,)

which implies

|V, f)@,&)| < Ce i),

Analogously, using Lemma 1.1(vi)

|V, )@, )| = |(V3 )&, —w)| < De 2w

where D = Ca ||e*™ fl|p |le*** g||~. The square root of the product
yields

|V, f)(@,&)| < VT De Mw@+ul),

Since this holds for all A > 0, the STFT V, f decays ultra-rapidly as claimed.

(i) = (iii). Given f, g € S,(R?), the function F(z,t) = f(t)g{t—z) is in
S, (R??). Since S, is invariant under partial Fourier transformations, we
obtain that V, f(z,&) = [ F(z,t)e 2™t dt = F; F is also in S,,(R*?).

(iii) = (ii). Obvious. O

Corollary 2.8. Let g € S(R?) \ {0} be fized. Then for f € S'(R%), the
following are equivalent:

(i) feSR).
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(ii) For all n > 0, there is C,, > 0 such that
|V )@, O] < Cr (L4 NIzl + 1EN™™ V(2,8 € R,

(i) V,f € S(R2) .

Remark. (i) Corollary 2.8 can be considered folklore, it is implicitely
given in [12], occurs in [17, 14] and also follows from an abstract result
about the smoothness of square integrable representations of nilpotent Lie
groups [9].

(ii) A more economic proof of Theorem 2.7 requires only the implications
(i) = (iii) = (ii) = (i). For the sole proof of the theorem, the step (i) = (ii)
is not necessary. Note, however, that we have proved the following much
stronger result, which has already been obtained in [8] with completely
different methods. For the special case of the Schwartz space S(R?), this
was already obtained in [6, 24].

Corollary 2.9. The space S,,(R?) can also be defined as the Fréchet
space of functions on R? generated by the family of seminorms

Ao = {1l

|e”wf||Loo A > 0} .

Proof. Consider S,,(R?) and :S'\;(Rd) to be the Fréchet spaces of functions
on R? generated by the family of seminorms A,, (defined in (2.1)) and A,
respectively. Since A, D ,Zw, we obviously have S, (R?) C :9;(]1%‘1), and the
embedding is continuous. On the other hand, in the proof of Theorem 2.7,
(i) = (ii), we only used the seminorms in A, to obtain that f € S,(R?).
This shows that S,,(R?) = :S'Z,(]Rd) as sets. So we know that the embedding
S, (RY) — S’:U(]Rd) is a continuous bijection, and thus by the open mapping
theorem for Fréchet spaces it is a homeomorphism. a

3. Spaces of type S

The spaces S,,(R?) were defined by the ultra-rapid decay of all derivatives
D f and DPf. An alternative strategy to construct useful spaces
of test functions is to impose conditions on the growth of the norms
| x? qu||L°°(Rd) as a function of the order p,q € NI, where X is the
multiplication operator (X? f)(x) = P f(x). This approach leads to the
Gelfand-Shilov spaces and will be treated next.

Recall that we write AP = (Ay,..., Ag)Pr-pa) = Hle AP" and pP@ =

[T, pri® for AeR?, pe Nt and a > 0.
Definition. ([13], § IV.9) Let a, 5>0.
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(a) We define S,, to be the space of all functions f € C*(R?) with the
property that there exist constants A;,..., A4, Cy > 0 such that

(3.1) IXP D7 f| e ey < Ca AP PP Vp g €N

(b) We define S° to be the space of all functions f € C*°(R?) with the
property that there exist constants By, ..., B4, Cp, > 0 such that
(3.2) IXPD? f|| ey < Co B q"" VY p, g €N,
(c) We define S% to be the space of all functions f € C*°(R?) with the
property that there exist constants Ay,..., Ag, By,...,Bg, C >0
such that

(3.3) || X? D <CAPpPeBI¢?P  Vp geNd.

L] PR
The topology on the spaces of type S is defined by declaring which
sequences are convergent.

Definition. A sequence (f,)nen in a space of type S converges to 0,
if the constants in (3.1)—(3.3) can be chosen uniformly in n, and for each
q €N, we have D? f,, — 0 uniformly on compact sets.

Lemma 3.1.

(i) ([13], § IV.9) For any a, B > 0, the spaces S, and S° are
nontrivial. Also, S2 is nontrivial, if and only if for each i =
1,...,d, we have a; + B; > 1, or a; + B; = 1 and «a; B; > 0.
Furthermore, each nontrivial space of type S is rich in the sense
that if ¢ € L}, (R?) satisfies [,afe =0 for all f € Sq (or SP),

loc
then ¢ = 0.
(ii) ([13],§IV.9) S, = §°, S% = S5, Si = 3.
(iii) (Kashpirovskij’s theorem [22]) S, N S” = S5.
(iv) ([13], § IV.4&6) Each space of type S is invariant under the
operators X, D, T,, and M.

In view of Lemma 3.1 we will carry out the proofs as follows: (a) we will
first prove each statement for the class Sy, (b) then the corresponding
statement for S% is obtained by taking Fourier transform, (c) finally,
the statement for S% is a consequence of combining (a) and (b) with
Kashpirovskij’s theorem.

3.1. STFT on spaces of type S. For a fixed window ¢ in a space of type
S, the STFT is well-defined for any f in the corresponding dual space, and
thus maps appropriate distributions on R? to functions on R% xR¢.
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We want to show how the STFT reflects properties of such functions and
distributions. First, we provide an algebraic lemma for interchanging the
operators X¥ D? and M, T,

Lemma 3.2 ([17, L. 2.1]). For g € S(R?), we have
XPDY(Me Tog) =D > (2)(4) 2" (2mi€)® Mg T (XP~" D% g) .
r<p s<q
Corollary 3.3.

(i) Time-frequency shifts act continuously on all spaces of type S, and
weak *-continuously on their duals.

(ii) Let g be an element of a space of type S, and f in the dual space.
Then V4 f is continuous.

Proof. (i) We saw in Section 2 already that time-frequency shifts act
continuously on &. For any f in a space of type S, we have f € S, and thus

D?M¢T, f — f) = 0 uniformly on compact sets,

for all ¢ € NZ.
For f € S,, we have || XP DY f||p < Cy AP pP <. This implies

| XP DM T, )| o <5230 () (9 |7 (2mi6)° M To(XP7 DI £

r<ps<q

<D O 21 @ale)” | XD f
r<ps<g

< Z Z |$| 271"5‘)3 Cq_s APT (p_r)(pfr) o
r<ps<q

< (max Cy) (A+|z))? pP* (1+2m€)?
54

where in a slight abuse of notation, we have written A+|z|] =
(Ar+|z1], .-, Ag+|zq]) and 1427)¢] = (1427|&), ..., 1+27|&q|). So we
have for |z, |£| <1 that

| XPD?(M¢ Ty f=f)| o < Cf (A+1)7pP°

and thus M¢ T, f— f = 0in S, as (z,£) — (0,0).
Consequently, for f € S/, we have for all g € S, that

(M T, fog) = lim (f,T_;M_¢g)=(f.9),

lim
llz]l,llgll—0 llz]l,llgll—0
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which shows the weak*-continuity in S7,.
S8 and 82 are treated analogously.
(ii) is an immediate consequence of (i). O

For the next result, we will need the following estimate.

Lemma 3.4. Let o = (a1,...,aq) >0. Then for allk = (ky,...,kq) >0,
there exist constants C and A = (A1,...,Ay) depending on k and « such
that

(p+k)Pte < APpPe Y pe Nt .

Proof. Without loss of generality we may assume that d=1. We write
(p+R) 0 = (p+R)Fe (25E)" 7 pre,
and observe that

(p+k)ka < e(p+k)ka — ekza (ek a)p

)

and o/
« (0%
()" = (1+ )" o b (p 00,
so (Z£)" is bounded. The choice C' = eF supen, (EEE)P® and A = ek e
now yields the claim. a

The following result is analogous to Proposition 2.6 for S,,(R?). We write
max{a, a'} = (max{a,al},..., max{ay,a}}) for a,a’ € R?.

Proposition 3.5. Let a, o, 8, f' > 0, and denote o = max{a,a'},
B" = max{B,B'}. Assume F :R¢xR? — C and h: R — C, and consider

(3.4) ftr= [[ a6 (Me 2 ) dade.

RdxRd
(a) If there are constants Ay, ..., Aq, Cq > 0 such that

<C APpP* Y p,ge N,

o € e, 6] sy <

and h € Sy, then f € S,.
(b) If there are constants By, ..., Bq, Cp, > 0 such that

|27 €7 F(z,€) <C,B1¢""  Vp,qgeNi,

”Lw(Rdxﬁd)
and h € 8%, then f € §°".
(c) If there are constants A1, ..., Aq, B1,...,Bg, C >0 such that

|a? € Fz, &) | SCAPPPaBIgP Y geN],

”Lw(Rdx@d
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and h € S, then f € S7,.

al’

Proof. (a) First, we show that the assumption on F' implies
J[ e ¢ P ol dute < c,ampre Vpgeny,
RixRd

with modified constants Cy, and A. Writing again 1+|z| = (1+|z41],...,
1+|zq4|) ete., we observe that

/ / P €0 (e, €)| dwdé < / / (L+e)? (1€ |F(, ©)] dede

RdxRd RdxRd
< [P (AHED ™ [F @, O oo (gariio
d
/H(1+m|)*2(1+\§i\)*2dxd§
R'%dﬁdi:l

<2 3 X (D€ F@ O perasasy

r<p+2s<g+2

< 22d Z Z (p—:.-Q) (q1—2) C, A" pr e

r<p+2s<g+2

(now use r"®* < (p+2)(Pt2 e )

(qf)C’s) ( Z (pt2)Ar> (p+2) P2

r<p+2
(U0, (e

< Cg AP pP*
(Lemma 3.4)

as claimed.

By the assumption on F, the integral in (3.4) is absolutely convergent.
Thus we may differentiate under the integral sign, as long as the resulting
integral is absolutely convergent, uniformly on compact sets. But the latter
is certainly true by virtue of the assumptions on F' and h, and we obtain
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with Lemma 3.2

(XPD? f)(t) = // F(z,&) XPD?(M¢ T, g) (t) dwd€

S0 [[ Faoserior

r<ps<q

-M¢ T, (XP""D?* h) (t) dade
so with || XP DY Al|g < C) AP ppe’,

D fl,e < XY 0@ [[ 1Pl l2mie)

r<ps<q

|| XPTT DI | ded

<SOSTB)(O) @) O AT O AP (pr) P

r<ps<q

(now use " * < p" o and (p_r)(pfr) o < p(Pfr) o' )

< (Z (e ecy,) (z @ ararr) et

= Oy (A+A"yP e’

so f € S, as claimed.
(b) The Fourier transformation applied to (3.4) yields

F= / / F(z, &) Mg T, hdudg

RaxRd

- / / F(z,£)e*™* M_, T¢ hdzdf

RIxRd

= // F(—n,y)e_2”’7y M, Tyﬁdydn.

RaxRd
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Note that by the assumption on F, the function F(y,n) = e~ 2" F(—n,y)
satisfies

||yp nq ﬁ(y;n)”LO@(RdX@d) = ||yp nq F(_n;y)”Lw(RdX@d)
= ||(=2)"€" F(@,6)| o (garia) < Ca B "7,
and that by Lemma 3.1.(ii), he Ss. So we may apply (a) to F and ﬁ’

which yields fe S or, again by Lemma 3.1.(ii), f € 55" as claimed.
(c) Immediate consequence from (a), (b), and Lemma 3.1.(iii). O

Corollary 3.6. Let a, >0, and f, g€ S(R?) \ {0}.
(a) If there are constants Ay, ..., Aq, Cq > 0 such that

||l'p fq (ng)(i';g)”Loo(RdX@d) S Cq Apppa V p, q S Ng ,

then f, g€ S,.
(b) If there are constants By, ..., Bq, Cp, > 0 such that

||xp ¢! (ng)(xaf)”Loo(Rdxﬁd) <C, B! QQB Vpqe N(d) )

then f, g€ SP.
(c) If there are constants A1, ..., Aq, B1,...,Bg, C >0 such that

27 € (V)@ O g iz < CAPPBIg? W p g e N,

then f, g€ S5.

Proof. Apply Proposition 3.5 with F' =V, f and appropriate h. Note that
the existence of appropriate candidates for h is guaranteed by Lemma 3.1.(i).
O

Corollary 3.7 (Uncertainty principle). Let f, g€ S(R?), and assume
that for some «, 3 >0, there are constants Ay, ..., Aq, B1,...,Bq, C >0
such that

27 €% (Vo )@, O] o gaxiey S CAPPP* B " Vp, g €Ny,

Ifa;+6; <1ora;+p; =1 and a;8; = 0 for some pair (ay, 8;), ie., if
S = {0}, then V,f =0 and thus either f =0 or g = 0.

A converse of Corollary 3.6 is contained in the next theorem.

Theorem 3.8. Let a, o', B, 8'>0, and denote o/ = max{a,a'},

" = max{p, §'}.
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(a) If f and g satisfy
IXP fllp=(e < Co AP and || X? fll s <00 ¥ p,g€NG,
1X7 gllpomey < Co AP PP and || X?G o ge) <00V p, €N,

(in particular, if f € Sy and g € Sy),
then there exist constants AY,..., Ay, Cy >0 such that

”xp ¢! (ng)(m’f)”mo(mdxﬁd) <Cy A et Vp,qgeNg.
(b) If f and g satisfy
IXP fllp=(e < oo and [|X? fllpwga < CoBya® ¥ p,geN;,
IXP gllp(ra) < oo and || X*Gll s < CoBya'® ¥V p,geNg,

(in particular, if f € 8% and g € Sﬁl),
then there exist constants By, ..., By, C; >0 such that

=" €* (ng)(x’§)||L°°(Rdxﬁd) <G, B"! ¢ VpaeN.
(¢) If f and g satisfy
IXP fllpo (e < CoAPpP*  and | X fll o ay < Co Bya™® ¥ p, g€,
1X7 gllpee(mey < Co AP PP and || XGl| oo ey < Co Bya®” ¥V p, a €N,

(in particular, if f € S5 and g € Sg:),
then there exist constants AY,..., A, BY,...,B}, C" >0 such that

% € (Vo )@, || o gaxgay < C" A"PPP* B """ ¥ p,geN.

Proof. (a) We leave it to the reader to show (in complete analogy to the
beginning of the proof of Proposition 3.5) that the assumption on f implies

[ e sola<coape vpeny,
R

with modified constants Cy and A.
This observation yields the estimate

|27 (Vo £)(@,8)|| oo < sup |27 / |f)] |g(t—)| dt
z€ER? R4
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/|f sup |zP g(t—ax)| dt

= / Mlllt=2)" g@)| o dt

< [ eI @ ler T ow)), . d

r<p

<> / 7 F] dt Cly AP (pp) ()

r<p

<Z COAT raCI A'P— r(p ,r,)(p r)a’

r<p
(now use " * < p" o and (p_r)(pfr) o < p(Pfr) o )

<CoCy Yy (P)AT AP T pP

r<p
(A Ay pre’
Since the hypothesis on f and g imply that f,g € S, Corollary 2.8 shows
that V, f € S and consequently we have
6" Vorll o =2 CF < o0
From this we obtain

lo” € Vo f)@, &) o = 2?7 € Vo022
1/2

< Il Vo fll2 e vos |2

< (o (A+A'yP (2p)re”) ! gy M2
= /CY O (A A 22" )P pre”.

(b) By Lemma 1.1.(ii), we may employ (a) to obtain

|27 €1 (Vy )@, O)|| o = ||€72? (V35)(E,—2)| oo

<orpig?
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(c) Now we may make use of both (a) and (b), which yields

1/2

||mp fq (ng)(m7£)||Loo = ||$2p 52(1 (ng)2||Loo
1/2 1/2

S = Voo |l g 1€ Vafll g

< (C(I)I Al"2p (2p)2pa”)1/2 (6(’)1 B2 (2q)2qﬂ”)

=\/Cy Cy (A" 2" yppre” (BT 28 Y1 r

1/2

Remark. In the proofs of Proposition 3.5.(b) and (c), we were able to
apply (a) by making use of Lemma 3.1.(ii) and (iii). Note, though, that
the proof of Proposition 3.5.(a) can be modified easily to prove (b) and (c)
directly.

With this modification, Proposition 3.5 and Theorem 3.8 yield a new,
fairly elegant proof of Kashpirovskij’s theorem (Lemma 3.1.(iii)), namely,
via the following characterizations of the spaces of type S.

Corollary 3.9. Let a, > 0.

(a) S, is the space of all functions f € C(R?) with the property that there
exist constants Aq,...,Aq, Co > 0 such that

1XP fll po iy < CoAPpP* and || X ]|, 0gey <00 VP g €N

(b) S? is the space of all functions f € C>°(R?) with the property that there
exist constants By, ..., By, Co > 0 such that

” pr”LOO(Rd) <o and ” X1 .]?”Loo(@d) < C'p B qqﬁ A4 P, q € Ng .

(c) S is the space of all functions f € C>®(R?) with the property that there
exist constants Ay, ..., Aq, Bi1,...,Bg, C > 0 such that

IXP £l poe oy < C AP P and ||Xqﬂ|Lw(ﬁd) <CB'¢"% Vp,qeN:.

A somewhat more general form of part (c) of the above can already be
found in [7].
This characterization yields a much stronger result on V, f.

Corollary 3.10. Let o, o', 8, 8’ >0, and denote &' = max{a,a'},

B" =max{B3,p'}. If f € 85 and g € S’g:, then Vo f € S((ij;fg)n)-
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Proof. By Theorem 3.8.(c), there exist constants AY,..., AJ,
BY,...,BY, C" > 0 such that

27 € (Vo ) (@, )| po gy < C" AP PP B"1q"" Vp,qeN.

On the other hand, since ()79\1‘)(77, y) = e2™ Y 5(n) f(—y) (¢f., Lemma 1.1.(iii))
with f € S, and g € S/, we have

77 3 Dy F) 00| e @arezeny = 177 G0 g oy |87 F D) | o e
<C'B'PpPt o Atge .

Now we apply Corollary 3.9.(c), which yields the claim. O

For the case a = o' and 3 = 3/, we obtain a characterization of S in
terms of the STFT in analogy to Theorem 2.7.

Corollary 3.11. Let a, 3>0, and g € S?\ {0}. Then for f € (S3),
the following are equivalent:
(i) feSs.
(ii) There ewxist constants Ay, ..., Aq, B1,...,Bg, C > 0 such that

27 €7 (Vo )@, )| oo maisy S C AP PP B q" ¥V pqeN.

(iii) V,f € S(oa) (R2).
3.2. Different characterizations of the spaces of type S. Spaces
of type S possess an alternative characterization that resembles more the
definition of the classes S, (R?). Let us write X - [€]//® = % \j|& |1/
Then 82 consists of all functions f € C*°(R?) with the property that there
exist constants A1, ..., Ag, p1,---, g > 0 such that
(3.5)

Ja|te LY n
||e)‘ || qu”Loo(Rd) < oo and ||e“ €l Dpf||Loo(@d) <oo Vp,qgeNd

While (3.5) is similar to Definition given by (2.1), the ultra-rapid decay
is required only for a single pair (A, u) instead of all A, u > 0; this might
explain the considerable difference in the technical treatment of S,,(R?) and
S?. Similar characterizations hold for S, and S”. See [13] for this aspect
of the spaces of type S.

Proceeding as in the previous section, it is then possible to show the
following characterization of S5 (and of S, and S?).

Proposition 3.12. Let a, 3> 0, and g € S5\ {0}. Then for f € (S5),
the following are equivalent:
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(i) fess.
(ii) There exist constants A1, ..., d, 1, -, > 0 such that

Mal /4w €] /?
He I (ng)(m,f)HLoo(Rdxﬁd) < 00.

(iii) There exist constants \1,...,Ag, p1,---, g > 0 such that

|+

< oo and He“"g‘l/ﬁfH < o0.
L>=(RY) L>=(R)

Remark. The equivalence of (i) and (ii) is essentially proved in [5] (using
the Wigner distribution instead of the STFT). Also, in [21], the Wigner
distribution has been used to characterize spaces of Bjorck and of Gelfand-
Shilov type.

4. Modulation Spaces

So far we have investigated the joint time-frequency behavior of test
functions and distributions by means of the short-time Fourier transform.
We now reverse the point of view and consider spaces that are defined by the
decay properties of the short-time Fourier transform. This class of spaces
is known as modulation spaces and is well understood, see [14, Ch. 11-13].
We may thus use and apply results from the theory of modulation spaces to
obtain new results about spaces of test functions. In this sense, the theory
of modulation spaces sheds a new light on the theory of test functions and
distributions. We recall the definition of a modulation space.

Definition. Let ¢(t) = e "lI° be the Gaussian and m a
submultiplicative weight function on the time-frequency plane. Then we
define M2 (R?) to be the space

(4.1) ME(RY) = {f € 8'(RY) : Vs f € L2, (R xR?)}

with norm

(4.2)
» 1/p
I llaez mey = Vo Fll e, maxma) = (/Rd . (Vo £)(2)] m(Z)”dZ> :

Remark. (i) For 1 < p < 2, MP is a subspace of L*(R%), because
MP C MP C L2(R%) by [14, Thm. 12.2.2].

For other types of weights, so-called moderate weight functions, MP is
not necessarily a subspace of L? or even of S'. Also, (4.1) is not the most
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general definition of modulation spaces: usually one uses mixed LP'9-norms
imposed on V, f; see [14] for a detailed discussion and full generality.

(ii) Note that MP, is always non-trivial. Since m is submultiplicative,
it grows at most exponentially, i.e., |m(z)| < C eIl for some A, C > 0.
Therefore, MP contains at least the Gaussian ¢, since |(Vy¢)(x,&)| =
e~ (@ +6%)/2 [14, L. 1.5.2]. Since MP?, is invariant under time-frequency
shifts, it contains all finite linear combinations of the time-frequency shifts
M¢ T, ¢. A slightly different argument shows that MP, also contains all
finite linear combinations of Hermite functions.

(iii) We are mostly interested in spaces that are invariant under the
Fourier transform. In view of Lemma 1.1.(ii), this requires the additional
property

m(z,&) < Cm(&, —x) for (z,€) € R xR
If m satisfies this condition, then the Fourier transform is an isomorphism
on M? .

(iv) The definition of MP is “fairly” independent of the choice of the
particular window. More precisely, for every g € M} \ {0}, there exist
constants A, B > 0 such that

AlVsflles, < WVoflles, < BIVsfllL,

in other words, for every ge M}, \ {0}, we have that ||V, f||rz is an
equivalent norm on MP [14, Thm. 11.3.7].

The concept of modulation spaces leads to an elegant description of
spaces of test functions and distributions within time-frequency analysis.

Proposition 4.1.
i) Let mg(z) = (1+]|z]])%. enS = b for all pe|l,00].
L Then S = (), ME, for all
(i) Let weM and set my(z,&) = eMw@Hw@) — Thep §, =
Naso MPE,, for all p€[1,00].
(iii) Let a, B, X > 0 and set my(z,&) = Al HEE) - Thep
S8 = Urso M2, for all p €1, 00].

Proof. For p=o00, assertions (ii) and (iii) are reformulations of
Theorem 2.7 and Proposition 3.12, respectively. For pe[l,o00[, the
statements follow from the embeddings

My, C M, C M.y forsomee >0,
where £ depends on w € M in (ii).

Statement (i) was already observed in [14, Prop. 11.3.1] and is a special
case of (ii). O
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It is worth noting that while for «, § > 1, the weight functions
ma(z, &) = Ml HEM?) are submultiplicative, and thus MPp  # {0} by
the remarks above, this is not true in general. In particular, if a; + 5; < 1
for some i, then MP, = {0} for all A > 0, and thus S% = {0} [3] (compare
Lemma 3.1.(i)).

These representations of spaces of test functions allow us to use methods
of time-frequency analysis for the investigation of S,,(R?) and S%. As an
example how to apply known results about modulation spaces, we provide
a characterization of test functions by means of Gabor expansions.

By a Gabor expansion, we understand a series expansion of the form

(43) f = Z (fa M,Bn Tar g> M,Bn Tory
klezd

for some fixed pair of windows (g,7). The construction of Gabor
expansions valid in L?(R?) is well understood and we may use the textbook
results [10, 14] without much ado. Assume that G(g,«, ) is a frame
for L?(R?), meaning that the Gabor frame operator defined by Sf =
> ksezalfiMan Tak g) Mgy, Tag g is invertible on L*(R?). Since

f=87'8f= > (f MpnTarg) Mg, Tar S~'g,
k,lezd

we can choose v = S7lg € L%(RY), see, e.g., [10] or [14]. A much deeper
theorem of Janssen [19] states that if S in invertible on L?(R?) and if g € S,
then also y = S~'g € S.

A gimilar statement can be derived for ultra test functions.

Theorem 4.2. Assume that g € S,, and that the Gabor frame operator
S is invertible on L*(R?). Then y=S"'g € S,.

Proof. The statement follows by a combination of the main result in [15]
and Prop. 4.1(ii). Set m(z,§) = e}w@+wE) a5 above. If g € M}, and S
is invertible on L?(R?), then by [15, Thm. 4.2] S is also invertible on M}

my?
and thus v = S™'g € M, . Consequently, if g € Sy = (359 My, , then
also v € 8y, by Prop. 4.1.(ii). O

Using these facts, we obtain the following characterization of ultra-test
functions in terms of their coefficients of Gabor expansions.

Theorem 4.3. Assume that S is invertible on L*(R?) and g € S, with
dual window v € 8,,. Then (4.3) holds for f € S, with convergence in
Sw. Furthermore, f € Sy if and only if f has a Gabor expansion with
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coefficients crr = (f, Mpn Tary) satisfying |cr| < Cx e~ Mwlak)+w(Bh) for
all X > 0.

Proof. Let my(x,€) = eMNw@+v(®) “and apply [14, Cor. 12.2.6] to ML,

for each A > 0. a
If w(t) = log(1+ ||t]]), then this yields a characterization of the Schwartz
class & which was already observed in [17]. For w(t) = ||¢]|°, one obtains a

characterization of ultra-test functions (see also [25]). For Wilson bases in
place of Gabor frames, similar results have been obtained in [11, 16, 25].

Finally, we check when a modulation space contains functions with
compact support, more precisely, we ask when M contains functions of
arbitrarily small support. As is to be expected, this question brings in the
logarithmic integral and quasianalyticity.

Theorem 4.4. Assume that m(z,&) < Cm(&, —x) and set ma(§) =
m(0,£). Then the following are equivalent.

(i) M, contains functions of arbitrarily small support.
(i) F L contains functions of arbitrarily small support.

mz2
(iil) m satisfies the logarithmic integral condition
logm(z)
(4.4) [ <.
2zt 12]124t
(iv) m satisfies
log m (0, £)
(4.5) / dé < oo
[

Proof. (ii) <= (iv) is classical, see [4, p. 412] and [23] for details.
(ii) = (i). Assume that supp f C [—A, A]* and that [5, ()| m2(€) d€ <
00. Then using Lemma 1.1 we obtain

(FsM YO =(F,TeM , F) = (/M T, f) =0
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for ||z|| > 2A. Therefore,

// (Vs )@, &) miz, &) dedE S/ o /}§d|(f* M-, f)(©)]m(0,€) d¢

RéxR4
-m(x,0) dx

<[ NPTy, w01 ds
lz)| <24

<[ Wy, 1M Flly, w0 ds
lz)| <24 > >
< Cllflly, < oo

Since V¢f € L. (R? xR%) implies that Vof € Lin(]Rdx]Ed) by [14,
Lemma 12.1.1], we have f € M},. Consequently every compactly supported
function in F L}, is also in M. The implication (ii)) = (i) follows.

(i) = (iii). Next assume that for every ¢ > 0, there exists f with
supp f C [—¢,e]? and f € M}, ie., Vo f € L}n(lexH/id) where ¢(t) = e=7".
Since under the assumptions made, M} is invariant under the Fourier
transform, we also have f € M . Invoking [14, Lemma 12.1.1], we derive
that Vzf € L. (RYxR%). By Lemma 1.1.(iii), we find that

—

(Ve y) = e 270 f(—y) Fop = e (—y) f(—n),

and thus suppﬁf\f C [-e,e]?.  Consequently, FL! (R¢xR?) contains
functions with arbitrarily small support, and by the theory of the
logarithmic integral ([4, p. 412] and [23]), m satisfies condition (4.4).

(iii) = (ii). If (4.4) is satisfied, then for every € > 0, there exists a
function F on R*¢ such that supp F' C [—¢,¢]*? and [5.. |F(O)] m(¢) d¢ < oo.
Fubini’s theorem then implies that

(4.6) /A |F(w, &) m(0,€) de < m(—w,O)/ |Fw,&)|mw,&)dé < oo

R R

for (almost) all w € R?. For such an w, define the function f on R? by

flx) = F(w,z)e 2™« du .
Rd
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Then supp f C [~¢,¢]¢ and
fo= / F(w,z) e ™% dw e ™% dy = F(w, €).
R JR4

Now (4.6) implies that [x,|f(€)|m2(6)dE < oo, in other words, F L.,
contains functions of arbitrarily small support. O

In some applications, even stronger decay conditions on the short-time
Fourier transform are considered, see, e.g., the superexponential decay
conditions in the design of windows for Gabor frames [2]. In this case
the weight function v is no longer assumed to be submultiplicative and may
thus grow faster than exponentially, e.g., v(z) = e®l?lI° for some ¢ > 1. It
still makes sense to consider the modulation spaces MP?,, but they seem to
lose all their basic properties. For instance, M} may not be invariant unter
time-frequency shifts, and the definition of MP? may depend on the choice
of the window. Moreover, the version of Hardy’s theorem for the STFT
imposes a limit on the growth of m. If m(z) > C el for some a > /2,
then the corresponding M}, contains only the trivial function f =0 [17].
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